1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/timerfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * 7 * 8 * Thanks to Thomas Gleixner for code reviews and useful comments. 9 * 10 */ 11 12 #include <linux/alarmtimer.h> 13 #include <linux/file.h> 14 #include <linux/poll.h> 15 #include <linux/init.h> 16 #include <linux/fs.h> 17 #include <linux/sched.h> 18 #include <linux/kernel.h> 19 #include <linux/slab.h> 20 #include <linux/list.h> 21 #include <linux/spinlock.h> 22 #include <linux/time.h> 23 #include <linux/hrtimer.h> 24 #include <linux/anon_inodes.h> 25 #include <linux/timerfd.h> 26 #include <linux/syscalls.h> 27 #include <linux/compat.h> 28 #include <linux/rcupdate.h> 29 #include <linux/time_namespace.h> 30 31 struct timerfd_ctx { 32 union { 33 struct hrtimer tmr; 34 struct alarm alarm; 35 } t; 36 ktime_t tintv; 37 ktime_t moffs; 38 wait_queue_head_t wqh; 39 u64 ticks; 40 int clockid; 41 short unsigned expired; 42 short unsigned settime_flags; /* to show in fdinfo */ 43 struct rcu_head rcu; 44 struct list_head clist; 45 spinlock_t cancel_lock; 46 bool might_cancel; 47 }; 48 49 static LIST_HEAD(cancel_list); 50 static DEFINE_SPINLOCK(cancel_lock); 51 52 static inline bool isalarm(struct timerfd_ctx *ctx) 53 { 54 return ctx->clockid == CLOCK_REALTIME_ALARM || 55 ctx->clockid == CLOCK_BOOTTIME_ALARM; 56 } 57 58 /* 59 * This gets called when the timer event triggers. We set the "expired" 60 * flag, but we do not re-arm the timer (in case it's necessary, 61 * tintv != 0) until the timer is accessed. 62 */ 63 static void timerfd_triggered(struct timerfd_ctx *ctx) 64 { 65 unsigned long flags; 66 67 spin_lock_irqsave(&ctx->wqh.lock, flags); 68 ctx->expired = 1; 69 ctx->ticks++; 70 wake_up_locked_poll(&ctx->wqh, EPOLLIN); 71 spin_unlock_irqrestore(&ctx->wqh.lock, flags); 72 } 73 74 static enum hrtimer_restart timerfd_tmrproc(struct hrtimer *htmr) 75 { 76 struct timerfd_ctx *ctx = container_of(htmr, struct timerfd_ctx, 77 t.tmr); 78 timerfd_triggered(ctx); 79 return HRTIMER_NORESTART; 80 } 81 82 static enum alarmtimer_restart timerfd_alarmproc(struct alarm *alarm, 83 ktime_t now) 84 { 85 struct timerfd_ctx *ctx = container_of(alarm, struct timerfd_ctx, 86 t.alarm); 87 timerfd_triggered(ctx); 88 return ALARMTIMER_NORESTART; 89 } 90 91 /* 92 * Called when the clock was set to cancel the timers in the cancel 93 * list. This will wake up processes waiting on these timers. The 94 * wake-up requires ctx->ticks to be non zero, therefore we increment 95 * it before calling wake_up_locked(). 96 */ 97 void timerfd_clock_was_set(void) 98 { 99 ktime_t moffs = ktime_mono_to_real(0); 100 struct timerfd_ctx *ctx; 101 unsigned long flags; 102 103 rcu_read_lock(); 104 list_for_each_entry_rcu(ctx, &cancel_list, clist) { 105 if (!ctx->might_cancel) 106 continue; 107 spin_lock_irqsave(&ctx->wqh.lock, flags); 108 if (ctx->moffs != moffs) { 109 ctx->moffs = KTIME_MAX; 110 ctx->ticks++; 111 wake_up_locked_poll(&ctx->wqh, EPOLLIN); 112 } 113 spin_unlock_irqrestore(&ctx->wqh.lock, flags); 114 } 115 rcu_read_unlock(); 116 } 117 118 static void timerfd_resume_work(struct work_struct *work) 119 { 120 timerfd_clock_was_set(); 121 } 122 123 static DECLARE_WORK(timerfd_work, timerfd_resume_work); 124 125 /* 126 * Invoked from timekeeping_resume(). Defer the actual update to work so 127 * timerfd_clock_was_set() runs in task context. 128 */ 129 void timerfd_resume(void) 130 { 131 schedule_work(&timerfd_work); 132 } 133 134 static void __timerfd_remove_cancel(struct timerfd_ctx *ctx) 135 { 136 if (ctx->might_cancel) { 137 ctx->might_cancel = false; 138 spin_lock(&cancel_lock); 139 list_del_rcu(&ctx->clist); 140 spin_unlock(&cancel_lock); 141 } 142 } 143 144 static void timerfd_remove_cancel(struct timerfd_ctx *ctx) 145 { 146 spin_lock(&ctx->cancel_lock); 147 __timerfd_remove_cancel(ctx); 148 spin_unlock(&ctx->cancel_lock); 149 } 150 151 static bool timerfd_canceled(struct timerfd_ctx *ctx) 152 { 153 if (!ctx->might_cancel || ctx->moffs != KTIME_MAX) 154 return false; 155 ctx->moffs = ktime_mono_to_real(0); 156 return true; 157 } 158 159 static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags) 160 { 161 spin_lock(&ctx->cancel_lock); 162 if ((ctx->clockid == CLOCK_REALTIME || 163 ctx->clockid == CLOCK_REALTIME_ALARM) && 164 (flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_SET)) { 165 if (!ctx->might_cancel) { 166 ctx->might_cancel = true; 167 spin_lock(&cancel_lock); 168 list_add_rcu(&ctx->clist, &cancel_list); 169 spin_unlock(&cancel_lock); 170 } 171 } else { 172 __timerfd_remove_cancel(ctx); 173 } 174 spin_unlock(&ctx->cancel_lock); 175 } 176 177 static ktime_t timerfd_get_remaining(struct timerfd_ctx *ctx) 178 { 179 ktime_t remaining; 180 181 if (isalarm(ctx)) 182 remaining = alarm_expires_remaining(&ctx->t.alarm); 183 else 184 remaining = hrtimer_expires_remaining_adjusted(&ctx->t.tmr); 185 186 return remaining < 0 ? 0: remaining; 187 } 188 189 static int timerfd_setup(struct timerfd_ctx *ctx, int flags, 190 const struct itimerspec64 *ktmr) 191 { 192 enum hrtimer_mode htmode; 193 ktime_t texp; 194 int clockid = ctx->clockid; 195 196 htmode = (flags & TFD_TIMER_ABSTIME) ? 197 HRTIMER_MODE_ABS: HRTIMER_MODE_REL; 198 199 texp = timespec64_to_ktime(ktmr->it_value); 200 ctx->expired = 0; 201 ctx->ticks = 0; 202 ctx->tintv = timespec64_to_ktime(ktmr->it_interval); 203 204 if (isalarm(ctx)) { 205 alarm_init(&ctx->t.alarm, 206 ctx->clockid == CLOCK_REALTIME_ALARM ? 207 ALARM_REALTIME : ALARM_BOOTTIME, 208 timerfd_alarmproc); 209 } else { 210 hrtimer_init(&ctx->t.tmr, clockid, htmode); 211 hrtimer_set_expires(&ctx->t.tmr, texp); 212 ctx->t.tmr.function = timerfd_tmrproc; 213 } 214 215 if (texp != 0) { 216 if (flags & TFD_TIMER_ABSTIME) 217 texp = timens_ktime_to_host(clockid, texp); 218 if (isalarm(ctx)) { 219 if (flags & TFD_TIMER_ABSTIME) 220 alarm_start(&ctx->t.alarm, texp); 221 else 222 alarm_start_relative(&ctx->t.alarm, texp); 223 } else { 224 hrtimer_start(&ctx->t.tmr, texp, htmode); 225 } 226 227 if (timerfd_canceled(ctx)) 228 return -ECANCELED; 229 } 230 231 ctx->settime_flags = flags & TFD_SETTIME_FLAGS; 232 return 0; 233 } 234 235 static int timerfd_release(struct inode *inode, struct file *file) 236 { 237 struct timerfd_ctx *ctx = file->private_data; 238 239 timerfd_remove_cancel(ctx); 240 241 if (isalarm(ctx)) 242 alarm_cancel(&ctx->t.alarm); 243 else 244 hrtimer_cancel(&ctx->t.tmr); 245 kfree_rcu(ctx, rcu); 246 return 0; 247 } 248 249 static __poll_t timerfd_poll(struct file *file, poll_table *wait) 250 { 251 struct timerfd_ctx *ctx = file->private_data; 252 __poll_t events = 0; 253 unsigned long flags; 254 255 poll_wait(file, &ctx->wqh, wait); 256 257 spin_lock_irqsave(&ctx->wqh.lock, flags); 258 if (ctx->ticks) 259 events |= EPOLLIN; 260 spin_unlock_irqrestore(&ctx->wqh.lock, flags); 261 262 return events; 263 } 264 265 static ssize_t timerfd_read_iter(struct kiocb *iocb, struct iov_iter *to) 266 { 267 struct file *file = iocb->ki_filp; 268 struct timerfd_ctx *ctx = file->private_data; 269 ssize_t res; 270 u64 ticks = 0; 271 272 if (iov_iter_count(to) < sizeof(ticks)) 273 return -EINVAL; 274 275 spin_lock_irq(&ctx->wqh.lock); 276 if (file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT) 277 res = -EAGAIN; 278 else 279 res = wait_event_interruptible_locked_irq(ctx->wqh, ctx->ticks); 280 281 /* 282 * If clock has changed, we do not care about the 283 * ticks and we do not rearm the timer. Userspace must 284 * reevaluate anyway. 285 */ 286 if (timerfd_canceled(ctx)) { 287 ctx->ticks = 0; 288 ctx->expired = 0; 289 res = -ECANCELED; 290 } 291 292 if (ctx->ticks) { 293 ticks = ctx->ticks; 294 295 if (ctx->expired && ctx->tintv) { 296 /* 297 * If tintv != 0, this is a periodic timer that 298 * needs to be re-armed. We avoid doing it in the timer 299 * callback to avoid DoS attacks specifying a very 300 * short timer period. 301 */ 302 if (isalarm(ctx)) { 303 ticks += alarm_forward_now( 304 &ctx->t.alarm, ctx->tintv) - 1; 305 alarm_restart(&ctx->t.alarm); 306 } else { 307 ticks += hrtimer_forward_now(&ctx->t.tmr, 308 ctx->tintv) - 1; 309 hrtimer_restart(&ctx->t.tmr); 310 } 311 } 312 ctx->expired = 0; 313 ctx->ticks = 0; 314 } 315 spin_unlock_irq(&ctx->wqh.lock); 316 if (ticks) { 317 res = copy_to_iter(&ticks, sizeof(ticks), to); 318 if (!res) 319 res = -EFAULT; 320 } 321 return res; 322 } 323 324 #ifdef CONFIG_PROC_FS 325 static void timerfd_show(struct seq_file *m, struct file *file) 326 { 327 struct timerfd_ctx *ctx = file->private_data; 328 struct timespec64 value, interval; 329 330 spin_lock_irq(&ctx->wqh.lock); 331 value = ktime_to_timespec64(timerfd_get_remaining(ctx)); 332 interval = ktime_to_timespec64(ctx->tintv); 333 spin_unlock_irq(&ctx->wqh.lock); 334 335 seq_printf(m, 336 "clockid: %d\n" 337 "ticks: %llu\n" 338 "settime flags: 0%o\n" 339 "it_value: (%llu, %llu)\n" 340 "it_interval: (%llu, %llu)\n", 341 ctx->clockid, 342 (unsigned long long)ctx->ticks, 343 ctx->settime_flags, 344 (unsigned long long)value.tv_sec, 345 (unsigned long long)value.tv_nsec, 346 (unsigned long long)interval.tv_sec, 347 (unsigned long long)interval.tv_nsec); 348 } 349 #else 350 #define timerfd_show NULL 351 #endif 352 353 #ifdef CONFIG_CHECKPOINT_RESTORE 354 static long timerfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 355 { 356 struct timerfd_ctx *ctx = file->private_data; 357 int ret = 0; 358 359 switch (cmd) { 360 case TFD_IOC_SET_TICKS: { 361 u64 ticks; 362 363 if (copy_from_user(&ticks, (u64 __user *)arg, sizeof(ticks))) 364 return -EFAULT; 365 if (!ticks) 366 return -EINVAL; 367 368 spin_lock_irq(&ctx->wqh.lock); 369 if (!timerfd_canceled(ctx)) { 370 ctx->ticks = ticks; 371 wake_up_locked_poll(&ctx->wqh, EPOLLIN); 372 } else 373 ret = -ECANCELED; 374 spin_unlock_irq(&ctx->wqh.lock); 375 break; 376 } 377 default: 378 ret = -ENOTTY; 379 break; 380 } 381 382 return ret; 383 } 384 #else 385 #define timerfd_ioctl NULL 386 #endif 387 388 static const struct file_operations timerfd_fops = { 389 .release = timerfd_release, 390 .poll = timerfd_poll, 391 .read_iter = timerfd_read_iter, 392 .llseek = noop_llseek, 393 .show_fdinfo = timerfd_show, 394 .unlocked_ioctl = timerfd_ioctl, 395 }; 396 397 static int timerfd_fget(int fd, struct fd *p) 398 { 399 struct fd f = fdget(fd); 400 if (!fd_file(f)) 401 return -EBADF; 402 if (fd_file(f)->f_op != &timerfd_fops) { 403 fdput(f); 404 return -EINVAL; 405 } 406 *p = f; 407 return 0; 408 } 409 410 SYSCALL_DEFINE2(timerfd_create, int, clockid, int, flags) 411 { 412 int ufd; 413 struct timerfd_ctx *ctx; 414 struct file *file; 415 416 /* Check the TFD_* constants for consistency. */ 417 BUILD_BUG_ON(TFD_CLOEXEC != O_CLOEXEC); 418 BUILD_BUG_ON(TFD_NONBLOCK != O_NONBLOCK); 419 420 if ((flags & ~TFD_CREATE_FLAGS) || 421 (clockid != CLOCK_MONOTONIC && 422 clockid != CLOCK_REALTIME && 423 clockid != CLOCK_REALTIME_ALARM && 424 clockid != CLOCK_BOOTTIME && 425 clockid != CLOCK_BOOTTIME_ALARM)) 426 return -EINVAL; 427 428 if ((clockid == CLOCK_REALTIME_ALARM || 429 clockid == CLOCK_BOOTTIME_ALARM) && 430 !capable(CAP_WAKE_ALARM)) 431 return -EPERM; 432 433 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 434 if (!ctx) 435 return -ENOMEM; 436 437 init_waitqueue_head(&ctx->wqh); 438 spin_lock_init(&ctx->cancel_lock); 439 ctx->clockid = clockid; 440 441 if (isalarm(ctx)) 442 alarm_init(&ctx->t.alarm, 443 ctx->clockid == CLOCK_REALTIME_ALARM ? 444 ALARM_REALTIME : ALARM_BOOTTIME, 445 timerfd_alarmproc); 446 else 447 hrtimer_init(&ctx->t.tmr, clockid, HRTIMER_MODE_ABS); 448 449 ctx->moffs = ktime_mono_to_real(0); 450 451 ufd = get_unused_fd_flags(flags & TFD_SHARED_FCNTL_FLAGS); 452 if (ufd < 0) { 453 kfree(ctx); 454 return ufd; 455 } 456 457 file = anon_inode_getfile("[timerfd]", &timerfd_fops, ctx, 458 O_RDWR | (flags & TFD_SHARED_FCNTL_FLAGS)); 459 if (IS_ERR(file)) { 460 put_unused_fd(ufd); 461 kfree(ctx); 462 return PTR_ERR(file); 463 } 464 465 file->f_mode |= FMODE_NOWAIT; 466 fd_install(ufd, file); 467 return ufd; 468 } 469 470 static int do_timerfd_settime(int ufd, int flags, 471 const struct itimerspec64 *new, 472 struct itimerspec64 *old) 473 { 474 struct fd f; 475 struct timerfd_ctx *ctx; 476 int ret; 477 478 if ((flags & ~TFD_SETTIME_FLAGS) || 479 !itimerspec64_valid(new)) 480 return -EINVAL; 481 482 ret = timerfd_fget(ufd, &f); 483 if (ret) 484 return ret; 485 ctx = fd_file(f)->private_data; 486 487 if (isalarm(ctx) && !capable(CAP_WAKE_ALARM)) { 488 fdput(f); 489 return -EPERM; 490 } 491 492 timerfd_setup_cancel(ctx, flags); 493 494 /* 495 * We need to stop the existing timer before reprogramming 496 * it to the new values. 497 */ 498 for (;;) { 499 spin_lock_irq(&ctx->wqh.lock); 500 501 if (isalarm(ctx)) { 502 if (alarm_try_to_cancel(&ctx->t.alarm) >= 0) 503 break; 504 } else { 505 if (hrtimer_try_to_cancel(&ctx->t.tmr) >= 0) 506 break; 507 } 508 spin_unlock_irq(&ctx->wqh.lock); 509 510 if (isalarm(ctx)) 511 hrtimer_cancel_wait_running(&ctx->t.alarm.timer); 512 else 513 hrtimer_cancel_wait_running(&ctx->t.tmr); 514 } 515 516 /* 517 * If the timer is expired and it's periodic, we need to advance it 518 * because the caller may want to know the previous expiration time. 519 * We do not update "ticks" and "expired" since the timer will be 520 * re-programmed again in the following timerfd_setup() call. 521 */ 522 if (ctx->expired && ctx->tintv) { 523 if (isalarm(ctx)) 524 alarm_forward_now(&ctx->t.alarm, ctx->tintv); 525 else 526 hrtimer_forward_now(&ctx->t.tmr, ctx->tintv); 527 } 528 529 old->it_value = ktime_to_timespec64(timerfd_get_remaining(ctx)); 530 old->it_interval = ktime_to_timespec64(ctx->tintv); 531 532 /* 533 * Re-program the timer to the new value ... 534 */ 535 ret = timerfd_setup(ctx, flags, new); 536 537 spin_unlock_irq(&ctx->wqh.lock); 538 fdput(f); 539 return ret; 540 } 541 542 static int do_timerfd_gettime(int ufd, struct itimerspec64 *t) 543 { 544 struct fd f; 545 struct timerfd_ctx *ctx; 546 int ret = timerfd_fget(ufd, &f); 547 if (ret) 548 return ret; 549 ctx = fd_file(f)->private_data; 550 551 spin_lock_irq(&ctx->wqh.lock); 552 if (ctx->expired && ctx->tintv) { 553 ctx->expired = 0; 554 555 if (isalarm(ctx)) { 556 ctx->ticks += 557 alarm_forward_now( 558 &ctx->t.alarm, ctx->tintv) - 1; 559 alarm_restart(&ctx->t.alarm); 560 } else { 561 ctx->ticks += 562 hrtimer_forward_now(&ctx->t.tmr, ctx->tintv) 563 - 1; 564 hrtimer_restart(&ctx->t.tmr); 565 } 566 } 567 t->it_value = ktime_to_timespec64(timerfd_get_remaining(ctx)); 568 t->it_interval = ktime_to_timespec64(ctx->tintv); 569 spin_unlock_irq(&ctx->wqh.lock); 570 fdput(f); 571 return 0; 572 } 573 574 SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags, 575 const struct __kernel_itimerspec __user *, utmr, 576 struct __kernel_itimerspec __user *, otmr) 577 { 578 struct itimerspec64 new, old; 579 int ret; 580 581 if (get_itimerspec64(&new, utmr)) 582 return -EFAULT; 583 ret = do_timerfd_settime(ufd, flags, &new, &old); 584 if (ret) 585 return ret; 586 if (otmr && put_itimerspec64(&old, otmr)) 587 return -EFAULT; 588 589 return ret; 590 } 591 592 SYSCALL_DEFINE2(timerfd_gettime, int, ufd, struct __kernel_itimerspec __user *, otmr) 593 { 594 struct itimerspec64 kotmr; 595 int ret = do_timerfd_gettime(ufd, &kotmr); 596 if (ret) 597 return ret; 598 return put_itimerspec64(&kotmr, otmr) ? -EFAULT : 0; 599 } 600 601 #ifdef CONFIG_COMPAT_32BIT_TIME 602 SYSCALL_DEFINE4(timerfd_settime32, int, ufd, int, flags, 603 const struct old_itimerspec32 __user *, utmr, 604 struct old_itimerspec32 __user *, otmr) 605 { 606 struct itimerspec64 new, old; 607 int ret; 608 609 if (get_old_itimerspec32(&new, utmr)) 610 return -EFAULT; 611 ret = do_timerfd_settime(ufd, flags, &new, &old); 612 if (ret) 613 return ret; 614 if (otmr && put_old_itimerspec32(&old, otmr)) 615 return -EFAULT; 616 return ret; 617 } 618 619 SYSCALL_DEFINE2(timerfd_gettime32, int, ufd, 620 struct old_itimerspec32 __user *, otmr) 621 { 622 struct itimerspec64 kotmr; 623 int ret = do_timerfd_gettime(ufd, &kotmr); 624 if (ret) 625 return ret; 626 return put_old_itimerspec32(&kotmr, otmr) ? -EFAULT : 0; 627 } 628 #endif 629