1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/timerfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * 7 * 8 * Thanks to Thomas Gleixner for code reviews and useful comments. 9 * 10 */ 11 12 #include <linux/alarmtimer.h> 13 #include <linux/file.h> 14 #include <linux/poll.h> 15 #include <linux/init.h> 16 #include <linux/fs.h> 17 #include <linux/sched.h> 18 #include <linux/kernel.h> 19 #include <linux/slab.h> 20 #include <linux/list.h> 21 #include <linux/spinlock.h> 22 #include <linux/time.h> 23 #include <linux/hrtimer.h> 24 #include <linux/anon_inodes.h> 25 #include <linux/timerfd.h> 26 #include <linux/syscalls.h> 27 #include <linux/compat.h> 28 #include <linux/rcupdate.h> 29 #include <linux/time_namespace.h> 30 31 struct timerfd_ctx { 32 union { 33 struct hrtimer tmr; 34 struct alarm alarm; 35 } t; 36 ktime_t tintv; 37 ktime_t moffs; 38 wait_queue_head_t wqh; 39 u64 ticks; 40 int clockid; 41 short unsigned expired; 42 short unsigned settime_flags; /* to show in fdinfo */ 43 struct rcu_head rcu; 44 struct list_head clist; 45 spinlock_t cancel_lock; 46 bool might_cancel; 47 }; 48 49 static LIST_HEAD(cancel_list); 50 static DEFINE_SPINLOCK(cancel_lock); 51 52 static inline bool isalarm(struct timerfd_ctx *ctx) 53 { 54 return ctx->clockid == CLOCK_REALTIME_ALARM || 55 ctx->clockid == CLOCK_BOOTTIME_ALARM; 56 } 57 58 /* 59 * This gets called when the timer event triggers. We set the "expired" 60 * flag, but we do not re-arm the timer (in case it's necessary, 61 * tintv != 0) until the timer is accessed. 62 */ 63 static void timerfd_triggered(struct timerfd_ctx *ctx) 64 { 65 unsigned long flags; 66 67 spin_lock_irqsave(&ctx->wqh.lock, flags); 68 ctx->expired = 1; 69 ctx->ticks++; 70 wake_up_locked_poll(&ctx->wqh, EPOLLIN); 71 spin_unlock_irqrestore(&ctx->wqh.lock, flags); 72 } 73 74 static enum hrtimer_restart timerfd_tmrproc(struct hrtimer *htmr) 75 { 76 struct timerfd_ctx *ctx = container_of(htmr, struct timerfd_ctx, 77 t.tmr); 78 timerfd_triggered(ctx); 79 return HRTIMER_NORESTART; 80 } 81 82 static void timerfd_alarmproc(struct alarm *alarm, ktime_t now) 83 { 84 struct timerfd_ctx *ctx = container_of(alarm, struct timerfd_ctx, 85 t.alarm); 86 timerfd_triggered(ctx); 87 } 88 89 /* 90 * Called when the clock was set to cancel the timers in the cancel 91 * list. This will wake up processes waiting on these timers. The 92 * wake-up requires ctx->ticks to be non zero, therefore we increment 93 * it before calling wake_up_locked(). 94 */ 95 void timerfd_clock_was_set(void) 96 { 97 ktime_t moffs = ktime_mono_to_real(0); 98 struct timerfd_ctx *ctx; 99 unsigned long flags; 100 101 rcu_read_lock(); 102 list_for_each_entry_rcu(ctx, &cancel_list, clist) { 103 if (!ctx->might_cancel) 104 continue; 105 spin_lock_irqsave(&ctx->wqh.lock, flags); 106 if (ctx->moffs != moffs) { 107 ctx->moffs = KTIME_MAX; 108 ctx->ticks++; 109 wake_up_locked_poll(&ctx->wqh, EPOLLIN); 110 } 111 spin_unlock_irqrestore(&ctx->wqh.lock, flags); 112 } 113 rcu_read_unlock(); 114 } 115 116 static void timerfd_resume_work(struct work_struct *work) 117 { 118 timerfd_clock_was_set(); 119 } 120 121 static DECLARE_WORK(timerfd_work, timerfd_resume_work); 122 123 /* 124 * Invoked from timekeeping_resume(). Defer the actual update to work so 125 * timerfd_clock_was_set() runs in task context. 126 */ 127 void timerfd_resume(void) 128 { 129 schedule_work(&timerfd_work); 130 } 131 132 static void __timerfd_remove_cancel(struct timerfd_ctx *ctx) 133 { 134 if (ctx->might_cancel) { 135 ctx->might_cancel = false; 136 spin_lock(&cancel_lock); 137 list_del_rcu(&ctx->clist); 138 spin_unlock(&cancel_lock); 139 } 140 } 141 142 static void timerfd_remove_cancel(struct timerfd_ctx *ctx) 143 { 144 spin_lock(&ctx->cancel_lock); 145 __timerfd_remove_cancel(ctx); 146 spin_unlock(&ctx->cancel_lock); 147 } 148 149 static bool timerfd_canceled(struct timerfd_ctx *ctx) 150 { 151 if (!ctx->might_cancel || ctx->moffs != KTIME_MAX) 152 return false; 153 ctx->moffs = ktime_mono_to_real(0); 154 return true; 155 } 156 157 static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags) 158 { 159 spin_lock(&ctx->cancel_lock); 160 if ((ctx->clockid == CLOCK_REALTIME || 161 ctx->clockid == CLOCK_REALTIME_ALARM) && 162 (flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_SET)) { 163 if (!ctx->might_cancel) { 164 ctx->might_cancel = true; 165 spin_lock(&cancel_lock); 166 list_add_rcu(&ctx->clist, &cancel_list); 167 spin_unlock(&cancel_lock); 168 } 169 } else { 170 __timerfd_remove_cancel(ctx); 171 } 172 spin_unlock(&ctx->cancel_lock); 173 } 174 175 static ktime_t timerfd_get_remaining(struct timerfd_ctx *ctx) 176 { 177 ktime_t remaining; 178 179 if (isalarm(ctx)) 180 remaining = alarm_expires_remaining(&ctx->t.alarm); 181 else 182 remaining = hrtimer_expires_remaining_adjusted(&ctx->t.tmr); 183 184 return remaining < 0 ? 0: remaining; 185 } 186 187 static int timerfd_setup(struct timerfd_ctx *ctx, int flags, 188 const struct itimerspec64 *ktmr) 189 { 190 enum hrtimer_mode htmode; 191 ktime_t texp; 192 int clockid = ctx->clockid; 193 194 htmode = (flags & TFD_TIMER_ABSTIME) ? 195 HRTIMER_MODE_ABS: HRTIMER_MODE_REL; 196 197 texp = timespec64_to_ktime(ktmr->it_value); 198 ctx->expired = 0; 199 ctx->ticks = 0; 200 ctx->tintv = timespec64_to_ktime(ktmr->it_interval); 201 202 if (isalarm(ctx)) { 203 alarm_init(&ctx->t.alarm, 204 ctx->clockid == CLOCK_REALTIME_ALARM ? 205 ALARM_REALTIME : ALARM_BOOTTIME, 206 timerfd_alarmproc); 207 } else { 208 hrtimer_setup(&ctx->t.tmr, timerfd_tmrproc, clockid, htmode); 209 hrtimer_set_expires(&ctx->t.tmr, texp); 210 } 211 212 if (texp != 0) { 213 if (flags & TFD_TIMER_ABSTIME) 214 texp = timens_ktime_to_host(clockid, texp); 215 if (isalarm(ctx)) { 216 if (flags & TFD_TIMER_ABSTIME) 217 alarm_start(&ctx->t.alarm, texp); 218 else 219 alarm_start_relative(&ctx->t.alarm, texp); 220 } else { 221 hrtimer_start(&ctx->t.tmr, texp, htmode); 222 } 223 224 if (timerfd_canceled(ctx)) 225 return -ECANCELED; 226 } 227 228 ctx->settime_flags = flags & TFD_SETTIME_FLAGS; 229 return 0; 230 } 231 232 static int timerfd_release(struct inode *inode, struct file *file) 233 { 234 struct timerfd_ctx *ctx = file->private_data; 235 236 timerfd_remove_cancel(ctx); 237 238 if (isalarm(ctx)) 239 alarm_cancel(&ctx->t.alarm); 240 else 241 hrtimer_cancel(&ctx->t.tmr); 242 kfree_rcu(ctx, rcu); 243 return 0; 244 } 245 246 static __poll_t timerfd_poll(struct file *file, poll_table *wait) 247 { 248 struct timerfd_ctx *ctx = file->private_data; 249 __poll_t events = 0; 250 unsigned long flags; 251 252 poll_wait(file, &ctx->wqh, wait); 253 254 spin_lock_irqsave(&ctx->wqh.lock, flags); 255 if (ctx->ticks) 256 events |= EPOLLIN; 257 spin_unlock_irqrestore(&ctx->wqh.lock, flags); 258 259 return events; 260 } 261 262 static ssize_t timerfd_read_iter(struct kiocb *iocb, struct iov_iter *to) 263 { 264 struct file *file = iocb->ki_filp; 265 struct timerfd_ctx *ctx = file->private_data; 266 ssize_t res; 267 u64 ticks = 0; 268 269 if (iov_iter_count(to) < sizeof(ticks)) 270 return -EINVAL; 271 272 spin_lock_irq(&ctx->wqh.lock); 273 if (file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT) 274 res = -EAGAIN; 275 else 276 res = wait_event_interruptible_locked_irq(ctx->wqh, ctx->ticks); 277 278 /* 279 * If clock has changed, we do not care about the 280 * ticks and we do not rearm the timer. Userspace must 281 * reevaluate anyway. 282 */ 283 if (timerfd_canceled(ctx)) { 284 ctx->ticks = 0; 285 ctx->expired = 0; 286 res = -ECANCELED; 287 } 288 289 if (ctx->ticks) { 290 ticks = ctx->ticks; 291 292 if (ctx->expired && ctx->tintv) { 293 /* 294 * If tintv != 0, this is a periodic timer that 295 * needs to be re-armed. We avoid doing it in the timer 296 * callback to avoid DoS attacks specifying a very 297 * short timer period. 298 */ 299 if (isalarm(ctx)) { 300 ticks += alarm_forward_now( 301 &ctx->t.alarm, ctx->tintv) - 1; 302 alarm_restart(&ctx->t.alarm); 303 } else { 304 ticks += hrtimer_forward_now(&ctx->t.tmr, 305 ctx->tintv) - 1; 306 hrtimer_restart(&ctx->t.tmr); 307 } 308 } 309 ctx->expired = 0; 310 ctx->ticks = 0; 311 } 312 spin_unlock_irq(&ctx->wqh.lock); 313 if (ticks) { 314 res = copy_to_iter(&ticks, sizeof(ticks), to); 315 if (!res) 316 res = -EFAULT; 317 } 318 return res; 319 } 320 321 #ifdef CONFIG_PROC_FS 322 static void timerfd_show(struct seq_file *m, struct file *file) 323 { 324 struct timerfd_ctx *ctx = file->private_data; 325 struct timespec64 value, interval; 326 327 spin_lock_irq(&ctx->wqh.lock); 328 value = ktime_to_timespec64(timerfd_get_remaining(ctx)); 329 interval = ktime_to_timespec64(ctx->tintv); 330 spin_unlock_irq(&ctx->wqh.lock); 331 332 seq_printf(m, 333 "clockid: %d\n" 334 "ticks: %llu\n" 335 "settime flags: 0%o\n" 336 "it_value: (%llu, %llu)\n" 337 "it_interval: (%llu, %llu)\n", 338 ctx->clockid, 339 (unsigned long long)ctx->ticks, 340 ctx->settime_flags, 341 (unsigned long long)value.tv_sec, 342 (unsigned long long)value.tv_nsec, 343 (unsigned long long)interval.tv_sec, 344 (unsigned long long)interval.tv_nsec); 345 } 346 #else 347 #define timerfd_show NULL 348 #endif 349 350 #ifdef CONFIG_CHECKPOINT_RESTORE 351 static long timerfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 352 { 353 struct timerfd_ctx *ctx = file->private_data; 354 int ret = 0; 355 356 switch (cmd) { 357 case TFD_IOC_SET_TICKS: { 358 u64 ticks; 359 360 if (copy_from_user(&ticks, (u64 __user *)arg, sizeof(ticks))) 361 return -EFAULT; 362 if (!ticks) 363 return -EINVAL; 364 365 spin_lock_irq(&ctx->wqh.lock); 366 if (!timerfd_canceled(ctx)) { 367 ctx->ticks = ticks; 368 wake_up_locked_poll(&ctx->wqh, EPOLLIN); 369 } else 370 ret = -ECANCELED; 371 spin_unlock_irq(&ctx->wqh.lock); 372 break; 373 } 374 default: 375 ret = -ENOTTY; 376 break; 377 } 378 379 return ret; 380 } 381 #else 382 #define timerfd_ioctl NULL 383 #endif 384 385 static const struct file_operations timerfd_fops = { 386 .release = timerfd_release, 387 .poll = timerfd_poll, 388 .read_iter = timerfd_read_iter, 389 .llseek = noop_llseek, 390 .show_fdinfo = timerfd_show, 391 .unlocked_ioctl = timerfd_ioctl, 392 }; 393 394 SYSCALL_DEFINE2(timerfd_create, int, clockid, int, flags) 395 { 396 struct timerfd_ctx *ctx __free(kfree) = NULL; 397 int ret; 398 399 /* Check the TFD_* constants for consistency. */ 400 BUILD_BUG_ON(TFD_CLOEXEC != O_CLOEXEC); 401 BUILD_BUG_ON(TFD_NONBLOCK != O_NONBLOCK); 402 403 if ((flags & ~TFD_CREATE_FLAGS) || 404 (clockid != CLOCK_MONOTONIC && 405 clockid != CLOCK_REALTIME && 406 clockid != CLOCK_REALTIME_ALARM && 407 clockid != CLOCK_BOOTTIME && 408 clockid != CLOCK_BOOTTIME_ALARM)) 409 return -EINVAL; 410 411 if ((clockid == CLOCK_REALTIME_ALARM || 412 clockid == CLOCK_BOOTTIME_ALARM) && 413 !capable(CAP_WAKE_ALARM)) 414 return -EPERM; 415 416 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 417 if (!ctx) 418 return -ENOMEM; 419 420 init_waitqueue_head(&ctx->wqh); 421 spin_lock_init(&ctx->cancel_lock); 422 ctx->clockid = clockid; 423 424 if (isalarm(ctx)) 425 alarm_init(&ctx->t.alarm, 426 ctx->clockid == CLOCK_REALTIME_ALARM ? 427 ALARM_REALTIME : ALARM_BOOTTIME, 428 timerfd_alarmproc); 429 else 430 hrtimer_setup(&ctx->t.tmr, timerfd_tmrproc, clockid, HRTIMER_MODE_ABS); 431 432 ctx->moffs = ktime_mono_to_real(0); 433 434 ret = FD_ADD(flags & TFD_SHARED_FCNTL_FLAGS, 435 anon_inode_getfile_fmode("[timerfd]", &timerfd_fops, ctx, 436 O_RDWR | (flags & TFD_SHARED_FCNTL_FLAGS), 437 FMODE_NOWAIT)); 438 if (ret >= 0) 439 retain_and_null_ptr(ctx); 440 return ret; 441 } 442 443 static int do_timerfd_settime(int ufd, int flags, 444 const struct itimerspec64 *new, 445 struct itimerspec64 *old) 446 { 447 struct timerfd_ctx *ctx; 448 int ret; 449 450 if ((flags & ~TFD_SETTIME_FLAGS) || 451 !itimerspec64_valid(new)) 452 return -EINVAL; 453 454 CLASS(fd, f)(ufd); 455 if (fd_empty(f)) 456 return -EBADF; 457 458 if (fd_file(f)->f_op != &timerfd_fops) 459 return -EINVAL; 460 461 ctx = fd_file(f)->private_data; 462 463 if (isalarm(ctx) && !capable(CAP_WAKE_ALARM)) 464 return -EPERM; 465 466 timerfd_setup_cancel(ctx, flags); 467 468 /* 469 * We need to stop the existing timer before reprogramming 470 * it to the new values. 471 */ 472 for (;;) { 473 spin_lock_irq(&ctx->wqh.lock); 474 475 if (isalarm(ctx)) { 476 if (alarm_try_to_cancel(&ctx->t.alarm) >= 0) 477 break; 478 } else { 479 if (hrtimer_try_to_cancel(&ctx->t.tmr) >= 0) 480 break; 481 } 482 spin_unlock_irq(&ctx->wqh.lock); 483 484 if (isalarm(ctx)) 485 hrtimer_cancel_wait_running(&ctx->t.alarm.timer); 486 else 487 hrtimer_cancel_wait_running(&ctx->t.tmr); 488 } 489 490 /* 491 * If the timer is expired and it's periodic, we need to advance it 492 * because the caller may want to know the previous expiration time. 493 * We do not update "ticks" and "expired" since the timer will be 494 * re-programmed again in the following timerfd_setup() call. 495 */ 496 if (ctx->expired && ctx->tintv) { 497 if (isalarm(ctx)) 498 alarm_forward_now(&ctx->t.alarm, ctx->tintv); 499 else 500 hrtimer_forward_now(&ctx->t.tmr, ctx->tintv); 501 } 502 503 old->it_value = ktime_to_timespec64(timerfd_get_remaining(ctx)); 504 old->it_interval = ktime_to_timespec64(ctx->tintv); 505 506 /* 507 * Re-program the timer to the new value ... 508 */ 509 ret = timerfd_setup(ctx, flags, new); 510 511 spin_unlock_irq(&ctx->wqh.lock); 512 return ret; 513 } 514 515 static int do_timerfd_gettime(int ufd, struct itimerspec64 *t) 516 { 517 struct timerfd_ctx *ctx; 518 CLASS(fd, f)(ufd); 519 520 if (fd_empty(f)) 521 return -EBADF; 522 if (fd_file(f)->f_op != &timerfd_fops) 523 return -EINVAL; 524 ctx = fd_file(f)->private_data; 525 526 spin_lock_irq(&ctx->wqh.lock); 527 if (ctx->expired && ctx->tintv) { 528 ctx->expired = 0; 529 530 if (isalarm(ctx)) { 531 ctx->ticks += 532 alarm_forward_now( 533 &ctx->t.alarm, ctx->tintv) - 1; 534 alarm_restart(&ctx->t.alarm); 535 } else { 536 ctx->ticks += 537 hrtimer_forward_now(&ctx->t.tmr, ctx->tintv) 538 - 1; 539 hrtimer_restart(&ctx->t.tmr); 540 } 541 } 542 t->it_value = ktime_to_timespec64(timerfd_get_remaining(ctx)); 543 t->it_interval = ktime_to_timespec64(ctx->tintv); 544 spin_unlock_irq(&ctx->wqh.lock); 545 return 0; 546 } 547 548 SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags, 549 const struct __kernel_itimerspec __user *, utmr, 550 struct __kernel_itimerspec __user *, otmr) 551 { 552 struct itimerspec64 new, old; 553 int ret; 554 555 if (get_itimerspec64(&new, utmr)) 556 return -EFAULT; 557 ret = do_timerfd_settime(ufd, flags, &new, &old); 558 if (ret) 559 return ret; 560 if (otmr && put_itimerspec64(&old, otmr)) 561 return -EFAULT; 562 563 return ret; 564 } 565 566 SYSCALL_DEFINE2(timerfd_gettime, int, ufd, struct __kernel_itimerspec __user *, otmr) 567 { 568 struct itimerspec64 kotmr; 569 int ret = do_timerfd_gettime(ufd, &kotmr); 570 if (ret) 571 return ret; 572 return put_itimerspec64(&kotmr, otmr) ? -EFAULT : 0; 573 } 574 575 #ifdef CONFIG_COMPAT_32BIT_TIME 576 SYSCALL_DEFINE4(timerfd_settime32, int, ufd, int, flags, 577 const struct old_itimerspec32 __user *, utmr, 578 struct old_itimerspec32 __user *, otmr) 579 { 580 struct itimerspec64 new, old; 581 int ret; 582 583 if (get_old_itimerspec32(&new, utmr)) 584 return -EFAULT; 585 ret = do_timerfd_settime(ufd, flags, &new, &old); 586 if (ret) 587 return ret; 588 if (otmr && put_old_itimerspec32(&old, otmr)) 589 return -EFAULT; 590 return ret; 591 } 592 593 SYSCALL_DEFINE2(timerfd_gettime32, int, ufd, 594 struct old_itimerspec32 __user *, otmr) 595 { 596 struct itimerspec64 kotmr; 597 int ret = do_timerfd_gettime(ufd, &kotmr); 598 if (ret) 599 return ret; 600 return put_old_itimerspec32(&kotmr, otmr) ? -EFAULT : 0; 601 } 602 #endif 603