xref: /linux/fs/sync.c (revision a514e6f8f5caa24413731bed54b322bd34d918dd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * High-level sync()-related operations
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/kernel.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/namei.h>
13 #include <linux/sched.h>
14 #include <linux/writeback.h>
15 #include <linux/syscalls.h>
16 #include <linux/linkage.h>
17 #include <linux/pagemap.h>
18 #include <linux/quotaops.h>
19 #include <linux/backing-dev.h>
20 #include "internal.h"
21 
22 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
23 			SYNC_FILE_RANGE_WAIT_AFTER)
24 
25 /*
26  * Write out and wait upon all dirty data associated with this
27  * superblock.  Filesystem data as well as the underlying block
28  * device.  Takes the superblock lock.
29  */
30 int sync_filesystem(struct super_block *sb)
31 {
32 	int ret = 0;
33 
34 	/*
35 	 * We need to be protected against the filesystem going from
36 	 * r/o to r/w or vice versa.
37 	 */
38 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
39 
40 	/*
41 	 * No point in syncing out anything if the filesystem is read-only.
42 	 */
43 	if (sb_rdonly(sb))
44 		return 0;
45 
46 	/*
47 	 * Do the filesystem syncing work.  For simple filesystems
48 	 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have
49 	 * to submit I/O for these buffers via sync_blockdev().  This also
50 	 * speeds up the wait == 1 case since in that case write_inode()
51 	 * methods call sync_dirty_buffer() and thus effectively write one block
52 	 * at a time.
53 	 */
54 	writeback_inodes_sb(sb, WB_REASON_SYNC);
55 	if (sb->s_op->sync_fs) {
56 		ret = sb->s_op->sync_fs(sb, 0);
57 		if (ret)
58 			return ret;
59 	}
60 	ret = sync_blockdev_nowait(sb->s_bdev);
61 	if (ret)
62 		return ret;
63 
64 	sync_inodes_sb(sb);
65 	if (sb->s_op->sync_fs) {
66 		ret = sb->s_op->sync_fs(sb, 1);
67 		if (ret)
68 			return ret;
69 	}
70 	return sync_blockdev(sb->s_bdev);
71 }
72 EXPORT_SYMBOL(sync_filesystem);
73 
74 static void sync_inodes_one_sb(struct super_block *sb, void *arg)
75 {
76 	if (!sb_rdonly(sb))
77 		sync_inodes_sb(sb);
78 }
79 
80 static void sync_fs_one_sb(struct super_block *sb, void *arg)
81 {
82 	if (!sb_rdonly(sb) && !(sb->s_iflags & SB_I_SKIP_SYNC) &&
83 	    sb->s_op->sync_fs)
84 		sb->s_op->sync_fs(sb, *(int *)arg);
85 }
86 
87 /*
88  * Sync everything. We start by waking flusher threads so that most of
89  * writeback runs on all devices in parallel. Then we sync all inodes reliably
90  * which effectively also waits for all flusher threads to finish doing
91  * writeback. At this point all data is on disk so metadata should be stable
92  * and we tell filesystems to sync their metadata via ->sync_fs() calls.
93  * Finally, we writeout all block devices because some filesystems (e.g. ext2)
94  * just write metadata (such as inodes or bitmaps) to block device page cache
95  * and do not sync it on their own in ->sync_fs().
96  */
97 void ksys_sync(void)
98 {
99 	int nowait = 0, wait = 1;
100 
101 	wakeup_flusher_threads(WB_REASON_SYNC);
102 	iterate_supers(sync_inodes_one_sb, NULL);
103 	iterate_supers(sync_fs_one_sb, &nowait);
104 	iterate_supers(sync_fs_one_sb, &wait);
105 	sync_bdevs(false);
106 	sync_bdevs(true);
107 	if (unlikely(laptop_mode))
108 		laptop_sync_completion();
109 }
110 
111 SYSCALL_DEFINE0(sync)
112 {
113 	ksys_sync();
114 	return 0;
115 }
116 
117 static void do_sync_work(struct work_struct *work)
118 {
119 	int nowait = 0;
120 
121 	/*
122 	 * Sync twice to reduce the possibility we skipped some inodes / pages
123 	 * because they were temporarily locked
124 	 */
125 	iterate_supers(sync_inodes_one_sb, &nowait);
126 	iterate_supers(sync_fs_one_sb, &nowait);
127 	sync_bdevs(false);
128 	iterate_supers(sync_inodes_one_sb, &nowait);
129 	iterate_supers(sync_fs_one_sb, &nowait);
130 	sync_bdevs(false);
131 	printk("Emergency Sync complete\n");
132 	kfree(work);
133 }
134 
135 void emergency_sync(void)
136 {
137 	struct work_struct *work;
138 
139 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
140 	if (work) {
141 		INIT_WORK(work, do_sync_work);
142 		schedule_work(work);
143 	}
144 }
145 
146 /*
147  * sync a single super
148  */
149 SYSCALL_DEFINE1(syncfs, int, fd)
150 {
151 	CLASS(fd, f)(fd);
152 	struct super_block *sb;
153 	int ret, ret2;
154 
155 	if (fd_empty(f))
156 		return -EBADF;
157 	sb = fd_file(f)->f_path.dentry->d_sb;
158 
159 	down_read(&sb->s_umount);
160 	ret = sync_filesystem(sb);
161 	up_read(&sb->s_umount);
162 
163 	ret2 = errseq_check_and_advance(&sb->s_wb_err, &fd_file(f)->f_sb_err);
164 
165 	return ret ? ret : ret2;
166 }
167 
168 /**
169  * vfs_fsync_range - helper to sync a range of data & metadata to disk
170  * @file:		file to sync
171  * @start:		offset in bytes of the beginning of data range to sync
172  * @end:		offset in bytes of the end of data range (inclusive)
173  * @datasync:		perform only datasync
174  *
175  * Write back data in range @start..@end and metadata for @file to disk.  If
176  * @datasync is set only metadata needed to access modified file data is
177  * written.
178  */
179 int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
180 {
181 	struct inode *inode = file->f_mapping->host;
182 
183 	if (!file->f_op->fsync)
184 		return -EINVAL;
185 	if (!datasync && (inode->i_state & I_DIRTY_TIME))
186 		mark_inode_dirty_sync(inode);
187 	return file->f_op->fsync(file, start, end, datasync);
188 }
189 EXPORT_SYMBOL(vfs_fsync_range);
190 
191 /**
192  * vfs_fsync - perform a fsync or fdatasync on a file
193  * @file:		file to sync
194  * @datasync:		only perform a fdatasync operation
195  *
196  * Write back data and metadata for @file to disk.  If @datasync is
197  * set only metadata needed to access modified file data is written.
198  */
199 int vfs_fsync(struct file *file, int datasync)
200 {
201 	return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
202 }
203 EXPORT_SYMBOL(vfs_fsync);
204 
205 static int do_fsync(unsigned int fd, int datasync)
206 {
207 	CLASS(fd, f)(fd);
208 
209 	if (fd_empty(f))
210 		return -EBADF;
211 
212 	return vfs_fsync(fd_file(f), datasync);
213 }
214 
215 SYSCALL_DEFINE1(fsync, unsigned int, fd)
216 {
217 	return do_fsync(fd, 0);
218 }
219 
220 SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
221 {
222 	return do_fsync(fd, 1);
223 }
224 
225 int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
226 		    unsigned int flags)
227 {
228 	int ret;
229 	struct address_space *mapping;
230 	loff_t endbyte;			/* inclusive */
231 	umode_t i_mode;
232 
233 	ret = -EINVAL;
234 	if (flags & ~VALID_FLAGS)
235 		goto out;
236 
237 	endbyte = offset + nbytes;
238 
239 	if ((s64)offset < 0)
240 		goto out;
241 	if ((s64)endbyte < 0)
242 		goto out;
243 	if (endbyte < offset)
244 		goto out;
245 
246 	if (sizeof(pgoff_t) == 4) {
247 		if (offset >= (0x100000000ULL << PAGE_SHIFT)) {
248 			/*
249 			 * The range starts outside a 32 bit machine's
250 			 * pagecache addressing capabilities.  Let it "succeed"
251 			 */
252 			ret = 0;
253 			goto out;
254 		}
255 		if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) {
256 			/*
257 			 * Out to EOF
258 			 */
259 			nbytes = 0;
260 		}
261 	}
262 
263 	if (nbytes == 0)
264 		endbyte = LLONG_MAX;
265 	else
266 		endbyte--;		/* inclusive */
267 
268 	i_mode = file_inode(file)->i_mode;
269 	ret = -ESPIPE;
270 	if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
271 			!S_ISLNK(i_mode))
272 		goto out;
273 
274 	mapping = file->f_mapping;
275 	ret = 0;
276 	if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
277 		ret = file_fdatawait_range(file, offset, endbyte);
278 		if (ret < 0)
279 			goto out;
280 	}
281 
282 	if (flags & SYNC_FILE_RANGE_WRITE) {
283 		int sync_mode = WB_SYNC_NONE;
284 
285 		if ((flags & SYNC_FILE_RANGE_WRITE_AND_WAIT) ==
286 			     SYNC_FILE_RANGE_WRITE_AND_WAIT)
287 			sync_mode = WB_SYNC_ALL;
288 
289 		ret = __filemap_fdatawrite_range(mapping, offset, endbyte,
290 						 sync_mode);
291 		if (ret < 0)
292 			goto out;
293 	}
294 
295 	if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
296 		ret = file_fdatawait_range(file, offset, endbyte);
297 
298 out:
299 	return ret;
300 }
301 
302 /*
303  * ksys_sync_file_range() permits finely controlled syncing over a segment of
304  * a file in the range offset .. (offset+nbytes-1) inclusive.  If nbytes is
305  * zero then ksys_sync_file_range() will operate from offset out to EOF.
306  *
307  * The flag bits are:
308  *
309  * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
310  * before performing the write.
311  *
312  * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
313  * range which are not presently under writeback. Note that this may block for
314  * significant periods due to exhaustion of disk request structures.
315  *
316  * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
317  * after performing the write.
318  *
319  * Useful combinations of the flag bits are:
320  *
321  * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
322  * in the range which were dirty on entry to ksys_sync_file_range() are placed
323  * under writeout.  This is a start-write-for-data-integrity operation.
324  *
325  * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
326  * are not presently under writeout.  This is an asynchronous flush-to-disk
327  * operation.  Not suitable for data integrity operations.
328  *
329  * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
330  * completion of writeout of all pages in the range.  This will be used after an
331  * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
332  * for that operation to complete and to return the result.
333  *
334  * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER
335  * (a.k.a. SYNC_FILE_RANGE_WRITE_AND_WAIT):
336  * a traditional sync() operation.  This is a write-for-data-integrity operation
337  * which will ensure that all pages in the range which were dirty on entry to
338  * ksys_sync_file_range() are written to disk.  It should be noted that disk
339  * caches are not flushed by this call, so there are no guarantees here that the
340  * data will be available on disk after a crash.
341  *
342  *
343  * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
344  * I/O errors or ENOSPC conditions and will return those to the caller, after
345  * clearing the EIO and ENOSPC flags in the address_space.
346  *
347  * It should be noted that none of these operations write out the file's
348  * metadata.  So unless the application is strictly performing overwrites of
349  * already-instantiated disk blocks, there are no guarantees here that the data
350  * will be available after a crash.
351  */
352 int ksys_sync_file_range(int fd, loff_t offset, loff_t nbytes,
353 			 unsigned int flags)
354 {
355 	CLASS(fd, f)(fd);
356 
357 	if (fd_empty(f))
358 		return -EBADF;
359 
360 	return sync_file_range(fd_file(f), offset, nbytes, flags);
361 }
362 
363 SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
364 				unsigned int, flags)
365 {
366 	return ksys_sync_file_range(fd, offset, nbytes, flags);
367 }
368 
369 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_SYNC_FILE_RANGE)
370 COMPAT_SYSCALL_DEFINE6(sync_file_range, int, fd, compat_arg_u64_dual(offset),
371 		       compat_arg_u64_dual(nbytes), unsigned int, flags)
372 {
373 	return ksys_sync_file_range(fd, compat_arg_u64_glue(offset),
374 				    compat_arg_u64_glue(nbytes), flags);
375 }
376 #endif
377 
378 /* It would be nice if people remember that not all the world's an i386
379    when they introduce new system calls */
380 SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
381 				 loff_t, offset, loff_t, nbytes)
382 {
383 	return ksys_sync_file_range(fd, offset, nbytes, flags);
384 }
385