xref: /linux/fs/timerfd.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  *  fs/timerfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *
6  *
7  *  Thanks to Thomas Gleixner for code reviews and useful comments.
8  *
9  */
10 
11 #include <linux/alarmtimer.h>
12 #include <linux/file.h>
13 #include <linux/poll.h>
14 #include <linux/init.h>
15 #include <linux/fs.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/list.h>
20 #include <linux/spinlock.h>
21 #include <linux/time.h>
22 #include <linux/hrtimer.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/timerfd.h>
25 #include <linux/syscalls.h>
26 #include <linux/compat.h>
27 #include <linux/rcupdate.h>
28 
29 struct timerfd_ctx {
30 	union {
31 		struct hrtimer tmr;
32 		struct alarm alarm;
33 	} t;
34 	ktime_t tintv;
35 	ktime_t moffs;
36 	wait_queue_head_t wqh;
37 	u64 ticks;
38 	int clockid;
39 	short unsigned expired;
40 	short unsigned settime_flags;	/* to show in fdinfo */
41 	struct rcu_head rcu;
42 	struct list_head clist;
43 	spinlock_t cancel_lock;
44 	bool might_cancel;
45 };
46 
47 static LIST_HEAD(cancel_list);
48 static DEFINE_SPINLOCK(cancel_lock);
49 
50 static inline bool isalarm(struct timerfd_ctx *ctx)
51 {
52 	return ctx->clockid == CLOCK_REALTIME_ALARM ||
53 		ctx->clockid == CLOCK_BOOTTIME_ALARM;
54 }
55 
56 /*
57  * This gets called when the timer event triggers. We set the "expired"
58  * flag, but we do not re-arm the timer (in case it's necessary,
59  * tintv != 0) until the timer is accessed.
60  */
61 static void timerfd_triggered(struct timerfd_ctx *ctx)
62 {
63 	unsigned long flags;
64 
65 	spin_lock_irqsave(&ctx->wqh.lock, flags);
66 	ctx->expired = 1;
67 	ctx->ticks++;
68 	wake_up_locked(&ctx->wqh);
69 	spin_unlock_irqrestore(&ctx->wqh.lock, flags);
70 }
71 
72 static enum hrtimer_restart timerfd_tmrproc(struct hrtimer *htmr)
73 {
74 	struct timerfd_ctx *ctx = container_of(htmr, struct timerfd_ctx,
75 					       t.tmr);
76 	timerfd_triggered(ctx);
77 	return HRTIMER_NORESTART;
78 }
79 
80 static enum alarmtimer_restart timerfd_alarmproc(struct alarm *alarm,
81 	ktime_t now)
82 {
83 	struct timerfd_ctx *ctx = container_of(alarm, struct timerfd_ctx,
84 					       t.alarm);
85 	timerfd_triggered(ctx);
86 	return ALARMTIMER_NORESTART;
87 }
88 
89 /*
90  * Called when the clock was set to cancel the timers in the cancel
91  * list. This will wake up processes waiting on these timers. The
92  * wake-up requires ctx->ticks to be non zero, therefore we increment
93  * it before calling wake_up_locked().
94  */
95 void timerfd_clock_was_set(void)
96 {
97 	ktime_t moffs = ktime_mono_to_real(0);
98 	struct timerfd_ctx *ctx;
99 	unsigned long flags;
100 
101 	rcu_read_lock();
102 	list_for_each_entry_rcu(ctx, &cancel_list, clist) {
103 		if (!ctx->might_cancel)
104 			continue;
105 		spin_lock_irqsave(&ctx->wqh.lock, flags);
106 		if (ctx->moffs != moffs) {
107 			ctx->moffs = KTIME_MAX;
108 			ctx->ticks++;
109 			wake_up_locked(&ctx->wqh);
110 		}
111 		spin_unlock_irqrestore(&ctx->wqh.lock, flags);
112 	}
113 	rcu_read_unlock();
114 }
115 
116 static void __timerfd_remove_cancel(struct timerfd_ctx *ctx)
117 {
118 	if (ctx->might_cancel) {
119 		ctx->might_cancel = false;
120 		spin_lock(&cancel_lock);
121 		list_del_rcu(&ctx->clist);
122 		spin_unlock(&cancel_lock);
123 	}
124 }
125 
126 static void timerfd_remove_cancel(struct timerfd_ctx *ctx)
127 {
128 	spin_lock(&ctx->cancel_lock);
129 	__timerfd_remove_cancel(ctx);
130 	spin_unlock(&ctx->cancel_lock);
131 }
132 
133 static bool timerfd_canceled(struct timerfd_ctx *ctx)
134 {
135 	if (!ctx->might_cancel || ctx->moffs != KTIME_MAX)
136 		return false;
137 	ctx->moffs = ktime_mono_to_real(0);
138 	return true;
139 }
140 
141 static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags)
142 {
143 	spin_lock(&ctx->cancel_lock);
144 	if ((ctx->clockid == CLOCK_REALTIME ||
145 	     ctx->clockid == CLOCK_REALTIME_ALARM) &&
146 	    (flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_SET)) {
147 		if (!ctx->might_cancel) {
148 			ctx->might_cancel = true;
149 			spin_lock(&cancel_lock);
150 			list_add_rcu(&ctx->clist, &cancel_list);
151 			spin_unlock(&cancel_lock);
152 		}
153 	} else {
154 		__timerfd_remove_cancel(ctx);
155 	}
156 	spin_unlock(&ctx->cancel_lock);
157 }
158 
159 static ktime_t timerfd_get_remaining(struct timerfd_ctx *ctx)
160 {
161 	ktime_t remaining;
162 
163 	if (isalarm(ctx))
164 		remaining = alarm_expires_remaining(&ctx->t.alarm);
165 	else
166 		remaining = hrtimer_expires_remaining_adjusted(&ctx->t.tmr);
167 
168 	return remaining < 0 ? 0: remaining;
169 }
170 
171 static int timerfd_setup(struct timerfd_ctx *ctx, int flags,
172 			 const struct itimerspec *ktmr)
173 {
174 	enum hrtimer_mode htmode;
175 	ktime_t texp;
176 	int clockid = ctx->clockid;
177 
178 	htmode = (flags & TFD_TIMER_ABSTIME) ?
179 		HRTIMER_MODE_ABS: HRTIMER_MODE_REL;
180 
181 	texp = timespec_to_ktime(ktmr->it_value);
182 	ctx->expired = 0;
183 	ctx->ticks = 0;
184 	ctx->tintv = timespec_to_ktime(ktmr->it_interval);
185 
186 	if (isalarm(ctx)) {
187 		alarm_init(&ctx->t.alarm,
188 			   ctx->clockid == CLOCK_REALTIME_ALARM ?
189 			   ALARM_REALTIME : ALARM_BOOTTIME,
190 			   timerfd_alarmproc);
191 	} else {
192 		hrtimer_init(&ctx->t.tmr, clockid, htmode);
193 		hrtimer_set_expires(&ctx->t.tmr, texp);
194 		ctx->t.tmr.function = timerfd_tmrproc;
195 	}
196 
197 	if (texp != 0) {
198 		if (isalarm(ctx)) {
199 			if (flags & TFD_TIMER_ABSTIME)
200 				alarm_start(&ctx->t.alarm, texp);
201 			else
202 				alarm_start_relative(&ctx->t.alarm, texp);
203 		} else {
204 			hrtimer_start(&ctx->t.tmr, texp, htmode);
205 		}
206 
207 		if (timerfd_canceled(ctx))
208 			return -ECANCELED;
209 	}
210 
211 	ctx->settime_flags = flags & TFD_SETTIME_FLAGS;
212 	return 0;
213 }
214 
215 static int timerfd_release(struct inode *inode, struct file *file)
216 {
217 	struct timerfd_ctx *ctx = file->private_data;
218 
219 	timerfd_remove_cancel(ctx);
220 
221 	if (isalarm(ctx))
222 		alarm_cancel(&ctx->t.alarm);
223 	else
224 		hrtimer_cancel(&ctx->t.tmr);
225 	kfree_rcu(ctx, rcu);
226 	return 0;
227 }
228 
229 static unsigned int timerfd_poll(struct file *file, poll_table *wait)
230 {
231 	struct timerfd_ctx *ctx = file->private_data;
232 	unsigned int events = 0;
233 	unsigned long flags;
234 
235 	poll_wait(file, &ctx->wqh, wait);
236 
237 	spin_lock_irqsave(&ctx->wqh.lock, flags);
238 	if (ctx->ticks)
239 		events |= POLLIN;
240 	spin_unlock_irqrestore(&ctx->wqh.lock, flags);
241 
242 	return events;
243 }
244 
245 static ssize_t timerfd_read(struct file *file, char __user *buf, size_t count,
246 			    loff_t *ppos)
247 {
248 	struct timerfd_ctx *ctx = file->private_data;
249 	ssize_t res;
250 	u64 ticks = 0;
251 
252 	if (count < sizeof(ticks))
253 		return -EINVAL;
254 	spin_lock_irq(&ctx->wqh.lock);
255 	if (file->f_flags & O_NONBLOCK)
256 		res = -EAGAIN;
257 	else
258 		res = wait_event_interruptible_locked_irq(ctx->wqh, ctx->ticks);
259 
260 	/*
261 	 * If clock has changed, we do not care about the
262 	 * ticks and we do not rearm the timer. Userspace must
263 	 * reevaluate anyway.
264 	 */
265 	if (timerfd_canceled(ctx)) {
266 		ctx->ticks = 0;
267 		ctx->expired = 0;
268 		res = -ECANCELED;
269 	}
270 
271 	if (ctx->ticks) {
272 		ticks = ctx->ticks;
273 
274 		if (ctx->expired && ctx->tintv) {
275 			/*
276 			 * If tintv != 0, this is a periodic timer that
277 			 * needs to be re-armed. We avoid doing it in the timer
278 			 * callback to avoid DoS attacks specifying a very
279 			 * short timer period.
280 			 */
281 			if (isalarm(ctx)) {
282 				ticks += alarm_forward_now(
283 					&ctx->t.alarm, ctx->tintv) - 1;
284 				alarm_restart(&ctx->t.alarm);
285 			} else {
286 				ticks += hrtimer_forward_now(&ctx->t.tmr,
287 							     ctx->tintv) - 1;
288 				hrtimer_restart(&ctx->t.tmr);
289 			}
290 		}
291 		ctx->expired = 0;
292 		ctx->ticks = 0;
293 	}
294 	spin_unlock_irq(&ctx->wqh.lock);
295 	if (ticks)
296 		res = put_user(ticks, (u64 __user *) buf) ? -EFAULT: sizeof(ticks);
297 	return res;
298 }
299 
300 #ifdef CONFIG_PROC_FS
301 static void timerfd_show(struct seq_file *m, struct file *file)
302 {
303 	struct timerfd_ctx *ctx = file->private_data;
304 	struct itimerspec t;
305 
306 	spin_lock_irq(&ctx->wqh.lock);
307 	t.it_value = ktime_to_timespec(timerfd_get_remaining(ctx));
308 	t.it_interval = ktime_to_timespec(ctx->tintv);
309 	spin_unlock_irq(&ctx->wqh.lock);
310 
311 	seq_printf(m,
312 		   "clockid: %d\n"
313 		   "ticks: %llu\n"
314 		   "settime flags: 0%o\n"
315 		   "it_value: (%llu, %llu)\n"
316 		   "it_interval: (%llu, %llu)\n",
317 		   ctx->clockid,
318 		   (unsigned long long)ctx->ticks,
319 		   ctx->settime_flags,
320 		   (unsigned long long)t.it_value.tv_sec,
321 		   (unsigned long long)t.it_value.tv_nsec,
322 		   (unsigned long long)t.it_interval.tv_sec,
323 		   (unsigned long long)t.it_interval.tv_nsec);
324 }
325 #else
326 #define timerfd_show NULL
327 #endif
328 
329 #ifdef CONFIG_CHECKPOINT_RESTORE
330 static long timerfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
331 {
332 	struct timerfd_ctx *ctx = file->private_data;
333 	int ret = 0;
334 
335 	switch (cmd) {
336 	case TFD_IOC_SET_TICKS: {
337 		u64 ticks;
338 
339 		if (copy_from_user(&ticks, (u64 __user *)arg, sizeof(ticks)))
340 			return -EFAULT;
341 		if (!ticks)
342 			return -EINVAL;
343 
344 		spin_lock_irq(&ctx->wqh.lock);
345 		if (!timerfd_canceled(ctx)) {
346 			ctx->ticks = ticks;
347 			wake_up_locked(&ctx->wqh);
348 		} else
349 			ret = -ECANCELED;
350 		spin_unlock_irq(&ctx->wqh.lock);
351 		break;
352 	}
353 	default:
354 		ret = -ENOTTY;
355 		break;
356 	}
357 
358 	return ret;
359 }
360 #else
361 #define timerfd_ioctl NULL
362 #endif
363 
364 static const struct file_operations timerfd_fops = {
365 	.release	= timerfd_release,
366 	.poll		= timerfd_poll,
367 	.read		= timerfd_read,
368 	.llseek		= noop_llseek,
369 	.show_fdinfo	= timerfd_show,
370 	.unlocked_ioctl	= timerfd_ioctl,
371 };
372 
373 static int timerfd_fget(int fd, struct fd *p)
374 {
375 	struct fd f = fdget(fd);
376 	if (!f.file)
377 		return -EBADF;
378 	if (f.file->f_op != &timerfd_fops) {
379 		fdput(f);
380 		return -EINVAL;
381 	}
382 	*p = f;
383 	return 0;
384 }
385 
386 SYSCALL_DEFINE2(timerfd_create, int, clockid, int, flags)
387 {
388 	int ufd;
389 	struct timerfd_ctx *ctx;
390 
391 	/* Check the TFD_* constants for consistency.  */
392 	BUILD_BUG_ON(TFD_CLOEXEC != O_CLOEXEC);
393 	BUILD_BUG_ON(TFD_NONBLOCK != O_NONBLOCK);
394 
395 	if ((flags & ~TFD_CREATE_FLAGS) ||
396 	    (clockid != CLOCK_MONOTONIC &&
397 	     clockid != CLOCK_REALTIME &&
398 	     clockid != CLOCK_REALTIME_ALARM &&
399 	     clockid != CLOCK_BOOTTIME &&
400 	     clockid != CLOCK_BOOTTIME_ALARM))
401 		return -EINVAL;
402 
403 	if ((clockid == CLOCK_REALTIME_ALARM ||
404 	     clockid == CLOCK_BOOTTIME_ALARM) &&
405 	    !capable(CAP_WAKE_ALARM))
406 		return -EPERM;
407 
408 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
409 	if (!ctx)
410 		return -ENOMEM;
411 
412 	init_waitqueue_head(&ctx->wqh);
413 	spin_lock_init(&ctx->cancel_lock);
414 	ctx->clockid = clockid;
415 
416 	if (isalarm(ctx))
417 		alarm_init(&ctx->t.alarm,
418 			   ctx->clockid == CLOCK_REALTIME_ALARM ?
419 			   ALARM_REALTIME : ALARM_BOOTTIME,
420 			   timerfd_alarmproc);
421 	else
422 		hrtimer_init(&ctx->t.tmr, clockid, HRTIMER_MODE_ABS);
423 
424 	ctx->moffs = ktime_mono_to_real(0);
425 
426 	ufd = anon_inode_getfd("[timerfd]", &timerfd_fops, ctx,
427 			       O_RDWR | (flags & TFD_SHARED_FCNTL_FLAGS));
428 	if (ufd < 0)
429 		kfree(ctx);
430 
431 	return ufd;
432 }
433 
434 static int do_timerfd_settime(int ufd, int flags,
435 		const struct itimerspec *new,
436 		struct itimerspec *old)
437 {
438 	struct fd f;
439 	struct timerfd_ctx *ctx;
440 	int ret;
441 
442 	if ((flags & ~TFD_SETTIME_FLAGS) ||
443 	    !timespec_valid(&new->it_value) ||
444 	    !timespec_valid(&new->it_interval))
445 		return -EINVAL;
446 
447 	ret = timerfd_fget(ufd, &f);
448 	if (ret)
449 		return ret;
450 	ctx = f.file->private_data;
451 
452 	if (isalarm(ctx) && !capable(CAP_WAKE_ALARM)) {
453 		fdput(f);
454 		return -EPERM;
455 	}
456 
457 	timerfd_setup_cancel(ctx, flags);
458 
459 	/*
460 	 * We need to stop the existing timer before reprogramming
461 	 * it to the new values.
462 	 */
463 	for (;;) {
464 		spin_lock_irq(&ctx->wqh.lock);
465 
466 		if (isalarm(ctx)) {
467 			if (alarm_try_to_cancel(&ctx->t.alarm) >= 0)
468 				break;
469 		} else {
470 			if (hrtimer_try_to_cancel(&ctx->t.tmr) >= 0)
471 				break;
472 		}
473 		spin_unlock_irq(&ctx->wqh.lock);
474 		cpu_relax();
475 	}
476 
477 	/*
478 	 * If the timer is expired and it's periodic, we need to advance it
479 	 * because the caller may want to know the previous expiration time.
480 	 * We do not update "ticks" and "expired" since the timer will be
481 	 * re-programmed again in the following timerfd_setup() call.
482 	 */
483 	if (ctx->expired && ctx->tintv) {
484 		if (isalarm(ctx))
485 			alarm_forward_now(&ctx->t.alarm, ctx->tintv);
486 		else
487 			hrtimer_forward_now(&ctx->t.tmr, ctx->tintv);
488 	}
489 
490 	old->it_value = ktime_to_timespec(timerfd_get_remaining(ctx));
491 	old->it_interval = ktime_to_timespec(ctx->tintv);
492 
493 	/*
494 	 * Re-program the timer to the new value ...
495 	 */
496 	ret = timerfd_setup(ctx, flags, new);
497 
498 	spin_unlock_irq(&ctx->wqh.lock);
499 	fdput(f);
500 	return ret;
501 }
502 
503 static int do_timerfd_gettime(int ufd, struct itimerspec *t)
504 {
505 	struct fd f;
506 	struct timerfd_ctx *ctx;
507 	int ret = timerfd_fget(ufd, &f);
508 	if (ret)
509 		return ret;
510 	ctx = f.file->private_data;
511 
512 	spin_lock_irq(&ctx->wqh.lock);
513 	if (ctx->expired && ctx->tintv) {
514 		ctx->expired = 0;
515 
516 		if (isalarm(ctx)) {
517 			ctx->ticks +=
518 				alarm_forward_now(
519 					&ctx->t.alarm, ctx->tintv) - 1;
520 			alarm_restart(&ctx->t.alarm);
521 		} else {
522 			ctx->ticks +=
523 				hrtimer_forward_now(&ctx->t.tmr, ctx->tintv)
524 				- 1;
525 			hrtimer_restart(&ctx->t.tmr);
526 		}
527 	}
528 	t->it_value = ktime_to_timespec(timerfd_get_remaining(ctx));
529 	t->it_interval = ktime_to_timespec(ctx->tintv);
530 	spin_unlock_irq(&ctx->wqh.lock);
531 	fdput(f);
532 	return 0;
533 }
534 
535 SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags,
536 		const struct itimerspec __user *, utmr,
537 		struct itimerspec __user *, otmr)
538 {
539 	struct itimerspec new, old;
540 	int ret;
541 
542 	if (copy_from_user(&new, utmr, sizeof(new)))
543 		return -EFAULT;
544 	ret = do_timerfd_settime(ufd, flags, &new, &old);
545 	if (ret)
546 		return ret;
547 	if (otmr && copy_to_user(otmr, &old, sizeof(old)))
548 		return -EFAULT;
549 
550 	return ret;
551 }
552 
553 SYSCALL_DEFINE2(timerfd_gettime, int, ufd, struct itimerspec __user *, otmr)
554 {
555 	struct itimerspec kotmr;
556 	int ret = do_timerfd_gettime(ufd, &kotmr);
557 	if (ret)
558 		return ret;
559 	return copy_to_user(otmr, &kotmr, sizeof(kotmr)) ? -EFAULT: 0;
560 }
561 
562 #ifdef CONFIG_COMPAT
563 COMPAT_SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags,
564 		const struct compat_itimerspec __user *, utmr,
565 		struct compat_itimerspec __user *, otmr)
566 {
567 	struct itimerspec new, old;
568 	int ret;
569 
570 	if (get_compat_itimerspec(&new, utmr))
571 		return -EFAULT;
572 	ret = do_timerfd_settime(ufd, flags, &new, &old);
573 	if (ret)
574 		return ret;
575 	if (otmr && put_compat_itimerspec(otmr, &old))
576 		return -EFAULT;
577 	return ret;
578 }
579 
580 COMPAT_SYSCALL_DEFINE2(timerfd_gettime, int, ufd,
581 		struct compat_itimerspec __user *, otmr)
582 {
583 	struct itimerspec kotmr;
584 	int ret = do_timerfd_gettime(ufd, &kotmr);
585 	if (ret)
586 		return ret;
587 	return put_compat_itimerspec(otmr, &kotmr) ? -EFAULT: 0;
588 }
589 #endif
590