xref: /linux/fs/sync.c (revision dec1c62e91ba268ab2a6e339d4d7a59287d5eba1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * High-level sync()-related operations
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/kernel.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/namei.h>
13 #include <linux/sched.h>
14 #include <linux/writeback.h>
15 #include <linux/syscalls.h>
16 #include <linux/linkage.h>
17 #include <linux/pagemap.h>
18 #include <linux/quotaops.h>
19 #include <linux/backing-dev.h>
20 #include "internal.h"
21 
22 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
23 			SYNC_FILE_RANGE_WAIT_AFTER)
24 
25 /*
26  * Write out and wait upon all dirty data associated with this
27  * superblock.  Filesystem data as well as the underlying block
28  * device.  Takes the superblock lock.
29  */
30 int sync_filesystem(struct super_block *sb)
31 {
32 	int ret = 0;
33 
34 	/*
35 	 * We need to be protected against the filesystem going from
36 	 * r/o to r/w or vice versa.
37 	 */
38 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
39 
40 	/*
41 	 * No point in syncing out anything if the filesystem is read-only.
42 	 */
43 	if (sb_rdonly(sb))
44 		return 0;
45 
46 	/*
47 	 * Do the filesystem syncing work.  For simple filesystems
48 	 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have
49 	 * to submit I/O for these buffers via sync_blockdev().  This also
50 	 * speeds up the wait == 1 case since in that case write_inode()
51 	 * methods call sync_dirty_buffer() and thus effectively write one block
52 	 * at a time.
53 	 */
54 	writeback_inodes_sb(sb, WB_REASON_SYNC);
55 	if (sb->s_op->sync_fs) {
56 		ret = sb->s_op->sync_fs(sb, 0);
57 		if (ret)
58 			return ret;
59 	}
60 	ret = sync_blockdev_nowait(sb->s_bdev);
61 	if (ret)
62 		return ret;
63 
64 	sync_inodes_sb(sb);
65 	if (sb->s_op->sync_fs) {
66 		ret = sb->s_op->sync_fs(sb, 1);
67 		if (ret)
68 			return ret;
69 	}
70 	return sync_blockdev(sb->s_bdev);
71 }
72 EXPORT_SYMBOL(sync_filesystem);
73 
74 static void sync_inodes_one_sb(struct super_block *sb, void *arg)
75 {
76 	if (!sb_rdonly(sb))
77 		sync_inodes_sb(sb);
78 }
79 
80 static void sync_fs_one_sb(struct super_block *sb, void *arg)
81 {
82 	if (!sb_rdonly(sb) && !(sb->s_iflags & SB_I_SKIP_SYNC) &&
83 	    sb->s_op->sync_fs)
84 		sb->s_op->sync_fs(sb, *(int *)arg);
85 }
86 
87 /*
88  * Sync everything. We start by waking flusher threads so that most of
89  * writeback runs on all devices in parallel. Then we sync all inodes reliably
90  * which effectively also waits for all flusher threads to finish doing
91  * writeback. At this point all data is on disk so metadata should be stable
92  * and we tell filesystems to sync their metadata via ->sync_fs() calls.
93  * Finally, we writeout all block devices because some filesystems (e.g. ext2)
94  * just write metadata (such as inodes or bitmaps) to block device page cache
95  * and do not sync it on their own in ->sync_fs().
96  */
97 void ksys_sync(void)
98 {
99 	int nowait = 0, wait = 1;
100 
101 	wakeup_flusher_threads(WB_REASON_SYNC);
102 	iterate_supers(sync_inodes_one_sb, NULL);
103 	iterate_supers(sync_fs_one_sb, &nowait);
104 	iterate_supers(sync_fs_one_sb, &wait);
105 	sync_bdevs(false);
106 	sync_bdevs(true);
107 	if (unlikely(laptop_mode))
108 		laptop_sync_completion();
109 }
110 
111 SYSCALL_DEFINE0(sync)
112 {
113 	ksys_sync();
114 	return 0;
115 }
116 
117 static void do_sync_work(struct work_struct *work)
118 {
119 	int nowait = 0;
120 
121 	/*
122 	 * Sync twice to reduce the possibility we skipped some inodes / pages
123 	 * because they were temporarily locked
124 	 */
125 	iterate_supers(sync_inodes_one_sb, &nowait);
126 	iterate_supers(sync_fs_one_sb, &nowait);
127 	sync_bdevs(false);
128 	iterate_supers(sync_inodes_one_sb, &nowait);
129 	iterate_supers(sync_fs_one_sb, &nowait);
130 	sync_bdevs(false);
131 	printk("Emergency Sync complete\n");
132 	kfree(work);
133 }
134 
135 void emergency_sync(void)
136 {
137 	struct work_struct *work;
138 
139 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
140 	if (work) {
141 		INIT_WORK(work, do_sync_work);
142 		schedule_work(work);
143 	}
144 }
145 
146 /*
147  * sync a single super
148  */
149 SYSCALL_DEFINE1(syncfs, int, fd)
150 {
151 	struct fd f = fdget(fd);
152 	struct super_block *sb;
153 	int ret, ret2;
154 
155 	if (!f.file)
156 		return -EBADF;
157 	sb = f.file->f_path.dentry->d_sb;
158 
159 	down_read(&sb->s_umount);
160 	ret = sync_filesystem(sb);
161 	up_read(&sb->s_umount);
162 
163 	ret2 = errseq_check_and_advance(&sb->s_wb_err, &f.file->f_sb_err);
164 
165 	fdput(f);
166 	return ret ? ret : ret2;
167 }
168 
169 /**
170  * vfs_fsync_range - helper to sync a range of data & metadata to disk
171  * @file:		file to sync
172  * @start:		offset in bytes of the beginning of data range to sync
173  * @end:		offset in bytes of the end of data range (inclusive)
174  * @datasync:		perform only datasync
175  *
176  * Write back data in range @start..@end and metadata for @file to disk.  If
177  * @datasync is set only metadata needed to access modified file data is
178  * written.
179  */
180 int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
181 {
182 	struct inode *inode = file->f_mapping->host;
183 
184 	if (!file->f_op->fsync)
185 		return -EINVAL;
186 	if (!datasync && (inode->i_state & I_DIRTY_TIME))
187 		mark_inode_dirty_sync(inode);
188 	return file->f_op->fsync(file, start, end, datasync);
189 }
190 EXPORT_SYMBOL(vfs_fsync_range);
191 
192 /**
193  * vfs_fsync - perform a fsync or fdatasync on a file
194  * @file:		file to sync
195  * @datasync:		only perform a fdatasync operation
196  *
197  * Write back data and metadata for @file to disk.  If @datasync is
198  * set only metadata needed to access modified file data is written.
199  */
200 int vfs_fsync(struct file *file, int datasync)
201 {
202 	return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
203 }
204 EXPORT_SYMBOL(vfs_fsync);
205 
206 static int do_fsync(unsigned int fd, int datasync)
207 {
208 	struct fd f = fdget(fd);
209 	int ret = -EBADF;
210 
211 	if (f.file) {
212 		ret = vfs_fsync(f.file, datasync);
213 		fdput(f);
214 	}
215 	return ret;
216 }
217 
218 SYSCALL_DEFINE1(fsync, unsigned int, fd)
219 {
220 	return do_fsync(fd, 0);
221 }
222 
223 SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
224 {
225 	return do_fsync(fd, 1);
226 }
227 
228 int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
229 		    unsigned int flags)
230 {
231 	int ret;
232 	struct address_space *mapping;
233 	loff_t endbyte;			/* inclusive */
234 	umode_t i_mode;
235 
236 	ret = -EINVAL;
237 	if (flags & ~VALID_FLAGS)
238 		goto out;
239 
240 	endbyte = offset + nbytes;
241 
242 	if ((s64)offset < 0)
243 		goto out;
244 	if ((s64)endbyte < 0)
245 		goto out;
246 	if (endbyte < offset)
247 		goto out;
248 
249 	if (sizeof(pgoff_t) == 4) {
250 		if (offset >= (0x100000000ULL << PAGE_SHIFT)) {
251 			/*
252 			 * The range starts outside a 32 bit machine's
253 			 * pagecache addressing capabilities.  Let it "succeed"
254 			 */
255 			ret = 0;
256 			goto out;
257 		}
258 		if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) {
259 			/*
260 			 * Out to EOF
261 			 */
262 			nbytes = 0;
263 		}
264 	}
265 
266 	if (nbytes == 0)
267 		endbyte = LLONG_MAX;
268 	else
269 		endbyte--;		/* inclusive */
270 
271 	i_mode = file_inode(file)->i_mode;
272 	ret = -ESPIPE;
273 	if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
274 			!S_ISLNK(i_mode))
275 		goto out;
276 
277 	mapping = file->f_mapping;
278 	ret = 0;
279 	if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
280 		ret = file_fdatawait_range(file, offset, endbyte);
281 		if (ret < 0)
282 			goto out;
283 	}
284 
285 	if (flags & SYNC_FILE_RANGE_WRITE) {
286 		int sync_mode = WB_SYNC_NONE;
287 
288 		if ((flags & SYNC_FILE_RANGE_WRITE_AND_WAIT) ==
289 			     SYNC_FILE_RANGE_WRITE_AND_WAIT)
290 			sync_mode = WB_SYNC_ALL;
291 
292 		ret = __filemap_fdatawrite_range(mapping, offset, endbyte,
293 						 sync_mode);
294 		if (ret < 0)
295 			goto out;
296 	}
297 
298 	if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
299 		ret = file_fdatawait_range(file, offset, endbyte);
300 
301 out:
302 	return ret;
303 }
304 
305 /*
306  * ksys_sync_file_range() permits finely controlled syncing over a segment of
307  * a file in the range offset .. (offset+nbytes-1) inclusive.  If nbytes is
308  * zero then ksys_sync_file_range() will operate from offset out to EOF.
309  *
310  * The flag bits are:
311  *
312  * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
313  * before performing the write.
314  *
315  * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
316  * range which are not presently under writeback. Note that this may block for
317  * significant periods due to exhaustion of disk request structures.
318  *
319  * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
320  * after performing the write.
321  *
322  * Useful combinations of the flag bits are:
323  *
324  * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
325  * in the range which were dirty on entry to ksys_sync_file_range() are placed
326  * under writeout.  This is a start-write-for-data-integrity operation.
327  *
328  * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
329  * are not presently under writeout.  This is an asynchronous flush-to-disk
330  * operation.  Not suitable for data integrity operations.
331  *
332  * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
333  * completion of writeout of all pages in the range.  This will be used after an
334  * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
335  * for that operation to complete and to return the result.
336  *
337  * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER
338  * (a.k.a. SYNC_FILE_RANGE_WRITE_AND_WAIT):
339  * a traditional sync() operation.  This is a write-for-data-integrity operation
340  * which will ensure that all pages in the range which were dirty on entry to
341  * ksys_sync_file_range() are written to disk.  It should be noted that disk
342  * caches are not flushed by this call, so there are no guarantees here that the
343  * data will be available on disk after a crash.
344  *
345  *
346  * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
347  * I/O errors or ENOSPC conditions and will return those to the caller, after
348  * clearing the EIO and ENOSPC flags in the address_space.
349  *
350  * It should be noted that none of these operations write out the file's
351  * metadata.  So unless the application is strictly performing overwrites of
352  * already-instantiated disk blocks, there are no guarantees here that the data
353  * will be available after a crash.
354  */
355 int ksys_sync_file_range(int fd, loff_t offset, loff_t nbytes,
356 			 unsigned int flags)
357 {
358 	int ret;
359 	struct fd f;
360 
361 	ret = -EBADF;
362 	f = fdget(fd);
363 	if (f.file)
364 		ret = sync_file_range(f.file, offset, nbytes, flags);
365 
366 	fdput(f);
367 	return ret;
368 }
369 
370 SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
371 				unsigned int, flags)
372 {
373 	return ksys_sync_file_range(fd, offset, nbytes, flags);
374 }
375 
376 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_SYNC_FILE_RANGE)
377 COMPAT_SYSCALL_DEFINE6(sync_file_range, int, fd, compat_arg_u64_dual(offset),
378 		       compat_arg_u64_dual(nbytes), unsigned int, flags)
379 {
380 	return ksys_sync_file_range(fd, compat_arg_u64_glue(offset),
381 				    compat_arg_u64_glue(nbytes), flags);
382 }
383 #endif
384 
385 /* It would be nice if people remember that not all the world's an i386
386    when they introduce new system calls */
387 SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
388 				 loff_t, offset, loff_t, nbytes)
389 {
390 	return ksys_sync_file_range(fd, offset, nbytes, flags);
391 }
392