xref: /linux/fs/super.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbj�rn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/config.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/smp_lock.h>
28 #include <linux/acct.h>
29 #include <linux/blkdev.h>
30 #include <linux/quotaops.h>
31 #include <linux/namei.h>
32 #include <linux/buffer_head.h>		/* for fsync_super() */
33 #include <linux/mount.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/vfs.h>
37 #include <linux/writeback.h>		/* for the emergency remount stuff */
38 #include <linux/idr.h>
39 #include <linux/kobject.h>
40 #include <linux/mutex.h>
41 #include <asm/uaccess.h>
42 
43 
44 void get_filesystem(struct file_system_type *fs);
45 void put_filesystem(struct file_system_type *fs);
46 struct file_system_type *get_fs_type(const char *name);
47 
48 LIST_HEAD(super_blocks);
49 DEFINE_SPINLOCK(sb_lock);
50 
51 /**
52  *	alloc_super	-	create new superblock
53  *
54  *	Allocates and initializes a new &struct super_block.  alloc_super()
55  *	returns a pointer new superblock or %NULL if allocation had failed.
56  */
57 static struct super_block *alloc_super(void)
58 {
59 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
60 	static struct super_operations default_op;
61 
62 	if (s) {
63 		if (security_sb_alloc(s)) {
64 			kfree(s);
65 			s = NULL;
66 			goto out;
67 		}
68 		INIT_LIST_HEAD(&s->s_dirty);
69 		INIT_LIST_HEAD(&s->s_io);
70 		INIT_LIST_HEAD(&s->s_files);
71 		INIT_LIST_HEAD(&s->s_instances);
72 		INIT_HLIST_HEAD(&s->s_anon);
73 		INIT_LIST_HEAD(&s->s_inodes);
74 		init_rwsem(&s->s_umount);
75 		mutex_init(&s->s_lock);
76 		down_write(&s->s_umount);
77 		s->s_count = S_BIAS;
78 		atomic_set(&s->s_active, 1);
79 		mutex_init(&s->s_vfs_rename_mutex);
80 		mutex_init(&s->s_dquot.dqio_mutex);
81 		mutex_init(&s->s_dquot.dqonoff_mutex);
82 		init_rwsem(&s->s_dquot.dqptr_sem);
83 		init_waitqueue_head(&s->s_wait_unfrozen);
84 		s->s_maxbytes = MAX_NON_LFS;
85 		s->dq_op = sb_dquot_ops;
86 		s->s_qcop = sb_quotactl_ops;
87 		s->s_op = &default_op;
88 		s->s_time_gran = 1000000000;
89 	}
90 out:
91 	return s;
92 }
93 
94 /**
95  *	destroy_super	-	frees a superblock
96  *	@s: superblock to free
97  *
98  *	Frees a superblock.
99  */
100 static inline void destroy_super(struct super_block *s)
101 {
102 	security_sb_free(s);
103 	kfree(s);
104 }
105 
106 /* Superblock refcounting  */
107 
108 /*
109  * Drop a superblock's refcount.  Returns non-zero if the superblock was
110  * destroyed.  The caller must hold sb_lock.
111  */
112 int __put_super(struct super_block *sb)
113 {
114 	int ret = 0;
115 
116 	if (!--sb->s_count) {
117 		destroy_super(sb);
118 		ret = 1;
119 	}
120 	return ret;
121 }
122 
123 /*
124  * Drop a superblock's refcount.
125  * Returns non-zero if the superblock is about to be destroyed and
126  * at least is already removed from super_blocks list, so if we are
127  * making a loop through super blocks then we need to restart.
128  * The caller must hold sb_lock.
129  */
130 int __put_super_and_need_restart(struct super_block *sb)
131 {
132 	/* check for race with generic_shutdown_super() */
133 	if (list_empty(&sb->s_list)) {
134 		/* super block is removed, need to restart... */
135 		__put_super(sb);
136 		return 1;
137 	}
138 	/* can't be the last, since s_list is still in use */
139 	sb->s_count--;
140 	BUG_ON(sb->s_count == 0);
141 	return 0;
142 }
143 
144 /**
145  *	put_super	-	drop a temporary reference to superblock
146  *	@sb: superblock in question
147  *
148  *	Drops a temporary reference, frees superblock if there's no
149  *	references left.
150  */
151 static void put_super(struct super_block *sb)
152 {
153 	spin_lock(&sb_lock);
154 	__put_super(sb);
155 	spin_unlock(&sb_lock);
156 }
157 
158 
159 /**
160  *	deactivate_super	-	drop an active reference to superblock
161  *	@s: superblock to deactivate
162  *
163  *	Drops an active reference to superblock, acquiring a temprory one if
164  *	there is no active references left.  In that case we lock superblock,
165  *	tell fs driver to shut it down and drop the temporary reference we
166  *	had just acquired.
167  */
168 void deactivate_super(struct super_block *s)
169 {
170 	struct file_system_type *fs = s->s_type;
171 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
172 		s->s_count -= S_BIAS-1;
173 		spin_unlock(&sb_lock);
174 		DQUOT_OFF(s);
175 		down_write(&s->s_umount);
176 		fs->kill_sb(s);
177 		put_filesystem(fs);
178 		put_super(s);
179 	}
180 }
181 
182 EXPORT_SYMBOL(deactivate_super);
183 
184 /**
185  *	grab_super - acquire an active reference
186  *	@s: reference we are trying to make active
187  *
188  *	Tries to acquire an active reference.  grab_super() is used when we
189  * 	had just found a superblock in super_blocks or fs_type->fs_supers
190  *	and want to turn it into a full-blown active reference.  grab_super()
191  *	is called with sb_lock held and drops it.  Returns 1 in case of
192  *	success, 0 if we had failed (superblock contents was already dead or
193  *	dying when grab_super() had been called).
194  */
195 static int grab_super(struct super_block *s)
196 {
197 	s->s_count++;
198 	spin_unlock(&sb_lock);
199 	down_write(&s->s_umount);
200 	if (s->s_root) {
201 		spin_lock(&sb_lock);
202 		if (s->s_count > S_BIAS) {
203 			atomic_inc(&s->s_active);
204 			s->s_count--;
205 			spin_unlock(&sb_lock);
206 			return 1;
207 		}
208 		spin_unlock(&sb_lock);
209 	}
210 	up_write(&s->s_umount);
211 	put_super(s);
212 	yield();
213 	return 0;
214 }
215 
216 /**
217  *	generic_shutdown_super	-	common helper for ->kill_sb()
218  *	@sb: superblock to kill
219  *
220  *	generic_shutdown_super() does all fs-independent work on superblock
221  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
222  *	that need destruction out of superblock, call generic_shutdown_super()
223  *	and release aforementioned objects.  Note: dentries and inodes _are_
224  *	taken care of and do not need specific handling.
225  */
226 void generic_shutdown_super(struct super_block *sb)
227 {
228 	struct dentry *root = sb->s_root;
229 	struct super_operations *sop = sb->s_op;
230 
231 	if (root) {
232 		sb->s_root = NULL;
233 		shrink_dcache_parent(root);
234 		shrink_dcache_anon(&sb->s_anon);
235 		dput(root);
236 		fsync_super(sb);
237 		lock_super(sb);
238 		sb->s_flags &= ~MS_ACTIVE;
239 		/* bad name - it should be evict_inodes() */
240 		invalidate_inodes(sb);
241 		lock_kernel();
242 
243 		if (sop->write_super && sb->s_dirt)
244 			sop->write_super(sb);
245 		if (sop->put_super)
246 			sop->put_super(sb);
247 
248 		/* Forget any remaining inodes */
249 		if (invalidate_inodes(sb)) {
250 			printk("VFS: Busy inodes after unmount of %s. "
251 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
252 			   sb->s_id);
253 		}
254 
255 		unlock_kernel();
256 		unlock_super(sb);
257 	}
258 	spin_lock(&sb_lock);
259 	/* should be initialized for __put_super_and_need_restart() */
260 	list_del_init(&sb->s_list);
261 	list_del(&sb->s_instances);
262 	spin_unlock(&sb_lock);
263 	up_write(&sb->s_umount);
264 }
265 
266 EXPORT_SYMBOL(generic_shutdown_super);
267 
268 /**
269  *	sget	-	find or create a superblock
270  *	@type:	filesystem type superblock should belong to
271  *	@test:	comparison callback
272  *	@set:	setup callback
273  *	@data:	argument to each of them
274  */
275 struct super_block *sget(struct file_system_type *type,
276 			int (*test)(struct super_block *,void *),
277 			int (*set)(struct super_block *,void *),
278 			void *data)
279 {
280 	struct super_block *s = NULL;
281 	struct list_head *p;
282 	int err;
283 
284 retry:
285 	spin_lock(&sb_lock);
286 	if (test) list_for_each(p, &type->fs_supers) {
287 		struct super_block *old;
288 		old = list_entry(p, struct super_block, s_instances);
289 		if (!test(old, data))
290 			continue;
291 		if (!grab_super(old))
292 			goto retry;
293 		if (s)
294 			destroy_super(s);
295 		return old;
296 	}
297 	if (!s) {
298 		spin_unlock(&sb_lock);
299 		s = alloc_super();
300 		if (!s)
301 			return ERR_PTR(-ENOMEM);
302 		goto retry;
303 	}
304 
305 	err = set(s, data);
306 	if (err) {
307 		spin_unlock(&sb_lock);
308 		destroy_super(s);
309 		return ERR_PTR(err);
310 	}
311 	s->s_type = type;
312 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
313 	list_add_tail(&s->s_list, &super_blocks);
314 	list_add(&s->s_instances, &type->fs_supers);
315 	spin_unlock(&sb_lock);
316 	get_filesystem(type);
317 	return s;
318 }
319 
320 EXPORT_SYMBOL(sget);
321 
322 void drop_super(struct super_block *sb)
323 {
324 	up_read(&sb->s_umount);
325 	put_super(sb);
326 }
327 
328 EXPORT_SYMBOL(drop_super);
329 
330 static inline void write_super(struct super_block *sb)
331 {
332 	lock_super(sb);
333 	if (sb->s_root && sb->s_dirt)
334 		if (sb->s_op->write_super)
335 			sb->s_op->write_super(sb);
336 	unlock_super(sb);
337 }
338 
339 /*
340  * Note: check the dirty flag before waiting, so we don't
341  * hold up the sync while mounting a device. (The newly
342  * mounted device won't need syncing.)
343  */
344 void sync_supers(void)
345 {
346 	struct super_block *sb;
347 
348 	spin_lock(&sb_lock);
349 restart:
350 	list_for_each_entry(sb, &super_blocks, s_list) {
351 		if (sb->s_dirt) {
352 			sb->s_count++;
353 			spin_unlock(&sb_lock);
354 			down_read(&sb->s_umount);
355 			write_super(sb);
356 			up_read(&sb->s_umount);
357 			spin_lock(&sb_lock);
358 			if (__put_super_and_need_restart(sb))
359 				goto restart;
360 		}
361 	}
362 	spin_unlock(&sb_lock);
363 }
364 
365 /*
366  * Call the ->sync_fs super_op against all filesytems which are r/w and
367  * which implement it.
368  *
369  * This operation is careful to avoid the livelock which could easily happen
370  * if two or more filesystems are being continuously dirtied.  s_need_sync_fs
371  * is used only here.  We set it against all filesystems and then clear it as
372  * we sync them.  So redirtied filesystems are skipped.
373  *
374  * But if process A is currently running sync_filesytems and then process B
375  * calls sync_filesystems as well, process B will set all the s_need_sync_fs
376  * flags again, which will cause process A to resync everything.  Fix that with
377  * a local mutex.
378  *
379  * (Fabian) Avoid sync_fs with clean fs & wait mode 0
380  */
381 void sync_filesystems(int wait)
382 {
383 	struct super_block *sb;
384 	static DEFINE_MUTEX(mutex);
385 
386 	mutex_lock(&mutex);		/* Could be down_interruptible */
387 	spin_lock(&sb_lock);
388 	list_for_each_entry(sb, &super_blocks, s_list) {
389 		if (!sb->s_op->sync_fs)
390 			continue;
391 		if (sb->s_flags & MS_RDONLY)
392 			continue;
393 		sb->s_need_sync_fs = 1;
394 	}
395 
396 restart:
397 	list_for_each_entry(sb, &super_blocks, s_list) {
398 		if (!sb->s_need_sync_fs)
399 			continue;
400 		sb->s_need_sync_fs = 0;
401 		if (sb->s_flags & MS_RDONLY)
402 			continue;	/* hm.  Was remounted r/o meanwhile */
403 		sb->s_count++;
404 		spin_unlock(&sb_lock);
405 		down_read(&sb->s_umount);
406 		if (sb->s_root && (wait || sb->s_dirt))
407 			sb->s_op->sync_fs(sb, wait);
408 		up_read(&sb->s_umount);
409 		/* restart only when sb is no longer on the list */
410 		spin_lock(&sb_lock);
411 		if (__put_super_and_need_restart(sb))
412 			goto restart;
413 	}
414 	spin_unlock(&sb_lock);
415 	mutex_unlock(&mutex);
416 }
417 
418 /**
419  *	get_super - get the superblock of a device
420  *	@bdev: device to get the superblock for
421  *
422  *	Scans the superblock list and finds the superblock of the file system
423  *	mounted on the device given. %NULL is returned if no match is found.
424  */
425 
426 struct super_block * get_super(struct block_device *bdev)
427 {
428 	struct super_block *sb;
429 
430 	if (!bdev)
431 		return NULL;
432 
433 	spin_lock(&sb_lock);
434 rescan:
435 	list_for_each_entry(sb, &super_blocks, s_list) {
436 		if (sb->s_bdev == bdev) {
437 			sb->s_count++;
438 			spin_unlock(&sb_lock);
439 			down_read(&sb->s_umount);
440 			if (sb->s_root)
441 				return sb;
442 			up_read(&sb->s_umount);
443 			/* restart only when sb is no longer on the list */
444 			spin_lock(&sb_lock);
445 			if (__put_super_and_need_restart(sb))
446 				goto rescan;
447 		}
448 	}
449 	spin_unlock(&sb_lock);
450 	return NULL;
451 }
452 
453 EXPORT_SYMBOL(get_super);
454 
455 struct super_block * user_get_super(dev_t dev)
456 {
457 	struct super_block *sb;
458 
459 	spin_lock(&sb_lock);
460 rescan:
461 	list_for_each_entry(sb, &super_blocks, s_list) {
462 		if (sb->s_dev ==  dev) {
463 			sb->s_count++;
464 			spin_unlock(&sb_lock);
465 			down_read(&sb->s_umount);
466 			if (sb->s_root)
467 				return sb;
468 			up_read(&sb->s_umount);
469 			/* restart only when sb is no longer on the list */
470 			spin_lock(&sb_lock);
471 			if (__put_super_and_need_restart(sb))
472 				goto rescan;
473 		}
474 	}
475 	spin_unlock(&sb_lock);
476 	return NULL;
477 }
478 
479 asmlinkage long sys_ustat(unsigned dev, struct ustat __user * ubuf)
480 {
481         struct super_block *s;
482         struct ustat tmp;
483         struct kstatfs sbuf;
484 	int err = -EINVAL;
485 
486         s = user_get_super(new_decode_dev(dev));
487         if (s == NULL)
488                 goto out;
489 	err = vfs_statfs(s, &sbuf);
490 	drop_super(s);
491 	if (err)
492 		goto out;
493 
494         memset(&tmp,0,sizeof(struct ustat));
495         tmp.f_tfree = sbuf.f_bfree;
496         tmp.f_tinode = sbuf.f_ffree;
497 
498         err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
499 out:
500 	return err;
501 }
502 
503 /**
504  *	mark_files_ro
505  *	@sb: superblock in question
506  *
507  *	All files are marked read/only.  We don't care about pending
508  *	delete files so this should be used in 'force' mode only
509  */
510 
511 static void mark_files_ro(struct super_block *sb)
512 {
513 	struct file *f;
514 
515 	file_list_lock();
516 	list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
517 		if (S_ISREG(f->f_dentry->d_inode->i_mode) && file_count(f))
518 			f->f_mode &= ~FMODE_WRITE;
519 	}
520 	file_list_unlock();
521 }
522 
523 /**
524  *	do_remount_sb - asks filesystem to change mount options.
525  *	@sb:	superblock in question
526  *	@flags:	numeric part of options
527  *	@data:	the rest of options
528  *      @force: whether or not to force the change
529  *
530  *	Alters the mount options of a mounted file system.
531  */
532 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
533 {
534 	int retval;
535 
536 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
537 		return -EACCES;
538 	if (flags & MS_RDONLY)
539 		acct_auto_close(sb);
540 	shrink_dcache_sb(sb);
541 	fsync_super(sb);
542 
543 	/* If we are remounting RDONLY and current sb is read/write,
544 	   make sure there are no rw files opened */
545 	if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
546 		if (force)
547 			mark_files_ro(sb);
548 		else if (!fs_may_remount_ro(sb))
549 			return -EBUSY;
550 	}
551 
552 	if (sb->s_op->remount_fs) {
553 		lock_super(sb);
554 		retval = sb->s_op->remount_fs(sb, &flags, data);
555 		unlock_super(sb);
556 		if (retval)
557 			return retval;
558 	}
559 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
560 	return 0;
561 }
562 
563 static void do_emergency_remount(unsigned long foo)
564 {
565 	struct super_block *sb;
566 
567 	spin_lock(&sb_lock);
568 	list_for_each_entry(sb, &super_blocks, s_list) {
569 		sb->s_count++;
570 		spin_unlock(&sb_lock);
571 		down_read(&sb->s_umount);
572 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
573 			/*
574 			 * ->remount_fs needs lock_kernel().
575 			 *
576 			 * What lock protects sb->s_flags??
577 			 */
578 			lock_kernel();
579 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
580 			unlock_kernel();
581 		}
582 		drop_super(sb);
583 		spin_lock(&sb_lock);
584 	}
585 	spin_unlock(&sb_lock);
586 	printk("Emergency Remount complete\n");
587 }
588 
589 void emergency_remount(void)
590 {
591 	pdflush_operation(do_emergency_remount, 0);
592 }
593 
594 /*
595  * Unnamed block devices are dummy devices used by virtual
596  * filesystems which don't use real block-devices.  -- jrs
597  */
598 
599 static struct idr unnamed_dev_idr;
600 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
601 
602 int set_anon_super(struct super_block *s, void *data)
603 {
604 	int dev;
605 	int error;
606 
607  retry:
608 	if (idr_pre_get(&unnamed_dev_idr, GFP_ATOMIC) == 0)
609 		return -ENOMEM;
610 	spin_lock(&unnamed_dev_lock);
611 	error = idr_get_new(&unnamed_dev_idr, NULL, &dev);
612 	spin_unlock(&unnamed_dev_lock);
613 	if (error == -EAGAIN)
614 		/* We raced and lost with another CPU. */
615 		goto retry;
616 	else if (error)
617 		return -EAGAIN;
618 
619 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
620 		spin_lock(&unnamed_dev_lock);
621 		idr_remove(&unnamed_dev_idr, dev);
622 		spin_unlock(&unnamed_dev_lock);
623 		return -EMFILE;
624 	}
625 	s->s_dev = MKDEV(0, dev & MINORMASK);
626 	return 0;
627 }
628 
629 EXPORT_SYMBOL(set_anon_super);
630 
631 void kill_anon_super(struct super_block *sb)
632 {
633 	int slot = MINOR(sb->s_dev);
634 
635 	generic_shutdown_super(sb);
636 	spin_lock(&unnamed_dev_lock);
637 	idr_remove(&unnamed_dev_idr, slot);
638 	spin_unlock(&unnamed_dev_lock);
639 }
640 
641 EXPORT_SYMBOL(kill_anon_super);
642 
643 void __init unnamed_dev_init(void)
644 {
645 	idr_init(&unnamed_dev_idr);
646 }
647 
648 void kill_litter_super(struct super_block *sb)
649 {
650 	if (sb->s_root)
651 		d_genocide(sb->s_root);
652 	kill_anon_super(sb);
653 }
654 
655 EXPORT_SYMBOL(kill_litter_super);
656 
657 static int set_bdev_super(struct super_block *s, void *data)
658 {
659 	s->s_bdev = data;
660 	s->s_dev = s->s_bdev->bd_dev;
661 	return 0;
662 }
663 
664 static int test_bdev_super(struct super_block *s, void *data)
665 {
666 	return (void *)s->s_bdev == data;
667 }
668 
669 static void bdev_uevent(struct block_device *bdev, enum kobject_action action)
670 {
671 	if (bdev->bd_disk) {
672 		if (bdev->bd_part)
673 			kobject_uevent(&bdev->bd_part->kobj, action);
674 		else
675 			kobject_uevent(&bdev->bd_disk->kobj, action);
676 	}
677 }
678 
679 struct super_block *get_sb_bdev(struct file_system_type *fs_type,
680 	int flags, const char *dev_name, void *data,
681 	int (*fill_super)(struct super_block *, void *, int))
682 {
683 	struct block_device *bdev;
684 	struct super_block *s;
685 	int error = 0;
686 
687 	bdev = open_bdev_excl(dev_name, flags, fs_type);
688 	if (IS_ERR(bdev))
689 		return (struct super_block *)bdev;
690 
691 	/*
692 	 * once the super is inserted into the list by sget, s_umount
693 	 * will protect the lockfs code from trying to start a snapshot
694 	 * while we are mounting
695 	 */
696 	mutex_lock(&bdev->bd_mount_mutex);
697 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
698 	mutex_unlock(&bdev->bd_mount_mutex);
699 	if (IS_ERR(s))
700 		goto out;
701 
702 	if (s->s_root) {
703 		if ((flags ^ s->s_flags) & MS_RDONLY) {
704 			up_write(&s->s_umount);
705 			deactivate_super(s);
706 			s = ERR_PTR(-EBUSY);
707 		}
708 		goto out;
709 	} else {
710 		char b[BDEVNAME_SIZE];
711 
712 		s->s_flags = flags;
713 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
714 		sb_set_blocksize(s, block_size(bdev));
715 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
716 		if (error) {
717 			up_write(&s->s_umount);
718 			deactivate_super(s);
719 			s = ERR_PTR(error);
720 		} else {
721 			s->s_flags |= MS_ACTIVE;
722 			bdev_uevent(bdev, KOBJ_MOUNT);
723 		}
724 	}
725 
726 	return s;
727 
728 out:
729 	close_bdev_excl(bdev);
730 	return s;
731 }
732 
733 EXPORT_SYMBOL(get_sb_bdev);
734 
735 void kill_block_super(struct super_block *sb)
736 {
737 	struct block_device *bdev = sb->s_bdev;
738 
739 	bdev_uevent(bdev, KOBJ_UMOUNT);
740 	generic_shutdown_super(sb);
741 	sync_blockdev(bdev);
742 	close_bdev_excl(bdev);
743 }
744 
745 EXPORT_SYMBOL(kill_block_super);
746 
747 struct super_block *get_sb_nodev(struct file_system_type *fs_type,
748 	int flags, void *data,
749 	int (*fill_super)(struct super_block *, void *, int))
750 {
751 	int error;
752 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
753 
754 	if (IS_ERR(s))
755 		return s;
756 
757 	s->s_flags = flags;
758 
759 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
760 	if (error) {
761 		up_write(&s->s_umount);
762 		deactivate_super(s);
763 		return ERR_PTR(error);
764 	}
765 	s->s_flags |= MS_ACTIVE;
766 	return s;
767 }
768 
769 EXPORT_SYMBOL(get_sb_nodev);
770 
771 static int compare_single(struct super_block *s, void *p)
772 {
773 	return 1;
774 }
775 
776 struct super_block *get_sb_single(struct file_system_type *fs_type,
777 	int flags, void *data,
778 	int (*fill_super)(struct super_block *, void *, int))
779 {
780 	struct super_block *s;
781 	int error;
782 
783 	s = sget(fs_type, compare_single, set_anon_super, NULL);
784 	if (IS_ERR(s))
785 		return s;
786 	if (!s->s_root) {
787 		s->s_flags = flags;
788 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
789 		if (error) {
790 			up_write(&s->s_umount);
791 			deactivate_super(s);
792 			return ERR_PTR(error);
793 		}
794 		s->s_flags |= MS_ACTIVE;
795 	}
796 	do_remount_sb(s, flags, data, 0);
797 	return s;
798 }
799 
800 EXPORT_SYMBOL(get_sb_single);
801 
802 struct vfsmount *
803 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
804 {
805 	struct file_system_type *type = get_fs_type(fstype);
806 	struct super_block *sb = ERR_PTR(-ENOMEM);
807 	struct vfsmount *mnt;
808 	int error;
809 	char *secdata = NULL;
810 
811 	if (!type)
812 		return ERR_PTR(-ENODEV);
813 
814 	mnt = alloc_vfsmnt(name);
815 	if (!mnt)
816 		goto out;
817 
818 	if (data) {
819 		secdata = alloc_secdata();
820 		if (!secdata) {
821 			sb = ERR_PTR(-ENOMEM);
822 			goto out_mnt;
823 		}
824 
825 		error = security_sb_copy_data(type, data, secdata);
826 		if (error) {
827 			sb = ERR_PTR(error);
828 			goto out_free_secdata;
829 		}
830 	}
831 
832 	sb = type->get_sb(type, flags, name, data);
833 	if (IS_ERR(sb))
834 		goto out_free_secdata;
835  	error = security_sb_kern_mount(sb, secdata);
836  	if (error)
837  		goto out_sb;
838 	mnt->mnt_sb = sb;
839 	mnt->mnt_root = dget(sb->s_root);
840 	mnt->mnt_mountpoint = sb->s_root;
841 	mnt->mnt_parent = mnt;
842 	up_write(&sb->s_umount);
843 	free_secdata(secdata);
844 	put_filesystem(type);
845 	return mnt;
846 out_sb:
847 	up_write(&sb->s_umount);
848 	deactivate_super(sb);
849 	sb = ERR_PTR(error);
850 out_free_secdata:
851 	free_secdata(secdata);
852 out_mnt:
853 	free_vfsmnt(mnt);
854 out:
855 	put_filesystem(type);
856 	return (struct vfsmount *)sb;
857 }
858 
859 EXPORT_SYMBOL_GPL(do_kern_mount);
860 
861 struct vfsmount *kern_mount(struct file_system_type *type)
862 {
863 	return do_kern_mount(type->name, 0, type->name, NULL);
864 }
865 
866 EXPORT_SYMBOL(kern_mount);
867