xref: /linux/fs/super.c (revision fcab107abe1ab5be9dbe874baa722372da8f4f73)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who,
43 			     const void *freeze_owner);
44 
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47 
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 	"sb_writers",
50 	"sb_pagefaults",
51 	"sb_internal",
52 };
53 
54 static inline void __super_lock(struct super_block *sb, bool excl)
55 {
56 	if (excl)
57 		down_write(&sb->s_umount);
58 	else
59 		down_read(&sb->s_umount);
60 }
61 
62 static inline void super_unlock(struct super_block *sb, bool excl)
63 {
64 	if (excl)
65 		up_write(&sb->s_umount);
66 	else
67 		up_read(&sb->s_umount);
68 }
69 
70 static inline void __super_lock_excl(struct super_block *sb)
71 {
72 	__super_lock(sb, true);
73 }
74 
75 static inline void super_unlock_excl(struct super_block *sb)
76 {
77 	super_unlock(sb, true);
78 }
79 
80 static inline void super_unlock_shared(struct super_block *sb)
81 {
82 	super_unlock(sb, false);
83 }
84 
85 static bool super_flags(const struct super_block *sb, unsigned int flags)
86 {
87 	/*
88 	 * Pairs with smp_store_release() in super_wake() and ensures
89 	 * that we see @flags after we're woken.
90 	 */
91 	return smp_load_acquire(&sb->s_flags) & flags;
92 }
93 
94 /**
95  * super_lock - wait for superblock to become ready and lock it
96  * @sb: superblock to wait for
97  * @excl: whether exclusive access is required
98  *
99  * If the superblock has neither passed through vfs_get_tree() or
100  * generic_shutdown_super() yet wait for it to happen. Either superblock
101  * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
102  * woken and we'll see SB_DYING.
103  *
104  * The caller must have acquired a temporary reference on @sb->s_count.
105  *
106  * Return: The function returns true if SB_BORN was set and with
107  *         s_umount held. The function returns false if SB_DYING was
108  *         set and without s_umount held.
109  */
110 static __must_check bool super_lock(struct super_block *sb, bool excl)
111 {
112 	lockdep_assert_not_held(&sb->s_umount);
113 
114 	/* wait until the superblock is ready or dying */
115 	wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING));
116 
117 	/* Don't pointlessly acquire s_umount. */
118 	if (super_flags(sb, SB_DYING))
119 		return false;
120 
121 	__super_lock(sb, excl);
122 
123 	/*
124 	 * Has gone through generic_shutdown_super() in the meantime.
125 	 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
126 	 * grab a reference to this. Tell them so.
127 	 */
128 	if (sb->s_flags & SB_DYING) {
129 		super_unlock(sb, excl);
130 		return false;
131 	}
132 
133 	WARN_ON_ONCE(!(sb->s_flags & SB_BORN));
134 	return true;
135 }
136 
137 /* wait and try to acquire read-side of @sb->s_umount */
138 static inline bool super_lock_shared(struct super_block *sb)
139 {
140 	return super_lock(sb, false);
141 }
142 
143 /* wait and try to acquire write-side of @sb->s_umount */
144 static inline bool super_lock_excl(struct super_block *sb)
145 {
146 	return super_lock(sb, true);
147 }
148 
149 /* wake waiters */
150 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
151 static void super_wake(struct super_block *sb, unsigned int flag)
152 {
153 	WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
154 	WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
155 
156 	/*
157 	 * Pairs with smp_load_acquire() in super_lock() to make sure
158 	 * all initializations in the superblock are seen by the user
159 	 * seeing SB_BORN sent.
160 	 */
161 	smp_store_release(&sb->s_flags, sb->s_flags | flag);
162 	/*
163 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
164 	 * ___wait_var_event() either sees SB_BORN set or
165 	 * waitqueue_active() check in wake_up_var() sees the waiter.
166 	 */
167 	smp_mb();
168 	wake_up_var(&sb->s_flags);
169 }
170 
171 /*
172  * One thing we have to be careful of with a per-sb shrinker is that we don't
173  * drop the last active reference to the superblock from within the shrinker.
174  * If that happens we could trigger unregistering the shrinker from within the
175  * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
176  * take a passive reference to the superblock to avoid this from occurring.
177  */
178 static unsigned long super_cache_scan(struct shrinker *shrink,
179 				      struct shrink_control *sc)
180 {
181 	struct super_block *sb;
182 	long	fs_objects = 0;
183 	long	total_objects;
184 	long	freed = 0;
185 	long	dentries;
186 	long	inodes;
187 
188 	sb = shrink->private_data;
189 
190 	/*
191 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
192 	 * to recurse into the FS that called us in clear_inode() and friends..
193 	 */
194 	if (!(sc->gfp_mask & __GFP_FS))
195 		return SHRINK_STOP;
196 
197 	if (!super_trylock_shared(sb))
198 		return SHRINK_STOP;
199 
200 	if (sb->s_op->nr_cached_objects)
201 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
202 
203 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
204 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
205 	total_objects = dentries + inodes + fs_objects;
206 	if (!total_objects)
207 		total_objects = 1;
208 
209 	/* proportion the scan between the caches */
210 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
211 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
212 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
213 
214 	/*
215 	 * prune the dcache first as the icache is pinned by it, then
216 	 * prune the icache, followed by the filesystem specific caches
217 	 *
218 	 * Ensure that we always scan at least one object - memcg kmem
219 	 * accounting uses this to fully empty the caches.
220 	 */
221 	sc->nr_to_scan = dentries + 1;
222 	freed = prune_dcache_sb(sb, sc);
223 	sc->nr_to_scan = inodes + 1;
224 	freed += prune_icache_sb(sb, sc);
225 
226 	if (fs_objects) {
227 		sc->nr_to_scan = fs_objects + 1;
228 		freed += sb->s_op->free_cached_objects(sb, sc);
229 	}
230 
231 	super_unlock_shared(sb);
232 	return freed;
233 }
234 
235 static unsigned long super_cache_count(struct shrinker *shrink,
236 				       struct shrink_control *sc)
237 {
238 	struct super_block *sb;
239 	long	total_objects = 0;
240 
241 	sb = shrink->private_data;
242 
243 	/*
244 	 * We don't call super_trylock_shared() here as it is a scalability
245 	 * bottleneck, so we're exposed to partial setup state. The shrinker
246 	 * rwsem does not protect filesystem operations backing
247 	 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
248 	 * change between super_cache_count and super_cache_scan, so we really
249 	 * don't need locks here.
250 	 *
251 	 * However, if we are currently mounting the superblock, the underlying
252 	 * filesystem might be in a state of partial construction and hence it
253 	 * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
254 	 * to avoid this situation, so do the same here. The memory barrier is
255 	 * matched with the one in mount_fs() as we don't hold locks here.
256 	 */
257 	if (!(sb->s_flags & SB_BORN))
258 		return 0;
259 	smp_rmb();
260 
261 	if (sb->s_op && sb->s_op->nr_cached_objects)
262 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
263 
264 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
265 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
266 
267 	if (!total_objects)
268 		return SHRINK_EMPTY;
269 
270 	total_objects = vfs_pressure_ratio(total_objects);
271 	return total_objects;
272 }
273 
274 static void destroy_super_work(struct work_struct *work)
275 {
276 	struct super_block *s = container_of(work, struct super_block,
277 							destroy_work);
278 	fsnotify_sb_free(s);
279 	security_sb_free(s);
280 	put_user_ns(s->s_user_ns);
281 	kfree(s->s_subtype);
282 	for (int i = 0; i < SB_FREEZE_LEVELS; i++)
283 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
284 	kfree(s);
285 }
286 
287 static void destroy_super_rcu(struct rcu_head *head)
288 {
289 	struct super_block *s = container_of(head, struct super_block, rcu);
290 	INIT_WORK(&s->destroy_work, destroy_super_work);
291 	schedule_work(&s->destroy_work);
292 }
293 
294 /* Free a superblock that has never been seen by anyone */
295 static void destroy_unused_super(struct super_block *s)
296 {
297 	if (!s)
298 		return;
299 	super_unlock_excl(s);
300 	list_lru_destroy(&s->s_dentry_lru);
301 	list_lru_destroy(&s->s_inode_lru);
302 	shrinker_free(s->s_shrink);
303 	/* no delays needed */
304 	destroy_super_work(&s->destroy_work);
305 }
306 
307 /**
308  *	alloc_super	-	create new superblock
309  *	@type:	filesystem type superblock should belong to
310  *	@flags: the mount flags
311  *	@user_ns: User namespace for the super_block
312  *
313  *	Allocates and initializes a new &struct super_block.  alloc_super()
314  *	returns a pointer new superblock or %NULL if allocation had failed.
315  */
316 static struct super_block *alloc_super(struct file_system_type *type, int flags,
317 				       struct user_namespace *user_ns)
318 {
319 	struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL);
320 	static const struct super_operations default_op;
321 	int i;
322 
323 	if (!s)
324 		return NULL;
325 
326 	INIT_LIST_HEAD(&s->s_mounts);
327 	s->s_user_ns = get_user_ns(user_ns);
328 	init_rwsem(&s->s_umount);
329 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
330 	/*
331 	 * sget() can have s_umount recursion.
332 	 *
333 	 * When it cannot find a suitable sb, it allocates a new
334 	 * one (this one), and tries again to find a suitable old
335 	 * one.
336 	 *
337 	 * In case that succeeds, it will acquire the s_umount
338 	 * lock of the old one. Since these are clearly distrinct
339 	 * locks, and this object isn't exposed yet, there's no
340 	 * risk of deadlocks.
341 	 *
342 	 * Annotate this by putting this lock in a different
343 	 * subclass.
344 	 */
345 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
346 
347 	if (security_sb_alloc(s))
348 		goto fail;
349 
350 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
351 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
352 					sb_writers_name[i],
353 					&type->s_writers_key[i]))
354 			goto fail;
355 	}
356 	s->s_bdi = &noop_backing_dev_info;
357 	s->s_flags = flags;
358 	if (s->s_user_ns != &init_user_ns)
359 		s->s_iflags |= SB_I_NODEV;
360 	INIT_HLIST_NODE(&s->s_instances);
361 	INIT_HLIST_BL_HEAD(&s->s_roots);
362 	mutex_init(&s->s_sync_lock);
363 	INIT_LIST_HEAD(&s->s_inodes);
364 	spin_lock_init(&s->s_inode_list_lock);
365 	INIT_LIST_HEAD(&s->s_inodes_wb);
366 	spin_lock_init(&s->s_inode_wblist_lock);
367 
368 	s->s_count = 1;
369 	atomic_set(&s->s_active, 1);
370 	mutex_init(&s->s_vfs_rename_mutex);
371 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
372 	init_rwsem(&s->s_dquot.dqio_sem);
373 	s->s_maxbytes = MAX_NON_LFS;
374 	s->s_op = &default_op;
375 	s->s_time_gran = 1000000000;
376 	s->s_time_min = TIME64_MIN;
377 	s->s_time_max = TIME64_MAX;
378 
379 	s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
380 				     "sb-%s", type->name);
381 	if (!s->s_shrink)
382 		goto fail;
383 
384 	s->s_shrink->scan_objects = super_cache_scan;
385 	s->s_shrink->count_objects = super_cache_count;
386 	s->s_shrink->batch = 1024;
387 	s->s_shrink->private_data = s;
388 
389 	if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
390 		goto fail;
391 	if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
392 		goto fail;
393 	return s;
394 
395 fail:
396 	destroy_unused_super(s);
397 	return NULL;
398 }
399 
400 /* Superblock refcounting  */
401 
402 /*
403  * Drop a superblock's refcount.  The caller must hold sb_lock.
404  */
405 static void __put_super(struct super_block *s)
406 {
407 	if (!--s->s_count) {
408 		list_del_init(&s->s_list);
409 		WARN_ON(s->s_dentry_lru.node);
410 		WARN_ON(s->s_inode_lru.node);
411 		WARN_ON(!list_empty(&s->s_mounts));
412 		call_rcu(&s->rcu, destroy_super_rcu);
413 	}
414 }
415 
416 /**
417  *	put_super	-	drop a temporary reference to superblock
418  *	@sb: superblock in question
419  *
420  *	Drops a temporary reference, frees superblock if there's no
421  *	references left.
422  */
423 void put_super(struct super_block *sb)
424 {
425 	spin_lock(&sb_lock);
426 	__put_super(sb);
427 	spin_unlock(&sb_lock);
428 }
429 
430 static void kill_super_notify(struct super_block *sb)
431 {
432 	lockdep_assert_not_held(&sb->s_umount);
433 
434 	/* already notified earlier */
435 	if (sb->s_flags & SB_DEAD)
436 		return;
437 
438 	/*
439 	 * Remove it from @fs_supers so it isn't found by new
440 	 * sget{_fc}() walkers anymore. Any concurrent mounter still
441 	 * managing to grab a temporary reference is guaranteed to
442 	 * already see SB_DYING and will wait until we notify them about
443 	 * SB_DEAD.
444 	 */
445 	spin_lock(&sb_lock);
446 	hlist_del_init(&sb->s_instances);
447 	spin_unlock(&sb_lock);
448 
449 	/*
450 	 * Let concurrent mounts know that this thing is really dead.
451 	 * We don't need @sb->s_umount here as every concurrent caller
452 	 * will see SB_DYING and either discard the superblock or wait
453 	 * for SB_DEAD.
454 	 */
455 	super_wake(sb, SB_DEAD);
456 }
457 
458 /**
459  *	deactivate_locked_super	-	drop an active reference to superblock
460  *	@s: superblock to deactivate
461  *
462  *	Drops an active reference to superblock, converting it into a temporary
463  *	one if there is no other active references left.  In that case we
464  *	tell fs driver to shut it down and drop the temporary reference we
465  *	had just acquired.
466  *
467  *	Caller holds exclusive lock on superblock; that lock is released.
468  */
469 void deactivate_locked_super(struct super_block *s)
470 {
471 	struct file_system_type *fs = s->s_type;
472 	if (atomic_dec_and_test(&s->s_active)) {
473 		shrinker_free(s->s_shrink);
474 		fs->kill_sb(s);
475 
476 		kill_super_notify(s);
477 
478 		/*
479 		 * Since list_lru_destroy() may sleep, we cannot call it from
480 		 * put_super(), where we hold the sb_lock. Therefore we destroy
481 		 * the lru lists right now.
482 		 */
483 		list_lru_destroy(&s->s_dentry_lru);
484 		list_lru_destroy(&s->s_inode_lru);
485 
486 		put_filesystem(fs);
487 		put_super(s);
488 	} else {
489 		super_unlock_excl(s);
490 	}
491 }
492 
493 EXPORT_SYMBOL(deactivate_locked_super);
494 
495 /**
496  *	deactivate_super	-	drop an active reference to superblock
497  *	@s: superblock to deactivate
498  *
499  *	Variant of deactivate_locked_super(), except that superblock is *not*
500  *	locked by caller.  If we are going to drop the final active reference,
501  *	lock will be acquired prior to that.
502  */
503 void deactivate_super(struct super_block *s)
504 {
505 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
506 		__super_lock_excl(s);
507 		deactivate_locked_super(s);
508 	}
509 }
510 
511 EXPORT_SYMBOL(deactivate_super);
512 
513 /**
514  * grab_super - acquire an active reference to a superblock
515  * @sb: superblock to acquire
516  *
517  * Acquire a temporary reference on a superblock and try to trade it for
518  * an active reference. This is used in sget{_fc}() to wait for a
519  * superblock to either become SB_BORN or for it to pass through
520  * sb->kill() and be marked as SB_DEAD.
521  *
522  * Return: This returns true if an active reference could be acquired,
523  *         false if not.
524  */
525 static bool grab_super(struct super_block *sb)
526 {
527 	bool locked;
528 
529 	sb->s_count++;
530 	spin_unlock(&sb_lock);
531 	locked = super_lock_excl(sb);
532 	if (locked) {
533 		if (atomic_inc_not_zero(&sb->s_active)) {
534 			put_super(sb);
535 			return true;
536 		}
537 		super_unlock_excl(sb);
538 	}
539 	wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD));
540 	put_super(sb);
541 	return false;
542 }
543 
544 /*
545  *	super_trylock_shared - try to grab ->s_umount shared
546  *	@sb: reference we are trying to grab
547  *
548  *	Try to prevent fs shutdown.  This is used in places where we
549  *	cannot take an active reference but we need to ensure that the
550  *	filesystem is not shut down while we are working on it. It returns
551  *	false if we cannot acquire s_umount or if we lose the race and
552  *	filesystem already got into shutdown, and returns true with the s_umount
553  *	lock held in read mode in case of success. On successful return,
554  *	the caller must drop the s_umount lock when done.
555  *
556  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
557  *	The reason why it's safe is that we are OK with doing trylock instead
558  *	of down_read().  There's a couple of places that are OK with that, but
559  *	it's very much not a general-purpose interface.
560  */
561 bool super_trylock_shared(struct super_block *sb)
562 {
563 	if (down_read_trylock(&sb->s_umount)) {
564 		if (!(sb->s_flags & SB_DYING) && sb->s_root &&
565 		    (sb->s_flags & SB_BORN))
566 			return true;
567 		super_unlock_shared(sb);
568 	}
569 
570 	return false;
571 }
572 
573 /**
574  *	retire_super	-	prevents superblock from being reused
575  *	@sb: superblock to retire
576  *
577  *	The function marks superblock to be ignored in superblock test, which
578  *	prevents it from being reused for any new mounts.  If the superblock has
579  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
580  *	of the superblock to prevent potential races.  The refcount is reduced
581  *	by generic_shutdown_super().  The function can not be called
582  *	concurrently with generic_shutdown_super().  It is safe to call the
583  *	function multiple times, subsequent calls have no effect.
584  *
585  *	The marker will affect the re-use only for block-device-based
586  *	superblocks.  Other superblocks will still get marked if this function
587  *	is used, but that will not affect their reusability.
588  */
589 void retire_super(struct super_block *sb)
590 {
591 	WARN_ON(!sb->s_bdev);
592 	__super_lock_excl(sb);
593 	if (sb->s_iflags & SB_I_PERSB_BDI) {
594 		bdi_unregister(sb->s_bdi);
595 		sb->s_iflags &= ~SB_I_PERSB_BDI;
596 	}
597 	sb->s_iflags |= SB_I_RETIRED;
598 	super_unlock_excl(sb);
599 }
600 EXPORT_SYMBOL(retire_super);
601 
602 /**
603  *	generic_shutdown_super	-	common helper for ->kill_sb()
604  *	@sb: superblock to kill
605  *
606  *	generic_shutdown_super() does all fs-independent work on superblock
607  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
608  *	that need destruction out of superblock, call generic_shutdown_super()
609  *	and release aforementioned objects.  Note: dentries and inodes _are_
610  *	taken care of and do not need specific handling.
611  *
612  *	Upon calling this function, the filesystem may no longer alter or
613  *	rearrange the set of dentries belonging to this super_block, nor may it
614  *	change the attachments of dentries to inodes.
615  */
616 void generic_shutdown_super(struct super_block *sb)
617 {
618 	const struct super_operations *sop = sb->s_op;
619 
620 	if (sb->s_root) {
621 		shrink_dcache_for_umount(sb);
622 		sync_filesystem(sb);
623 		sb->s_flags &= ~SB_ACTIVE;
624 
625 		cgroup_writeback_umount(sb);
626 
627 		/* Evict all inodes with zero refcount. */
628 		evict_inodes(sb);
629 
630 		/*
631 		 * Clean up and evict any inodes that still have references due
632 		 * to fsnotify or the security policy.
633 		 */
634 		fsnotify_sb_delete(sb);
635 		security_sb_delete(sb);
636 
637 		if (sb->s_dio_done_wq) {
638 			destroy_workqueue(sb->s_dio_done_wq);
639 			sb->s_dio_done_wq = NULL;
640 		}
641 
642 		if (sop->put_super)
643 			sop->put_super(sb);
644 
645 		/*
646 		 * Now that all potentially-encrypted inodes have been evicted,
647 		 * the fscrypt keyring can be destroyed.
648 		 */
649 		fscrypt_destroy_keyring(sb);
650 
651 		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), NULL,
652 				"VFS: Busy inodes after unmount of %s (%s)",
653 				sb->s_id, sb->s_type->name)) {
654 			/*
655 			 * Adding a proper bailout path here would be hard, but
656 			 * we can at least make it more likely that a later
657 			 * iput_final() or such crashes cleanly.
658 			 */
659 			struct inode *inode;
660 
661 			spin_lock(&sb->s_inode_list_lock);
662 			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
663 				inode->i_op = VFS_PTR_POISON;
664 				inode->i_sb = VFS_PTR_POISON;
665 				inode->i_mapping = VFS_PTR_POISON;
666 			}
667 			spin_unlock(&sb->s_inode_list_lock);
668 		}
669 	}
670 	/*
671 	 * Broadcast to everyone that grabbed a temporary reference to this
672 	 * superblock before we removed it from @fs_supers that the superblock
673 	 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
674 	 * discard this superblock and treat it as dead.
675 	 *
676 	 * We leave the superblock on @fs_supers so it can be found by
677 	 * sget{_fc}() until we passed sb->kill_sb().
678 	 */
679 	super_wake(sb, SB_DYING);
680 	super_unlock_excl(sb);
681 	if (sb->s_bdi != &noop_backing_dev_info) {
682 		if (sb->s_iflags & SB_I_PERSB_BDI)
683 			bdi_unregister(sb->s_bdi);
684 		bdi_put(sb->s_bdi);
685 		sb->s_bdi = &noop_backing_dev_info;
686 	}
687 }
688 
689 EXPORT_SYMBOL(generic_shutdown_super);
690 
691 bool mount_capable(struct fs_context *fc)
692 {
693 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
694 		return capable(CAP_SYS_ADMIN);
695 	else
696 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
697 }
698 
699 /**
700  * sget_fc - Find or create a superblock
701  * @fc:	Filesystem context.
702  * @test: Comparison callback
703  * @set: Setup callback
704  *
705  * Create a new superblock or find an existing one.
706  *
707  * The @test callback is used to find a matching existing superblock.
708  * Whether or not the requested parameters in @fc are taken into account
709  * is specific to the @test callback that is used. They may even be
710  * completely ignored.
711  *
712  * If an extant superblock is matched, it will be returned unless:
713  *
714  * (1) the namespace the filesystem context @fc and the extant
715  *     superblock's namespace differ
716  *
717  * (2) the filesystem context @fc has requested that reusing an extant
718  *     superblock is not allowed
719  *
720  * In both cases EBUSY will be returned.
721  *
722  * If no match is made, a new superblock will be allocated and basic
723  * initialisation will be performed (s_type, s_fs_info and s_id will be
724  * set and the @set callback will be invoked), the superblock will be
725  * published and it will be returned in a partially constructed state
726  * with SB_BORN and SB_ACTIVE as yet unset.
727  *
728  * Return: On success, an extant or newly created superblock is
729  *         returned. On failure an error pointer is returned.
730  */
731 struct super_block *sget_fc(struct fs_context *fc,
732 			    int (*test)(struct super_block *, struct fs_context *),
733 			    int (*set)(struct super_block *, struct fs_context *))
734 {
735 	struct super_block *s = NULL;
736 	struct super_block *old;
737 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
738 	int err;
739 
740 	/*
741 	 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is
742 	 * not set, as the filesystem is likely unprepared to handle it.
743 	 * This can happen when fsconfig() is called from init_user_ns with
744 	 * an fs_fd opened in another user namespace.
745 	 */
746 	if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) {
747 		errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed");
748 		return ERR_PTR(-EPERM);
749 	}
750 
751 retry:
752 	spin_lock(&sb_lock);
753 	if (test) {
754 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
755 			if (test(old, fc))
756 				goto share_extant_sb;
757 		}
758 	}
759 	if (!s) {
760 		spin_unlock(&sb_lock);
761 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
762 		if (!s)
763 			return ERR_PTR(-ENOMEM);
764 		goto retry;
765 	}
766 
767 	s->s_fs_info = fc->s_fs_info;
768 	err = set(s, fc);
769 	if (err) {
770 		s->s_fs_info = NULL;
771 		spin_unlock(&sb_lock);
772 		destroy_unused_super(s);
773 		return ERR_PTR(err);
774 	}
775 	fc->s_fs_info = NULL;
776 	s->s_type = fc->fs_type;
777 	s->s_iflags |= fc->s_iflags;
778 	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
779 	/*
780 	 * Make the superblock visible on @super_blocks and @fs_supers.
781 	 * It's in a nascent state and users should wait on SB_BORN or
782 	 * SB_DYING to be set.
783 	 */
784 	list_add_tail(&s->s_list, &super_blocks);
785 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
786 	spin_unlock(&sb_lock);
787 	get_filesystem(s->s_type);
788 	shrinker_register(s->s_shrink);
789 	return s;
790 
791 share_extant_sb:
792 	if (user_ns != old->s_user_ns || fc->exclusive) {
793 		spin_unlock(&sb_lock);
794 		destroy_unused_super(s);
795 		if (fc->exclusive)
796 			warnfc(fc, "reusing existing filesystem not allowed");
797 		else
798 			warnfc(fc, "reusing existing filesystem in another namespace not allowed");
799 		return ERR_PTR(-EBUSY);
800 	}
801 	if (!grab_super(old))
802 		goto retry;
803 	destroy_unused_super(s);
804 	return old;
805 }
806 EXPORT_SYMBOL(sget_fc);
807 
808 /**
809  *	sget	-	find or create a superblock
810  *	@type:	  filesystem type superblock should belong to
811  *	@test:	  comparison callback
812  *	@set:	  setup callback
813  *	@flags:	  mount flags
814  *	@data:	  argument to each of them
815  */
816 struct super_block *sget(struct file_system_type *type,
817 			int (*test)(struct super_block *,void *),
818 			int (*set)(struct super_block *,void *),
819 			int flags,
820 			void *data)
821 {
822 	struct user_namespace *user_ns = current_user_ns();
823 	struct super_block *s = NULL;
824 	struct super_block *old;
825 	int err;
826 
827 retry:
828 	spin_lock(&sb_lock);
829 	if (test) {
830 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
831 			if (!test(old, data))
832 				continue;
833 			if (user_ns != old->s_user_ns) {
834 				spin_unlock(&sb_lock);
835 				destroy_unused_super(s);
836 				return ERR_PTR(-EBUSY);
837 			}
838 			if (!grab_super(old))
839 				goto retry;
840 			destroy_unused_super(s);
841 			return old;
842 		}
843 	}
844 	if (!s) {
845 		spin_unlock(&sb_lock);
846 		s = alloc_super(type, flags, user_ns);
847 		if (!s)
848 			return ERR_PTR(-ENOMEM);
849 		goto retry;
850 	}
851 
852 	err = set(s, data);
853 	if (err) {
854 		spin_unlock(&sb_lock);
855 		destroy_unused_super(s);
856 		return ERR_PTR(err);
857 	}
858 	s->s_type = type;
859 	strscpy(s->s_id, type->name, sizeof(s->s_id));
860 	list_add_tail(&s->s_list, &super_blocks);
861 	hlist_add_head(&s->s_instances, &type->fs_supers);
862 	spin_unlock(&sb_lock);
863 	get_filesystem(type);
864 	shrinker_register(s->s_shrink);
865 	return s;
866 }
867 EXPORT_SYMBOL(sget);
868 
869 void drop_super(struct super_block *sb)
870 {
871 	super_unlock_shared(sb);
872 	put_super(sb);
873 }
874 
875 EXPORT_SYMBOL(drop_super);
876 
877 void drop_super_exclusive(struct super_block *sb)
878 {
879 	super_unlock_excl(sb);
880 	put_super(sb);
881 }
882 EXPORT_SYMBOL(drop_super_exclusive);
883 
884 enum super_iter_flags_t {
885 	SUPER_ITER_EXCL		= (1U << 0),
886 	SUPER_ITER_UNLOCKED	= (1U << 1),
887 	SUPER_ITER_REVERSE	= (1U << 2),
888 };
889 
890 static inline struct super_block *first_super(enum super_iter_flags_t flags)
891 {
892 	if (flags & SUPER_ITER_REVERSE)
893 		return list_last_entry(&super_blocks, struct super_block, s_list);
894 	return list_first_entry(&super_blocks, struct super_block, s_list);
895 }
896 
897 static inline struct super_block *next_super(struct super_block *sb,
898 					     enum super_iter_flags_t flags)
899 {
900 	if (flags & SUPER_ITER_REVERSE)
901 		return list_prev_entry(sb, s_list);
902 	return list_next_entry(sb, s_list);
903 }
904 
905 static void __iterate_supers(void (*f)(struct super_block *, void *), void *arg,
906 			     enum super_iter_flags_t flags)
907 {
908 	struct super_block *sb, *p = NULL;
909 	bool excl = flags & SUPER_ITER_EXCL;
910 
911 	guard(spinlock)(&sb_lock);
912 
913 	for (sb = first_super(flags);
914 	     !list_entry_is_head(sb, &super_blocks, s_list);
915 	     sb = next_super(sb, flags)) {
916 		if (super_flags(sb, SB_DYING))
917 			continue;
918 		sb->s_count++;
919 		spin_unlock(&sb_lock);
920 
921 		if (flags & SUPER_ITER_UNLOCKED) {
922 			f(sb, arg);
923 		} else if (super_lock(sb, excl)) {
924 			f(sb, arg);
925 			super_unlock(sb, excl);
926 		}
927 
928 		spin_lock(&sb_lock);
929 		if (p)
930 			__put_super(p);
931 		p = sb;
932 	}
933 	if (p)
934 		__put_super(p);
935 }
936 
937 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
938 {
939 	__iterate_supers(f, arg, 0);
940 }
941 
942 /**
943  *	iterate_supers_type - call function for superblocks of given type
944  *	@type: fs type
945  *	@f: function to call
946  *	@arg: argument to pass to it
947  *
948  *	Scans the superblock list and calls given function, passing it
949  *	locked superblock and given argument.
950  */
951 void iterate_supers_type(struct file_system_type *type,
952 	void (*f)(struct super_block *, void *), void *arg)
953 {
954 	struct super_block *sb, *p = NULL;
955 
956 	spin_lock(&sb_lock);
957 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
958 		bool locked;
959 
960 		if (super_flags(sb, SB_DYING))
961 			continue;
962 
963 		sb->s_count++;
964 		spin_unlock(&sb_lock);
965 
966 		locked = super_lock_shared(sb);
967 		if (locked)
968 			f(sb, arg);
969 
970 		spin_lock(&sb_lock);
971 		if (p)
972 			__put_super(p);
973 		p = sb;
974 	}
975 	if (p)
976 		__put_super(p);
977 	spin_unlock(&sb_lock);
978 }
979 
980 EXPORT_SYMBOL(iterate_supers_type);
981 
982 struct super_block *user_get_super(dev_t dev, bool excl)
983 {
984 	struct super_block *sb;
985 
986 	spin_lock(&sb_lock);
987 	list_for_each_entry(sb, &super_blocks, s_list) {
988 		bool locked;
989 
990 		if (sb->s_dev != dev)
991 			continue;
992 
993 		sb->s_count++;
994 		spin_unlock(&sb_lock);
995 
996 		locked = super_lock(sb, excl);
997 		if (locked)
998 			return sb;
999 
1000 		spin_lock(&sb_lock);
1001 		__put_super(sb);
1002 		break;
1003 	}
1004 	spin_unlock(&sb_lock);
1005 	return NULL;
1006 }
1007 
1008 /**
1009  * reconfigure_super - asks filesystem to change superblock parameters
1010  * @fc: The superblock and configuration
1011  *
1012  * Alters the configuration parameters of a live superblock.
1013  */
1014 int reconfigure_super(struct fs_context *fc)
1015 {
1016 	struct super_block *sb = fc->root->d_sb;
1017 	int retval;
1018 	bool remount_ro = false;
1019 	bool remount_rw = false;
1020 	bool force = fc->sb_flags & SB_FORCE;
1021 
1022 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
1023 		return -EINVAL;
1024 	if (sb->s_writers.frozen != SB_UNFROZEN)
1025 		return -EBUSY;
1026 
1027 	retval = security_sb_remount(sb, fc->security);
1028 	if (retval)
1029 		return retval;
1030 
1031 	if (fc->sb_flags_mask & SB_RDONLY) {
1032 #ifdef CONFIG_BLOCK
1033 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1034 		    bdev_read_only(sb->s_bdev))
1035 			return -EACCES;
1036 #endif
1037 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1038 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1039 	}
1040 
1041 	if (remount_ro) {
1042 		if (!hlist_empty(&sb->s_pins)) {
1043 			super_unlock_excl(sb);
1044 			group_pin_kill(&sb->s_pins);
1045 			__super_lock_excl(sb);
1046 			if (!sb->s_root)
1047 				return 0;
1048 			if (sb->s_writers.frozen != SB_UNFROZEN)
1049 				return -EBUSY;
1050 			remount_ro = !sb_rdonly(sb);
1051 		}
1052 	}
1053 	shrink_dcache_sb(sb);
1054 
1055 	/* If we are reconfiguring to RDONLY and current sb is read/write,
1056 	 * make sure there are no files open for writing.
1057 	 */
1058 	if (remount_ro) {
1059 		if (force) {
1060 			sb_start_ro_state_change(sb);
1061 		} else {
1062 			retval = sb_prepare_remount_readonly(sb);
1063 			if (retval)
1064 				return retval;
1065 		}
1066 	} else if (remount_rw) {
1067 		/*
1068 		 * Protect filesystem's reconfigure code from writes from
1069 		 * userspace until reconfigure finishes.
1070 		 */
1071 		sb_start_ro_state_change(sb);
1072 	}
1073 
1074 	if (fc->ops->reconfigure) {
1075 		retval = fc->ops->reconfigure(fc);
1076 		if (retval) {
1077 			if (!force)
1078 				goto cancel_readonly;
1079 			/* If forced remount, go ahead despite any errors */
1080 			WARN(1, "forced remount of a %s fs returned %i\n",
1081 			     sb->s_type->name, retval);
1082 		}
1083 	}
1084 
1085 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1086 				 (fc->sb_flags & fc->sb_flags_mask)));
1087 	sb_end_ro_state_change(sb);
1088 
1089 	/*
1090 	 * Some filesystems modify their metadata via some other path than the
1091 	 * bdev buffer cache (eg. use a private mapping, or directories in
1092 	 * pagecache, etc). Also file data modifications go via their own
1093 	 * mappings. So If we try to mount readonly then copy the filesystem
1094 	 * from bdev, we could get stale data, so invalidate it to give a best
1095 	 * effort at coherency.
1096 	 */
1097 	if (remount_ro && sb->s_bdev)
1098 		invalidate_bdev(sb->s_bdev);
1099 	return 0;
1100 
1101 cancel_readonly:
1102 	sb_end_ro_state_change(sb);
1103 	return retval;
1104 }
1105 
1106 static void do_emergency_remount_callback(struct super_block *sb, void *unused)
1107 {
1108 	if (sb->s_bdev && !sb_rdonly(sb)) {
1109 		struct fs_context *fc;
1110 
1111 		fc = fs_context_for_reconfigure(sb->s_root,
1112 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1113 		if (!IS_ERR(fc)) {
1114 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1115 				(void)reconfigure_super(fc);
1116 			put_fs_context(fc);
1117 		}
1118 	}
1119 }
1120 
1121 static void do_emergency_remount(struct work_struct *work)
1122 {
1123 	__iterate_supers(do_emergency_remount_callback, NULL,
1124 			 SUPER_ITER_EXCL | SUPER_ITER_REVERSE);
1125 	kfree(work);
1126 	printk("Emergency Remount complete\n");
1127 }
1128 
1129 void emergency_remount(void)
1130 {
1131 	struct work_struct *work;
1132 
1133 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1134 	if (work) {
1135 		INIT_WORK(work, do_emergency_remount);
1136 		schedule_work(work);
1137 	}
1138 }
1139 
1140 static void do_thaw_all_callback(struct super_block *sb, void *unused)
1141 {
1142 	if (IS_ENABLED(CONFIG_BLOCK))
1143 		while (sb->s_bdev && !bdev_thaw(sb->s_bdev))
1144 			pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1145 	thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE, NULL);
1146 	return;
1147 }
1148 
1149 static void do_thaw_all(struct work_struct *work)
1150 {
1151 	__iterate_supers(do_thaw_all_callback, NULL, SUPER_ITER_EXCL);
1152 	kfree(work);
1153 	printk(KERN_WARNING "Emergency Thaw complete\n");
1154 }
1155 
1156 /**
1157  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1158  *
1159  * Used for emergency unfreeze of all filesystems via SysRq
1160  */
1161 void emergency_thaw_all(void)
1162 {
1163 	struct work_struct *work;
1164 
1165 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1166 	if (work) {
1167 		INIT_WORK(work, do_thaw_all);
1168 		schedule_work(work);
1169 	}
1170 }
1171 
1172 static inline bool get_active_super(struct super_block *sb)
1173 {
1174 	bool active = false;
1175 
1176 	if (super_lock_excl(sb)) {
1177 		active = atomic_inc_not_zero(&sb->s_active);
1178 		super_unlock_excl(sb);
1179 	}
1180 	return active;
1181 }
1182 
1183 static const char *filesystems_freeze_ptr = "filesystems_freeze";
1184 
1185 static void filesystems_freeze_callback(struct super_block *sb, void *unused)
1186 {
1187 	if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super)
1188 		return;
1189 
1190 	if (!get_active_super(sb))
1191 		return;
1192 
1193 	if (sb->s_op->freeze_super)
1194 		sb->s_op->freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1195 				       filesystems_freeze_ptr);
1196 	else
1197 		freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1198 			     filesystems_freeze_ptr);
1199 
1200 	deactivate_super(sb);
1201 }
1202 
1203 void filesystems_freeze(void)
1204 {
1205 	__iterate_supers(filesystems_freeze_callback, NULL,
1206 			 SUPER_ITER_UNLOCKED | SUPER_ITER_REVERSE);
1207 }
1208 
1209 static void filesystems_thaw_callback(struct super_block *sb, void *unused)
1210 {
1211 	if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super)
1212 		return;
1213 
1214 	if (!get_active_super(sb))
1215 		return;
1216 
1217 	if (sb->s_op->thaw_super)
1218 		sb->s_op->thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1219 				     filesystems_freeze_ptr);
1220 	else
1221 		thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1222 			   filesystems_freeze_ptr);
1223 
1224 	deactivate_super(sb);
1225 }
1226 
1227 void filesystems_thaw(void)
1228 {
1229 	__iterate_supers(filesystems_thaw_callback, NULL, SUPER_ITER_UNLOCKED);
1230 }
1231 
1232 static DEFINE_IDA(unnamed_dev_ida);
1233 
1234 /**
1235  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1236  * @p: Pointer to a dev_t.
1237  *
1238  * Filesystems which don't use real block devices can call this function
1239  * to allocate a virtual block device.
1240  *
1241  * Context: Any context.  Frequently called while holding sb_lock.
1242  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1243  * or -ENOMEM if memory allocation failed.
1244  */
1245 int get_anon_bdev(dev_t *p)
1246 {
1247 	int dev;
1248 
1249 	/*
1250 	 * Many userspace utilities consider an FSID of 0 invalid.
1251 	 * Always return at least 1 from get_anon_bdev.
1252 	 */
1253 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1254 			GFP_ATOMIC);
1255 	if (dev == -ENOSPC)
1256 		dev = -EMFILE;
1257 	if (dev < 0)
1258 		return dev;
1259 
1260 	*p = MKDEV(0, dev);
1261 	return 0;
1262 }
1263 EXPORT_SYMBOL(get_anon_bdev);
1264 
1265 void free_anon_bdev(dev_t dev)
1266 {
1267 	ida_free(&unnamed_dev_ida, MINOR(dev));
1268 }
1269 EXPORT_SYMBOL(free_anon_bdev);
1270 
1271 int set_anon_super(struct super_block *s, void *data)
1272 {
1273 	return get_anon_bdev(&s->s_dev);
1274 }
1275 EXPORT_SYMBOL(set_anon_super);
1276 
1277 void kill_anon_super(struct super_block *sb)
1278 {
1279 	dev_t dev = sb->s_dev;
1280 	generic_shutdown_super(sb);
1281 	kill_super_notify(sb);
1282 	free_anon_bdev(dev);
1283 }
1284 EXPORT_SYMBOL(kill_anon_super);
1285 
1286 void kill_litter_super(struct super_block *sb)
1287 {
1288 	if (sb->s_root)
1289 		d_genocide(sb->s_root);
1290 	kill_anon_super(sb);
1291 }
1292 EXPORT_SYMBOL(kill_litter_super);
1293 
1294 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1295 {
1296 	return set_anon_super(sb, NULL);
1297 }
1298 EXPORT_SYMBOL(set_anon_super_fc);
1299 
1300 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1301 {
1302 	return sb->s_fs_info == fc->s_fs_info;
1303 }
1304 
1305 static int test_single_super(struct super_block *s, struct fs_context *fc)
1306 {
1307 	return 1;
1308 }
1309 
1310 static int vfs_get_super(struct fs_context *fc,
1311 		int (*test)(struct super_block *, struct fs_context *),
1312 		int (*fill_super)(struct super_block *sb,
1313 				  struct fs_context *fc))
1314 {
1315 	struct super_block *sb;
1316 	int err;
1317 
1318 	sb = sget_fc(fc, test, set_anon_super_fc);
1319 	if (IS_ERR(sb))
1320 		return PTR_ERR(sb);
1321 
1322 	if (!sb->s_root) {
1323 		err = fill_super(sb, fc);
1324 		if (err)
1325 			goto error;
1326 
1327 		sb->s_flags |= SB_ACTIVE;
1328 	}
1329 
1330 	fc->root = dget(sb->s_root);
1331 	return 0;
1332 
1333 error:
1334 	deactivate_locked_super(sb);
1335 	return err;
1336 }
1337 
1338 int get_tree_nodev(struct fs_context *fc,
1339 		  int (*fill_super)(struct super_block *sb,
1340 				    struct fs_context *fc))
1341 {
1342 	return vfs_get_super(fc, NULL, fill_super);
1343 }
1344 EXPORT_SYMBOL(get_tree_nodev);
1345 
1346 int get_tree_single(struct fs_context *fc,
1347 		  int (*fill_super)(struct super_block *sb,
1348 				    struct fs_context *fc))
1349 {
1350 	return vfs_get_super(fc, test_single_super, fill_super);
1351 }
1352 EXPORT_SYMBOL(get_tree_single);
1353 
1354 int get_tree_keyed(struct fs_context *fc,
1355 		  int (*fill_super)(struct super_block *sb,
1356 				    struct fs_context *fc),
1357 		void *key)
1358 {
1359 	fc->s_fs_info = key;
1360 	return vfs_get_super(fc, test_keyed_super, fill_super);
1361 }
1362 EXPORT_SYMBOL(get_tree_keyed);
1363 
1364 static int set_bdev_super(struct super_block *s, void *data)
1365 {
1366 	s->s_dev = *(dev_t *)data;
1367 	return 0;
1368 }
1369 
1370 static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1371 {
1372 	return set_bdev_super(s, fc->sget_key);
1373 }
1374 
1375 static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1376 {
1377 	return !(s->s_iflags & SB_I_RETIRED) &&
1378 		s->s_dev == *(dev_t *)fc->sget_key;
1379 }
1380 
1381 /**
1382  * sget_dev - Find or create a superblock by device number
1383  * @fc: Filesystem context.
1384  * @dev: device number
1385  *
1386  * Find or create a superblock using the provided device number that
1387  * will be stored in fc->sget_key.
1388  *
1389  * If an extant superblock is matched, then that will be returned with
1390  * an elevated reference count that the caller must transfer or discard.
1391  *
1392  * If no match is made, a new superblock will be allocated and basic
1393  * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1394  * be set). The superblock will be published and it will be returned in
1395  * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1396  * unset.
1397  *
1398  * Return: an existing or newly created superblock on success, an error
1399  *         pointer on failure.
1400  */
1401 struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1402 {
1403 	fc->sget_key = &dev;
1404 	return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1405 }
1406 EXPORT_SYMBOL(sget_dev);
1407 
1408 #ifdef CONFIG_BLOCK
1409 /*
1410  * Lock the superblock that is holder of the bdev. Returns the superblock
1411  * pointer if we successfully locked the superblock and it is alive. Otherwise
1412  * we return NULL and just unlock bdev->bd_holder_lock.
1413  *
1414  * The function must be called with bdev->bd_holder_lock and releases it.
1415  */
1416 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl)
1417 	__releases(&bdev->bd_holder_lock)
1418 {
1419 	struct super_block *sb = bdev->bd_holder;
1420 	bool locked;
1421 
1422 	lockdep_assert_held(&bdev->bd_holder_lock);
1423 	lockdep_assert_not_held(&sb->s_umount);
1424 	lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
1425 
1426 	/* Make sure sb doesn't go away from under us */
1427 	spin_lock(&sb_lock);
1428 	sb->s_count++;
1429 	spin_unlock(&sb_lock);
1430 
1431 	mutex_unlock(&bdev->bd_holder_lock);
1432 
1433 	locked = super_lock(sb, excl);
1434 
1435 	/*
1436 	 * If the superblock wasn't already SB_DYING then we hold
1437 	 * s_umount and can safely drop our temporary reference.
1438          */
1439 	put_super(sb);
1440 
1441 	if (!locked)
1442 		return NULL;
1443 
1444 	if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1445 		super_unlock(sb, excl);
1446 		return NULL;
1447 	}
1448 
1449 	return sb;
1450 }
1451 
1452 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1453 {
1454 	struct super_block *sb;
1455 
1456 	sb = bdev_super_lock(bdev, false);
1457 	if (!sb)
1458 		return;
1459 
1460 	if (!surprise)
1461 		sync_filesystem(sb);
1462 	shrink_dcache_sb(sb);
1463 	evict_inodes(sb);
1464 	if (sb->s_op->shutdown)
1465 		sb->s_op->shutdown(sb);
1466 
1467 	super_unlock_shared(sb);
1468 }
1469 
1470 static void fs_bdev_sync(struct block_device *bdev)
1471 {
1472 	struct super_block *sb;
1473 
1474 	sb = bdev_super_lock(bdev, false);
1475 	if (!sb)
1476 		return;
1477 
1478 	sync_filesystem(sb);
1479 	super_unlock_shared(sb);
1480 }
1481 
1482 static struct super_block *get_bdev_super(struct block_device *bdev)
1483 {
1484 	bool active = false;
1485 	struct super_block *sb;
1486 
1487 	sb = bdev_super_lock(bdev, true);
1488 	if (sb) {
1489 		active = atomic_inc_not_zero(&sb->s_active);
1490 		super_unlock_excl(sb);
1491 	}
1492 	if (!active)
1493 		return NULL;
1494 	return sb;
1495 }
1496 
1497 /**
1498  * fs_bdev_freeze - freeze owning filesystem of block device
1499  * @bdev: block device
1500  *
1501  * Freeze the filesystem that owns this block device if it is still
1502  * active.
1503  *
1504  * A filesystem that owns multiple block devices may be frozen from each
1505  * block device and won't be unfrozen until all block devices are
1506  * unfrozen. Each block device can only freeze the filesystem once as we
1507  * nest freezes for block devices in the block layer.
1508  *
1509  * Return: If the freeze was successful zero is returned. If the freeze
1510  *         failed a negative error code is returned.
1511  */
1512 static int fs_bdev_freeze(struct block_device *bdev)
1513 {
1514 	struct super_block *sb;
1515 	int error = 0;
1516 
1517 	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1518 
1519 	sb = get_bdev_super(bdev);
1520 	if (!sb)
1521 		return -EINVAL;
1522 
1523 	if (sb->s_op->freeze_super)
1524 		error = sb->s_op->freeze_super(sb,
1525 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1526 	else
1527 		error = freeze_super(sb,
1528 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1529 	if (!error)
1530 		error = sync_blockdev(bdev);
1531 	deactivate_super(sb);
1532 	return error;
1533 }
1534 
1535 /**
1536  * fs_bdev_thaw - thaw owning filesystem of block device
1537  * @bdev: block device
1538  *
1539  * Thaw the filesystem that owns this block device.
1540  *
1541  * A filesystem that owns multiple block devices may be frozen from each
1542  * block device and won't be unfrozen until all block devices are
1543  * unfrozen. Each block device can only freeze the filesystem once as we
1544  * nest freezes for block devices in the block layer.
1545  *
1546  * Return: If the thaw was successful zero is returned. If the thaw
1547  *         failed a negative error code is returned. If this function
1548  *         returns zero it doesn't mean that the filesystem is unfrozen
1549  *         as it may have been frozen multiple times (kernel may hold a
1550  *         freeze or might be frozen from other block devices).
1551  */
1552 static int fs_bdev_thaw(struct block_device *bdev)
1553 {
1554 	struct super_block *sb;
1555 	int error;
1556 
1557 	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1558 
1559 	/*
1560 	 * The block device may have been frozen before it was claimed by a
1561 	 * filesystem. Concurrently another process might try to mount that
1562 	 * frozen block device and has temporarily claimed the block device for
1563 	 * that purpose causing a concurrent fs_bdev_thaw() to end up here. The
1564 	 * mounter is already about to abort mounting because they still saw an
1565 	 * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return
1566 	 * NULL in that case.
1567 	 */
1568 	sb = get_bdev_super(bdev);
1569 	if (!sb)
1570 		return -EINVAL;
1571 
1572 	if (sb->s_op->thaw_super)
1573 		error = sb->s_op->thaw_super(sb,
1574 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1575 	else
1576 		error = thaw_super(sb,
1577 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1578 	deactivate_super(sb);
1579 	return error;
1580 }
1581 
1582 const struct blk_holder_ops fs_holder_ops = {
1583 	.mark_dead		= fs_bdev_mark_dead,
1584 	.sync			= fs_bdev_sync,
1585 	.freeze			= fs_bdev_freeze,
1586 	.thaw			= fs_bdev_thaw,
1587 };
1588 EXPORT_SYMBOL_GPL(fs_holder_ops);
1589 
1590 int setup_bdev_super(struct super_block *sb, int sb_flags,
1591 		struct fs_context *fc)
1592 {
1593 	blk_mode_t mode = sb_open_mode(sb_flags);
1594 	struct file *bdev_file;
1595 	struct block_device *bdev;
1596 
1597 	bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1598 	if (IS_ERR(bdev_file)) {
1599 		if (fc)
1600 			errorf(fc, "%s: Can't open blockdev", fc->source);
1601 		return PTR_ERR(bdev_file);
1602 	}
1603 	bdev = file_bdev(bdev_file);
1604 
1605 	/*
1606 	 * This really should be in blkdev_get_by_dev, but right now can't due
1607 	 * to legacy issues that require us to allow opening a block device node
1608 	 * writable from userspace even for a read-only block device.
1609 	 */
1610 	if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1611 		bdev_fput(bdev_file);
1612 		return -EACCES;
1613 	}
1614 
1615 	/*
1616 	 * It is enough to check bdev was not frozen before we set
1617 	 * s_bdev as freezing will wait until SB_BORN is set.
1618 	 */
1619 	if (atomic_read(&bdev->bd_fsfreeze_count) > 0) {
1620 		if (fc)
1621 			warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1622 		bdev_fput(bdev_file);
1623 		return -EBUSY;
1624 	}
1625 	spin_lock(&sb_lock);
1626 	sb->s_bdev_file = bdev_file;
1627 	sb->s_bdev = bdev;
1628 	sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1629 	if (bdev_stable_writes(bdev))
1630 		sb->s_iflags |= SB_I_STABLE_WRITES;
1631 	spin_unlock(&sb_lock);
1632 
1633 	snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1634 	shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1635 				sb->s_id);
1636 	sb_set_blocksize(sb, block_size(bdev));
1637 	return 0;
1638 }
1639 EXPORT_SYMBOL_GPL(setup_bdev_super);
1640 
1641 /**
1642  * get_tree_bdev_flags - Get a superblock based on a single block device
1643  * @fc: The filesystem context holding the parameters
1644  * @fill_super: Helper to initialise a new superblock
1645  * @flags: GET_TREE_BDEV_* flags
1646  */
1647 int get_tree_bdev_flags(struct fs_context *fc,
1648 		int (*fill_super)(struct super_block *sb,
1649 				  struct fs_context *fc), unsigned int flags)
1650 {
1651 	struct super_block *s;
1652 	int error = 0;
1653 	dev_t dev;
1654 
1655 	if (!fc->source)
1656 		return invalf(fc, "No source specified");
1657 
1658 	error = lookup_bdev(fc->source, &dev);
1659 	if (error) {
1660 		if (!(flags & GET_TREE_BDEV_QUIET_LOOKUP))
1661 			errorf(fc, "%s: Can't lookup blockdev", fc->source);
1662 		return error;
1663 	}
1664 	fc->sb_flags |= SB_NOSEC;
1665 	s = sget_dev(fc, dev);
1666 	if (IS_ERR(s))
1667 		return PTR_ERR(s);
1668 
1669 	if (s->s_root) {
1670 		/* Don't summarily change the RO/RW state. */
1671 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1672 			warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1673 			deactivate_locked_super(s);
1674 			return -EBUSY;
1675 		}
1676 	} else {
1677 		error = setup_bdev_super(s, fc->sb_flags, fc);
1678 		if (!error)
1679 			error = fill_super(s, fc);
1680 		if (error) {
1681 			deactivate_locked_super(s);
1682 			return error;
1683 		}
1684 		s->s_flags |= SB_ACTIVE;
1685 	}
1686 
1687 	BUG_ON(fc->root);
1688 	fc->root = dget(s->s_root);
1689 	return 0;
1690 }
1691 EXPORT_SYMBOL_GPL(get_tree_bdev_flags);
1692 
1693 /**
1694  * get_tree_bdev - Get a superblock based on a single block device
1695  * @fc: The filesystem context holding the parameters
1696  * @fill_super: Helper to initialise a new superblock
1697  */
1698 int get_tree_bdev(struct fs_context *fc,
1699 		int (*fill_super)(struct super_block *,
1700 				  struct fs_context *))
1701 {
1702 	return get_tree_bdev_flags(fc, fill_super, 0);
1703 }
1704 EXPORT_SYMBOL(get_tree_bdev);
1705 
1706 static int test_bdev_super(struct super_block *s, void *data)
1707 {
1708 	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1709 }
1710 
1711 struct dentry *mount_bdev(struct file_system_type *fs_type,
1712 	int flags, const char *dev_name, void *data,
1713 	int (*fill_super)(struct super_block *, void *, int))
1714 {
1715 	struct super_block *s;
1716 	int error;
1717 	dev_t dev;
1718 
1719 	error = lookup_bdev(dev_name, &dev);
1720 	if (error)
1721 		return ERR_PTR(error);
1722 
1723 	flags |= SB_NOSEC;
1724 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
1725 	if (IS_ERR(s))
1726 		return ERR_CAST(s);
1727 
1728 	if (s->s_root) {
1729 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1730 			deactivate_locked_super(s);
1731 			return ERR_PTR(-EBUSY);
1732 		}
1733 	} else {
1734 		error = setup_bdev_super(s, flags, NULL);
1735 		if (!error)
1736 			error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1737 		if (error) {
1738 			deactivate_locked_super(s);
1739 			return ERR_PTR(error);
1740 		}
1741 
1742 		s->s_flags |= SB_ACTIVE;
1743 	}
1744 
1745 	return dget(s->s_root);
1746 }
1747 EXPORT_SYMBOL(mount_bdev);
1748 
1749 void kill_block_super(struct super_block *sb)
1750 {
1751 	struct block_device *bdev = sb->s_bdev;
1752 
1753 	generic_shutdown_super(sb);
1754 	if (bdev) {
1755 		sync_blockdev(bdev);
1756 		bdev_fput(sb->s_bdev_file);
1757 	}
1758 }
1759 
1760 EXPORT_SYMBOL(kill_block_super);
1761 #endif
1762 
1763 struct dentry *mount_nodev(struct file_system_type *fs_type,
1764 	int flags, void *data,
1765 	int (*fill_super)(struct super_block *, void *, int))
1766 {
1767 	int error;
1768 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1769 
1770 	if (IS_ERR(s))
1771 		return ERR_CAST(s);
1772 
1773 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1774 	if (error) {
1775 		deactivate_locked_super(s);
1776 		return ERR_PTR(error);
1777 	}
1778 	s->s_flags |= SB_ACTIVE;
1779 	return dget(s->s_root);
1780 }
1781 EXPORT_SYMBOL(mount_nodev);
1782 
1783 /**
1784  * vfs_get_tree - Get the mountable root
1785  * @fc: The superblock configuration context.
1786  *
1787  * The filesystem is invoked to get or create a superblock which can then later
1788  * be used for mounting.  The filesystem places a pointer to the root to be
1789  * used for mounting in @fc->root.
1790  */
1791 int vfs_get_tree(struct fs_context *fc)
1792 {
1793 	struct super_block *sb;
1794 	int error;
1795 
1796 	if (fc->root)
1797 		return -EBUSY;
1798 
1799 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1800 	 * on the superblock.
1801 	 */
1802 	error = fc->ops->get_tree(fc);
1803 	if (error < 0)
1804 		return error;
1805 
1806 	if (!fc->root) {
1807 		pr_err("Filesystem %s get_tree() didn't set fc->root, returned %i\n",
1808 		       fc->fs_type->name, error);
1809 		/* We don't know what the locking state of the superblock is -
1810 		 * if there is a superblock.
1811 		 */
1812 		BUG();
1813 	}
1814 
1815 	sb = fc->root->d_sb;
1816 	WARN_ON(!sb->s_bdi);
1817 
1818 	/*
1819 	 * super_wake() contains a memory barrier which also care of
1820 	 * ordering for super_cache_count(). We place it before setting
1821 	 * SB_BORN as the data dependency between the two functions is
1822 	 * the superblock structure contents that we just set up, not
1823 	 * the SB_BORN flag.
1824 	 */
1825 	super_wake(sb, SB_BORN);
1826 
1827 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1828 	if (unlikely(error)) {
1829 		fc_drop_locked(fc);
1830 		return error;
1831 	}
1832 
1833 	/*
1834 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1835 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1836 	 * this warning for a little while to try and catch filesystems that
1837 	 * violate this rule.
1838 	 */
1839 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1840 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1841 
1842 	return 0;
1843 }
1844 EXPORT_SYMBOL(vfs_get_tree);
1845 
1846 /*
1847  * Setup private BDI for given superblock. It gets automatically cleaned up
1848  * in generic_shutdown_super().
1849  */
1850 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1851 {
1852 	struct backing_dev_info *bdi;
1853 	int err;
1854 	va_list args;
1855 
1856 	bdi = bdi_alloc(NUMA_NO_NODE);
1857 	if (!bdi)
1858 		return -ENOMEM;
1859 
1860 	va_start(args, fmt);
1861 	err = bdi_register_va(bdi, fmt, args);
1862 	va_end(args);
1863 	if (err) {
1864 		bdi_put(bdi);
1865 		return err;
1866 	}
1867 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1868 	sb->s_bdi = bdi;
1869 	sb->s_iflags |= SB_I_PERSB_BDI;
1870 
1871 	return 0;
1872 }
1873 EXPORT_SYMBOL(super_setup_bdi_name);
1874 
1875 /*
1876  * Setup private BDI for given superblock. I gets automatically cleaned up
1877  * in generic_shutdown_super().
1878  */
1879 int super_setup_bdi(struct super_block *sb)
1880 {
1881 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1882 
1883 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1884 				    atomic_long_inc_return(&bdi_seq));
1885 }
1886 EXPORT_SYMBOL(super_setup_bdi);
1887 
1888 /**
1889  * sb_wait_write - wait until all writers to given file system finish
1890  * @sb: the super for which we wait
1891  * @level: type of writers we wait for (normal vs page fault)
1892  *
1893  * This function waits until there are no writers of given type to given file
1894  * system.
1895  */
1896 static void sb_wait_write(struct super_block *sb, int level)
1897 {
1898 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1899 }
1900 
1901 /*
1902  * We are going to return to userspace and forget about these locks, the
1903  * ownership goes to the caller of thaw_super() which does unlock().
1904  */
1905 static void lockdep_sb_freeze_release(struct super_block *sb)
1906 {
1907 	int level;
1908 
1909 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1910 		percpu_rwsem_release(sb->s_writers.rw_sem + level, _THIS_IP_);
1911 }
1912 
1913 /*
1914  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1915  */
1916 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1917 {
1918 	int level;
1919 
1920 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1921 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1922 }
1923 
1924 static void sb_freeze_unlock(struct super_block *sb, int level)
1925 {
1926 	for (level--; level >= 0; level--)
1927 		percpu_up_write(sb->s_writers.rw_sem + level);
1928 }
1929 
1930 static int wait_for_partially_frozen(struct super_block *sb)
1931 {
1932 	int ret = 0;
1933 
1934 	do {
1935 		unsigned short old = sb->s_writers.frozen;
1936 
1937 		up_write(&sb->s_umount);
1938 		ret = wait_var_event_killable(&sb->s_writers.frozen,
1939 					       sb->s_writers.frozen != old);
1940 		down_write(&sb->s_umount);
1941 	} while (ret == 0 &&
1942 		 sb->s_writers.frozen != SB_UNFROZEN &&
1943 		 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1944 
1945 	return ret;
1946 }
1947 
1948 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE)
1949 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST | FREEZE_EXCL)
1950 
1951 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who)
1952 {
1953 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1954 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1955 
1956 	if (who & FREEZE_HOLDER_KERNEL)
1957 		++sb->s_writers.freeze_kcount;
1958 	if (who & FREEZE_HOLDER_USERSPACE)
1959 		++sb->s_writers.freeze_ucount;
1960 	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1961 }
1962 
1963 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who)
1964 {
1965 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1966 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1967 
1968 	if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount)
1969 		--sb->s_writers.freeze_kcount;
1970 	if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount)
1971 		--sb->s_writers.freeze_ucount;
1972 	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1973 }
1974 
1975 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who,
1976 			      const void *freeze_owner)
1977 {
1978 	lockdep_assert_held(&sb->s_umount);
1979 
1980 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1981 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1982 
1983 	if (who & FREEZE_EXCL) {
1984 		if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL)))
1985 			return false;
1986 		if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL)))
1987 			return false;
1988 		if (WARN_ON_ONCE(!freeze_owner))
1989 			return false;
1990 		/* This freeze already has a specific owner. */
1991 		if (sb->s_writers.freeze_owner)
1992 			return false;
1993 		/*
1994 		 * This is already frozen multiple times so we're just
1995 		 * going to take a reference count and mark the freeze as
1996 		 * being owned by the caller.
1997 		 */
1998 		if (sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount)
1999 			sb->s_writers.freeze_owner = freeze_owner;
2000 		return true;
2001 	}
2002 
2003 	if (who & FREEZE_HOLDER_KERNEL)
2004 		return (who & FREEZE_MAY_NEST) ||
2005 		       sb->s_writers.freeze_kcount == 0;
2006 	if (who & FREEZE_HOLDER_USERSPACE)
2007 		return (who & FREEZE_MAY_NEST) ||
2008 		       sb->s_writers.freeze_ucount == 0;
2009 	return false;
2010 }
2011 
2012 static inline bool may_unfreeze(struct super_block *sb, enum freeze_holder who,
2013 				const void *freeze_owner)
2014 {
2015 	lockdep_assert_held(&sb->s_umount);
2016 
2017 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
2018 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
2019 
2020 	if (who & FREEZE_EXCL) {
2021 		if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL)))
2022 			return false;
2023 		if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL)))
2024 			return false;
2025 		if (WARN_ON_ONCE(!freeze_owner))
2026 			return false;
2027 		if (WARN_ON_ONCE(sb->s_writers.freeze_kcount == 0))
2028 			return false;
2029 		/* This isn't exclusively frozen. */
2030 		if (!sb->s_writers.freeze_owner)
2031 			return false;
2032 		/* This isn't exclusively frozen by us. */
2033 		if (sb->s_writers.freeze_owner != freeze_owner)
2034 			return false;
2035 		/*
2036 		 * This is still frozen multiple times so we're just
2037 		 * going to drop our reference count and undo our
2038 		 * exclusive freeze.
2039 		 */
2040 		if ((sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount) > 1)
2041 			sb->s_writers.freeze_owner = NULL;
2042 		return true;
2043 	}
2044 
2045 	if (who & FREEZE_HOLDER_KERNEL) {
2046 		/*
2047 		 * Someone's trying to steal the reference belonging to
2048 		 * @sb->s_writers.freeze_owner.
2049 		 */
2050 		if (sb->s_writers.freeze_kcount == 1 &&
2051 		    sb->s_writers.freeze_owner)
2052 			return false;
2053 		return sb->s_writers.freeze_kcount > 0;
2054 	}
2055 
2056 	if (who & FREEZE_HOLDER_USERSPACE)
2057 		return sb->s_writers.freeze_ucount > 0;
2058 
2059 	return false;
2060 }
2061 
2062 /**
2063  * freeze_super - lock the filesystem and force it into a consistent state
2064  * @sb: the super to lock
2065  * @who: context that wants to freeze
2066  * @freeze_owner: owner of the freeze
2067  *
2068  * Syncs the super to make sure the filesystem is consistent and calls the fs's
2069  * freeze_fs.  Subsequent calls to this without first thawing the fs may return
2070  * -EBUSY.
2071  *
2072  * @who should be:
2073  * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
2074  * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
2075  * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed.
2076  *
2077  * The @who argument distinguishes between the kernel and userspace trying to
2078  * freeze the filesystem.  Although there cannot be multiple kernel freezes or
2079  * multiple userspace freezes in effect at any given time, the kernel and
2080  * userspace can both hold a filesystem frozen.  The filesystem remains frozen
2081  * until there are no kernel or userspace freezes in effect.
2082  *
2083  * A filesystem may hold multiple devices and thus a filesystems may be
2084  * frozen through the block layer via multiple block devices. In this
2085  * case the request is marked as being allowed to nest by passing
2086  * FREEZE_MAY_NEST. The filesystem remains frozen until all block
2087  * devices are unfrozen. If multiple freezes are attempted without
2088  * FREEZE_MAY_NEST -EBUSY will be returned.
2089  *
2090  * During this function, sb->s_writers.frozen goes through these values:
2091  *
2092  * SB_UNFROZEN: File system is normal, all writes progress as usual.
2093  *
2094  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
2095  * writes should be blocked, though page faults are still allowed. We wait for
2096  * all writes to complete and then proceed to the next stage.
2097  *
2098  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
2099  * but internal fs threads can still modify the filesystem (although they
2100  * should not dirty new pages or inodes), writeback can run etc. After waiting
2101  * for all running page faults we sync the filesystem which will clean all
2102  * dirty pages and inodes (no new dirty pages or inodes can be created when
2103  * sync is running).
2104  *
2105  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
2106  * modification are blocked (e.g. XFS preallocation truncation on inode
2107  * reclaim). This is usually implemented by blocking new transactions for
2108  * filesystems that have them and need this additional guard. After all
2109  * internal writers are finished we call ->freeze_fs() to finish filesystem
2110  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
2111  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
2112  *
2113  * sb->s_writers.frozen is protected by sb->s_umount.
2114  *
2115  * Return: If the freeze was successful zero is returned. If the freeze
2116  *         failed a negative error code is returned.
2117  */
2118 int freeze_super(struct super_block *sb, enum freeze_holder who, const void *freeze_owner)
2119 {
2120 	int ret;
2121 
2122 	if (!super_lock_excl(sb)) {
2123 		WARN_ON_ONCE("Dying superblock while freezing!");
2124 		return -EINVAL;
2125 	}
2126 	atomic_inc(&sb->s_active);
2127 
2128 retry:
2129 	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2130 		if (may_freeze(sb, who, freeze_owner))
2131 			ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1);
2132 		else
2133 			ret = -EBUSY;
2134 		/* All freezers share a single active reference. */
2135 		deactivate_locked_super(sb);
2136 		return ret;
2137 	}
2138 
2139 	if (sb->s_writers.frozen != SB_UNFROZEN) {
2140 		ret = wait_for_partially_frozen(sb);
2141 		if (ret) {
2142 			deactivate_locked_super(sb);
2143 			return ret;
2144 		}
2145 
2146 		goto retry;
2147 	}
2148 
2149 	if (sb_rdonly(sb)) {
2150 		/* Nothing to do really... */
2151 		WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2152 		sb->s_writers.freeze_owner = freeze_owner;
2153 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2154 		wake_up_var(&sb->s_writers.frozen);
2155 		super_unlock_excl(sb);
2156 		return 0;
2157 	}
2158 
2159 	sb->s_writers.frozen = SB_FREEZE_WRITE;
2160 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
2161 	super_unlock_excl(sb);
2162 	sb_wait_write(sb, SB_FREEZE_WRITE);
2163 	__super_lock_excl(sb);
2164 
2165 	/* Now we go and block page faults... */
2166 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2167 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2168 
2169 	/* All writers are done so after syncing there won't be dirty data */
2170 	ret = sync_filesystem(sb);
2171 	if (ret) {
2172 		sb->s_writers.frozen = SB_UNFROZEN;
2173 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2174 		wake_up_var(&sb->s_writers.frozen);
2175 		deactivate_locked_super(sb);
2176 		return ret;
2177 	}
2178 
2179 	/* Now wait for internal filesystem counter */
2180 	sb->s_writers.frozen = SB_FREEZE_FS;
2181 	sb_wait_write(sb, SB_FREEZE_FS);
2182 
2183 	if (sb->s_op->freeze_fs) {
2184 		ret = sb->s_op->freeze_fs(sb);
2185 		if (ret) {
2186 			printk(KERN_ERR
2187 				"VFS:Filesystem freeze failed\n");
2188 			sb->s_writers.frozen = SB_UNFROZEN;
2189 			sb_freeze_unlock(sb, SB_FREEZE_FS);
2190 			wake_up_var(&sb->s_writers.frozen);
2191 			deactivate_locked_super(sb);
2192 			return ret;
2193 		}
2194 	}
2195 	/*
2196 	 * For debugging purposes so that fs can warn if it sees write activity
2197 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2198 	 */
2199 	WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2200 	sb->s_writers.freeze_owner = freeze_owner;
2201 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2202 	wake_up_var(&sb->s_writers.frozen);
2203 	lockdep_sb_freeze_release(sb);
2204 	super_unlock_excl(sb);
2205 	return 0;
2206 }
2207 EXPORT_SYMBOL(freeze_super);
2208 
2209 /*
2210  * Undoes the effect of a freeze_super_locked call.  If the filesystem is
2211  * frozen both by userspace and the kernel, a thaw call from either source
2212  * removes that state without releasing the other state or unlocking the
2213  * filesystem.
2214  */
2215 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who,
2216 			     const void *freeze_owner)
2217 {
2218 	int error = -EINVAL;
2219 
2220 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE)
2221 		goto out_unlock;
2222 
2223 	if (!may_unfreeze(sb, who, freeze_owner))
2224 		goto out_unlock;
2225 
2226 	/*
2227 	 * All freezers share a single active reference.
2228 	 * So just unlock in case there are any left.
2229 	 */
2230 	if (freeze_dec(sb, who))
2231 		goto out_unlock;
2232 
2233 	if (sb_rdonly(sb)) {
2234 		sb->s_writers.frozen = SB_UNFROZEN;
2235 		sb->s_writers.freeze_owner = NULL;
2236 		wake_up_var(&sb->s_writers.frozen);
2237 		goto out_deactivate;
2238 	}
2239 
2240 	lockdep_sb_freeze_acquire(sb);
2241 
2242 	if (sb->s_op->unfreeze_fs) {
2243 		error = sb->s_op->unfreeze_fs(sb);
2244 		if (error) {
2245 			pr_err("VFS: Filesystem thaw failed\n");
2246 			freeze_inc(sb, who);
2247 			lockdep_sb_freeze_release(sb);
2248 			goto out_unlock;
2249 		}
2250 	}
2251 
2252 	sb->s_writers.frozen = SB_UNFROZEN;
2253 	sb->s_writers.freeze_owner = NULL;
2254 	wake_up_var(&sb->s_writers.frozen);
2255 	sb_freeze_unlock(sb, SB_FREEZE_FS);
2256 out_deactivate:
2257 	deactivate_locked_super(sb);
2258 	return 0;
2259 
2260 out_unlock:
2261 	super_unlock_excl(sb);
2262 	return error;
2263 }
2264 
2265 /**
2266  * thaw_super -- unlock filesystem
2267  * @sb: the super to thaw
2268  * @who: context that wants to freeze
2269  * @freeze_owner: owner of the freeze
2270  *
2271  * Unlocks the filesystem and marks it writeable again after freeze_super()
2272  * if there are no remaining freezes on the filesystem.
2273  *
2274  * @who should be:
2275  * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2276  * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2277  * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed
2278  *
2279  * A filesystem may hold multiple devices and thus a filesystems may
2280  * have been frozen through the block layer via multiple block devices.
2281  * The filesystem remains frozen until all block devices are unfrozen.
2282  */
2283 int thaw_super(struct super_block *sb, enum freeze_holder who,
2284 	       const void *freeze_owner)
2285 {
2286 	if (!super_lock_excl(sb)) {
2287 		WARN_ON_ONCE("Dying superblock while thawing!");
2288 		return -EINVAL;
2289 	}
2290 	return thaw_super_locked(sb, who, freeze_owner);
2291 }
2292 EXPORT_SYMBOL(thaw_super);
2293 
2294 /*
2295  * Create workqueue for deferred direct IO completions. We allocate the
2296  * workqueue when it's first needed. This avoids creating workqueue for
2297  * filesystems that don't need it and also allows us to create the workqueue
2298  * late enough so the we can include s_id in the name of the workqueue.
2299  */
2300 int sb_init_dio_done_wq(struct super_block *sb)
2301 {
2302 	struct workqueue_struct *old;
2303 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2304 						      WQ_MEM_RECLAIM, 0,
2305 						      sb->s_id);
2306 	if (!wq)
2307 		return -ENOMEM;
2308 	/*
2309 	 * This has to be atomic as more DIOs can race to create the workqueue
2310 	 */
2311 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2312 	/* Someone created workqueue before us? Free ours... */
2313 	if (old)
2314 		destroy_workqueue(wq);
2315 	return 0;
2316 }
2317 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);
2318