1 /* 2 * High-level sync()-related operations 3 */ 4 5 #include <linux/kernel.h> 6 #include <linux/file.h> 7 #include <linux/fs.h> 8 #include <linux/slab.h> 9 #include <linux/export.h> 10 #include <linux/namei.h> 11 #include <linux/sched.h> 12 #include <linux/writeback.h> 13 #include <linux/syscalls.h> 14 #include <linux/linkage.h> 15 #include <linux/pagemap.h> 16 #include <linux/quotaops.h> 17 #include <linux/backing-dev.h> 18 #include "internal.h" 19 20 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \ 21 SYNC_FILE_RANGE_WAIT_AFTER) 22 23 /* 24 * Do the filesystem syncing work. For simple filesystems 25 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to 26 * submit IO for these buffers via __sync_blockdev(). This also speeds up the 27 * wait == 1 case since in that case write_inode() functions do 28 * sync_dirty_buffer() and thus effectively write one block at a time. 29 */ 30 static int __sync_filesystem(struct super_block *sb, int wait) 31 { 32 if (wait) 33 sync_inodes_sb(sb); 34 else 35 writeback_inodes_sb(sb, WB_REASON_SYNC); 36 37 if (sb->s_op->sync_fs) 38 sb->s_op->sync_fs(sb, wait); 39 return __sync_blockdev(sb->s_bdev, wait); 40 } 41 42 /* 43 * Write out and wait upon all dirty data associated with this 44 * superblock. Filesystem data as well as the underlying block 45 * device. Takes the superblock lock. 46 */ 47 int sync_filesystem(struct super_block *sb) 48 { 49 int ret; 50 51 /* 52 * We need to be protected against the filesystem going from 53 * r/o to r/w or vice versa. 54 */ 55 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 56 57 /* 58 * No point in syncing out anything if the filesystem is read-only. 59 */ 60 if (sb->s_flags & MS_RDONLY) 61 return 0; 62 63 ret = __sync_filesystem(sb, 0); 64 if (ret < 0) 65 return ret; 66 return __sync_filesystem(sb, 1); 67 } 68 EXPORT_SYMBOL(sync_filesystem); 69 70 static void sync_inodes_one_sb(struct super_block *sb, void *arg) 71 { 72 if (!(sb->s_flags & MS_RDONLY)) 73 sync_inodes_sb(sb); 74 } 75 76 static void sync_fs_one_sb(struct super_block *sb, void *arg) 77 { 78 if (!(sb->s_flags & MS_RDONLY) && sb->s_op->sync_fs) 79 sb->s_op->sync_fs(sb, *(int *)arg); 80 } 81 82 static void fdatawrite_one_bdev(struct block_device *bdev, void *arg) 83 { 84 filemap_fdatawrite(bdev->bd_inode->i_mapping); 85 } 86 87 static void fdatawait_one_bdev(struct block_device *bdev, void *arg) 88 { 89 filemap_fdatawait(bdev->bd_inode->i_mapping); 90 } 91 92 /* 93 * Sync everything. We start by waking flusher threads so that most of 94 * writeback runs on all devices in parallel. Then we sync all inodes reliably 95 * which effectively also waits for all flusher threads to finish doing 96 * writeback. At this point all data is on disk so metadata should be stable 97 * and we tell filesystems to sync their metadata via ->sync_fs() calls. 98 * Finally, we writeout all block devices because some filesystems (e.g. ext2) 99 * just write metadata (such as inodes or bitmaps) to block device page cache 100 * and do not sync it on their own in ->sync_fs(). 101 */ 102 SYSCALL_DEFINE0(sync) 103 { 104 int nowait = 0, wait = 1; 105 106 wakeup_flusher_threads(0, WB_REASON_SYNC); 107 iterate_supers(sync_inodes_one_sb, NULL); 108 iterate_supers(sync_fs_one_sb, &nowait); 109 iterate_supers(sync_fs_one_sb, &wait); 110 iterate_bdevs(fdatawrite_one_bdev, NULL); 111 iterate_bdevs(fdatawait_one_bdev, NULL); 112 if (unlikely(laptop_mode)) 113 laptop_sync_completion(); 114 return 0; 115 } 116 117 static void do_sync_work(struct work_struct *work) 118 { 119 int nowait = 0; 120 121 /* 122 * Sync twice to reduce the possibility we skipped some inodes / pages 123 * because they were temporarily locked 124 */ 125 iterate_supers(sync_inodes_one_sb, &nowait); 126 iterate_supers(sync_fs_one_sb, &nowait); 127 iterate_bdevs(fdatawrite_one_bdev, NULL); 128 iterate_supers(sync_inodes_one_sb, &nowait); 129 iterate_supers(sync_fs_one_sb, &nowait); 130 iterate_bdevs(fdatawrite_one_bdev, NULL); 131 printk("Emergency Sync complete\n"); 132 kfree(work); 133 } 134 135 void emergency_sync(void) 136 { 137 struct work_struct *work; 138 139 work = kmalloc(sizeof(*work), GFP_ATOMIC); 140 if (work) { 141 INIT_WORK(work, do_sync_work); 142 schedule_work(work); 143 } 144 } 145 146 /* 147 * sync a single super 148 */ 149 SYSCALL_DEFINE1(syncfs, int, fd) 150 { 151 struct fd f = fdget(fd); 152 struct super_block *sb; 153 int ret; 154 155 if (!f.file) 156 return -EBADF; 157 sb = f.file->f_path.dentry->d_sb; 158 159 down_read(&sb->s_umount); 160 ret = sync_filesystem(sb); 161 up_read(&sb->s_umount); 162 163 fdput(f); 164 return ret; 165 } 166 167 /** 168 * vfs_fsync_range - helper to sync a range of data & metadata to disk 169 * @file: file to sync 170 * @start: offset in bytes of the beginning of data range to sync 171 * @end: offset in bytes of the end of data range (inclusive) 172 * @datasync: perform only datasync 173 * 174 * Write back data in range @start..@end and metadata for @file to disk. If 175 * @datasync is set only metadata needed to access modified file data is 176 * written. 177 */ 178 int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync) 179 { 180 struct inode *inode = file->f_mapping->host; 181 182 if (!file->f_op->fsync) 183 return -EINVAL; 184 if (!datasync && (inode->i_state & I_DIRTY_TIME)) { 185 spin_lock(&inode->i_lock); 186 inode->i_state &= ~I_DIRTY_TIME; 187 spin_unlock(&inode->i_lock); 188 mark_inode_dirty_sync(inode); 189 } 190 return file->f_op->fsync(file, start, end, datasync); 191 } 192 EXPORT_SYMBOL(vfs_fsync_range); 193 194 /** 195 * vfs_fsync - perform a fsync or fdatasync on a file 196 * @file: file to sync 197 * @datasync: only perform a fdatasync operation 198 * 199 * Write back data and metadata for @file to disk. If @datasync is 200 * set only metadata needed to access modified file data is written. 201 */ 202 int vfs_fsync(struct file *file, int datasync) 203 { 204 return vfs_fsync_range(file, 0, LLONG_MAX, datasync); 205 } 206 EXPORT_SYMBOL(vfs_fsync); 207 208 static int do_fsync(unsigned int fd, int datasync) 209 { 210 struct fd f = fdget(fd); 211 int ret = -EBADF; 212 213 if (f.file) { 214 ret = vfs_fsync(f.file, datasync); 215 fdput(f); 216 } 217 return ret; 218 } 219 220 SYSCALL_DEFINE1(fsync, unsigned int, fd) 221 { 222 return do_fsync(fd, 0); 223 } 224 225 SYSCALL_DEFINE1(fdatasync, unsigned int, fd) 226 { 227 return do_fsync(fd, 1); 228 } 229 230 /* 231 * sys_sync_file_range() permits finely controlled syncing over a segment of 232 * a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is 233 * zero then sys_sync_file_range() will operate from offset out to EOF. 234 * 235 * The flag bits are: 236 * 237 * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range 238 * before performing the write. 239 * 240 * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the 241 * range which are not presently under writeback. Note that this may block for 242 * significant periods due to exhaustion of disk request structures. 243 * 244 * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range 245 * after performing the write. 246 * 247 * Useful combinations of the flag bits are: 248 * 249 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages 250 * in the range which were dirty on entry to sys_sync_file_range() are placed 251 * under writeout. This is a start-write-for-data-integrity operation. 252 * 253 * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which 254 * are not presently under writeout. This is an asynchronous flush-to-disk 255 * operation. Not suitable for data integrity operations. 256 * 257 * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for 258 * completion of writeout of all pages in the range. This will be used after an 259 * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait 260 * for that operation to complete and to return the result. 261 * 262 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER: 263 * a traditional sync() operation. This is a write-for-data-integrity operation 264 * which will ensure that all pages in the range which were dirty on entry to 265 * sys_sync_file_range() are committed to disk. 266 * 267 * 268 * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any 269 * I/O errors or ENOSPC conditions and will return those to the caller, after 270 * clearing the EIO and ENOSPC flags in the address_space. 271 * 272 * It should be noted that none of these operations write out the file's 273 * metadata. So unless the application is strictly performing overwrites of 274 * already-instantiated disk blocks, there are no guarantees here that the data 275 * will be available after a crash. 276 */ 277 SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes, 278 unsigned int, flags) 279 { 280 int ret; 281 struct fd f; 282 struct address_space *mapping; 283 loff_t endbyte; /* inclusive */ 284 umode_t i_mode; 285 286 ret = -EINVAL; 287 if (flags & ~VALID_FLAGS) 288 goto out; 289 290 endbyte = offset + nbytes; 291 292 if ((s64)offset < 0) 293 goto out; 294 if ((s64)endbyte < 0) 295 goto out; 296 if (endbyte < offset) 297 goto out; 298 299 if (sizeof(pgoff_t) == 4) { 300 if (offset >= (0x100000000ULL << PAGE_CACHE_SHIFT)) { 301 /* 302 * The range starts outside a 32 bit machine's 303 * pagecache addressing capabilities. Let it "succeed" 304 */ 305 ret = 0; 306 goto out; 307 } 308 if (endbyte >= (0x100000000ULL << PAGE_CACHE_SHIFT)) { 309 /* 310 * Out to EOF 311 */ 312 nbytes = 0; 313 } 314 } 315 316 if (nbytes == 0) 317 endbyte = LLONG_MAX; 318 else 319 endbyte--; /* inclusive */ 320 321 ret = -EBADF; 322 f = fdget(fd); 323 if (!f.file) 324 goto out; 325 326 i_mode = file_inode(f.file)->i_mode; 327 ret = -ESPIPE; 328 if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) && 329 !S_ISLNK(i_mode)) 330 goto out_put; 331 332 mapping = f.file->f_mapping; 333 if (!mapping) { 334 ret = -EINVAL; 335 goto out_put; 336 } 337 338 ret = 0; 339 if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) { 340 ret = filemap_fdatawait_range(mapping, offset, endbyte); 341 if (ret < 0) 342 goto out_put; 343 } 344 345 if (flags & SYNC_FILE_RANGE_WRITE) { 346 ret = filemap_fdatawrite_range(mapping, offset, endbyte); 347 if (ret < 0) 348 goto out_put; 349 } 350 351 if (flags & SYNC_FILE_RANGE_WAIT_AFTER) 352 ret = filemap_fdatawait_range(mapping, offset, endbyte); 353 354 out_put: 355 fdput(f); 356 out: 357 return ret; 358 } 359 360 /* It would be nice if people remember that not all the world's an i386 361 when they introduce new system calls */ 362 SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags, 363 loff_t, offset, loff_t, nbytes) 364 { 365 return sys_sync_file_range(fd, offset, nbytes, flags); 366 } 367