1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who, 43 const void *freeze_owner); 44 45 static LIST_HEAD(super_blocks); 46 static DEFINE_SPINLOCK(sb_lock); 47 48 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 49 "sb_writers", 50 "sb_pagefaults", 51 "sb_internal", 52 }; 53 54 static inline void __super_lock(struct super_block *sb, bool excl) 55 { 56 if (excl) 57 down_write(&sb->s_umount); 58 else 59 down_read(&sb->s_umount); 60 } 61 62 static inline void super_unlock(struct super_block *sb, bool excl) 63 { 64 if (excl) 65 up_write(&sb->s_umount); 66 else 67 up_read(&sb->s_umount); 68 } 69 70 static inline void __super_lock_excl(struct super_block *sb) 71 { 72 __super_lock(sb, true); 73 } 74 75 static inline void super_unlock_excl(struct super_block *sb) 76 { 77 super_unlock(sb, true); 78 } 79 80 static inline void super_unlock_shared(struct super_block *sb) 81 { 82 super_unlock(sb, false); 83 } 84 85 static bool super_flags(const struct super_block *sb, unsigned int flags) 86 { 87 /* 88 * Pairs with smp_store_release() in super_wake() and ensures 89 * that we see @flags after we're woken. 90 */ 91 return smp_load_acquire(&sb->s_flags) & flags; 92 } 93 94 /** 95 * super_lock - wait for superblock to become ready and lock it 96 * @sb: superblock to wait for 97 * @excl: whether exclusive access is required 98 * 99 * If the superblock has neither passed through vfs_get_tree() or 100 * generic_shutdown_super() yet wait for it to happen. Either superblock 101 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're 102 * woken and we'll see SB_DYING. 103 * 104 * The caller must have acquired a temporary reference on @sb->s_count. 105 * 106 * Return: The function returns true if SB_BORN was set and with 107 * s_umount held. The function returns false if SB_DYING was 108 * set and without s_umount held. 109 */ 110 static __must_check bool super_lock(struct super_block *sb, bool excl) 111 { 112 lockdep_assert_not_held(&sb->s_umount); 113 114 /* wait until the superblock is ready or dying */ 115 wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING)); 116 117 /* Don't pointlessly acquire s_umount. */ 118 if (super_flags(sb, SB_DYING)) 119 return false; 120 121 __super_lock(sb, excl); 122 123 /* 124 * Has gone through generic_shutdown_super() in the meantime. 125 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to 126 * grab a reference to this. Tell them so. 127 */ 128 if (sb->s_flags & SB_DYING) { 129 super_unlock(sb, excl); 130 return false; 131 } 132 133 WARN_ON_ONCE(!(sb->s_flags & SB_BORN)); 134 return true; 135 } 136 137 /* wait and try to acquire read-side of @sb->s_umount */ 138 static inline bool super_lock_shared(struct super_block *sb) 139 { 140 return super_lock(sb, false); 141 } 142 143 /* wait and try to acquire write-side of @sb->s_umount */ 144 static inline bool super_lock_excl(struct super_block *sb) 145 { 146 return super_lock(sb, true); 147 } 148 149 /* wake waiters */ 150 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD) 151 static void super_wake(struct super_block *sb, unsigned int flag) 152 { 153 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS)); 154 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1); 155 156 /* 157 * Pairs with smp_load_acquire() in super_lock() to make sure 158 * all initializations in the superblock are seen by the user 159 * seeing SB_BORN sent. 160 */ 161 smp_store_release(&sb->s_flags, sb->s_flags | flag); 162 /* 163 * Pairs with the barrier in prepare_to_wait_event() to make sure 164 * ___wait_var_event() either sees SB_BORN set or 165 * waitqueue_active() check in wake_up_var() sees the waiter. 166 */ 167 smp_mb(); 168 wake_up_var(&sb->s_flags); 169 } 170 171 /* 172 * One thing we have to be careful of with a per-sb shrinker is that we don't 173 * drop the last active reference to the superblock from within the shrinker. 174 * If that happens we could trigger unregistering the shrinker from within the 175 * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we 176 * take a passive reference to the superblock to avoid this from occurring. 177 */ 178 static unsigned long super_cache_scan(struct shrinker *shrink, 179 struct shrink_control *sc) 180 { 181 struct super_block *sb; 182 long fs_objects = 0; 183 long total_objects; 184 long freed = 0; 185 long dentries; 186 long inodes; 187 188 sb = shrink->private_data; 189 190 /* 191 * Deadlock avoidance. We may hold various FS locks, and we don't want 192 * to recurse into the FS that called us in clear_inode() and friends.. 193 */ 194 if (!(sc->gfp_mask & __GFP_FS)) 195 return SHRINK_STOP; 196 197 if (!super_trylock_shared(sb)) 198 return SHRINK_STOP; 199 200 if (sb->s_op->nr_cached_objects) 201 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 202 203 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 204 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 205 total_objects = dentries + inodes + fs_objects; 206 if (!total_objects) 207 total_objects = 1; 208 209 /* proportion the scan between the caches */ 210 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 211 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 212 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 213 214 /* 215 * prune the dcache first as the icache is pinned by it, then 216 * prune the icache, followed by the filesystem specific caches 217 * 218 * Ensure that we always scan at least one object - memcg kmem 219 * accounting uses this to fully empty the caches. 220 */ 221 sc->nr_to_scan = dentries + 1; 222 freed = prune_dcache_sb(sb, sc); 223 sc->nr_to_scan = inodes + 1; 224 freed += prune_icache_sb(sb, sc); 225 226 if (fs_objects) { 227 sc->nr_to_scan = fs_objects + 1; 228 freed += sb->s_op->free_cached_objects(sb, sc); 229 } 230 231 super_unlock_shared(sb); 232 return freed; 233 } 234 235 static unsigned long super_cache_count(struct shrinker *shrink, 236 struct shrink_control *sc) 237 { 238 struct super_block *sb; 239 long total_objects = 0; 240 241 sb = shrink->private_data; 242 243 /* 244 * We don't call super_trylock_shared() here as it is a scalability 245 * bottleneck, so we're exposed to partial setup state. The shrinker 246 * rwsem does not protect filesystem operations backing 247 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can 248 * change between super_cache_count and super_cache_scan, so we really 249 * don't need locks here. 250 * 251 * However, if we are currently mounting the superblock, the underlying 252 * filesystem might be in a state of partial construction and hence it 253 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check 254 * to avoid this situation, so do the same here. The memory barrier is 255 * matched with the one in mount_fs() as we don't hold locks here. 256 */ 257 if (!(sb->s_flags & SB_BORN)) 258 return 0; 259 smp_rmb(); 260 261 if (sb->s_op && sb->s_op->nr_cached_objects) 262 total_objects = sb->s_op->nr_cached_objects(sb, sc); 263 264 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 265 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 266 267 if (!total_objects) 268 return SHRINK_EMPTY; 269 270 total_objects = vfs_pressure_ratio(total_objects); 271 return total_objects; 272 } 273 274 static void destroy_super_work(struct work_struct *work) 275 { 276 struct super_block *s = container_of(work, struct super_block, 277 destroy_work); 278 fsnotify_sb_free(s); 279 security_sb_free(s); 280 put_user_ns(s->s_user_ns); 281 kfree(s->s_subtype); 282 for (int i = 0; i < SB_FREEZE_LEVELS; i++) 283 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 284 kfree(s); 285 } 286 287 static void destroy_super_rcu(struct rcu_head *head) 288 { 289 struct super_block *s = container_of(head, struct super_block, rcu); 290 INIT_WORK(&s->destroy_work, destroy_super_work); 291 schedule_work(&s->destroy_work); 292 } 293 294 /* Free a superblock that has never been seen by anyone */ 295 static void destroy_unused_super(struct super_block *s) 296 { 297 if (!s) 298 return; 299 super_unlock_excl(s); 300 list_lru_destroy(&s->s_dentry_lru); 301 list_lru_destroy(&s->s_inode_lru); 302 shrinker_free(s->s_shrink); 303 /* no delays needed */ 304 destroy_super_work(&s->destroy_work); 305 } 306 307 /** 308 * alloc_super - create new superblock 309 * @type: filesystem type superblock should belong to 310 * @flags: the mount flags 311 * @user_ns: User namespace for the super_block 312 * 313 * Allocates and initializes a new &struct super_block. alloc_super() 314 * returns a pointer new superblock or %NULL if allocation had failed. 315 */ 316 static struct super_block *alloc_super(struct file_system_type *type, int flags, 317 struct user_namespace *user_ns) 318 { 319 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL); 320 static const struct super_operations default_op; 321 int i; 322 323 if (!s) 324 return NULL; 325 326 INIT_LIST_HEAD(&s->s_mounts); 327 s->s_user_ns = get_user_ns(user_ns); 328 init_rwsem(&s->s_umount); 329 lockdep_set_class(&s->s_umount, &type->s_umount_key); 330 /* 331 * sget() can have s_umount recursion. 332 * 333 * When it cannot find a suitable sb, it allocates a new 334 * one (this one), and tries again to find a suitable old 335 * one. 336 * 337 * In case that succeeds, it will acquire the s_umount 338 * lock of the old one. Since these are clearly distrinct 339 * locks, and this object isn't exposed yet, there's no 340 * risk of deadlocks. 341 * 342 * Annotate this by putting this lock in a different 343 * subclass. 344 */ 345 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 346 347 if (security_sb_alloc(s)) 348 goto fail; 349 350 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 351 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 352 sb_writers_name[i], 353 &type->s_writers_key[i])) 354 goto fail; 355 } 356 s->s_bdi = &noop_backing_dev_info; 357 s->s_flags = flags; 358 if (s->s_user_ns != &init_user_ns) 359 s->s_iflags |= SB_I_NODEV; 360 INIT_HLIST_NODE(&s->s_instances); 361 INIT_HLIST_BL_HEAD(&s->s_roots); 362 mutex_init(&s->s_sync_lock); 363 INIT_LIST_HEAD(&s->s_inodes); 364 spin_lock_init(&s->s_inode_list_lock); 365 INIT_LIST_HEAD(&s->s_inodes_wb); 366 spin_lock_init(&s->s_inode_wblist_lock); 367 368 s->s_count = 1; 369 atomic_set(&s->s_active, 1); 370 mutex_init(&s->s_vfs_rename_mutex); 371 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 372 init_rwsem(&s->s_dquot.dqio_sem); 373 s->s_maxbytes = MAX_NON_LFS; 374 s->s_op = &default_op; 375 s->s_time_gran = 1000000000; 376 s->s_time_min = TIME64_MIN; 377 s->s_time_max = TIME64_MAX; 378 379 s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, 380 "sb-%s", type->name); 381 if (!s->s_shrink) 382 goto fail; 383 384 s->s_shrink->scan_objects = super_cache_scan; 385 s->s_shrink->count_objects = super_cache_count; 386 s->s_shrink->batch = 1024; 387 s->s_shrink->private_data = s; 388 389 if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink)) 390 goto fail; 391 if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink)) 392 goto fail; 393 return s; 394 395 fail: 396 destroy_unused_super(s); 397 return NULL; 398 } 399 400 /* Superblock refcounting */ 401 402 /* 403 * Drop a superblock's refcount. The caller must hold sb_lock. 404 */ 405 static void __put_super(struct super_block *s) 406 { 407 if (!--s->s_count) { 408 list_del_init(&s->s_list); 409 WARN_ON(s->s_dentry_lru.node); 410 WARN_ON(s->s_inode_lru.node); 411 WARN_ON(!list_empty(&s->s_mounts)); 412 call_rcu(&s->rcu, destroy_super_rcu); 413 } 414 } 415 416 /** 417 * put_super - drop a temporary reference to superblock 418 * @sb: superblock in question 419 * 420 * Drops a temporary reference, frees superblock if there's no 421 * references left. 422 */ 423 void put_super(struct super_block *sb) 424 { 425 spin_lock(&sb_lock); 426 __put_super(sb); 427 spin_unlock(&sb_lock); 428 } 429 430 static void kill_super_notify(struct super_block *sb) 431 { 432 lockdep_assert_not_held(&sb->s_umount); 433 434 /* already notified earlier */ 435 if (sb->s_flags & SB_DEAD) 436 return; 437 438 /* 439 * Remove it from @fs_supers so it isn't found by new 440 * sget{_fc}() walkers anymore. Any concurrent mounter still 441 * managing to grab a temporary reference is guaranteed to 442 * already see SB_DYING and will wait until we notify them about 443 * SB_DEAD. 444 */ 445 spin_lock(&sb_lock); 446 hlist_del_init(&sb->s_instances); 447 spin_unlock(&sb_lock); 448 449 /* 450 * Let concurrent mounts know that this thing is really dead. 451 * We don't need @sb->s_umount here as every concurrent caller 452 * will see SB_DYING and either discard the superblock or wait 453 * for SB_DEAD. 454 */ 455 super_wake(sb, SB_DEAD); 456 } 457 458 /** 459 * deactivate_locked_super - drop an active reference to superblock 460 * @s: superblock to deactivate 461 * 462 * Drops an active reference to superblock, converting it into a temporary 463 * one if there is no other active references left. In that case we 464 * tell fs driver to shut it down and drop the temporary reference we 465 * had just acquired. 466 * 467 * Caller holds exclusive lock on superblock; that lock is released. 468 */ 469 void deactivate_locked_super(struct super_block *s) 470 { 471 struct file_system_type *fs = s->s_type; 472 if (atomic_dec_and_test(&s->s_active)) { 473 shrinker_free(s->s_shrink); 474 fs->kill_sb(s); 475 476 kill_super_notify(s); 477 478 /* 479 * Since list_lru_destroy() may sleep, we cannot call it from 480 * put_super(), where we hold the sb_lock. Therefore we destroy 481 * the lru lists right now. 482 */ 483 list_lru_destroy(&s->s_dentry_lru); 484 list_lru_destroy(&s->s_inode_lru); 485 486 put_filesystem(fs); 487 put_super(s); 488 } else { 489 super_unlock_excl(s); 490 } 491 } 492 493 EXPORT_SYMBOL(deactivate_locked_super); 494 495 /** 496 * deactivate_super - drop an active reference to superblock 497 * @s: superblock to deactivate 498 * 499 * Variant of deactivate_locked_super(), except that superblock is *not* 500 * locked by caller. If we are going to drop the final active reference, 501 * lock will be acquired prior to that. 502 */ 503 void deactivate_super(struct super_block *s) 504 { 505 if (!atomic_add_unless(&s->s_active, -1, 1)) { 506 __super_lock_excl(s); 507 deactivate_locked_super(s); 508 } 509 } 510 511 EXPORT_SYMBOL(deactivate_super); 512 513 /** 514 * grab_super - acquire an active reference to a superblock 515 * @sb: superblock to acquire 516 * 517 * Acquire a temporary reference on a superblock and try to trade it for 518 * an active reference. This is used in sget{_fc}() to wait for a 519 * superblock to either become SB_BORN or for it to pass through 520 * sb->kill() and be marked as SB_DEAD. 521 * 522 * Return: This returns true if an active reference could be acquired, 523 * false if not. 524 */ 525 static bool grab_super(struct super_block *sb) 526 { 527 bool locked; 528 529 sb->s_count++; 530 spin_unlock(&sb_lock); 531 locked = super_lock_excl(sb); 532 if (locked) { 533 if (atomic_inc_not_zero(&sb->s_active)) { 534 put_super(sb); 535 return true; 536 } 537 super_unlock_excl(sb); 538 } 539 wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD)); 540 put_super(sb); 541 return false; 542 } 543 544 /* 545 * super_trylock_shared - try to grab ->s_umount shared 546 * @sb: reference we are trying to grab 547 * 548 * Try to prevent fs shutdown. This is used in places where we 549 * cannot take an active reference but we need to ensure that the 550 * filesystem is not shut down while we are working on it. It returns 551 * false if we cannot acquire s_umount or if we lose the race and 552 * filesystem already got into shutdown, and returns true with the s_umount 553 * lock held in read mode in case of success. On successful return, 554 * the caller must drop the s_umount lock when done. 555 * 556 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 557 * The reason why it's safe is that we are OK with doing trylock instead 558 * of down_read(). There's a couple of places that are OK with that, but 559 * it's very much not a general-purpose interface. 560 */ 561 bool super_trylock_shared(struct super_block *sb) 562 { 563 if (down_read_trylock(&sb->s_umount)) { 564 if (!(sb->s_flags & SB_DYING) && sb->s_root && 565 (sb->s_flags & SB_BORN)) 566 return true; 567 super_unlock_shared(sb); 568 } 569 570 return false; 571 } 572 573 /** 574 * retire_super - prevents superblock from being reused 575 * @sb: superblock to retire 576 * 577 * The function marks superblock to be ignored in superblock test, which 578 * prevents it from being reused for any new mounts. If the superblock has 579 * a private bdi, it also unregisters it, but doesn't reduce the refcount 580 * of the superblock to prevent potential races. The refcount is reduced 581 * by generic_shutdown_super(). The function can not be called 582 * concurrently with generic_shutdown_super(). It is safe to call the 583 * function multiple times, subsequent calls have no effect. 584 * 585 * The marker will affect the re-use only for block-device-based 586 * superblocks. Other superblocks will still get marked if this function 587 * is used, but that will not affect their reusability. 588 */ 589 void retire_super(struct super_block *sb) 590 { 591 WARN_ON(!sb->s_bdev); 592 __super_lock_excl(sb); 593 if (sb->s_iflags & SB_I_PERSB_BDI) { 594 bdi_unregister(sb->s_bdi); 595 sb->s_iflags &= ~SB_I_PERSB_BDI; 596 } 597 sb->s_iflags |= SB_I_RETIRED; 598 super_unlock_excl(sb); 599 } 600 EXPORT_SYMBOL(retire_super); 601 602 /** 603 * generic_shutdown_super - common helper for ->kill_sb() 604 * @sb: superblock to kill 605 * 606 * generic_shutdown_super() does all fs-independent work on superblock 607 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 608 * that need destruction out of superblock, call generic_shutdown_super() 609 * and release aforementioned objects. Note: dentries and inodes _are_ 610 * taken care of and do not need specific handling. 611 * 612 * Upon calling this function, the filesystem may no longer alter or 613 * rearrange the set of dentries belonging to this super_block, nor may it 614 * change the attachments of dentries to inodes. 615 */ 616 void generic_shutdown_super(struct super_block *sb) 617 { 618 const struct super_operations *sop = sb->s_op; 619 620 if (sb->s_root) { 621 shrink_dcache_for_umount(sb); 622 sync_filesystem(sb); 623 sb->s_flags &= ~SB_ACTIVE; 624 625 cgroup_writeback_umount(sb); 626 627 /* Evict all inodes with zero refcount. */ 628 evict_inodes(sb); 629 630 /* 631 * Clean up and evict any inodes that still have references due 632 * to fsnotify or the security policy. 633 */ 634 fsnotify_sb_delete(sb); 635 security_sb_delete(sb); 636 637 if (sb->s_dio_done_wq) { 638 destroy_workqueue(sb->s_dio_done_wq); 639 sb->s_dio_done_wq = NULL; 640 } 641 642 if (sop->put_super) 643 sop->put_super(sb); 644 645 /* 646 * Now that all potentially-encrypted inodes have been evicted, 647 * the fscrypt keyring can be destroyed. 648 */ 649 fscrypt_destroy_keyring(sb); 650 651 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), NULL, 652 "VFS: Busy inodes after unmount of %s (%s)", 653 sb->s_id, sb->s_type->name)) { 654 /* 655 * Adding a proper bailout path here would be hard, but 656 * we can at least make it more likely that a later 657 * iput_final() or such crashes cleanly. 658 */ 659 struct inode *inode; 660 661 spin_lock(&sb->s_inode_list_lock); 662 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 663 inode->i_op = VFS_PTR_POISON; 664 inode->i_sb = VFS_PTR_POISON; 665 inode->i_mapping = VFS_PTR_POISON; 666 } 667 spin_unlock(&sb->s_inode_list_lock); 668 } 669 } 670 /* 671 * Broadcast to everyone that grabbed a temporary reference to this 672 * superblock before we removed it from @fs_supers that the superblock 673 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now 674 * discard this superblock and treat it as dead. 675 * 676 * We leave the superblock on @fs_supers so it can be found by 677 * sget{_fc}() until we passed sb->kill_sb(). 678 */ 679 super_wake(sb, SB_DYING); 680 super_unlock_excl(sb); 681 if (sb->s_bdi != &noop_backing_dev_info) { 682 if (sb->s_iflags & SB_I_PERSB_BDI) 683 bdi_unregister(sb->s_bdi); 684 bdi_put(sb->s_bdi); 685 sb->s_bdi = &noop_backing_dev_info; 686 } 687 } 688 689 EXPORT_SYMBOL(generic_shutdown_super); 690 691 bool mount_capable(struct fs_context *fc) 692 { 693 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 694 return capable(CAP_SYS_ADMIN); 695 else 696 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 697 } 698 699 /** 700 * sget_fc - Find or create a superblock 701 * @fc: Filesystem context. 702 * @test: Comparison callback 703 * @set: Setup callback 704 * 705 * Create a new superblock or find an existing one. 706 * 707 * The @test callback is used to find a matching existing superblock. 708 * Whether or not the requested parameters in @fc are taken into account 709 * is specific to the @test callback that is used. They may even be 710 * completely ignored. 711 * 712 * If an extant superblock is matched, it will be returned unless: 713 * 714 * (1) the namespace the filesystem context @fc and the extant 715 * superblock's namespace differ 716 * 717 * (2) the filesystem context @fc has requested that reusing an extant 718 * superblock is not allowed 719 * 720 * In both cases EBUSY will be returned. 721 * 722 * If no match is made, a new superblock will be allocated and basic 723 * initialisation will be performed (s_type, s_fs_info and s_id will be 724 * set and the @set callback will be invoked), the superblock will be 725 * published and it will be returned in a partially constructed state 726 * with SB_BORN and SB_ACTIVE as yet unset. 727 * 728 * Return: On success, an extant or newly created superblock is 729 * returned. On failure an error pointer is returned. 730 */ 731 struct super_block *sget_fc(struct fs_context *fc, 732 int (*test)(struct super_block *, struct fs_context *), 733 int (*set)(struct super_block *, struct fs_context *)) 734 { 735 struct super_block *s = NULL; 736 struct super_block *old; 737 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 738 int err; 739 740 /* 741 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is 742 * not set, as the filesystem is likely unprepared to handle it. 743 * This can happen when fsconfig() is called from init_user_ns with 744 * an fs_fd opened in another user namespace. 745 */ 746 if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) { 747 errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed"); 748 return ERR_PTR(-EPERM); 749 } 750 751 retry: 752 spin_lock(&sb_lock); 753 if (test) { 754 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 755 if (test(old, fc)) 756 goto share_extant_sb; 757 } 758 } 759 if (!s) { 760 spin_unlock(&sb_lock); 761 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 762 if (!s) 763 return ERR_PTR(-ENOMEM); 764 goto retry; 765 } 766 767 s->s_fs_info = fc->s_fs_info; 768 err = set(s, fc); 769 if (err) { 770 s->s_fs_info = NULL; 771 spin_unlock(&sb_lock); 772 destroy_unused_super(s); 773 return ERR_PTR(err); 774 } 775 fc->s_fs_info = NULL; 776 s->s_type = fc->fs_type; 777 s->s_iflags |= fc->s_iflags; 778 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 779 /* 780 * Make the superblock visible on @super_blocks and @fs_supers. 781 * It's in a nascent state and users should wait on SB_BORN or 782 * SB_DYING to be set. 783 */ 784 list_add_tail(&s->s_list, &super_blocks); 785 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 786 spin_unlock(&sb_lock); 787 get_filesystem(s->s_type); 788 shrinker_register(s->s_shrink); 789 return s; 790 791 share_extant_sb: 792 if (user_ns != old->s_user_ns || fc->exclusive) { 793 spin_unlock(&sb_lock); 794 destroy_unused_super(s); 795 if (fc->exclusive) 796 warnfc(fc, "reusing existing filesystem not allowed"); 797 else 798 warnfc(fc, "reusing existing filesystem in another namespace not allowed"); 799 return ERR_PTR(-EBUSY); 800 } 801 if (!grab_super(old)) 802 goto retry; 803 destroy_unused_super(s); 804 return old; 805 } 806 EXPORT_SYMBOL(sget_fc); 807 808 /** 809 * sget - find or create a superblock 810 * @type: filesystem type superblock should belong to 811 * @test: comparison callback 812 * @set: setup callback 813 * @flags: mount flags 814 * @data: argument to each of them 815 */ 816 struct super_block *sget(struct file_system_type *type, 817 int (*test)(struct super_block *,void *), 818 int (*set)(struct super_block *,void *), 819 int flags, 820 void *data) 821 { 822 struct user_namespace *user_ns = current_user_ns(); 823 struct super_block *s = NULL; 824 struct super_block *old; 825 int err; 826 827 retry: 828 spin_lock(&sb_lock); 829 if (test) { 830 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 831 if (!test(old, data)) 832 continue; 833 if (user_ns != old->s_user_ns) { 834 spin_unlock(&sb_lock); 835 destroy_unused_super(s); 836 return ERR_PTR(-EBUSY); 837 } 838 if (!grab_super(old)) 839 goto retry; 840 destroy_unused_super(s); 841 return old; 842 } 843 } 844 if (!s) { 845 spin_unlock(&sb_lock); 846 s = alloc_super(type, flags, user_ns); 847 if (!s) 848 return ERR_PTR(-ENOMEM); 849 goto retry; 850 } 851 852 err = set(s, data); 853 if (err) { 854 spin_unlock(&sb_lock); 855 destroy_unused_super(s); 856 return ERR_PTR(err); 857 } 858 s->s_type = type; 859 strscpy(s->s_id, type->name, sizeof(s->s_id)); 860 list_add_tail(&s->s_list, &super_blocks); 861 hlist_add_head(&s->s_instances, &type->fs_supers); 862 spin_unlock(&sb_lock); 863 get_filesystem(type); 864 shrinker_register(s->s_shrink); 865 return s; 866 } 867 EXPORT_SYMBOL(sget); 868 869 void drop_super(struct super_block *sb) 870 { 871 super_unlock_shared(sb); 872 put_super(sb); 873 } 874 875 EXPORT_SYMBOL(drop_super); 876 877 void drop_super_exclusive(struct super_block *sb) 878 { 879 super_unlock_excl(sb); 880 put_super(sb); 881 } 882 EXPORT_SYMBOL(drop_super_exclusive); 883 884 enum super_iter_flags_t { 885 SUPER_ITER_EXCL = (1U << 0), 886 SUPER_ITER_UNLOCKED = (1U << 1), 887 SUPER_ITER_REVERSE = (1U << 2), 888 }; 889 890 static inline struct super_block *first_super(enum super_iter_flags_t flags) 891 { 892 if (flags & SUPER_ITER_REVERSE) 893 return list_last_entry(&super_blocks, struct super_block, s_list); 894 return list_first_entry(&super_blocks, struct super_block, s_list); 895 } 896 897 static inline struct super_block *next_super(struct super_block *sb, 898 enum super_iter_flags_t flags) 899 { 900 if (flags & SUPER_ITER_REVERSE) 901 return list_prev_entry(sb, s_list); 902 return list_next_entry(sb, s_list); 903 } 904 905 static void __iterate_supers(void (*f)(struct super_block *, void *), void *arg, 906 enum super_iter_flags_t flags) 907 { 908 struct super_block *sb, *p = NULL; 909 bool excl = flags & SUPER_ITER_EXCL; 910 911 guard(spinlock)(&sb_lock); 912 913 for (sb = first_super(flags); 914 !list_entry_is_head(sb, &super_blocks, s_list); 915 sb = next_super(sb, flags)) { 916 if (super_flags(sb, SB_DYING)) 917 continue; 918 sb->s_count++; 919 spin_unlock(&sb_lock); 920 921 if (flags & SUPER_ITER_UNLOCKED) { 922 f(sb, arg); 923 } else if (super_lock(sb, excl)) { 924 f(sb, arg); 925 super_unlock(sb, excl); 926 } 927 928 spin_lock(&sb_lock); 929 if (p) 930 __put_super(p); 931 p = sb; 932 } 933 if (p) 934 __put_super(p); 935 } 936 937 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 938 { 939 __iterate_supers(f, arg, 0); 940 } 941 942 /** 943 * iterate_supers_type - call function for superblocks of given type 944 * @type: fs type 945 * @f: function to call 946 * @arg: argument to pass to it 947 * 948 * Scans the superblock list and calls given function, passing it 949 * locked superblock and given argument. 950 */ 951 void iterate_supers_type(struct file_system_type *type, 952 void (*f)(struct super_block *, void *), void *arg) 953 { 954 struct super_block *sb, *p = NULL; 955 956 spin_lock(&sb_lock); 957 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 958 bool locked; 959 960 if (super_flags(sb, SB_DYING)) 961 continue; 962 963 sb->s_count++; 964 spin_unlock(&sb_lock); 965 966 locked = super_lock_shared(sb); 967 if (locked) 968 f(sb, arg); 969 970 spin_lock(&sb_lock); 971 if (p) 972 __put_super(p); 973 p = sb; 974 } 975 if (p) 976 __put_super(p); 977 spin_unlock(&sb_lock); 978 } 979 980 EXPORT_SYMBOL(iterate_supers_type); 981 982 struct super_block *user_get_super(dev_t dev, bool excl) 983 { 984 struct super_block *sb; 985 986 spin_lock(&sb_lock); 987 list_for_each_entry(sb, &super_blocks, s_list) { 988 bool locked; 989 990 if (sb->s_dev != dev) 991 continue; 992 993 sb->s_count++; 994 spin_unlock(&sb_lock); 995 996 locked = super_lock(sb, excl); 997 if (locked) 998 return sb; 999 1000 spin_lock(&sb_lock); 1001 __put_super(sb); 1002 break; 1003 } 1004 spin_unlock(&sb_lock); 1005 return NULL; 1006 } 1007 1008 /** 1009 * reconfigure_super - asks filesystem to change superblock parameters 1010 * @fc: The superblock and configuration 1011 * 1012 * Alters the configuration parameters of a live superblock. 1013 */ 1014 int reconfigure_super(struct fs_context *fc) 1015 { 1016 struct super_block *sb = fc->root->d_sb; 1017 int retval; 1018 bool remount_ro = false; 1019 bool remount_rw = false; 1020 bool force = fc->sb_flags & SB_FORCE; 1021 1022 if (fc->sb_flags_mask & ~MS_RMT_MASK) 1023 return -EINVAL; 1024 if (sb->s_writers.frozen != SB_UNFROZEN) 1025 return -EBUSY; 1026 1027 retval = security_sb_remount(sb, fc->security); 1028 if (retval) 1029 return retval; 1030 1031 if (fc->sb_flags_mask & SB_RDONLY) { 1032 #ifdef CONFIG_BLOCK 1033 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 1034 bdev_read_only(sb->s_bdev)) 1035 return -EACCES; 1036 #endif 1037 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb); 1038 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 1039 } 1040 1041 if (remount_ro) { 1042 if (!hlist_empty(&sb->s_pins)) { 1043 super_unlock_excl(sb); 1044 group_pin_kill(&sb->s_pins); 1045 __super_lock_excl(sb); 1046 if (!sb->s_root) 1047 return 0; 1048 if (sb->s_writers.frozen != SB_UNFROZEN) 1049 return -EBUSY; 1050 remount_ro = !sb_rdonly(sb); 1051 } 1052 } 1053 shrink_dcache_sb(sb); 1054 1055 /* If we are reconfiguring to RDONLY and current sb is read/write, 1056 * make sure there are no files open for writing. 1057 */ 1058 if (remount_ro) { 1059 if (force) { 1060 sb_start_ro_state_change(sb); 1061 } else { 1062 retval = sb_prepare_remount_readonly(sb); 1063 if (retval) 1064 return retval; 1065 } 1066 } else if (remount_rw) { 1067 /* 1068 * Protect filesystem's reconfigure code from writes from 1069 * userspace until reconfigure finishes. 1070 */ 1071 sb_start_ro_state_change(sb); 1072 } 1073 1074 if (fc->ops->reconfigure) { 1075 retval = fc->ops->reconfigure(fc); 1076 if (retval) { 1077 if (!force) 1078 goto cancel_readonly; 1079 /* If forced remount, go ahead despite any errors */ 1080 WARN(1, "forced remount of a %s fs returned %i\n", 1081 sb->s_type->name, retval); 1082 } 1083 } 1084 1085 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 1086 (fc->sb_flags & fc->sb_flags_mask))); 1087 sb_end_ro_state_change(sb); 1088 1089 /* 1090 * Some filesystems modify their metadata via some other path than the 1091 * bdev buffer cache (eg. use a private mapping, or directories in 1092 * pagecache, etc). Also file data modifications go via their own 1093 * mappings. So If we try to mount readonly then copy the filesystem 1094 * from bdev, we could get stale data, so invalidate it to give a best 1095 * effort at coherency. 1096 */ 1097 if (remount_ro && sb->s_bdev) 1098 invalidate_bdev(sb->s_bdev); 1099 return 0; 1100 1101 cancel_readonly: 1102 sb_end_ro_state_change(sb); 1103 return retval; 1104 } 1105 1106 static void do_emergency_remount_callback(struct super_block *sb, void *unused) 1107 { 1108 if (sb->s_bdev && !sb_rdonly(sb)) { 1109 struct fs_context *fc; 1110 1111 fc = fs_context_for_reconfigure(sb->s_root, 1112 SB_RDONLY | SB_FORCE, SB_RDONLY); 1113 if (!IS_ERR(fc)) { 1114 if (parse_monolithic_mount_data(fc, NULL) == 0) 1115 (void)reconfigure_super(fc); 1116 put_fs_context(fc); 1117 } 1118 } 1119 } 1120 1121 static void do_emergency_remount(struct work_struct *work) 1122 { 1123 __iterate_supers(do_emergency_remount_callback, NULL, 1124 SUPER_ITER_EXCL | SUPER_ITER_REVERSE); 1125 kfree(work); 1126 printk("Emergency Remount complete\n"); 1127 } 1128 1129 void emergency_remount(void) 1130 { 1131 struct work_struct *work; 1132 1133 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1134 if (work) { 1135 INIT_WORK(work, do_emergency_remount); 1136 schedule_work(work); 1137 } 1138 } 1139 1140 static void do_thaw_all_callback(struct super_block *sb, void *unused) 1141 { 1142 if (IS_ENABLED(CONFIG_BLOCK)) 1143 while (sb->s_bdev && !bdev_thaw(sb->s_bdev)) 1144 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev); 1145 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE, NULL); 1146 return; 1147 } 1148 1149 static void do_thaw_all(struct work_struct *work) 1150 { 1151 __iterate_supers(do_thaw_all_callback, NULL, SUPER_ITER_EXCL); 1152 kfree(work); 1153 printk(KERN_WARNING "Emergency Thaw complete\n"); 1154 } 1155 1156 /** 1157 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1158 * 1159 * Used for emergency unfreeze of all filesystems via SysRq 1160 */ 1161 void emergency_thaw_all(void) 1162 { 1163 struct work_struct *work; 1164 1165 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1166 if (work) { 1167 INIT_WORK(work, do_thaw_all); 1168 schedule_work(work); 1169 } 1170 } 1171 1172 static inline bool get_active_super(struct super_block *sb) 1173 { 1174 bool active = false; 1175 1176 if (super_lock_excl(sb)) { 1177 active = atomic_inc_not_zero(&sb->s_active); 1178 super_unlock_excl(sb); 1179 } 1180 return active; 1181 } 1182 1183 static const char *filesystems_freeze_ptr = "filesystems_freeze"; 1184 1185 static void filesystems_freeze_callback(struct super_block *sb, void *unused) 1186 { 1187 if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super) 1188 return; 1189 1190 if (!get_active_super(sb)) 1191 return; 1192 1193 if (sb->s_op->freeze_super) 1194 sb->s_op->freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, 1195 filesystems_freeze_ptr); 1196 else 1197 freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, 1198 filesystems_freeze_ptr); 1199 1200 deactivate_super(sb); 1201 } 1202 1203 void filesystems_freeze(void) 1204 { 1205 __iterate_supers(filesystems_freeze_callback, NULL, 1206 SUPER_ITER_UNLOCKED | SUPER_ITER_REVERSE); 1207 } 1208 1209 static void filesystems_thaw_callback(struct super_block *sb, void *unused) 1210 { 1211 if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super) 1212 return; 1213 1214 if (!get_active_super(sb)) 1215 return; 1216 1217 if (sb->s_op->thaw_super) 1218 sb->s_op->thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, 1219 filesystems_freeze_ptr); 1220 else 1221 thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, 1222 filesystems_freeze_ptr); 1223 1224 deactivate_super(sb); 1225 } 1226 1227 void filesystems_thaw(void) 1228 { 1229 __iterate_supers(filesystems_thaw_callback, NULL, SUPER_ITER_UNLOCKED); 1230 } 1231 1232 static DEFINE_IDA(unnamed_dev_ida); 1233 1234 /** 1235 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1236 * @p: Pointer to a dev_t. 1237 * 1238 * Filesystems which don't use real block devices can call this function 1239 * to allocate a virtual block device. 1240 * 1241 * Context: Any context. Frequently called while holding sb_lock. 1242 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1243 * or -ENOMEM if memory allocation failed. 1244 */ 1245 int get_anon_bdev(dev_t *p) 1246 { 1247 int dev; 1248 1249 /* 1250 * Many userspace utilities consider an FSID of 0 invalid. 1251 * Always return at least 1 from get_anon_bdev. 1252 */ 1253 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1254 GFP_ATOMIC); 1255 if (dev == -ENOSPC) 1256 dev = -EMFILE; 1257 if (dev < 0) 1258 return dev; 1259 1260 *p = MKDEV(0, dev); 1261 return 0; 1262 } 1263 EXPORT_SYMBOL(get_anon_bdev); 1264 1265 void free_anon_bdev(dev_t dev) 1266 { 1267 ida_free(&unnamed_dev_ida, MINOR(dev)); 1268 } 1269 EXPORT_SYMBOL(free_anon_bdev); 1270 1271 int set_anon_super(struct super_block *s, void *data) 1272 { 1273 return get_anon_bdev(&s->s_dev); 1274 } 1275 EXPORT_SYMBOL(set_anon_super); 1276 1277 void kill_anon_super(struct super_block *sb) 1278 { 1279 dev_t dev = sb->s_dev; 1280 generic_shutdown_super(sb); 1281 kill_super_notify(sb); 1282 free_anon_bdev(dev); 1283 } 1284 EXPORT_SYMBOL(kill_anon_super); 1285 1286 void kill_litter_super(struct super_block *sb) 1287 { 1288 if (sb->s_root) 1289 d_genocide(sb->s_root); 1290 kill_anon_super(sb); 1291 } 1292 EXPORT_SYMBOL(kill_litter_super); 1293 1294 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1295 { 1296 return set_anon_super(sb, NULL); 1297 } 1298 EXPORT_SYMBOL(set_anon_super_fc); 1299 1300 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1301 { 1302 return sb->s_fs_info == fc->s_fs_info; 1303 } 1304 1305 static int test_single_super(struct super_block *s, struct fs_context *fc) 1306 { 1307 return 1; 1308 } 1309 1310 static int vfs_get_super(struct fs_context *fc, 1311 int (*test)(struct super_block *, struct fs_context *), 1312 int (*fill_super)(struct super_block *sb, 1313 struct fs_context *fc)) 1314 { 1315 struct super_block *sb; 1316 int err; 1317 1318 sb = sget_fc(fc, test, set_anon_super_fc); 1319 if (IS_ERR(sb)) 1320 return PTR_ERR(sb); 1321 1322 if (!sb->s_root) { 1323 err = fill_super(sb, fc); 1324 if (err) 1325 goto error; 1326 1327 sb->s_flags |= SB_ACTIVE; 1328 } 1329 1330 fc->root = dget(sb->s_root); 1331 return 0; 1332 1333 error: 1334 deactivate_locked_super(sb); 1335 return err; 1336 } 1337 1338 int get_tree_nodev(struct fs_context *fc, 1339 int (*fill_super)(struct super_block *sb, 1340 struct fs_context *fc)) 1341 { 1342 return vfs_get_super(fc, NULL, fill_super); 1343 } 1344 EXPORT_SYMBOL(get_tree_nodev); 1345 1346 int get_tree_single(struct fs_context *fc, 1347 int (*fill_super)(struct super_block *sb, 1348 struct fs_context *fc)) 1349 { 1350 return vfs_get_super(fc, test_single_super, fill_super); 1351 } 1352 EXPORT_SYMBOL(get_tree_single); 1353 1354 int get_tree_keyed(struct fs_context *fc, 1355 int (*fill_super)(struct super_block *sb, 1356 struct fs_context *fc), 1357 void *key) 1358 { 1359 fc->s_fs_info = key; 1360 return vfs_get_super(fc, test_keyed_super, fill_super); 1361 } 1362 EXPORT_SYMBOL(get_tree_keyed); 1363 1364 static int set_bdev_super(struct super_block *s, void *data) 1365 { 1366 s->s_dev = *(dev_t *)data; 1367 return 0; 1368 } 1369 1370 static int super_s_dev_set(struct super_block *s, struct fs_context *fc) 1371 { 1372 return set_bdev_super(s, fc->sget_key); 1373 } 1374 1375 static int super_s_dev_test(struct super_block *s, struct fs_context *fc) 1376 { 1377 return !(s->s_iflags & SB_I_RETIRED) && 1378 s->s_dev == *(dev_t *)fc->sget_key; 1379 } 1380 1381 /** 1382 * sget_dev - Find or create a superblock by device number 1383 * @fc: Filesystem context. 1384 * @dev: device number 1385 * 1386 * Find or create a superblock using the provided device number that 1387 * will be stored in fc->sget_key. 1388 * 1389 * If an extant superblock is matched, then that will be returned with 1390 * an elevated reference count that the caller must transfer or discard. 1391 * 1392 * If no match is made, a new superblock will be allocated and basic 1393 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will 1394 * be set). The superblock will be published and it will be returned in 1395 * a partially constructed state with SB_BORN and SB_ACTIVE as yet 1396 * unset. 1397 * 1398 * Return: an existing or newly created superblock on success, an error 1399 * pointer on failure. 1400 */ 1401 struct super_block *sget_dev(struct fs_context *fc, dev_t dev) 1402 { 1403 fc->sget_key = &dev; 1404 return sget_fc(fc, super_s_dev_test, super_s_dev_set); 1405 } 1406 EXPORT_SYMBOL(sget_dev); 1407 1408 #ifdef CONFIG_BLOCK 1409 /* 1410 * Lock the superblock that is holder of the bdev. Returns the superblock 1411 * pointer if we successfully locked the superblock and it is alive. Otherwise 1412 * we return NULL and just unlock bdev->bd_holder_lock. 1413 * 1414 * The function must be called with bdev->bd_holder_lock and releases it. 1415 */ 1416 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl) 1417 __releases(&bdev->bd_holder_lock) 1418 { 1419 struct super_block *sb = bdev->bd_holder; 1420 bool locked; 1421 1422 lockdep_assert_held(&bdev->bd_holder_lock); 1423 lockdep_assert_not_held(&sb->s_umount); 1424 lockdep_assert_not_held(&bdev->bd_disk->open_mutex); 1425 1426 /* Make sure sb doesn't go away from under us */ 1427 spin_lock(&sb_lock); 1428 sb->s_count++; 1429 spin_unlock(&sb_lock); 1430 1431 mutex_unlock(&bdev->bd_holder_lock); 1432 1433 locked = super_lock(sb, excl); 1434 1435 /* 1436 * If the superblock wasn't already SB_DYING then we hold 1437 * s_umount and can safely drop our temporary reference. 1438 */ 1439 put_super(sb); 1440 1441 if (!locked) 1442 return NULL; 1443 1444 if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) { 1445 super_unlock(sb, excl); 1446 return NULL; 1447 } 1448 1449 return sb; 1450 } 1451 1452 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise) 1453 { 1454 struct super_block *sb; 1455 1456 sb = bdev_super_lock(bdev, false); 1457 if (!sb) 1458 return; 1459 1460 if (!surprise) 1461 sync_filesystem(sb); 1462 shrink_dcache_sb(sb); 1463 evict_inodes(sb); 1464 if (sb->s_op->shutdown) 1465 sb->s_op->shutdown(sb); 1466 1467 super_unlock_shared(sb); 1468 } 1469 1470 static void fs_bdev_sync(struct block_device *bdev) 1471 { 1472 struct super_block *sb; 1473 1474 sb = bdev_super_lock(bdev, false); 1475 if (!sb) 1476 return; 1477 1478 sync_filesystem(sb); 1479 super_unlock_shared(sb); 1480 } 1481 1482 static struct super_block *get_bdev_super(struct block_device *bdev) 1483 { 1484 bool active = false; 1485 struct super_block *sb; 1486 1487 sb = bdev_super_lock(bdev, true); 1488 if (sb) { 1489 active = atomic_inc_not_zero(&sb->s_active); 1490 super_unlock_excl(sb); 1491 } 1492 if (!active) 1493 return NULL; 1494 return sb; 1495 } 1496 1497 /** 1498 * fs_bdev_freeze - freeze owning filesystem of block device 1499 * @bdev: block device 1500 * 1501 * Freeze the filesystem that owns this block device if it is still 1502 * active. 1503 * 1504 * A filesystem that owns multiple block devices may be frozen from each 1505 * block device and won't be unfrozen until all block devices are 1506 * unfrozen. Each block device can only freeze the filesystem once as we 1507 * nest freezes for block devices in the block layer. 1508 * 1509 * Return: If the freeze was successful zero is returned. If the freeze 1510 * failed a negative error code is returned. 1511 */ 1512 static int fs_bdev_freeze(struct block_device *bdev) 1513 { 1514 struct super_block *sb; 1515 int error = 0; 1516 1517 lockdep_assert_held(&bdev->bd_fsfreeze_mutex); 1518 1519 sb = get_bdev_super(bdev); 1520 if (!sb) 1521 return -EINVAL; 1522 1523 if (sb->s_op->freeze_super) 1524 error = sb->s_op->freeze_super(sb, 1525 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); 1526 else 1527 error = freeze_super(sb, 1528 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); 1529 if (!error) 1530 error = sync_blockdev(bdev); 1531 deactivate_super(sb); 1532 return error; 1533 } 1534 1535 /** 1536 * fs_bdev_thaw - thaw owning filesystem of block device 1537 * @bdev: block device 1538 * 1539 * Thaw the filesystem that owns this block device. 1540 * 1541 * A filesystem that owns multiple block devices may be frozen from each 1542 * block device and won't be unfrozen until all block devices are 1543 * unfrozen. Each block device can only freeze the filesystem once as we 1544 * nest freezes for block devices in the block layer. 1545 * 1546 * Return: If the thaw was successful zero is returned. If the thaw 1547 * failed a negative error code is returned. If this function 1548 * returns zero it doesn't mean that the filesystem is unfrozen 1549 * as it may have been frozen multiple times (kernel may hold a 1550 * freeze or might be frozen from other block devices). 1551 */ 1552 static int fs_bdev_thaw(struct block_device *bdev) 1553 { 1554 struct super_block *sb; 1555 int error; 1556 1557 lockdep_assert_held(&bdev->bd_fsfreeze_mutex); 1558 1559 /* 1560 * The block device may have been frozen before it was claimed by a 1561 * filesystem. Concurrently another process might try to mount that 1562 * frozen block device and has temporarily claimed the block device for 1563 * that purpose causing a concurrent fs_bdev_thaw() to end up here. The 1564 * mounter is already about to abort mounting because they still saw an 1565 * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return 1566 * NULL in that case. 1567 */ 1568 sb = get_bdev_super(bdev); 1569 if (!sb) 1570 return -EINVAL; 1571 1572 if (sb->s_op->thaw_super) 1573 error = sb->s_op->thaw_super(sb, 1574 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); 1575 else 1576 error = thaw_super(sb, 1577 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); 1578 deactivate_super(sb); 1579 return error; 1580 } 1581 1582 const struct blk_holder_ops fs_holder_ops = { 1583 .mark_dead = fs_bdev_mark_dead, 1584 .sync = fs_bdev_sync, 1585 .freeze = fs_bdev_freeze, 1586 .thaw = fs_bdev_thaw, 1587 }; 1588 EXPORT_SYMBOL_GPL(fs_holder_ops); 1589 1590 int setup_bdev_super(struct super_block *sb, int sb_flags, 1591 struct fs_context *fc) 1592 { 1593 blk_mode_t mode = sb_open_mode(sb_flags); 1594 struct file *bdev_file; 1595 struct block_device *bdev; 1596 1597 bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops); 1598 if (IS_ERR(bdev_file)) { 1599 if (fc) 1600 errorf(fc, "%s: Can't open blockdev", fc->source); 1601 return PTR_ERR(bdev_file); 1602 } 1603 bdev = file_bdev(bdev_file); 1604 1605 /* 1606 * This really should be in blkdev_get_by_dev, but right now can't due 1607 * to legacy issues that require us to allow opening a block device node 1608 * writable from userspace even for a read-only block device. 1609 */ 1610 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) { 1611 bdev_fput(bdev_file); 1612 return -EACCES; 1613 } 1614 1615 /* 1616 * It is enough to check bdev was not frozen before we set 1617 * s_bdev as freezing will wait until SB_BORN is set. 1618 */ 1619 if (atomic_read(&bdev->bd_fsfreeze_count) > 0) { 1620 if (fc) 1621 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1622 bdev_fput(bdev_file); 1623 return -EBUSY; 1624 } 1625 spin_lock(&sb_lock); 1626 sb->s_bdev_file = bdev_file; 1627 sb->s_bdev = bdev; 1628 sb->s_bdi = bdi_get(bdev->bd_disk->bdi); 1629 if (bdev_stable_writes(bdev)) 1630 sb->s_iflags |= SB_I_STABLE_WRITES; 1631 spin_unlock(&sb_lock); 1632 1633 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1634 shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name, 1635 sb->s_id); 1636 sb_set_blocksize(sb, block_size(bdev)); 1637 return 0; 1638 } 1639 EXPORT_SYMBOL_GPL(setup_bdev_super); 1640 1641 /** 1642 * get_tree_bdev_flags - Get a superblock based on a single block device 1643 * @fc: The filesystem context holding the parameters 1644 * @fill_super: Helper to initialise a new superblock 1645 * @flags: GET_TREE_BDEV_* flags 1646 */ 1647 int get_tree_bdev_flags(struct fs_context *fc, 1648 int (*fill_super)(struct super_block *sb, 1649 struct fs_context *fc), unsigned int flags) 1650 { 1651 struct super_block *s; 1652 int error = 0; 1653 dev_t dev; 1654 1655 if (!fc->source) 1656 return invalf(fc, "No source specified"); 1657 1658 error = lookup_bdev(fc->source, &dev); 1659 if (error) { 1660 if (!(flags & GET_TREE_BDEV_QUIET_LOOKUP)) 1661 errorf(fc, "%s: Can't lookup blockdev", fc->source); 1662 return error; 1663 } 1664 fc->sb_flags |= SB_NOSEC; 1665 s = sget_dev(fc, dev); 1666 if (IS_ERR(s)) 1667 return PTR_ERR(s); 1668 1669 if (s->s_root) { 1670 /* Don't summarily change the RO/RW state. */ 1671 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1672 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev); 1673 deactivate_locked_super(s); 1674 return -EBUSY; 1675 } 1676 } else { 1677 error = setup_bdev_super(s, fc->sb_flags, fc); 1678 if (!error) 1679 error = fill_super(s, fc); 1680 if (error) { 1681 deactivate_locked_super(s); 1682 return error; 1683 } 1684 s->s_flags |= SB_ACTIVE; 1685 } 1686 1687 BUG_ON(fc->root); 1688 fc->root = dget(s->s_root); 1689 return 0; 1690 } 1691 EXPORT_SYMBOL_GPL(get_tree_bdev_flags); 1692 1693 /** 1694 * get_tree_bdev - Get a superblock based on a single block device 1695 * @fc: The filesystem context holding the parameters 1696 * @fill_super: Helper to initialise a new superblock 1697 */ 1698 int get_tree_bdev(struct fs_context *fc, 1699 int (*fill_super)(struct super_block *, 1700 struct fs_context *)) 1701 { 1702 return get_tree_bdev_flags(fc, fill_super, 0); 1703 } 1704 EXPORT_SYMBOL(get_tree_bdev); 1705 1706 static int test_bdev_super(struct super_block *s, void *data) 1707 { 1708 return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data; 1709 } 1710 1711 struct dentry *mount_bdev(struct file_system_type *fs_type, 1712 int flags, const char *dev_name, void *data, 1713 int (*fill_super)(struct super_block *, void *, int)) 1714 { 1715 struct super_block *s; 1716 int error; 1717 dev_t dev; 1718 1719 error = lookup_bdev(dev_name, &dev); 1720 if (error) 1721 return ERR_PTR(error); 1722 1723 flags |= SB_NOSEC; 1724 s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev); 1725 if (IS_ERR(s)) 1726 return ERR_CAST(s); 1727 1728 if (s->s_root) { 1729 if ((flags ^ s->s_flags) & SB_RDONLY) { 1730 deactivate_locked_super(s); 1731 return ERR_PTR(-EBUSY); 1732 } 1733 } else { 1734 error = setup_bdev_super(s, flags, NULL); 1735 if (!error) 1736 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1737 if (error) { 1738 deactivate_locked_super(s); 1739 return ERR_PTR(error); 1740 } 1741 1742 s->s_flags |= SB_ACTIVE; 1743 } 1744 1745 return dget(s->s_root); 1746 } 1747 EXPORT_SYMBOL(mount_bdev); 1748 1749 void kill_block_super(struct super_block *sb) 1750 { 1751 struct block_device *bdev = sb->s_bdev; 1752 1753 generic_shutdown_super(sb); 1754 if (bdev) { 1755 sync_blockdev(bdev); 1756 bdev_fput(sb->s_bdev_file); 1757 } 1758 } 1759 1760 EXPORT_SYMBOL(kill_block_super); 1761 #endif 1762 1763 struct dentry *mount_nodev(struct file_system_type *fs_type, 1764 int flags, void *data, 1765 int (*fill_super)(struct super_block *, void *, int)) 1766 { 1767 int error; 1768 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1769 1770 if (IS_ERR(s)) 1771 return ERR_CAST(s); 1772 1773 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1774 if (error) { 1775 deactivate_locked_super(s); 1776 return ERR_PTR(error); 1777 } 1778 s->s_flags |= SB_ACTIVE; 1779 return dget(s->s_root); 1780 } 1781 EXPORT_SYMBOL(mount_nodev); 1782 1783 /** 1784 * vfs_get_tree - Get the mountable root 1785 * @fc: The superblock configuration context. 1786 * 1787 * The filesystem is invoked to get or create a superblock which can then later 1788 * be used for mounting. The filesystem places a pointer to the root to be 1789 * used for mounting in @fc->root. 1790 */ 1791 int vfs_get_tree(struct fs_context *fc) 1792 { 1793 struct super_block *sb; 1794 int error; 1795 1796 if (fc->root) 1797 return -EBUSY; 1798 1799 /* Get the mountable root in fc->root, with a ref on the root and a ref 1800 * on the superblock. 1801 */ 1802 error = fc->ops->get_tree(fc); 1803 if (error < 0) 1804 return error; 1805 1806 if (!fc->root) { 1807 pr_err("Filesystem %s get_tree() didn't set fc->root, returned %i\n", 1808 fc->fs_type->name, error); 1809 /* We don't know what the locking state of the superblock is - 1810 * if there is a superblock. 1811 */ 1812 BUG(); 1813 } 1814 1815 sb = fc->root->d_sb; 1816 WARN_ON(!sb->s_bdi); 1817 1818 /* 1819 * super_wake() contains a memory barrier which also care of 1820 * ordering for super_cache_count(). We place it before setting 1821 * SB_BORN as the data dependency between the two functions is 1822 * the superblock structure contents that we just set up, not 1823 * the SB_BORN flag. 1824 */ 1825 super_wake(sb, SB_BORN); 1826 1827 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1828 if (unlikely(error)) { 1829 fc_drop_locked(fc); 1830 return error; 1831 } 1832 1833 /* 1834 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1835 * but s_maxbytes was an unsigned long long for many releases. Throw 1836 * this warning for a little while to try and catch filesystems that 1837 * violate this rule. 1838 */ 1839 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1840 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1841 1842 return 0; 1843 } 1844 EXPORT_SYMBOL(vfs_get_tree); 1845 1846 /* 1847 * Setup private BDI for given superblock. It gets automatically cleaned up 1848 * in generic_shutdown_super(). 1849 */ 1850 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1851 { 1852 struct backing_dev_info *bdi; 1853 int err; 1854 va_list args; 1855 1856 bdi = bdi_alloc(NUMA_NO_NODE); 1857 if (!bdi) 1858 return -ENOMEM; 1859 1860 va_start(args, fmt); 1861 err = bdi_register_va(bdi, fmt, args); 1862 va_end(args); 1863 if (err) { 1864 bdi_put(bdi); 1865 return err; 1866 } 1867 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1868 sb->s_bdi = bdi; 1869 sb->s_iflags |= SB_I_PERSB_BDI; 1870 1871 return 0; 1872 } 1873 EXPORT_SYMBOL(super_setup_bdi_name); 1874 1875 /* 1876 * Setup private BDI for given superblock. I gets automatically cleaned up 1877 * in generic_shutdown_super(). 1878 */ 1879 int super_setup_bdi(struct super_block *sb) 1880 { 1881 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1882 1883 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1884 atomic_long_inc_return(&bdi_seq)); 1885 } 1886 EXPORT_SYMBOL(super_setup_bdi); 1887 1888 /** 1889 * sb_wait_write - wait until all writers to given file system finish 1890 * @sb: the super for which we wait 1891 * @level: type of writers we wait for (normal vs page fault) 1892 * 1893 * This function waits until there are no writers of given type to given file 1894 * system. 1895 */ 1896 static void sb_wait_write(struct super_block *sb, int level) 1897 { 1898 percpu_down_write(sb->s_writers.rw_sem + level-1); 1899 } 1900 1901 /* 1902 * We are going to return to userspace and forget about these locks, the 1903 * ownership goes to the caller of thaw_super() which does unlock(). 1904 */ 1905 static void lockdep_sb_freeze_release(struct super_block *sb) 1906 { 1907 int level; 1908 1909 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1910 percpu_rwsem_release(sb->s_writers.rw_sem + level, _THIS_IP_); 1911 } 1912 1913 /* 1914 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1915 */ 1916 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1917 { 1918 int level; 1919 1920 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1921 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1922 } 1923 1924 static void sb_freeze_unlock(struct super_block *sb, int level) 1925 { 1926 for (level--; level >= 0; level--) 1927 percpu_up_write(sb->s_writers.rw_sem + level); 1928 } 1929 1930 static int wait_for_partially_frozen(struct super_block *sb) 1931 { 1932 int ret = 0; 1933 1934 do { 1935 unsigned short old = sb->s_writers.frozen; 1936 1937 up_write(&sb->s_umount); 1938 ret = wait_var_event_killable(&sb->s_writers.frozen, 1939 sb->s_writers.frozen != old); 1940 down_write(&sb->s_umount); 1941 } while (ret == 0 && 1942 sb->s_writers.frozen != SB_UNFROZEN && 1943 sb->s_writers.frozen != SB_FREEZE_COMPLETE); 1944 1945 return ret; 1946 } 1947 1948 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE) 1949 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST | FREEZE_EXCL) 1950 1951 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who) 1952 { 1953 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1954 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1955 1956 if (who & FREEZE_HOLDER_KERNEL) 1957 ++sb->s_writers.freeze_kcount; 1958 if (who & FREEZE_HOLDER_USERSPACE) 1959 ++sb->s_writers.freeze_ucount; 1960 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; 1961 } 1962 1963 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who) 1964 { 1965 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1966 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1967 1968 if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount) 1969 --sb->s_writers.freeze_kcount; 1970 if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount) 1971 --sb->s_writers.freeze_ucount; 1972 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; 1973 } 1974 1975 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who, 1976 const void *freeze_owner) 1977 { 1978 lockdep_assert_held(&sb->s_umount); 1979 1980 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1981 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1982 1983 if (who & FREEZE_EXCL) { 1984 if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL))) 1985 return false; 1986 if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL))) 1987 return false; 1988 if (WARN_ON_ONCE(!freeze_owner)) 1989 return false; 1990 /* This freeze already has a specific owner. */ 1991 if (sb->s_writers.freeze_owner) 1992 return false; 1993 /* 1994 * This is already frozen multiple times so we're just 1995 * going to take a reference count and mark the freeze as 1996 * being owned by the caller. 1997 */ 1998 if (sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount) 1999 sb->s_writers.freeze_owner = freeze_owner; 2000 return true; 2001 } 2002 2003 if (who & FREEZE_HOLDER_KERNEL) 2004 return (who & FREEZE_MAY_NEST) || 2005 sb->s_writers.freeze_kcount == 0; 2006 if (who & FREEZE_HOLDER_USERSPACE) 2007 return (who & FREEZE_MAY_NEST) || 2008 sb->s_writers.freeze_ucount == 0; 2009 return false; 2010 } 2011 2012 static inline bool may_unfreeze(struct super_block *sb, enum freeze_holder who, 2013 const void *freeze_owner) 2014 { 2015 lockdep_assert_held(&sb->s_umount); 2016 2017 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 2018 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 2019 2020 if (who & FREEZE_EXCL) { 2021 if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL))) 2022 return false; 2023 if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL))) 2024 return false; 2025 if (WARN_ON_ONCE(!freeze_owner)) 2026 return false; 2027 if (WARN_ON_ONCE(sb->s_writers.freeze_kcount == 0)) 2028 return false; 2029 /* This isn't exclusively frozen. */ 2030 if (!sb->s_writers.freeze_owner) 2031 return false; 2032 /* This isn't exclusively frozen by us. */ 2033 if (sb->s_writers.freeze_owner != freeze_owner) 2034 return false; 2035 /* 2036 * This is still frozen multiple times so we're just 2037 * going to drop our reference count and undo our 2038 * exclusive freeze. 2039 */ 2040 if ((sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount) > 1) 2041 sb->s_writers.freeze_owner = NULL; 2042 return true; 2043 } 2044 2045 if (who & FREEZE_HOLDER_KERNEL) { 2046 /* 2047 * Someone's trying to steal the reference belonging to 2048 * @sb->s_writers.freeze_owner. 2049 */ 2050 if (sb->s_writers.freeze_kcount == 1 && 2051 sb->s_writers.freeze_owner) 2052 return false; 2053 return sb->s_writers.freeze_kcount > 0; 2054 } 2055 2056 if (who & FREEZE_HOLDER_USERSPACE) 2057 return sb->s_writers.freeze_ucount > 0; 2058 2059 return false; 2060 } 2061 2062 /** 2063 * freeze_super - lock the filesystem and force it into a consistent state 2064 * @sb: the super to lock 2065 * @who: context that wants to freeze 2066 * @freeze_owner: owner of the freeze 2067 * 2068 * Syncs the super to make sure the filesystem is consistent and calls the fs's 2069 * freeze_fs. Subsequent calls to this without first thawing the fs may return 2070 * -EBUSY. 2071 * 2072 * @who should be: 2073 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs; 2074 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs. 2075 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed. 2076 * 2077 * The @who argument distinguishes between the kernel and userspace trying to 2078 * freeze the filesystem. Although there cannot be multiple kernel freezes or 2079 * multiple userspace freezes in effect at any given time, the kernel and 2080 * userspace can both hold a filesystem frozen. The filesystem remains frozen 2081 * until there are no kernel or userspace freezes in effect. 2082 * 2083 * A filesystem may hold multiple devices and thus a filesystems may be 2084 * frozen through the block layer via multiple block devices. In this 2085 * case the request is marked as being allowed to nest by passing 2086 * FREEZE_MAY_NEST. The filesystem remains frozen until all block 2087 * devices are unfrozen. If multiple freezes are attempted without 2088 * FREEZE_MAY_NEST -EBUSY will be returned. 2089 * 2090 * During this function, sb->s_writers.frozen goes through these values: 2091 * 2092 * SB_UNFROZEN: File system is normal, all writes progress as usual. 2093 * 2094 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 2095 * writes should be blocked, though page faults are still allowed. We wait for 2096 * all writes to complete and then proceed to the next stage. 2097 * 2098 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 2099 * but internal fs threads can still modify the filesystem (although they 2100 * should not dirty new pages or inodes), writeback can run etc. After waiting 2101 * for all running page faults we sync the filesystem which will clean all 2102 * dirty pages and inodes (no new dirty pages or inodes can be created when 2103 * sync is running). 2104 * 2105 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 2106 * modification are blocked (e.g. XFS preallocation truncation on inode 2107 * reclaim). This is usually implemented by blocking new transactions for 2108 * filesystems that have them and need this additional guard. After all 2109 * internal writers are finished we call ->freeze_fs() to finish filesystem 2110 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 2111 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 2112 * 2113 * sb->s_writers.frozen is protected by sb->s_umount. 2114 * 2115 * Return: If the freeze was successful zero is returned. If the freeze 2116 * failed a negative error code is returned. 2117 */ 2118 int freeze_super(struct super_block *sb, enum freeze_holder who, const void *freeze_owner) 2119 { 2120 int ret; 2121 2122 if (!super_lock_excl(sb)) { 2123 WARN_ON_ONCE("Dying superblock while freezing!"); 2124 return -EINVAL; 2125 } 2126 atomic_inc(&sb->s_active); 2127 2128 retry: 2129 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { 2130 if (may_freeze(sb, who, freeze_owner)) 2131 ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1); 2132 else 2133 ret = -EBUSY; 2134 /* All freezers share a single active reference. */ 2135 deactivate_locked_super(sb); 2136 return ret; 2137 } 2138 2139 if (sb->s_writers.frozen != SB_UNFROZEN) { 2140 ret = wait_for_partially_frozen(sb); 2141 if (ret) { 2142 deactivate_locked_super(sb); 2143 return ret; 2144 } 2145 2146 goto retry; 2147 } 2148 2149 if (sb_rdonly(sb)) { 2150 /* Nothing to do really... */ 2151 WARN_ON_ONCE(freeze_inc(sb, who) > 1); 2152 sb->s_writers.freeze_owner = freeze_owner; 2153 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2154 wake_up_var(&sb->s_writers.frozen); 2155 super_unlock_excl(sb); 2156 return 0; 2157 } 2158 2159 sb->s_writers.frozen = SB_FREEZE_WRITE; 2160 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 2161 super_unlock_excl(sb); 2162 sb_wait_write(sb, SB_FREEZE_WRITE); 2163 __super_lock_excl(sb); 2164 2165 /* Now we go and block page faults... */ 2166 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 2167 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 2168 2169 /* All writers are done so after syncing there won't be dirty data */ 2170 ret = sync_filesystem(sb); 2171 if (ret) { 2172 sb->s_writers.frozen = SB_UNFROZEN; 2173 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 2174 wake_up_var(&sb->s_writers.frozen); 2175 deactivate_locked_super(sb); 2176 return ret; 2177 } 2178 2179 /* Now wait for internal filesystem counter */ 2180 sb->s_writers.frozen = SB_FREEZE_FS; 2181 sb_wait_write(sb, SB_FREEZE_FS); 2182 2183 if (sb->s_op->freeze_fs) { 2184 ret = sb->s_op->freeze_fs(sb); 2185 if (ret) { 2186 printk(KERN_ERR 2187 "VFS:Filesystem freeze failed\n"); 2188 sb->s_writers.frozen = SB_UNFROZEN; 2189 sb_freeze_unlock(sb, SB_FREEZE_FS); 2190 wake_up_var(&sb->s_writers.frozen); 2191 deactivate_locked_super(sb); 2192 return ret; 2193 } 2194 } 2195 /* 2196 * For debugging purposes so that fs can warn if it sees write activity 2197 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 2198 */ 2199 WARN_ON_ONCE(freeze_inc(sb, who) > 1); 2200 sb->s_writers.freeze_owner = freeze_owner; 2201 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2202 wake_up_var(&sb->s_writers.frozen); 2203 lockdep_sb_freeze_release(sb); 2204 super_unlock_excl(sb); 2205 return 0; 2206 } 2207 EXPORT_SYMBOL(freeze_super); 2208 2209 /* 2210 * Undoes the effect of a freeze_super_locked call. If the filesystem is 2211 * frozen both by userspace and the kernel, a thaw call from either source 2212 * removes that state without releasing the other state or unlocking the 2213 * filesystem. 2214 */ 2215 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who, 2216 const void *freeze_owner) 2217 { 2218 int error = -EINVAL; 2219 2220 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) 2221 goto out_unlock; 2222 2223 if (!may_unfreeze(sb, who, freeze_owner)) 2224 goto out_unlock; 2225 2226 /* 2227 * All freezers share a single active reference. 2228 * So just unlock in case there are any left. 2229 */ 2230 if (freeze_dec(sb, who)) 2231 goto out_unlock; 2232 2233 if (sb_rdonly(sb)) { 2234 sb->s_writers.frozen = SB_UNFROZEN; 2235 sb->s_writers.freeze_owner = NULL; 2236 wake_up_var(&sb->s_writers.frozen); 2237 goto out_deactivate; 2238 } 2239 2240 lockdep_sb_freeze_acquire(sb); 2241 2242 if (sb->s_op->unfreeze_fs) { 2243 error = sb->s_op->unfreeze_fs(sb); 2244 if (error) { 2245 pr_err("VFS: Filesystem thaw failed\n"); 2246 freeze_inc(sb, who); 2247 lockdep_sb_freeze_release(sb); 2248 goto out_unlock; 2249 } 2250 } 2251 2252 sb->s_writers.frozen = SB_UNFROZEN; 2253 sb->s_writers.freeze_owner = NULL; 2254 wake_up_var(&sb->s_writers.frozen); 2255 sb_freeze_unlock(sb, SB_FREEZE_FS); 2256 out_deactivate: 2257 deactivate_locked_super(sb); 2258 return 0; 2259 2260 out_unlock: 2261 super_unlock_excl(sb); 2262 return error; 2263 } 2264 2265 /** 2266 * thaw_super -- unlock filesystem 2267 * @sb: the super to thaw 2268 * @who: context that wants to freeze 2269 * @freeze_owner: owner of the freeze 2270 * 2271 * Unlocks the filesystem and marks it writeable again after freeze_super() 2272 * if there are no remaining freezes on the filesystem. 2273 * 2274 * @who should be: 2275 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs; 2276 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs. 2277 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed 2278 * 2279 * A filesystem may hold multiple devices and thus a filesystems may 2280 * have been frozen through the block layer via multiple block devices. 2281 * The filesystem remains frozen until all block devices are unfrozen. 2282 */ 2283 int thaw_super(struct super_block *sb, enum freeze_holder who, 2284 const void *freeze_owner) 2285 { 2286 if (!super_lock_excl(sb)) { 2287 WARN_ON_ONCE("Dying superblock while thawing!"); 2288 return -EINVAL; 2289 } 2290 return thaw_super_locked(sb, who, freeze_owner); 2291 } 2292 EXPORT_SYMBOL(thaw_super); 2293 2294 /* 2295 * Create workqueue for deferred direct IO completions. We allocate the 2296 * workqueue when it's first needed. This avoids creating workqueue for 2297 * filesystems that don't need it and also allows us to create the workqueue 2298 * late enough so the we can include s_id in the name of the workqueue. 2299 */ 2300 int sb_init_dio_done_wq(struct super_block *sb) 2301 { 2302 struct workqueue_struct *old; 2303 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 2304 WQ_MEM_RECLAIM, 0, 2305 sb->s_id); 2306 if (!wq) 2307 return -ENOMEM; 2308 /* 2309 * This has to be atomic as more DIOs can race to create the workqueue 2310 */ 2311 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 2312 /* Someone created workqueue before us? Free ours... */ 2313 if (old) 2314 destroy_workqueue(wq); 2315 return 0; 2316 } 2317 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq); 2318