xref: /linux/fs/timerfd.c (revision b86711c6d6e20eb945fe878de98ef7c9be2c2088)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  fs/timerfd.c
4   *
5   *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6   *
7   *
8   *  Thanks to Thomas Gleixner for code reviews and useful comments.
9   *
10   */
11  
12  #include <linux/alarmtimer.h>
13  #include <linux/file.h>
14  #include <linux/poll.h>
15  #include <linux/init.h>
16  #include <linux/fs.h>
17  #include <linux/sched.h>
18  #include <linux/kernel.h>
19  #include <linux/slab.h>
20  #include <linux/list.h>
21  #include <linux/spinlock.h>
22  #include <linux/time.h>
23  #include <linux/hrtimer.h>
24  #include <linux/anon_inodes.h>
25  #include <linux/timerfd.h>
26  #include <linux/syscalls.h>
27  #include <linux/compat.h>
28  #include <linux/rcupdate.h>
29  #include <linux/time_namespace.h>
30  
31  struct timerfd_ctx {
32  	union {
33  		struct hrtimer tmr;
34  		struct alarm alarm;
35  	} t;
36  	ktime_t tintv;
37  	ktime_t moffs;
38  	wait_queue_head_t wqh;
39  	u64 ticks;
40  	int clockid;
41  	short unsigned expired;
42  	short unsigned settime_flags;	/* to show in fdinfo */
43  	struct rcu_head rcu;
44  	struct list_head clist;
45  	spinlock_t cancel_lock;
46  	bool might_cancel;
47  };
48  
49  static LIST_HEAD(cancel_list);
50  static DEFINE_SPINLOCK(cancel_lock);
51  
52  static inline bool isalarm(struct timerfd_ctx *ctx)
53  {
54  	return ctx->clockid == CLOCK_REALTIME_ALARM ||
55  		ctx->clockid == CLOCK_BOOTTIME_ALARM;
56  }
57  
58  /*
59   * This gets called when the timer event triggers. We set the "expired"
60   * flag, but we do not re-arm the timer (in case it's necessary,
61   * tintv != 0) until the timer is accessed.
62   */
63  static void timerfd_triggered(struct timerfd_ctx *ctx)
64  {
65  	unsigned long flags;
66  
67  	spin_lock_irqsave(&ctx->wqh.lock, flags);
68  	ctx->expired = 1;
69  	ctx->ticks++;
70  	wake_up_locked_poll(&ctx->wqh, EPOLLIN);
71  	spin_unlock_irqrestore(&ctx->wqh.lock, flags);
72  }
73  
74  static enum hrtimer_restart timerfd_tmrproc(struct hrtimer *htmr)
75  {
76  	struct timerfd_ctx *ctx = container_of(htmr, struct timerfd_ctx,
77  					       t.tmr);
78  	timerfd_triggered(ctx);
79  	return HRTIMER_NORESTART;
80  }
81  
82  static enum alarmtimer_restart timerfd_alarmproc(struct alarm *alarm,
83  	ktime_t now)
84  {
85  	struct timerfd_ctx *ctx = container_of(alarm, struct timerfd_ctx,
86  					       t.alarm);
87  	timerfd_triggered(ctx);
88  	return ALARMTIMER_NORESTART;
89  }
90  
91  /*
92   * Called when the clock was set to cancel the timers in the cancel
93   * list. This will wake up processes waiting on these timers. The
94   * wake-up requires ctx->ticks to be non zero, therefore we increment
95   * it before calling wake_up_locked().
96   */
97  void timerfd_clock_was_set(void)
98  {
99  	ktime_t moffs = ktime_mono_to_real(0);
100  	struct timerfd_ctx *ctx;
101  	unsigned long flags;
102  
103  	rcu_read_lock();
104  	list_for_each_entry_rcu(ctx, &cancel_list, clist) {
105  		if (!ctx->might_cancel)
106  			continue;
107  		spin_lock_irqsave(&ctx->wqh.lock, flags);
108  		if (ctx->moffs != moffs) {
109  			ctx->moffs = KTIME_MAX;
110  			ctx->ticks++;
111  			wake_up_locked_poll(&ctx->wqh, EPOLLIN);
112  		}
113  		spin_unlock_irqrestore(&ctx->wqh.lock, flags);
114  	}
115  	rcu_read_unlock();
116  }
117  
118  static void timerfd_resume_work(struct work_struct *work)
119  {
120  	timerfd_clock_was_set();
121  }
122  
123  static DECLARE_WORK(timerfd_work, timerfd_resume_work);
124  
125  /*
126   * Invoked from timekeeping_resume(). Defer the actual update to work so
127   * timerfd_clock_was_set() runs in task context.
128   */
129  void timerfd_resume(void)
130  {
131  	schedule_work(&timerfd_work);
132  }
133  
134  static void __timerfd_remove_cancel(struct timerfd_ctx *ctx)
135  {
136  	if (ctx->might_cancel) {
137  		ctx->might_cancel = false;
138  		spin_lock(&cancel_lock);
139  		list_del_rcu(&ctx->clist);
140  		spin_unlock(&cancel_lock);
141  	}
142  }
143  
144  static void timerfd_remove_cancel(struct timerfd_ctx *ctx)
145  {
146  	spin_lock(&ctx->cancel_lock);
147  	__timerfd_remove_cancel(ctx);
148  	spin_unlock(&ctx->cancel_lock);
149  }
150  
151  static bool timerfd_canceled(struct timerfd_ctx *ctx)
152  {
153  	if (!ctx->might_cancel || ctx->moffs != KTIME_MAX)
154  		return false;
155  	ctx->moffs = ktime_mono_to_real(0);
156  	return true;
157  }
158  
159  static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags)
160  {
161  	spin_lock(&ctx->cancel_lock);
162  	if ((ctx->clockid == CLOCK_REALTIME ||
163  	     ctx->clockid == CLOCK_REALTIME_ALARM) &&
164  	    (flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_SET)) {
165  		if (!ctx->might_cancel) {
166  			ctx->might_cancel = true;
167  			spin_lock(&cancel_lock);
168  			list_add_rcu(&ctx->clist, &cancel_list);
169  			spin_unlock(&cancel_lock);
170  		}
171  	} else {
172  		__timerfd_remove_cancel(ctx);
173  	}
174  	spin_unlock(&ctx->cancel_lock);
175  }
176  
177  static ktime_t timerfd_get_remaining(struct timerfd_ctx *ctx)
178  {
179  	ktime_t remaining;
180  
181  	if (isalarm(ctx))
182  		remaining = alarm_expires_remaining(&ctx->t.alarm);
183  	else
184  		remaining = hrtimer_expires_remaining_adjusted(&ctx->t.tmr);
185  
186  	return remaining < 0 ? 0: remaining;
187  }
188  
189  static int timerfd_setup(struct timerfd_ctx *ctx, int flags,
190  			 const struct itimerspec64 *ktmr)
191  {
192  	enum hrtimer_mode htmode;
193  	ktime_t texp;
194  	int clockid = ctx->clockid;
195  
196  	htmode = (flags & TFD_TIMER_ABSTIME) ?
197  		HRTIMER_MODE_ABS: HRTIMER_MODE_REL;
198  
199  	texp = timespec64_to_ktime(ktmr->it_value);
200  	ctx->expired = 0;
201  	ctx->ticks = 0;
202  	ctx->tintv = timespec64_to_ktime(ktmr->it_interval);
203  
204  	if (isalarm(ctx)) {
205  		alarm_init(&ctx->t.alarm,
206  			   ctx->clockid == CLOCK_REALTIME_ALARM ?
207  			   ALARM_REALTIME : ALARM_BOOTTIME,
208  			   timerfd_alarmproc);
209  	} else {
210  		hrtimer_init(&ctx->t.tmr, clockid, htmode);
211  		hrtimer_set_expires(&ctx->t.tmr, texp);
212  		ctx->t.tmr.function = timerfd_tmrproc;
213  	}
214  
215  	if (texp != 0) {
216  		if (flags & TFD_TIMER_ABSTIME)
217  			texp = timens_ktime_to_host(clockid, texp);
218  		if (isalarm(ctx)) {
219  			if (flags & TFD_TIMER_ABSTIME)
220  				alarm_start(&ctx->t.alarm, texp);
221  			else
222  				alarm_start_relative(&ctx->t.alarm, texp);
223  		} else {
224  			hrtimer_start(&ctx->t.tmr, texp, htmode);
225  		}
226  
227  		if (timerfd_canceled(ctx))
228  			return -ECANCELED;
229  	}
230  
231  	ctx->settime_flags = flags & TFD_SETTIME_FLAGS;
232  	return 0;
233  }
234  
235  static int timerfd_release(struct inode *inode, struct file *file)
236  {
237  	struct timerfd_ctx *ctx = file->private_data;
238  
239  	timerfd_remove_cancel(ctx);
240  
241  	if (isalarm(ctx))
242  		alarm_cancel(&ctx->t.alarm);
243  	else
244  		hrtimer_cancel(&ctx->t.tmr);
245  	kfree_rcu(ctx, rcu);
246  	return 0;
247  }
248  
249  static __poll_t timerfd_poll(struct file *file, poll_table *wait)
250  {
251  	struct timerfd_ctx *ctx = file->private_data;
252  	__poll_t events = 0;
253  	unsigned long flags;
254  
255  	poll_wait(file, &ctx->wqh, wait);
256  
257  	spin_lock_irqsave(&ctx->wqh.lock, flags);
258  	if (ctx->ticks)
259  		events |= EPOLLIN;
260  	spin_unlock_irqrestore(&ctx->wqh.lock, flags);
261  
262  	return events;
263  }
264  
265  static ssize_t timerfd_read_iter(struct kiocb *iocb, struct iov_iter *to)
266  {
267  	struct file *file = iocb->ki_filp;
268  	struct timerfd_ctx *ctx = file->private_data;
269  	ssize_t res;
270  	u64 ticks = 0;
271  
272  	if (iov_iter_count(to) < sizeof(ticks))
273  		return -EINVAL;
274  
275  	spin_lock_irq(&ctx->wqh.lock);
276  	if (file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT)
277  		res = -EAGAIN;
278  	else
279  		res = wait_event_interruptible_locked_irq(ctx->wqh, ctx->ticks);
280  
281  	/*
282  	 * If clock has changed, we do not care about the
283  	 * ticks and we do not rearm the timer. Userspace must
284  	 * reevaluate anyway.
285  	 */
286  	if (timerfd_canceled(ctx)) {
287  		ctx->ticks = 0;
288  		ctx->expired = 0;
289  		res = -ECANCELED;
290  	}
291  
292  	if (ctx->ticks) {
293  		ticks = ctx->ticks;
294  
295  		if (ctx->expired && ctx->tintv) {
296  			/*
297  			 * If tintv != 0, this is a periodic timer that
298  			 * needs to be re-armed. We avoid doing it in the timer
299  			 * callback to avoid DoS attacks specifying a very
300  			 * short timer period.
301  			 */
302  			if (isalarm(ctx)) {
303  				ticks += alarm_forward_now(
304  					&ctx->t.alarm, ctx->tintv) - 1;
305  				alarm_restart(&ctx->t.alarm);
306  			} else {
307  				ticks += hrtimer_forward_now(&ctx->t.tmr,
308  							     ctx->tintv) - 1;
309  				hrtimer_restart(&ctx->t.tmr);
310  			}
311  		}
312  		ctx->expired = 0;
313  		ctx->ticks = 0;
314  	}
315  	spin_unlock_irq(&ctx->wqh.lock);
316  	if (ticks) {
317  		res = copy_to_iter(&ticks, sizeof(ticks), to);
318  		if (!res)
319  			res = -EFAULT;
320  	}
321  	return res;
322  }
323  
324  #ifdef CONFIG_PROC_FS
325  static void timerfd_show(struct seq_file *m, struct file *file)
326  {
327  	struct timerfd_ctx *ctx = file->private_data;
328  	struct timespec64 value, interval;
329  
330  	spin_lock_irq(&ctx->wqh.lock);
331  	value = ktime_to_timespec64(timerfd_get_remaining(ctx));
332  	interval = ktime_to_timespec64(ctx->tintv);
333  	spin_unlock_irq(&ctx->wqh.lock);
334  
335  	seq_printf(m,
336  		   "clockid: %d\n"
337  		   "ticks: %llu\n"
338  		   "settime flags: 0%o\n"
339  		   "it_value: (%llu, %llu)\n"
340  		   "it_interval: (%llu, %llu)\n",
341  		   ctx->clockid,
342  		   (unsigned long long)ctx->ticks,
343  		   ctx->settime_flags,
344  		   (unsigned long long)value.tv_sec,
345  		   (unsigned long long)value.tv_nsec,
346  		   (unsigned long long)interval.tv_sec,
347  		   (unsigned long long)interval.tv_nsec);
348  }
349  #else
350  #define timerfd_show NULL
351  #endif
352  
353  #ifdef CONFIG_CHECKPOINT_RESTORE
354  static long timerfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
355  {
356  	struct timerfd_ctx *ctx = file->private_data;
357  	int ret = 0;
358  
359  	switch (cmd) {
360  	case TFD_IOC_SET_TICKS: {
361  		u64 ticks;
362  
363  		if (copy_from_user(&ticks, (u64 __user *)arg, sizeof(ticks)))
364  			return -EFAULT;
365  		if (!ticks)
366  			return -EINVAL;
367  
368  		spin_lock_irq(&ctx->wqh.lock);
369  		if (!timerfd_canceled(ctx)) {
370  			ctx->ticks = ticks;
371  			wake_up_locked_poll(&ctx->wqh, EPOLLIN);
372  		} else
373  			ret = -ECANCELED;
374  		spin_unlock_irq(&ctx->wqh.lock);
375  		break;
376  	}
377  	default:
378  		ret = -ENOTTY;
379  		break;
380  	}
381  
382  	return ret;
383  }
384  #else
385  #define timerfd_ioctl NULL
386  #endif
387  
388  static const struct file_operations timerfd_fops = {
389  	.release	= timerfd_release,
390  	.poll		= timerfd_poll,
391  	.read_iter	= timerfd_read_iter,
392  	.llseek		= noop_llseek,
393  	.show_fdinfo	= timerfd_show,
394  	.unlocked_ioctl	= timerfd_ioctl,
395  };
396  
397  static int timerfd_fget(int fd, struct fd *p)
398  {
399  	struct fd f = fdget(fd);
400  	if (!fd_file(f))
401  		return -EBADF;
402  	if (fd_file(f)->f_op != &timerfd_fops) {
403  		fdput(f);
404  		return -EINVAL;
405  	}
406  	*p = f;
407  	return 0;
408  }
409  
410  SYSCALL_DEFINE2(timerfd_create, int, clockid, int, flags)
411  {
412  	int ufd;
413  	struct timerfd_ctx *ctx;
414  	struct file *file;
415  
416  	/* Check the TFD_* constants for consistency.  */
417  	BUILD_BUG_ON(TFD_CLOEXEC != O_CLOEXEC);
418  	BUILD_BUG_ON(TFD_NONBLOCK != O_NONBLOCK);
419  
420  	if ((flags & ~TFD_CREATE_FLAGS) ||
421  	    (clockid != CLOCK_MONOTONIC &&
422  	     clockid != CLOCK_REALTIME &&
423  	     clockid != CLOCK_REALTIME_ALARM &&
424  	     clockid != CLOCK_BOOTTIME &&
425  	     clockid != CLOCK_BOOTTIME_ALARM))
426  		return -EINVAL;
427  
428  	if ((clockid == CLOCK_REALTIME_ALARM ||
429  	     clockid == CLOCK_BOOTTIME_ALARM) &&
430  	    !capable(CAP_WAKE_ALARM))
431  		return -EPERM;
432  
433  	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
434  	if (!ctx)
435  		return -ENOMEM;
436  
437  	init_waitqueue_head(&ctx->wqh);
438  	spin_lock_init(&ctx->cancel_lock);
439  	ctx->clockid = clockid;
440  
441  	if (isalarm(ctx))
442  		alarm_init(&ctx->t.alarm,
443  			   ctx->clockid == CLOCK_REALTIME_ALARM ?
444  			   ALARM_REALTIME : ALARM_BOOTTIME,
445  			   timerfd_alarmproc);
446  	else
447  		hrtimer_init(&ctx->t.tmr, clockid, HRTIMER_MODE_ABS);
448  
449  	ctx->moffs = ktime_mono_to_real(0);
450  
451  	ufd = get_unused_fd_flags(flags & TFD_SHARED_FCNTL_FLAGS);
452  	if (ufd < 0) {
453  		kfree(ctx);
454  		return ufd;
455  	}
456  
457  	file = anon_inode_getfile("[timerfd]", &timerfd_fops, ctx,
458  				    O_RDWR | (flags & TFD_SHARED_FCNTL_FLAGS));
459  	if (IS_ERR(file)) {
460  		put_unused_fd(ufd);
461  		kfree(ctx);
462  		return PTR_ERR(file);
463  	}
464  
465  	file->f_mode |= FMODE_NOWAIT;
466  	fd_install(ufd, file);
467  	return ufd;
468  }
469  
470  static int do_timerfd_settime(int ufd, int flags,
471  		const struct itimerspec64 *new,
472  		struct itimerspec64 *old)
473  {
474  	struct fd f;
475  	struct timerfd_ctx *ctx;
476  	int ret;
477  
478  	if ((flags & ~TFD_SETTIME_FLAGS) ||
479  		 !itimerspec64_valid(new))
480  		return -EINVAL;
481  
482  	ret = timerfd_fget(ufd, &f);
483  	if (ret)
484  		return ret;
485  	ctx = fd_file(f)->private_data;
486  
487  	if (isalarm(ctx) && !capable(CAP_WAKE_ALARM)) {
488  		fdput(f);
489  		return -EPERM;
490  	}
491  
492  	timerfd_setup_cancel(ctx, flags);
493  
494  	/*
495  	 * We need to stop the existing timer before reprogramming
496  	 * it to the new values.
497  	 */
498  	for (;;) {
499  		spin_lock_irq(&ctx->wqh.lock);
500  
501  		if (isalarm(ctx)) {
502  			if (alarm_try_to_cancel(&ctx->t.alarm) >= 0)
503  				break;
504  		} else {
505  			if (hrtimer_try_to_cancel(&ctx->t.tmr) >= 0)
506  				break;
507  		}
508  		spin_unlock_irq(&ctx->wqh.lock);
509  
510  		if (isalarm(ctx))
511  			hrtimer_cancel_wait_running(&ctx->t.alarm.timer);
512  		else
513  			hrtimer_cancel_wait_running(&ctx->t.tmr);
514  	}
515  
516  	/*
517  	 * If the timer is expired and it's periodic, we need to advance it
518  	 * because the caller may want to know the previous expiration time.
519  	 * We do not update "ticks" and "expired" since the timer will be
520  	 * re-programmed again in the following timerfd_setup() call.
521  	 */
522  	if (ctx->expired && ctx->tintv) {
523  		if (isalarm(ctx))
524  			alarm_forward_now(&ctx->t.alarm, ctx->tintv);
525  		else
526  			hrtimer_forward_now(&ctx->t.tmr, ctx->tintv);
527  	}
528  
529  	old->it_value = ktime_to_timespec64(timerfd_get_remaining(ctx));
530  	old->it_interval = ktime_to_timespec64(ctx->tintv);
531  
532  	/*
533  	 * Re-program the timer to the new value ...
534  	 */
535  	ret = timerfd_setup(ctx, flags, new);
536  
537  	spin_unlock_irq(&ctx->wqh.lock);
538  	fdput(f);
539  	return ret;
540  }
541  
542  static int do_timerfd_gettime(int ufd, struct itimerspec64 *t)
543  {
544  	struct fd f;
545  	struct timerfd_ctx *ctx;
546  	int ret = timerfd_fget(ufd, &f);
547  	if (ret)
548  		return ret;
549  	ctx = fd_file(f)->private_data;
550  
551  	spin_lock_irq(&ctx->wqh.lock);
552  	if (ctx->expired && ctx->tintv) {
553  		ctx->expired = 0;
554  
555  		if (isalarm(ctx)) {
556  			ctx->ticks +=
557  				alarm_forward_now(
558  					&ctx->t.alarm, ctx->tintv) - 1;
559  			alarm_restart(&ctx->t.alarm);
560  		} else {
561  			ctx->ticks +=
562  				hrtimer_forward_now(&ctx->t.tmr, ctx->tintv)
563  				- 1;
564  			hrtimer_restart(&ctx->t.tmr);
565  		}
566  	}
567  	t->it_value = ktime_to_timespec64(timerfd_get_remaining(ctx));
568  	t->it_interval = ktime_to_timespec64(ctx->tintv);
569  	spin_unlock_irq(&ctx->wqh.lock);
570  	fdput(f);
571  	return 0;
572  }
573  
574  SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags,
575  		const struct __kernel_itimerspec __user *, utmr,
576  		struct __kernel_itimerspec __user *, otmr)
577  {
578  	struct itimerspec64 new, old;
579  	int ret;
580  
581  	if (get_itimerspec64(&new, utmr))
582  		return -EFAULT;
583  	ret = do_timerfd_settime(ufd, flags, &new, &old);
584  	if (ret)
585  		return ret;
586  	if (otmr && put_itimerspec64(&old, otmr))
587  		return -EFAULT;
588  
589  	return ret;
590  }
591  
592  SYSCALL_DEFINE2(timerfd_gettime, int, ufd, struct __kernel_itimerspec __user *, otmr)
593  {
594  	struct itimerspec64 kotmr;
595  	int ret = do_timerfd_gettime(ufd, &kotmr);
596  	if (ret)
597  		return ret;
598  	return put_itimerspec64(&kotmr, otmr) ? -EFAULT : 0;
599  }
600  
601  #ifdef CONFIG_COMPAT_32BIT_TIME
602  SYSCALL_DEFINE4(timerfd_settime32, int, ufd, int, flags,
603  		const struct old_itimerspec32 __user *, utmr,
604  		struct old_itimerspec32 __user *, otmr)
605  {
606  	struct itimerspec64 new, old;
607  	int ret;
608  
609  	if (get_old_itimerspec32(&new, utmr))
610  		return -EFAULT;
611  	ret = do_timerfd_settime(ufd, flags, &new, &old);
612  	if (ret)
613  		return ret;
614  	if (otmr && put_old_itimerspec32(&old, otmr))
615  		return -EFAULT;
616  	return ret;
617  }
618  
619  SYSCALL_DEFINE2(timerfd_gettime32, int, ufd,
620  		struct old_itimerspec32 __user *, otmr)
621  {
622  	struct itimerspec64 kotmr;
623  	int ret = do_timerfd_gettime(ufd, &kotmr);
624  	if (ret)
625  		return ret;
626  	return put_old_itimerspec32(&kotmr, otmr) ? -EFAULT : 0;
627  }
628  #endif
629