xref: /linux/fs/sync.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * High-level sync()-related operations
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/kernel.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/namei.h>
13 #include <linux/sched.h>
14 #include <linux/writeback.h>
15 #include <linux/syscalls.h>
16 #include <linux/linkage.h>
17 #include <linux/pagemap.h>
18 #include <linux/quotaops.h>
19 #include <linux/backing-dev.h>
20 #include "internal.h"
21 
22 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
23 			SYNC_FILE_RANGE_WAIT_AFTER)
24 
25 /*
26  * Write out and wait upon all dirty data associated with this
27  * superblock.  Filesystem data as well as the underlying block
28  * device.  Takes the superblock lock.
29  */
30 int sync_filesystem(struct super_block *sb)
31 {
32 	int ret = 0;
33 
34 	/*
35 	 * We need to be protected against the filesystem going from
36 	 * r/o to r/w or vice versa.
37 	 */
38 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
39 
40 	/*
41 	 * No point in syncing out anything if the filesystem is read-only.
42 	 */
43 	if (sb_rdonly(sb))
44 		return 0;
45 
46 	/*
47 	 * Do the filesystem syncing work.  For simple filesystems
48 	 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have
49 	 * to submit I/O for these buffers via sync_blockdev().  This also
50 	 * speeds up the wait == 1 case since in that case write_inode()
51 	 * methods call sync_dirty_buffer() and thus effectively write one block
52 	 * at a time.
53 	 */
54 	writeback_inodes_sb(sb, WB_REASON_SYNC);
55 	if (sb->s_op->sync_fs) {
56 		ret = sb->s_op->sync_fs(sb, 0);
57 		if (ret)
58 			return ret;
59 	}
60 	ret = sync_blockdev_nowait(sb->s_bdev);
61 	if (ret)
62 		return ret;
63 
64 	sync_inodes_sb(sb);
65 	if (sb->s_op->sync_fs) {
66 		ret = sb->s_op->sync_fs(sb, 1);
67 		if (ret)
68 			return ret;
69 	}
70 	return sync_blockdev(sb->s_bdev);
71 }
72 EXPORT_SYMBOL(sync_filesystem);
73 
74 static void sync_inodes_one_sb(struct super_block *sb, void *arg)
75 {
76 	if (!sb_rdonly(sb))
77 		sync_inodes_sb(sb);
78 }
79 
80 static void sync_fs_one_sb(struct super_block *sb, void *arg)
81 {
82 	if (!sb_rdonly(sb) && !(sb->s_iflags & SB_I_SKIP_SYNC) &&
83 	    sb->s_op->sync_fs)
84 		sb->s_op->sync_fs(sb, *(int *)arg);
85 }
86 
87 /*
88  * Sync everything. We start by waking flusher threads so that most of
89  * writeback runs on all devices in parallel. Then we sync all inodes reliably
90  * which effectively also waits for all flusher threads to finish doing
91  * writeback. At this point all data is on disk so metadata should be stable
92  * and we tell filesystems to sync their metadata via ->sync_fs() calls.
93  * Finally, we writeout all block devices because some filesystems (e.g. ext2)
94  * just write metadata (such as inodes or bitmaps) to block device page cache
95  * and do not sync it on their own in ->sync_fs().
96  */
97 void ksys_sync(void)
98 {
99 	int nowait = 0, wait = 1;
100 
101 	wakeup_flusher_threads(WB_REASON_SYNC);
102 	iterate_supers(sync_inodes_one_sb, NULL);
103 	iterate_supers(sync_fs_one_sb, &nowait);
104 	iterate_supers(sync_fs_one_sb, &wait);
105 	sync_bdevs(false);
106 	sync_bdevs(true);
107 }
108 
109 SYSCALL_DEFINE0(sync)
110 {
111 	ksys_sync();
112 	return 0;
113 }
114 
115 static void do_sync_work(struct work_struct *work)
116 {
117 	int nowait = 0;
118 	int wait = 1;
119 
120 	/*
121 	 * Sync twice to reduce the possibility we skipped some inodes / pages
122 	 * because they were temporarily locked
123 	 */
124 	iterate_supers(sync_inodes_one_sb, NULL);
125 	iterate_supers(sync_fs_one_sb, &nowait);
126 	sync_bdevs(false);
127 	iterate_supers(sync_inodes_one_sb, NULL);
128 	iterate_supers(sync_fs_one_sb, &wait);
129 	sync_bdevs(false);
130 	printk("Emergency Sync complete\n");
131 	kfree(work);
132 }
133 
134 void emergency_sync(void)
135 {
136 	struct work_struct *work;
137 
138 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
139 	if (work) {
140 		INIT_WORK(work, do_sync_work);
141 		schedule_work(work);
142 	}
143 }
144 
145 /*
146  * sync a single super
147  */
148 SYSCALL_DEFINE1(syncfs, int, fd)
149 {
150 	CLASS(fd, f)(fd);
151 	struct super_block *sb;
152 	int ret, ret2;
153 
154 	if (fd_empty(f))
155 		return -EBADF;
156 	sb = fd_file(f)->f_path.dentry->d_sb;
157 
158 	down_read(&sb->s_umount);
159 	ret = sync_filesystem(sb);
160 	up_read(&sb->s_umount);
161 
162 	ret2 = errseq_check_and_advance(&sb->s_wb_err, &fd_file(f)->f_sb_err);
163 
164 	return ret ? ret : ret2;
165 }
166 
167 /**
168  * vfs_fsync_range - helper to sync a range of data & metadata to disk
169  * @file:		file to sync
170  * @start:		offset in bytes of the beginning of data range to sync
171  * @end:		offset in bytes of the end of data range (inclusive)
172  * @datasync:		perform only datasync
173  *
174  * Write back data in range @start..@end and metadata for @file to disk.  If
175  * @datasync is set only metadata needed to access modified file data is
176  * written.
177  */
178 int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
179 {
180 	struct inode *inode = file->f_mapping->host;
181 
182 	if (!file->f_op->fsync)
183 		return -EINVAL;
184 	if (!datasync)
185 		sync_lazytime(inode);
186 	return file->f_op->fsync(file, start, end, datasync);
187 }
188 EXPORT_SYMBOL(vfs_fsync_range);
189 
190 /**
191  * vfs_fsync - perform a fsync or fdatasync on a file
192  * @file:		file to sync
193  * @datasync:		only perform a fdatasync operation
194  *
195  * Write back data and metadata for @file to disk.  If @datasync is
196  * set only metadata needed to access modified file data is written.
197  */
198 int vfs_fsync(struct file *file, int datasync)
199 {
200 	return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
201 }
202 EXPORT_SYMBOL(vfs_fsync);
203 
204 static int do_fsync(unsigned int fd, int datasync)
205 {
206 	CLASS(fd, f)(fd);
207 
208 	if (fd_empty(f))
209 		return -EBADF;
210 
211 	return vfs_fsync(fd_file(f), datasync);
212 }
213 
214 SYSCALL_DEFINE1(fsync, unsigned int, fd)
215 {
216 	return do_fsync(fd, 0);
217 }
218 
219 SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
220 {
221 	return do_fsync(fd, 1);
222 }
223 
224 int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
225 		    unsigned int flags)
226 {
227 	int ret;
228 	struct address_space *mapping;
229 	loff_t endbyte;			/* inclusive */
230 	umode_t i_mode;
231 
232 	ret = -EINVAL;
233 	if (flags & ~VALID_FLAGS)
234 		goto out;
235 
236 	endbyte = offset + nbytes;
237 
238 	if ((s64)offset < 0)
239 		goto out;
240 	if ((s64)endbyte < 0)
241 		goto out;
242 	if (endbyte < offset)
243 		goto out;
244 
245 	if (sizeof(pgoff_t) == 4) {
246 		if (offset >= (0x100000000ULL << PAGE_SHIFT)) {
247 			/*
248 			 * The range starts outside a 32 bit machine's
249 			 * pagecache addressing capabilities.  Let it "succeed"
250 			 */
251 			ret = 0;
252 			goto out;
253 		}
254 		if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) {
255 			/*
256 			 * Out to EOF
257 			 */
258 			nbytes = 0;
259 		}
260 	}
261 
262 	if (nbytes == 0)
263 		endbyte = LLONG_MAX;
264 	else
265 		endbyte--;		/* inclusive */
266 
267 	i_mode = file_inode(file)->i_mode;
268 	ret = -ESPIPE;
269 	if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
270 			!S_ISLNK(i_mode))
271 		goto out;
272 
273 	mapping = file->f_mapping;
274 	ret = 0;
275 	if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
276 		ret = file_fdatawait_range(file, offset, endbyte);
277 		if (ret < 0)
278 			goto out;
279 	}
280 
281 	if (flags & SYNC_FILE_RANGE_WRITE) {
282 		if ((flags & SYNC_FILE_RANGE_WRITE_AND_WAIT) ==
283 			     SYNC_FILE_RANGE_WRITE_AND_WAIT)
284 			ret = filemap_fdatawrite_range(mapping, offset,
285 					endbyte);
286 		else
287 			ret = filemap_flush_range(mapping, offset, endbyte);
288 		if (ret < 0)
289 			goto out;
290 	}
291 
292 	if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
293 		ret = file_fdatawait_range(file, offset, endbyte);
294 
295 out:
296 	return ret;
297 }
298 
299 /*
300  * ksys_sync_file_range() permits finely controlled syncing over a segment of
301  * a file in the range offset .. (offset+nbytes-1) inclusive.  If nbytes is
302  * zero then ksys_sync_file_range() will operate from offset out to EOF.
303  *
304  * The flag bits are:
305  *
306  * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
307  * before performing the write.
308  *
309  * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
310  * range which are not presently under writeback. Note that this may block for
311  * significant periods due to exhaustion of disk request structures.
312  *
313  * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
314  * after performing the write.
315  *
316  * Useful combinations of the flag bits are:
317  *
318  * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
319  * in the range which were dirty on entry to ksys_sync_file_range() are placed
320  * under writeout.  This is a start-write-for-data-integrity operation.
321  *
322  * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
323  * are not presently under writeout.  This is an asynchronous flush-to-disk
324  * operation.  Not suitable for data integrity operations.
325  *
326  * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
327  * completion of writeout of all pages in the range.  This will be used after an
328  * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
329  * for that operation to complete and to return the result.
330  *
331  * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER
332  * (a.k.a. SYNC_FILE_RANGE_WRITE_AND_WAIT):
333  * a traditional sync() operation.  This is a write-for-data-integrity operation
334  * which will ensure that all pages in the range which were dirty on entry to
335  * ksys_sync_file_range() are written to disk.  It should be noted that disk
336  * caches are not flushed by this call, so there are no guarantees here that the
337  * data will be available on disk after a crash.
338  *
339  *
340  * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
341  * I/O errors or ENOSPC conditions and will return those to the caller, after
342  * clearing the EIO and ENOSPC flags in the address_space.
343  *
344  * It should be noted that none of these operations write out the file's
345  * metadata.  So unless the application is strictly performing overwrites of
346  * already-instantiated disk blocks, there are no guarantees here that the data
347  * will be available after a crash.
348  */
349 int ksys_sync_file_range(int fd, loff_t offset, loff_t nbytes,
350 			 unsigned int flags)
351 {
352 	CLASS(fd, f)(fd);
353 
354 	if (fd_empty(f))
355 		return -EBADF;
356 
357 	return sync_file_range(fd_file(f), offset, nbytes, flags);
358 }
359 
360 SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
361 				unsigned int, flags)
362 {
363 	return ksys_sync_file_range(fd, offset, nbytes, flags);
364 }
365 
366 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_SYNC_FILE_RANGE)
367 COMPAT_SYSCALL_DEFINE6(sync_file_range, int, fd, compat_arg_u64_dual(offset),
368 		       compat_arg_u64_dual(nbytes), unsigned int, flags)
369 {
370 	return ksys_sync_file_range(fd, compat_arg_u64_glue(offset),
371 				    compat_arg_u64_glue(nbytes), flags);
372 }
373 #endif
374 
375 /* It would be nice if people remember that not all the world's an i386
376    when they introduce new system calls */
377 SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
378 				 loff_t, offset, loff_t, nbytes)
379 {
380 	return ksys_sync_file_range(fd, offset, nbytes, flags);
381 }
382