1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 static inline void __super_lock(struct super_block *sb, bool excl) 54 { 55 if (excl) 56 down_write(&sb->s_umount); 57 else 58 down_read(&sb->s_umount); 59 } 60 61 static inline void super_unlock(struct super_block *sb, bool excl) 62 { 63 if (excl) 64 up_write(&sb->s_umount); 65 else 66 up_read(&sb->s_umount); 67 } 68 69 static inline void __super_lock_excl(struct super_block *sb) 70 { 71 __super_lock(sb, true); 72 } 73 74 static inline void super_unlock_excl(struct super_block *sb) 75 { 76 super_unlock(sb, true); 77 } 78 79 static inline void super_unlock_shared(struct super_block *sb) 80 { 81 super_unlock(sb, false); 82 } 83 84 static bool super_flags(const struct super_block *sb, unsigned int flags) 85 { 86 /* 87 * Pairs with smp_store_release() in super_wake() and ensures 88 * that we see @flags after we're woken. 89 */ 90 return smp_load_acquire(&sb->s_flags) & flags; 91 } 92 93 /** 94 * super_lock - wait for superblock to become ready and lock it 95 * @sb: superblock to wait for 96 * @excl: whether exclusive access is required 97 * 98 * If the superblock has neither passed through vfs_get_tree() or 99 * generic_shutdown_super() yet wait for it to happen. Either superblock 100 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're 101 * woken and we'll see SB_DYING. 102 * 103 * The caller must have acquired a temporary reference on @sb->s_count. 104 * 105 * Return: The function returns true if SB_BORN was set and with 106 * s_umount held. The function returns false if SB_DYING was 107 * set and without s_umount held. 108 */ 109 static __must_check bool super_lock(struct super_block *sb, bool excl) 110 { 111 lockdep_assert_not_held(&sb->s_umount); 112 113 /* wait until the superblock is ready or dying */ 114 wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING)); 115 116 /* Don't pointlessly acquire s_umount. */ 117 if (super_flags(sb, SB_DYING)) 118 return false; 119 120 __super_lock(sb, excl); 121 122 /* 123 * Has gone through generic_shutdown_super() in the meantime. 124 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to 125 * grab a reference to this. Tell them so. 126 */ 127 if (sb->s_flags & SB_DYING) { 128 super_unlock(sb, excl); 129 return false; 130 } 131 132 WARN_ON_ONCE(!(sb->s_flags & SB_BORN)); 133 return true; 134 } 135 136 /* wait and try to acquire read-side of @sb->s_umount */ 137 static inline bool super_lock_shared(struct super_block *sb) 138 { 139 return super_lock(sb, false); 140 } 141 142 /* wait and try to acquire write-side of @sb->s_umount */ 143 static inline bool super_lock_excl(struct super_block *sb) 144 { 145 return super_lock(sb, true); 146 } 147 148 /* wake waiters */ 149 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD) 150 static void super_wake(struct super_block *sb, unsigned int flag) 151 { 152 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS)); 153 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1); 154 155 /* 156 * Pairs with smp_load_acquire() in super_lock() to make sure 157 * all initializations in the superblock are seen by the user 158 * seeing SB_BORN sent. 159 */ 160 smp_store_release(&sb->s_flags, sb->s_flags | flag); 161 /* 162 * Pairs with the barrier in prepare_to_wait_event() to make sure 163 * ___wait_var_event() either sees SB_BORN set or 164 * waitqueue_active() check in wake_up_var() sees the waiter. 165 */ 166 smp_mb(); 167 wake_up_var(&sb->s_flags); 168 } 169 170 /* 171 * One thing we have to be careful of with a per-sb shrinker is that we don't 172 * drop the last active reference to the superblock from within the shrinker. 173 * If that happens we could trigger unregistering the shrinker from within the 174 * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we 175 * take a passive reference to the superblock to avoid this from occurring. 176 */ 177 static unsigned long super_cache_scan(struct shrinker *shrink, 178 struct shrink_control *sc) 179 { 180 struct super_block *sb; 181 long fs_objects = 0; 182 long total_objects; 183 long freed = 0; 184 long dentries; 185 long inodes; 186 187 sb = shrink->private_data; 188 189 /* 190 * Deadlock avoidance. We may hold various FS locks, and we don't want 191 * to recurse into the FS that called us in clear_inode() and friends.. 192 */ 193 if (!(sc->gfp_mask & __GFP_FS)) 194 return SHRINK_STOP; 195 196 if (!super_trylock_shared(sb)) 197 return SHRINK_STOP; 198 199 if (sb->s_op->nr_cached_objects) 200 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 201 202 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 203 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 204 total_objects = dentries + inodes + fs_objects + 1; 205 if (!total_objects) 206 total_objects = 1; 207 208 /* proportion the scan between the caches */ 209 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 210 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 211 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 212 213 /* 214 * prune the dcache first as the icache is pinned by it, then 215 * prune the icache, followed by the filesystem specific caches 216 * 217 * Ensure that we always scan at least one object - memcg kmem 218 * accounting uses this to fully empty the caches. 219 */ 220 sc->nr_to_scan = dentries + 1; 221 freed = prune_dcache_sb(sb, sc); 222 sc->nr_to_scan = inodes + 1; 223 freed += prune_icache_sb(sb, sc); 224 225 if (fs_objects) { 226 sc->nr_to_scan = fs_objects + 1; 227 freed += sb->s_op->free_cached_objects(sb, sc); 228 } 229 230 super_unlock_shared(sb); 231 return freed; 232 } 233 234 static unsigned long super_cache_count(struct shrinker *shrink, 235 struct shrink_control *sc) 236 { 237 struct super_block *sb; 238 long total_objects = 0; 239 240 sb = shrink->private_data; 241 242 /* 243 * We don't call super_trylock_shared() here as it is a scalability 244 * bottleneck, so we're exposed to partial setup state. The shrinker 245 * rwsem does not protect filesystem operations backing 246 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can 247 * change between super_cache_count and super_cache_scan, so we really 248 * don't need locks here. 249 * 250 * However, if we are currently mounting the superblock, the underlying 251 * filesystem might be in a state of partial construction and hence it 252 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check 253 * to avoid this situation, so do the same here. The memory barrier is 254 * matched with the one in mount_fs() as we don't hold locks here. 255 */ 256 if (!(sb->s_flags & SB_BORN)) 257 return 0; 258 smp_rmb(); 259 260 if (sb->s_op && sb->s_op->nr_cached_objects) 261 total_objects = sb->s_op->nr_cached_objects(sb, sc); 262 263 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 264 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 265 266 if (!total_objects) 267 return SHRINK_EMPTY; 268 269 total_objects = vfs_pressure_ratio(total_objects); 270 return total_objects; 271 } 272 273 static void destroy_super_work(struct work_struct *work) 274 { 275 struct super_block *s = container_of(work, struct super_block, 276 destroy_work); 277 security_sb_free(s); 278 put_user_ns(s->s_user_ns); 279 kfree(s->s_subtype); 280 for (int i = 0; i < SB_FREEZE_LEVELS; i++) 281 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 282 kfree(s); 283 } 284 285 static void destroy_super_rcu(struct rcu_head *head) 286 { 287 struct super_block *s = container_of(head, struct super_block, rcu); 288 INIT_WORK(&s->destroy_work, destroy_super_work); 289 schedule_work(&s->destroy_work); 290 } 291 292 /* Free a superblock that has never been seen by anyone */ 293 static void destroy_unused_super(struct super_block *s) 294 { 295 if (!s) 296 return; 297 super_unlock_excl(s); 298 list_lru_destroy(&s->s_dentry_lru); 299 list_lru_destroy(&s->s_inode_lru); 300 shrinker_free(s->s_shrink); 301 /* no delays needed */ 302 destroy_super_work(&s->destroy_work); 303 } 304 305 /** 306 * alloc_super - create new superblock 307 * @type: filesystem type superblock should belong to 308 * @flags: the mount flags 309 * @user_ns: User namespace for the super_block 310 * 311 * Allocates and initializes a new &struct super_block. alloc_super() 312 * returns a pointer new superblock or %NULL if allocation had failed. 313 */ 314 static struct super_block *alloc_super(struct file_system_type *type, int flags, 315 struct user_namespace *user_ns) 316 { 317 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL); 318 static const struct super_operations default_op; 319 int i; 320 321 if (!s) 322 return NULL; 323 324 INIT_LIST_HEAD(&s->s_mounts); 325 s->s_user_ns = get_user_ns(user_ns); 326 init_rwsem(&s->s_umount); 327 lockdep_set_class(&s->s_umount, &type->s_umount_key); 328 /* 329 * sget() can have s_umount recursion. 330 * 331 * When it cannot find a suitable sb, it allocates a new 332 * one (this one), and tries again to find a suitable old 333 * one. 334 * 335 * In case that succeeds, it will acquire the s_umount 336 * lock of the old one. Since these are clearly distrinct 337 * locks, and this object isn't exposed yet, there's no 338 * risk of deadlocks. 339 * 340 * Annotate this by putting this lock in a different 341 * subclass. 342 */ 343 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 344 345 if (security_sb_alloc(s)) 346 goto fail; 347 348 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 349 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 350 sb_writers_name[i], 351 &type->s_writers_key[i])) 352 goto fail; 353 } 354 s->s_bdi = &noop_backing_dev_info; 355 s->s_flags = flags; 356 if (s->s_user_ns != &init_user_ns) 357 s->s_iflags |= SB_I_NODEV; 358 INIT_HLIST_NODE(&s->s_instances); 359 INIT_HLIST_BL_HEAD(&s->s_roots); 360 mutex_init(&s->s_sync_lock); 361 INIT_LIST_HEAD(&s->s_inodes); 362 spin_lock_init(&s->s_inode_list_lock); 363 INIT_LIST_HEAD(&s->s_inodes_wb); 364 spin_lock_init(&s->s_inode_wblist_lock); 365 366 s->s_count = 1; 367 atomic_set(&s->s_active, 1); 368 mutex_init(&s->s_vfs_rename_mutex); 369 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 370 init_rwsem(&s->s_dquot.dqio_sem); 371 s->s_maxbytes = MAX_NON_LFS; 372 s->s_op = &default_op; 373 s->s_time_gran = 1000000000; 374 s->s_time_min = TIME64_MIN; 375 s->s_time_max = TIME64_MAX; 376 377 s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, 378 "sb-%s", type->name); 379 if (!s->s_shrink) 380 goto fail; 381 382 s->s_shrink->scan_objects = super_cache_scan; 383 s->s_shrink->count_objects = super_cache_count; 384 s->s_shrink->batch = 1024; 385 s->s_shrink->private_data = s; 386 387 if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink)) 388 goto fail; 389 if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink)) 390 goto fail; 391 return s; 392 393 fail: 394 destroy_unused_super(s); 395 return NULL; 396 } 397 398 /* Superblock refcounting */ 399 400 /* 401 * Drop a superblock's refcount. The caller must hold sb_lock. 402 */ 403 static void __put_super(struct super_block *s) 404 { 405 if (!--s->s_count) { 406 list_del_init(&s->s_list); 407 WARN_ON(s->s_dentry_lru.node); 408 WARN_ON(s->s_inode_lru.node); 409 WARN_ON(!list_empty(&s->s_mounts)); 410 call_rcu(&s->rcu, destroy_super_rcu); 411 } 412 } 413 414 /** 415 * put_super - drop a temporary reference to superblock 416 * @sb: superblock in question 417 * 418 * Drops a temporary reference, frees superblock if there's no 419 * references left. 420 */ 421 void put_super(struct super_block *sb) 422 { 423 spin_lock(&sb_lock); 424 __put_super(sb); 425 spin_unlock(&sb_lock); 426 } 427 428 static void kill_super_notify(struct super_block *sb) 429 { 430 lockdep_assert_not_held(&sb->s_umount); 431 432 /* already notified earlier */ 433 if (sb->s_flags & SB_DEAD) 434 return; 435 436 /* 437 * Remove it from @fs_supers so it isn't found by new 438 * sget{_fc}() walkers anymore. Any concurrent mounter still 439 * managing to grab a temporary reference is guaranteed to 440 * already see SB_DYING and will wait until we notify them about 441 * SB_DEAD. 442 */ 443 spin_lock(&sb_lock); 444 hlist_del_init(&sb->s_instances); 445 spin_unlock(&sb_lock); 446 447 /* 448 * Let concurrent mounts know that this thing is really dead. 449 * We don't need @sb->s_umount here as every concurrent caller 450 * will see SB_DYING and either discard the superblock or wait 451 * for SB_DEAD. 452 */ 453 super_wake(sb, SB_DEAD); 454 } 455 456 /** 457 * deactivate_locked_super - drop an active reference to superblock 458 * @s: superblock to deactivate 459 * 460 * Drops an active reference to superblock, converting it into a temporary 461 * one if there is no other active references left. In that case we 462 * tell fs driver to shut it down and drop the temporary reference we 463 * had just acquired. 464 * 465 * Caller holds exclusive lock on superblock; that lock is released. 466 */ 467 void deactivate_locked_super(struct super_block *s) 468 { 469 struct file_system_type *fs = s->s_type; 470 if (atomic_dec_and_test(&s->s_active)) { 471 shrinker_free(s->s_shrink); 472 fs->kill_sb(s); 473 474 kill_super_notify(s); 475 476 /* 477 * Since list_lru_destroy() may sleep, we cannot call it from 478 * put_super(), where we hold the sb_lock. Therefore we destroy 479 * the lru lists right now. 480 */ 481 list_lru_destroy(&s->s_dentry_lru); 482 list_lru_destroy(&s->s_inode_lru); 483 484 put_filesystem(fs); 485 put_super(s); 486 } else { 487 super_unlock_excl(s); 488 } 489 } 490 491 EXPORT_SYMBOL(deactivate_locked_super); 492 493 /** 494 * deactivate_super - drop an active reference to superblock 495 * @s: superblock to deactivate 496 * 497 * Variant of deactivate_locked_super(), except that superblock is *not* 498 * locked by caller. If we are going to drop the final active reference, 499 * lock will be acquired prior to that. 500 */ 501 void deactivate_super(struct super_block *s) 502 { 503 if (!atomic_add_unless(&s->s_active, -1, 1)) { 504 __super_lock_excl(s); 505 deactivate_locked_super(s); 506 } 507 } 508 509 EXPORT_SYMBOL(deactivate_super); 510 511 /** 512 * grab_super - acquire an active reference to a superblock 513 * @sb: superblock to acquire 514 * 515 * Acquire a temporary reference on a superblock and try to trade it for 516 * an active reference. This is used in sget{_fc}() to wait for a 517 * superblock to either become SB_BORN or for it to pass through 518 * sb->kill() and be marked as SB_DEAD. 519 * 520 * Return: This returns true if an active reference could be acquired, 521 * false if not. 522 */ 523 static bool grab_super(struct super_block *sb) 524 { 525 bool locked; 526 527 sb->s_count++; 528 spin_unlock(&sb_lock); 529 locked = super_lock_excl(sb); 530 if (locked) { 531 if (atomic_inc_not_zero(&sb->s_active)) { 532 put_super(sb); 533 return true; 534 } 535 super_unlock_excl(sb); 536 } 537 wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD)); 538 put_super(sb); 539 return false; 540 } 541 542 /* 543 * super_trylock_shared - try to grab ->s_umount shared 544 * @sb: reference we are trying to grab 545 * 546 * Try to prevent fs shutdown. This is used in places where we 547 * cannot take an active reference but we need to ensure that the 548 * filesystem is not shut down while we are working on it. It returns 549 * false if we cannot acquire s_umount or if we lose the race and 550 * filesystem already got into shutdown, and returns true with the s_umount 551 * lock held in read mode in case of success. On successful return, 552 * the caller must drop the s_umount lock when done. 553 * 554 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 555 * The reason why it's safe is that we are OK with doing trylock instead 556 * of down_read(). There's a couple of places that are OK with that, but 557 * it's very much not a general-purpose interface. 558 */ 559 bool super_trylock_shared(struct super_block *sb) 560 { 561 if (down_read_trylock(&sb->s_umount)) { 562 if (!(sb->s_flags & SB_DYING) && sb->s_root && 563 (sb->s_flags & SB_BORN)) 564 return true; 565 super_unlock_shared(sb); 566 } 567 568 return false; 569 } 570 571 /** 572 * retire_super - prevents superblock from being reused 573 * @sb: superblock to retire 574 * 575 * The function marks superblock to be ignored in superblock test, which 576 * prevents it from being reused for any new mounts. If the superblock has 577 * a private bdi, it also unregisters it, but doesn't reduce the refcount 578 * of the superblock to prevent potential races. The refcount is reduced 579 * by generic_shutdown_super(). The function can not be called 580 * concurrently with generic_shutdown_super(). It is safe to call the 581 * function multiple times, subsequent calls have no effect. 582 * 583 * The marker will affect the re-use only for block-device-based 584 * superblocks. Other superblocks will still get marked if this function 585 * is used, but that will not affect their reusability. 586 */ 587 void retire_super(struct super_block *sb) 588 { 589 WARN_ON(!sb->s_bdev); 590 __super_lock_excl(sb); 591 if (sb->s_iflags & SB_I_PERSB_BDI) { 592 bdi_unregister(sb->s_bdi); 593 sb->s_iflags &= ~SB_I_PERSB_BDI; 594 } 595 sb->s_iflags |= SB_I_RETIRED; 596 super_unlock_excl(sb); 597 } 598 EXPORT_SYMBOL(retire_super); 599 600 /** 601 * generic_shutdown_super - common helper for ->kill_sb() 602 * @sb: superblock to kill 603 * 604 * generic_shutdown_super() does all fs-independent work on superblock 605 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 606 * that need destruction out of superblock, call generic_shutdown_super() 607 * and release aforementioned objects. Note: dentries and inodes _are_ 608 * taken care of and do not need specific handling. 609 * 610 * Upon calling this function, the filesystem may no longer alter or 611 * rearrange the set of dentries belonging to this super_block, nor may it 612 * change the attachments of dentries to inodes. 613 */ 614 void generic_shutdown_super(struct super_block *sb) 615 { 616 const struct super_operations *sop = sb->s_op; 617 618 if (sb->s_root) { 619 shrink_dcache_for_umount(sb); 620 sync_filesystem(sb); 621 sb->s_flags &= ~SB_ACTIVE; 622 623 cgroup_writeback_umount(); 624 625 /* Evict all inodes with zero refcount. */ 626 evict_inodes(sb); 627 628 /* 629 * Clean up and evict any inodes that still have references due 630 * to fsnotify or the security policy. 631 */ 632 fsnotify_sb_delete(sb); 633 security_sb_delete(sb); 634 635 if (sb->s_dio_done_wq) { 636 destroy_workqueue(sb->s_dio_done_wq); 637 sb->s_dio_done_wq = NULL; 638 } 639 640 if (sop->put_super) 641 sop->put_super(sb); 642 643 /* 644 * Now that all potentially-encrypted inodes have been evicted, 645 * the fscrypt keyring can be destroyed. 646 */ 647 fscrypt_destroy_keyring(sb); 648 649 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), 650 "VFS: Busy inodes after unmount of %s (%s)", 651 sb->s_id, sb->s_type->name)) { 652 /* 653 * Adding a proper bailout path here would be hard, but 654 * we can at least make it more likely that a later 655 * iput_final() or such crashes cleanly. 656 */ 657 struct inode *inode; 658 659 spin_lock(&sb->s_inode_list_lock); 660 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 661 inode->i_op = VFS_PTR_POISON; 662 inode->i_sb = VFS_PTR_POISON; 663 inode->i_mapping = VFS_PTR_POISON; 664 } 665 spin_unlock(&sb->s_inode_list_lock); 666 } 667 } 668 /* 669 * Broadcast to everyone that grabbed a temporary reference to this 670 * superblock before we removed it from @fs_supers that the superblock 671 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now 672 * discard this superblock and treat it as dead. 673 * 674 * We leave the superblock on @fs_supers so it can be found by 675 * sget{_fc}() until we passed sb->kill_sb(). 676 */ 677 super_wake(sb, SB_DYING); 678 super_unlock_excl(sb); 679 if (sb->s_bdi != &noop_backing_dev_info) { 680 if (sb->s_iflags & SB_I_PERSB_BDI) 681 bdi_unregister(sb->s_bdi); 682 bdi_put(sb->s_bdi); 683 sb->s_bdi = &noop_backing_dev_info; 684 } 685 } 686 687 EXPORT_SYMBOL(generic_shutdown_super); 688 689 bool mount_capable(struct fs_context *fc) 690 { 691 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 692 return capable(CAP_SYS_ADMIN); 693 else 694 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 695 } 696 697 /** 698 * sget_fc - Find or create a superblock 699 * @fc: Filesystem context. 700 * @test: Comparison callback 701 * @set: Setup callback 702 * 703 * Create a new superblock or find an existing one. 704 * 705 * The @test callback is used to find a matching existing superblock. 706 * Whether or not the requested parameters in @fc are taken into account 707 * is specific to the @test callback that is used. They may even be 708 * completely ignored. 709 * 710 * If an extant superblock is matched, it will be returned unless: 711 * 712 * (1) the namespace the filesystem context @fc and the extant 713 * superblock's namespace differ 714 * 715 * (2) the filesystem context @fc has requested that reusing an extant 716 * superblock is not allowed 717 * 718 * In both cases EBUSY will be returned. 719 * 720 * If no match is made, a new superblock will be allocated and basic 721 * initialisation will be performed (s_type, s_fs_info and s_id will be 722 * set and the @set callback will be invoked), the superblock will be 723 * published and it will be returned in a partially constructed state 724 * with SB_BORN and SB_ACTIVE as yet unset. 725 * 726 * Return: On success, an extant or newly created superblock is 727 * returned. On failure an error pointer is returned. 728 */ 729 struct super_block *sget_fc(struct fs_context *fc, 730 int (*test)(struct super_block *, struct fs_context *), 731 int (*set)(struct super_block *, struct fs_context *)) 732 { 733 struct super_block *s = NULL; 734 struct super_block *old; 735 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 736 int err; 737 738 retry: 739 spin_lock(&sb_lock); 740 if (test) { 741 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 742 if (test(old, fc)) 743 goto share_extant_sb; 744 } 745 } 746 if (!s) { 747 spin_unlock(&sb_lock); 748 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 749 if (!s) 750 return ERR_PTR(-ENOMEM); 751 goto retry; 752 } 753 754 s->s_fs_info = fc->s_fs_info; 755 err = set(s, fc); 756 if (err) { 757 s->s_fs_info = NULL; 758 spin_unlock(&sb_lock); 759 destroy_unused_super(s); 760 return ERR_PTR(err); 761 } 762 fc->s_fs_info = NULL; 763 s->s_type = fc->fs_type; 764 s->s_iflags |= fc->s_iflags; 765 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 766 /* 767 * Make the superblock visible on @super_blocks and @fs_supers. 768 * It's in a nascent state and users should wait on SB_BORN or 769 * SB_DYING to be set. 770 */ 771 list_add_tail(&s->s_list, &super_blocks); 772 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 773 spin_unlock(&sb_lock); 774 get_filesystem(s->s_type); 775 shrinker_register(s->s_shrink); 776 return s; 777 778 share_extant_sb: 779 if (user_ns != old->s_user_ns || fc->exclusive) { 780 spin_unlock(&sb_lock); 781 destroy_unused_super(s); 782 if (fc->exclusive) 783 warnfc(fc, "reusing existing filesystem not allowed"); 784 else 785 warnfc(fc, "reusing existing filesystem in another namespace not allowed"); 786 return ERR_PTR(-EBUSY); 787 } 788 if (!grab_super(old)) 789 goto retry; 790 destroy_unused_super(s); 791 return old; 792 } 793 EXPORT_SYMBOL(sget_fc); 794 795 /** 796 * sget - find or create a superblock 797 * @type: filesystem type superblock should belong to 798 * @test: comparison callback 799 * @set: setup callback 800 * @flags: mount flags 801 * @data: argument to each of them 802 */ 803 struct super_block *sget(struct file_system_type *type, 804 int (*test)(struct super_block *,void *), 805 int (*set)(struct super_block *,void *), 806 int flags, 807 void *data) 808 { 809 struct user_namespace *user_ns = current_user_ns(); 810 struct super_block *s = NULL; 811 struct super_block *old; 812 int err; 813 814 /* We don't yet pass the user namespace of the parent 815 * mount through to here so always use &init_user_ns 816 * until that changes. 817 */ 818 if (flags & SB_SUBMOUNT) 819 user_ns = &init_user_ns; 820 821 retry: 822 spin_lock(&sb_lock); 823 if (test) { 824 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 825 if (!test(old, data)) 826 continue; 827 if (user_ns != old->s_user_ns) { 828 spin_unlock(&sb_lock); 829 destroy_unused_super(s); 830 return ERR_PTR(-EBUSY); 831 } 832 if (!grab_super(old)) 833 goto retry; 834 destroy_unused_super(s); 835 return old; 836 } 837 } 838 if (!s) { 839 spin_unlock(&sb_lock); 840 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 841 if (!s) 842 return ERR_PTR(-ENOMEM); 843 goto retry; 844 } 845 846 err = set(s, data); 847 if (err) { 848 spin_unlock(&sb_lock); 849 destroy_unused_super(s); 850 return ERR_PTR(err); 851 } 852 s->s_type = type; 853 strscpy(s->s_id, type->name, sizeof(s->s_id)); 854 list_add_tail(&s->s_list, &super_blocks); 855 hlist_add_head(&s->s_instances, &type->fs_supers); 856 spin_unlock(&sb_lock); 857 get_filesystem(type); 858 shrinker_register(s->s_shrink); 859 return s; 860 } 861 EXPORT_SYMBOL(sget); 862 863 void drop_super(struct super_block *sb) 864 { 865 super_unlock_shared(sb); 866 put_super(sb); 867 } 868 869 EXPORT_SYMBOL(drop_super); 870 871 void drop_super_exclusive(struct super_block *sb) 872 { 873 super_unlock_excl(sb); 874 put_super(sb); 875 } 876 EXPORT_SYMBOL(drop_super_exclusive); 877 878 static void __iterate_supers(void (*f)(struct super_block *)) 879 { 880 struct super_block *sb, *p = NULL; 881 882 spin_lock(&sb_lock); 883 list_for_each_entry(sb, &super_blocks, s_list) { 884 if (super_flags(sb, SB_DYING)) 885 continue; 886 sb->s_count++; 887 spin_unlock(&sb_lock); 888 889 f(sb); 890 891 spin_lock(&sb_lock); 892 if (p) 893 __put_super(p); 894 p = sb; 895 } 896 if (p) 897 __put_super(p); 898 spin_unlock(&sb_lock); 899 } 900 /** 901 * iterate_supers - call function for all active superblocks 902 * @f: function to call 903 * @arg: argument to pass to it 904 * 905 * Scans the superblock list and calls given function, passing it 906 * locked superblock and given argument. 907 */ 908 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 909 { 910 struct super_block *sb, *p = NULL; 911 912 spin_lock(&sb_lock); 913 list_for_each_entry(sb, &super_blocks, s_list) { 914 bool locked; 915 916 sb->s_count++; 917 spin_unlock(&sb_lock); 918 919 locked = super_lock_shared(sb); 920 if (locked) { 921 if (sb->s_root) 922 f(sb, arg); 923 super_unlock_shared(sb); 924 } 925 926 spin_lock(&sb_lock); 927 if (p) 928 __put_super(p); 929 p = sb; 930 } 931 if (p) 932 __put_super(p); 933 spin_unlock(&sb_lock); 934 } 935 936 /** 937 * iterate_supers_type - call function for superblocks of given type 938 * @type: fs type 939 * @f: function to call 940 * @arg: argument to pass to it 941 * 942 * Scans the superblock list and calls given function, passing it 943 * locked superblock and given argument. 944 */ 945 void iterate_supers_type(struct file_system_type *type, 946 void (*f)(struct super_block *, void *), void *arg) 947 { 948 struct super_block *sb, *p = NULL; 949 950 spin_lock(&sb_lock); 951 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 952 bool locked; 953 954 sb->s_count++; 955 spin_unlock(&sb_lock); 956 957 locked = super_lock_shared(sb); 958 if (locked) { 959 if (sb->s_root) 960 f(sb, arg); 961 super_unlock_shared(sb); 962 } 963 964 spin_lock(&sb_lock); 965 if (p) 966 __put_super(p); 967 p = sb; 968 } 969 if (p) 970 __put_super(p); 971 spin_unlock(&sb_lock); 972 } 973 974 EXPORT_SYMBOL(iterate_supers_type); 975 976 struct super_block *user_get_super(dev_t dev, bool excl) 977 { 978 struct super_block *sb; 979 980 spin_lock(&sb_lock); 981 list_for_each_entry(sb, &super_blocks, s_list) { 982 if (sb->s_dev == dev) { 983 bool locked; 984 985 sb->s_count++; 986 spin_unlock(&sb_lock); 987 /* still alive? */ 988 locked = super_lock(sb, excl); 989 if (locked) { 990 if (sb->s_root) 991 return sb; 992 super_unlock(sb, excl); 993 } 994 /* nope, got unmounted */ 995 spin_lock(&sb_lock); 996 __put_super(sb); 997 break; 998 } 999 } 1000 spin_unlock(&sb_lock); 1001 return NULL; 1002 } 1003 1004 /** 1005 * reconfigure_super - asks filesystem to change superblock parameters 1006 * @fc: The superblock and configuration 1007 * 1008 * Alters the configuration parameters of a live superblock. 1009 */ 1010 int reconfigure_super(struct fs_context *fc) 1011 { 1012 struct super_block *sb = fc->root->d_sb; 1013 int retval; 1014 bool remount_ro = false; 1015 bool remount_rw = false; 1016 bool force = fc->sb_flags & SB_FORCE; 1017 1018 if (fc->sb_flags_mask & ~MS_RMT_MASK) 1019 return -EINVAL; 1020 if (sb->s_writers.frozen != SB_UNFROZEN) 1021 return -EBUSY; 1022 1023 retval = security_sb_remount(sb, fc->security); 1024 if (retval) 1025 return retval; 1026 1027 if (fc->sb_flags_mask & SB_RDONLY) { 1028 #ifdef CONFIG_BLOCK 1029 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 1030 bdev_read_only(sb->s_bdev)) 1031 return -EACCES; 1032 #endif 1033 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb); 1034 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 1035 } 1036 1037 if (remount_ro) { 1038 if (!hlist_empty(&sb->s_pins)) { 1039 super_unlock_excl(sb); 1040 group_pin_kill(&sb->s_pins); 1041 __super_lock_excl(sb); 1042 if (!sb->s_root) 1043 return 0; 1044 if (sb->s_writers.frozen != SB_UNFROZEN) 1045 return -EBUSY; 1046 remount_ro = !sb_rdonly(sb); 1047 } 1048 } 1049 shrink_dcache_sb(sb); 1050 1051 /* If we are reconfiguring to RDONLY and current sb is read/write, 1052 * make sure there are no files open for writing. 1053 */ 1054 if (remount_ro) { 1055 if (force) { 1056 sb_start_ro_state_change(sb); 1057 } else { 1058 retval = sb_prepare_remount_readonly(sb); 1059 if (retval) 1060 return retval; 1061 } 1062 } else if (remount_rw) { 1063 /* 1064 * Protect filesystem's reconfigure code from writes from 1065 * userspace until reconfigure finishes. 1066 */ 1067 sb_start_ro_state_change(sb); 1068 } 1069 1070 if (fc->ops->reconfigure) { 1071 retval = fc->ops->reconfigure(fc); 1072 if (retval) { 1073 if (!force) 1074 goto cancel_readonly; 1075 /* If forced remount, go ahead despite any errors */ 1076 WARN(1, "forced remount of a %s fs returned %i\n", 1077 sb->s_type->name, retval); 1078 } 1079 } 1080 1081 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 1082 (fc->sb_flags & fc->sb_flags_mask))); 1083 sb_end_ro_state_change(sb); 1084 1085 /* 1086 * Some filesystems modify their metadata via some other path than the 1087 * bdev buffer cache (eg. use a private mapping, or directories in 1088 * pagecache, etc). Also file data modifications go via their own 1089 * mappings. So If we try to mount readonly then copy the filesystem 1090 * from bdev, we could get stale data, so invalidate it to give a best 1091 * effort at coherency. 1092 */ 1093 if (remount_ro && sb->s_bdev) 1094 invalidate_bdev(sb->s_bdev); 1095 return 0; 1096 1097 cancel_readonly: 1098 sb_end_ro_state_change(sb); 1099 return retval; 1100 } 1101 1102 static void do_emergency_remount_callback(struct super_block *sb) 1103 { 1104 bool locked = super_lock_excl(sb); 1105 1106 if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) { 1107 struct fs_context *fc; 1108 1109 fc = fs_context_for_reconfigure(sb->s_root, 1110 SB_RDONLY | SB_FORCE, SB_RDONLY); 1111 if (!IS_ERR(fc)) { 1112 if (parse_monolithic_mount_data(fc, NULL) == 0) 1113 (void)reconfigure_super(fc); 1114 put_fs_context(fc); 1115 } 1116 } 1117 if (locked) 1118 super_unlock_excl(sb); 1119 } 1120 1121 static void do_emergency_remount(struct work_struct *work) 1122 { 1123 __iterate_supers(do_emergency_remount_callback); 1124 kfree(work); 1125 printk("Emergency Remount complete\n"); 1126 } 1127 1128 void emergency_remount(void) 1129 { 1130 struct work_struct *work; 1131 1132 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1133 if (work) { 1134 INIT_WORK(work, do_emergency_remount); 1135 schedule_work(work); 1136 } 1137 } 1138 1139 static void do_thaw_all_callback(struct super_block *sb) 1140 { 1141 bool locked = super_lock_excl(sb); 1142 1143 if (locked && sb->s_root) { 1144 if (IS_ENABLED(CONFIG_BLOCK)) 1145 while (sb->s_bdev && !bdev_thaw(sb->s_bdev)) 1146 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev); 1147 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE); 1148 return; 1149 } 1150 if (locked) 1151 super_unlock_excl(sb); 1152 } 1153 1154 static void do_thaw_all(struct work_struct *work) 1155 { 1156 __iterate_supers(do_thaw_all_callback); 1157 kfree(work); 1158 printk(KERN_WARNING "Emergency Thaw complete\n"); 1159 } 1160 1161 /** 1162 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1163 * 1164 * Used for emergency unfreeze of all filesystems via SysRq 1165 */ 1166 void emergency_thaw_all(void) 1167 { 1168 struct work_struct *work; 1169 1170 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1171 if (work) { 1172 INIT_WORK(work, do_thaw_all); 1173 schedule_work(work); 1174 } 1175 } 1176 1177 static DEFINE_IDA(unnamed_dev_ida); 1178 1179 /** 1180 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1181 * @p: Pointer to a dev_t. 1182 * 1183 * Filesystems which don't use real block devices can call this function 1184 * to allocate a virtual block device. 1185 * 1186 * Context: Any context. Frequently called while holding sb_lock. 1187 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1188 * or -ENOMEM if memory allocation failed. 1189 */ 1190 int get_anon_bdev(dev_t *p) 1191 { 1192 int dev; 1193 1194 /* 1195 * Many userspace utilities consider an FSID of 0 invalid. 1196 * Always return at least 1 from get_anon_bdev. 1197 */ 1198 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1199 GFP_ATOMIC); 1200 if (dev == -ENOSPC) 1201 dev = -EMFILE; 1202 if (dev < 0) 1203 return dev; 1204 1205 *p = MKDEV(0, dev); 1206 return 0; 1207 } 1208 EXPORT_SYMBOL(get_anon_bdev); 1209 1210 void free_anon_bdev(dev_t dev) 1211 { 1212 ida_free(&unnamed_dev_ida, MINOR(dev)); 1213 } 1214 EXPORT_SYMBOL(free_anon_bdev); 1215 1216 int set_anon_super(struct super_block *s, void *data) 1217 { 1218 return get_anon_bdev(&s->s_dev); 1219 } 1220 EXPORT_SYMBOL(set_anon_super); 1221 1222 void kill_anon_super(struct super_block *sb) 1223 { 1224 dev_t dev = sb->s_dev; 1225 generic_shutdown_super(sb); 1226 kill_super_notify(sb); 1227 free_anon_bdev(dev); 1228 } 1229 EXPORT_SYMBOL(kill_anon_super); 1230 1231 void kill_litter_super(struct super_block *sb) 1232 { 1233 if (sb->s_root) 1234 d_genocide(sb->s_root); 1235 kill_anon_super(sb); 1236 } 1237 EXPORT_SYMBOL(kill_litter_super); 1238 1239 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1240 { 1241 return set_anon_super(sb, NULL); 1242 } 1243 EXPORT_SYMBOL(set_anon_super_fc); 1244 1245 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1246 { 1247 return sb->s_fs_info == fc->s_fs_info; 1248 } 1249 1250 static int test_single_super(struct super_block *s, struct fs_context *fc) 1251 { 1252 return 1; 1253 } 1254 1255 static int vfs_get_super(struct fs_context *fc, 1256 int (*test)(struct super_block *, struct fs_context *), 1257 int (*fill_super)(struct super_block *sb, 1258 struct fs_context *fc)) 1259 { 1260 struct super_block *sb; 1261 int err; 1262 1263 sb = sget_fc(fc, test, set_anon_super_fc); 1264 if (IS_ERR(sb)) 1265 return PTR_ERR(sb); 1266 1267 if (!sb->s_root) { 1268 err = fill_super(sb, fc); 1269 if (err) 1270 goto error; 1271 1272 sb->s_flags |= SB_ACTIVE; 1273 } 1274 1275 fc->root = dget(sb->s_root); 1276 return 0; 1277 1278 error: 1279 deactivate_locked_super(sb); 1280 return err; 1281 } 1282 1283 int get_tree_nodev(struct fs_context *fc, 1284 int (*fill_super)(struct super_block *sb, 1285 struct fs_context *fc)) 1286 { 1287 return vfs_get_super(fc, NULL, fill_super); 1288 } 1289 EXPORT_SYMBOL(get_tree_nodev); 1290 1291 int get_tree_single(struct fs_context *fc, 1292 int (*fill_super)(struct super_block *sb, 1293 struct fs_context *fc)) 1294 { 1295 return vfs_get_super(fc, test_single_super, fill_super); 1296 } 1297 EXPORT_SYMBOL(get_tree_single); 1298 1299 int get_tree_keyed(struct fs_context *fc, 1300 int (*fill_super)(struct super_block *sb, 1301 struct fs_context *fc), 1302 void *key) 1303 { 1304 fc->s_fs_info = key; 1305 return vfs_get_super(fc, test_keyed_super, fill_super); 1306 } 1307 EXPORT_SYMBOL(get_tree_keyed); 1308 1309 static int set_bdev_super(struct super_block *s, void *data) 1310 { 1311 s->s_dev = *(dev_t *)data; 1312 return 0; 1313 } 1314 1315 static int super_s_dev_set(struct super_block *s, struct fs_context *fc) 1316 { 1317 return set_bdev_super(s, fc->sget_key); 1318 } 1319 1320 static int super_s_dev_test(struct super_block *s, struct fs_context *fc) 1321 { 1322 return !(s->s_iflags & SB_I_RETIRED) && 1323 s->s_dev == *(dev_t *)fc->sget_key; 1324 } 1325 1326 /** 1327 * sget_dev - Find or create a superblock by device number 1328 * @fc: Filesystem context. 1329 * @dev: device number 1330 * 1331 * Find or create a superblock using the provided device number that 1332 * will be stored in fc->sget_key. 1333 * 1334 * If an extant superblock is matched, then that will be returned with 1335 * an elevated reference count that the caller must transfer or discard. 1336 * 1337 * If no match is made, a new superblock will be allocated and basic 1338 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will 1339 * be set). The superblock will be published and it will be returned in 1340 * a partially constructed state with SB_BORN and SB_ACTIVE as yet 1341 * unset. 1342 * 1343 * Return: an existing or newly created superblock on success, an error 1344 * pointer on failure. 1345 */ 1346 struct super_block *sget_dev(struct fs_context *fc, dev_t dev) 1347 { 1348 fc->sget_key = &dev; 1349 return sget_fc(fc, super_s_dev_test, super_s_dev_set); 1350 } 1351 EXPORT_SYMBOL(sget_dev); 1352 1353 #ifdef CONFIG_BLOCK 1354 /* 1355 * Lock the superblock that is holder of the bdev. Returns the superblock 1356 * pointer if we successfully locked the superblock and it is alive. Otherwise 1357 * we return NULL and just unlock bdev->bd_holder_lock. 1358 * 1359 * The function must be called with bdev->bd_holder_lock and releases it. 1360 */ 1361 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl) 1362 __releases(&bdev->bd_holder_lock) 1363 { 1364 struct super_block *sb = bdev->bd_holder; 1365 bool locked; 1366 1367 lockdep_assert_held(&bdev->bd_holder_lock); 1368 lockdep_assert_not_held(&sb->s_umount); 1369 lockdep_assert_not_held(&bdev->bd_disk->open_mutex); 1370 1371 /* Make sure sb doesn't go away from under us */ 1372 spin_lock(&sb_lock); 1373 sb->s_count++; 1374 spin_unlock(&sb_lock); 1375 1376 mutex_unlock(&bdev->bd_holder_lock); 1377 1378 locked = super_lock(sb, excl); 1379 1380 /* 1381 * If the superblock wasn't already SB_DYING then we hold 1382 * s_umount and can safely drop our temporary reference. 1383 */ 1384 put_super(sb); 1385 1386 if (!locked) 1387 return NULL; 1388 1389 if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) { 1390 super_unlock(sb, excl); 1391 return NULL; 1392 } 1393 1394 return sb; 1395 } 1396 1397 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise) 1398 { 1399 struct super_block *sb; 1400 1401 sb = bdev_super_lock(bdev, false); 1402 if (!sb) 1403 return; 1404 1405 if (!surprise) 1406 sync_filesystem(sb); 1407 shrink_dcache_sb(sb); 1408 invalidate_inodes(sb); 1409 if (sb->s_op->shutdown) 1410 sb->s_op->shutdown(sb); 1411 1412 super_unlock_shared(sb); 1413 } 1414 1415 static void fs_bdev_sync(struct block_device *bdev) 1416 { 1417 struct super_block *sb; 1418 1419 sb = bdev_super_lock(bdev, false); 1420 if (!sb) 1421 return; 1422 1423 sync_filesystem(sb); 1424 super_unlock_shared(sb); 1425 } 1426 1427 static struct super_block *get_bdev_super(struct block_device *bdev) 1428 { 1429 bool active = false; 1430 struct super_block *sb; 1431 1432 sb = bdev_super_lock(bdev, true); 1433 if (sb) { 1434 active = atomic_inc_not_zero(&sb->s_active); 1435 super_unlock_excl(sb); 1436 } 1437 if (!active) 1438 return NULL; 1439 return sb; 1440 } 1441 1442 /** 1443 * fs_bdev_freeze - freeze owning filesystem of block device 1444 * @bdev: block device 1445 * 1446 * Freeze the filesystem that owns this block device if it is still 1447 * active. 1448 * 1449 * A filesystem that owns multiple block devices may be frozen from each 1450 * block device and won't be unfrozen until all block devices are 1451 * unfrozen. Each block device can only freeze the filesystem once as we 1452 * nest freezes for block devices in the block layer. 1453 * 1454 * Return: If the freeze was successful zero is returned. If the freeze 1455 * failed a negative error code is returned. 1456 */ 1457 static int fs_bdev_freeze(struct block_device *bdev) 1458 { 1459 struct super_block *sb; 1460 int error = 0; 1461 1462 lockdep_assert_held(&bdev->bd_fsfreeze_mutex); 1463 1464 sb = get_bdev_super(bdev); 1465 if (!sb) 1466 return -EINVAL; 1467 1468 if (sb->s_op->freeze_super) 1469 error = sb->s_op->freeze_super(sb, 1470 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1471 else 1472 error = freeze_super(sb, 1473 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1474 if (!error) 1475 error = sync_blockdev(bdev); 1476 deactivate_super(sb); 1477 return error; 1478 } 1479 1480 /** 1481 * fs_bdev_thaw - thaw owning filesystem of block device 1482 * @bdev: block device 1483 * 1484 * Thaw the filesystem that owns this block device. 1485 * 1486 * A filesystem that owns multiple block devices may be frozen from each 1487 * block device and won't be unfrozen until all block devices are 1488 * unfrozen. Each block device can only freeze the filesystem once as we 1489 * nest freezes for block devices in the block layer. 1490 * 1491 * Return: If the thaw was successful zero is returned. If the thaw 1492 * failed a negative error code is returned. If this function 1493 * returns zero it doesn't mean that the filesystem is unfrozen 1494 * as it may have been frozen multiple times (kernel may hold a 1495 * freeze or might be frozen from other block devices). 1496 */ 1497 static int fs_bdev_thaw(struct block_device *bdev) 1498 { 1499 struct super_block *sb; 1500 int error; 1501 1502 lockdep_assert_held(&bdev->bd_fsfreeze_mutex); 1503 1504 sb = get_bdev_super(bdev); 1505 if (WARN_ON_ONCE(!sb)) 1506 return -EINVAL; 1507 1508 if (sb->s_op->thaw_super) 1509 error = sb->s_op->thaw_super(sb, 1510 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1511 else 1512 error = thaw_super(sb, 1513 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1514 deactivate_super(sb); 1515 return error; 1516 } 1517 1518 const struct blk_holder_ops fs_holder_ops = { 1519 .mark_dead = fs_bdev_mark_dead, 1520 .sync = fs_bdev_sync, 1521 .freeze = fs_bdev_freeze, 1522 .thaw = fs_bdev_thaw, 1523 }; 1524 EXPORT_SYMBOL_GPL(fs_holder_ops); 1525 1526 int setup_bdev_super(struct super_block *sb, int sb_flags, 1527 struct fs_context *fc) 1528 { 1529 blk_mode_t mode = sb_open_mode(sb_flags); 1530 struct file *bdev_file; 1531 struct block_device *bdev; 1532 1533 bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops); 1534 if (IS_ERR(bdev_file)) { 1535 if (fc) 1536 errorf(fc, "%s: Can't open blockdev", fc->source); 1537 return PTR_ERR(bdev_file); 1538 } 1539 bdev = file_bdev(bdev_file); 1540 1541 /* 1542 * This really should be in blkdev_get_by_dev, but right now can't due 1543 * to legacy issues that require us to allow opening a block device node 1544 * writable from userspace even for a read-only block device. 1545 */ 1546 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) { 1547 bdev_fput(bdev_file); 1548 return -EACCES; 1549 } 1550 1551 /* 1552 * It is enough to check bdev was not frozen before we set 1553 * s_bdev as freezing will wait until SB_BORN is set. 1554 */ 1555 if (atomic_read(&bdev->bd_fsfreeze_count) > 0) { 1556 if (fc) 1557 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1558 bdev_fput(bdev_file); 1559 return -EBUSY; 1560 } 1561 spin_lock(&sb_lock); 1562 sb->s_bdev_file = bdev_file; 1563 sb->s_bdev = bdev; 1564 sb->s_bdi = bdi_get(bdev->bd_disk->bdi); 1565 if (bdev_stable_writes(bdev)) 1566 sb->s_iflags |= SB_I_STABLE_WRITES; 1567 spin_unlock(&sb_lock); 1568 1569 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1570 shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name, 1571 sb->s_id); 1572 sb_set_blocksize(sb, block_size(bdev)); 1573 return 0; 1574 } 1575 EXPORT_SYMBOL_GPL(setup_bdev_super); 1576 1577 /** 1578 * get_tree_bdev - Get a superblock based on a single block device 1579 * @fc: The filesystem context holding the parameters 1580 * @fill_super: Helper to initialise a new superblock 1581 */ 1582 int get_tree_bdev(struct fs_context *fc, 1583 int (*fill_super)(struct super_block *, 1584 struct fs_context *)) 1585 { 1586 struct super_block *s; 1587 int error = 0; 1588 dev_t dev; 1589 1590 if (!fc->source) 1591 return invalf(fc, "No source specified"); 1592 1593 error = lookup_bdev(fc->source, &dev); 1594 if (error) { 1595 errorf(fc, "%s: Can't lookup blockdev", fc->source); 1596 return error; 1597 } 1598 1599 fc->sb_flags |= SB_NOSEC; 1600 s = sget_dev(fc, dev); 1601 if (IS_ERR(s)) 1602 return PTR_ERR(s); 1603 1604 if (s->s_root) { 1605 /* Don't summarily change the RO/RW state. */ 1606 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1607 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev); 1608 deactivate_locked_super(s); 1609 return -EBUSY; 1610 } 1611 } else { 1612 error = setup_bdev_super(s, fc->sb_flags, fc); 1613 if (!error) 1614 error = fill_super(s, fc); 1615 if (error) { 1616 deactivate_locked_super(s); 1617 return error; 1618 } 1619 s->s_flags |= SB_ACTIVE; 1620 } 1621 1622 BUG_ON(fc->root); 1623 fc->root = dget(s->s_root); 1624 return 0; 1625 } 1626 EXPORT_SYMBOL(get_tree_bdev); 1627 1628 static int test_bdev_super(struct super_block *s, void *data) 1629 { 1630 return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data; 1631 } 1632 1633 struct dentry *mount_bdev(struct file_system_type *fs_type, 1634 int flags, const char *dev_name, void *data, 1635 int (*fill_super)(struct super_block *, void *, int)) 1636 { 1637 struct super_block *s; 1638 int error; 1639 dev_t dev; 1640 1641 error = lookup_bdev(dev_name, &dev); 1642 if (error) 1643 return ERR_PTR(error); 1644 1645 flags |= SB_NOSEC; 1646 s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev); 1647 if (IS_ERR(s)) 1648 return ERR_CAST(s); 1649 1650 if (s->s_root) { 1651 if ((flags ^ s->s_flags) & SB_RDONLY) { 1652 deactivate_locked_super(s); 1653 return ERR_PTR(-EBUSY); 1654 } 1655 } else { 1656 error = setup_bdev_super(s, flags, NULL); 1657 if (!error) 1658 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1659 if (error) { 1660 deactivate_locked_super(s); 1661 return ERR_PTR(error); 1662 } 1663 1664 s->s_flags |= SB_ACTIVE; 1665 } 1666 1667 return dget(s->s_root); 1668 } 1669 EXPORT_SYMBOL(mount_bdev); 1670 1671 void kill_block_super(struct super_block *sb) 1672 { 1673 struct block_device *bdev = sb->s_bdev; 1674 1675 generic_shutdown_super(sb); 1676 if (bdev) { 1677 sync_blockdev(bdev); 1678 bdev_fput(sb->s_bdev_file); 1679 } 1680 } 1681 1682 EXPORT_SYMBOL(kill_block_super); 1683 #endif 1684 1685 struct dentry *mount_nodev(struct file_system_type *fs_type, 1686 int flags, void *data, 1687 int (*fill_super)(struct super_block *, void *, int)) 1688 { 1689 int error; 1690 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1691 1692 if (IS_ERR(s)) 1693 return ERR_CAST(s); 1694 1695 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1696 if (error) { 1697 deactivate_locked_super(s); 1698 return ERR_PTR(error); 1699 } 1700 s->s_flags |= SB_ACTIVE; 1701 return dget(s->s_root); 1702 } 1703 EXPORT_SYMBOL(mount_nodev); 1704 1705 int reconfigure_single(struct super_block *s, 1706 int flags, void *data) 1707 { 1708 struct fs_context *fc; 1709 int ret; 1710 1711 /* The caller really need to be passing fc down into mount_single(), 1712 * then a chunk of this can be removed. [Bollocks -- AV] 1713 * Better yet, reconfiguration shouldn't happen, but rather the second 1714 * mount should be rejected if the parameters are not compatible. 1715 */ 1716 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1717 if (IS_ERR(fc)) 1718 return PTR_ERR(fc); 1719 1720 ret = parse_monolithic_mount_data(fc, data); 1721 if (ret < 0) 1722 goto out; 1723 1724 ret = reconfigure_super(fc); 1725 out: 1726 put_fs_context(fc); 1727 return ret; 1728 } 1729 1730 static int compare_single(struct super_block *s, void *p) 1731 { 1732 return 1; 1733 } 1734 1735 struct dentry *mount_single(struct file_system_type *fs_type, 1736 int flags, void *data, 1737 int (*fill_super)(struct super_block *, void *, int)) 1738 { 1739 struct super_block *s; 1740 int error; 1741 1742 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1743 if (IS_ERR(s)) 1744 return ERR_CAST(s); 1745 if (!s->s_root) { 1746 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1747 if (!error) 1748 s->s_flags |= SB_ACTIVE; 1749 } else { 1750 error = reconfigure_single(s, flags, data); 1751 } 1752 if (unlikely(error)) { 1753 deactivate_locked_super(s); 1754 return ERR_PTR(error); 1755 } 1756 return dget(s->s_root); 1757 } 1758 EXPORT_SYMBOL(mount_single); 1759 1760 /** 1761 * vfs_get_tree - Get the mountable root 1762 * @fc: The superblock configuration context. 1763 * 1764 * The filesystem is invoked to get or create a superblock which can then later 1765 * be used for mounting. The filesystem places a pointer to the root to be 1766 * used for mounting in @fc->root. 1767 */ 1768 int vfs_get_tree(struct fs_context *fc) 1769 { 1770 struct super_block *sb; 1771 int error; 1772 1773 if (fc->root) 1774 return -EBUSY; 1775 1776 /* Get the mountable root in fc->root, with a ref on the root and a ref 1777 * on the superblock. 1778 */ 1779 error = fc->ops->get_tree(fc); 1780 if (error < 0) 1781 return error; 1782 1783 if (!fc->root) { 1784 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1785 fc->fs_type->name); 1786 /* We don't know what the locking state of the superblock is - 1787 * if there is a superblock. 1788 */ 1789 BUG(); 1790 } 1791 1792 sb = fc->root->d_sb; 1793 WARN_ON(!sb->s_bdi); 1794 1795 /* 1796 * super_wake() contains a memory barrier which also care of 1797 * ordering for super_cache_count(). We place it before setting 1798 * SB_BORN as the data dependency between the two functions is 1799 * the superblock structure contents that we just set up, not 1800 * the SB_BORN flag. 1801 */ 1802 super_wake(sb, SB_BORN); 1803 1804 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1805 if (unlikely(error)) { 1806 fc_drop_locked(fc); 1807 return error; 1808 } 1809 1810 /* 1811 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1812 * but s_maxbytes was an unsigned long long for many releases. Throw 1813 * this warning for a little while to try and catch filesystems that 1814 * violate this rule. 1815 */ 1816 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1817 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1818 1819 return 0; 1820 } 1821 EXPORT_SYMBOL(vfs_get_tree); 1822 1823 /* 1824 * Setup private BDI for given superblock. It gets automatically cleaned up 1825 * in generic_shutdown_super(). 1826 */ 1827 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1828 { 1829 struct backing_dev_info *bdi; 1830 int err; 1831 va_list args; 1832 1833 bdi = bdi_alloc(NUMA_NO_NODE); 1834 if (!bdi) 1835 return -ENOMEM; 1836 1837 va_start(args, fmt); 1838 err = bdi_register_va(bdi, fmt, args); 1839 va_end(args); 1840 if (err) { 1841 bdi_put(bdi); 1842 return err; 1843 } 1844 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1845 sb->s_bdi = bdi; 1846 sb->s_iflags |= SB_I_PERSB_BDI; 1847 1848 return 0; 1849 } 1850 EXPORT_SYMBOL(super_setup_bdi_name); 1851 1852 /* 1853 * Setup private BDI for given superblock. I gets automatically cleaned up 1854 * in generic_shutdown_super(). 1855 */ 1856 int super_setup_bdi(struct super_block *sb) 1857 { 1858 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1859 1860 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1861 atomic_long_inc_return(&bdi_seq)); 1862 } 1863 EXPORT_SYMBOL(super_setup_bdi); 1864 1865 /** 1866 * sb_wait_write - wait until all writers to given file system finish 1867 * @sb: the super for which we wait 1868 * @level: type of writers we wait for (normal vs page fault) 1869 * 1870 * This function waits until there are no writers of given type to given file 1871 * system. 1872 */ 1873 static void sb_wait_write(struct super_block *sb, int level) 1874 { 1875 percpu_down_write(sb->s_writers.rw_sem + level-1); 1876 } 1877 1878 /* 1879 * We are going to return to userspace and forget about these locks, the 1880 * ownership goes to the caller of thaw_super() which does unlock(). 1881 */ 1882 static void lockdep_sb_freeze_release(struct super_block *sb) 1883 { 1884 int level; 1885 1886 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1887 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1888 } 1889 1890 /* 1891 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1892 */ 1893 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1894 { 1895 int level; 1896 1897 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1898 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1899 } 1900 1901 static void sb_freeze_unlock(struct super_block *sb, int level) 1902 { 1903 for (level--; level >= 0; level--) 1904 percpu_up_write(sb->s_writers.rw_sem + level); 1905 } 1906 1907 static int wait_for_partially_frozen(struct super_block *sb) 1908 { 1909 int ret = 0; 1910 1911 do { 1912 unsigned short old = sb->s_writers.frozen; 1913 1914 up_write(&sb->s_umount); 1915 ret = wait_var_event_killable(&sb->s_writers.frozen, 1916 sb->s_writers.frozen != old); 1917 down_write(&sb->s_umount); 1918 } while (ret == 0 && 1919 sb->s_writers.frozen != SB_UNFROZEN && 1920 sb->s_writers.frozen != SB_FREEZE_COMPLETE); 1921 1922 return ret; 1923 } 1924 1925 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE) 1926 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST) 1927 1928 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who) 1929 { 1930 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1931 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1932 1933 if (who & FREEZE_HOLDER_KERNEL) 1934 ++sb->s_writers.freeze_kcount; 1935 if (who & FREEZE_HOLDER_USERSPACE) 1936 ++sb->s_writers.freeze_ucount; 1937 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; 1938 } 1939 1940 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who) 1941 { 1942 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1943 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1944 1945 if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount) 1946 --sb->s_writers.freeze_kcount; 1947 if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount) 1948 --sb->s_writers.freeze_ucount; 1949 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; 1950 } 1951 1952 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who) 1953 { 1954 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1955 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1956 1957 if (who & FREEZE_HOLDER_KERNEL) 1958 return (who & FREEZE_MAY_NEST) || 1959 sb->s_writers.freeze_kcount == 0; 1960 if (who & FREEZE_HOLDER_USERSPACE) 1961 return (who & FREEZE_MAY_NEST) || 1962 sb->s_writers.freeze_ucount == 0; 1963 return false; 1964 } 1965 1966 /** 1967 * freeze_super - lock the filesystem and force it into a consistent state 1968 * @sb: the super to lock 1969 * @who: context that wants to freeze 1970 * 1971 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1972 * freeze_fs. Subsequent calls to this without first thawing the fs may return 1973 * -EBUSY. 1974 * 1975 * @who should be: 1976 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs; 1977 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs. 1978 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed. 1979 * 1980 * The @who argument distinguishes between the kernel and userspace trying to 1981 * freeze the filesystem. Although there cannot be multiple kernel freezes or 1982 * multiple userspace freezes in effect at any given time, the kernel and 1983 * userspace can both hold a filesystem frozen. The filesystem remains frozen 1984 * until there are no kernel or userspace freezes in effect. 1985 * 1986 * A filesystem may hold multiple devices and thus a filesystems may be 1987 * frozen through the block layer via multiple block devices. In this 1988 * case the request is marked as being allowed to nest by passing 1989 * FREEZE_MAY_NEST. The filesystem remains frozen until all block 1990 * devices are unfrozen. If multiple freezes are attempted without 1991 * FREEZE_MAY_NEST -EBUSY will be returned. 1992 * 1993 * During this function, sb->s_writers.frozen goes through these values: 1994 * 1995 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1996 * 1997 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1998 * writes should be blocked, though page faults are still allowed. We wait for 1999 * all writes to complete and then proceed to the next stage. 2000 * 2001 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 2002 * but internal fs threads can still modify the filesystem (although they 2003 * should not dirty new pages or inodes), writeback can run etc. After waiting 2004 * for all running page faults we sync the filesystem which will clean all 2005 * dirty pages and inodes (no new dirty pages or inodes can be created when 2006 * sync is running). 2007 * 2008 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 2009 * modification are blocked (e.g. XFS preallocation truncation on inode 2010 * reclaim). This is usually implemented by blocking new transactions for 2011 * filesystems that have them and need this additional guard. After all 2012 * internal writers are finished we call ->freeze_fs() to finish filesystem 2013 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 2014 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 2015 * 2016 * sb->s_writers.frozen is protected by sb->s_umount. 2017 * 2018 * Return: If the freeze was successful zero is returned. If the freeze 2019 * failed a negative error code is returned. 2020 */ 2021 int freeze_super(struct super_block *sb, enum freeze_holder who) 2022 { 2023 int ret; 2024 2025 if (!super_lock_excl(sb)) { 2026 WARN_ON_ONCE("Dying superblock while freezing!"); 2027 return -EINVAL; 2028 } 2029 atomic_inc(&sb->s_active); 2030 2031 retry: 2032 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { 2033 if (may_freeze(sb, who)) 2034 ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1); 2035 else 2036 ret = -EBUSY; 2037 /* All freezers share a single active reference. */ 2038 deactivate_locked_super(sb); 2039 return ret; 2040 } 2041 2042 if (sb->s_writers.frozen != SB_UNFROZEN) { 2043 ret = wait_for_partially_frozen(sb); 2044 if (ret) { 2045 deactivate_locked_super(sb); 2046 return ret; 2047 } 2048 2049 goto retry; 2050 } 2051 2052 if (sb_rdonly(sb)) { 2053 /* Nothing to do really... */ 2054 WARN_ON_ONCE(freeze_inc(sb, who) > 1); 2055 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2056 wake_up_var(&sb->s_writers.frozen); 2057 super_unlock_excl(sb); 2058 return 0; 2059 } 2060 2061 sb->s_writers.frozen = SB_FREEZE_WRITE; 2062 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 2063 super_unlock_excl(sb); 2064 sb_wait_write(sb, SB_FREEZE_WRITE); 2065 __super_lock_excl(sb); 2066 2067 /* Now we go and block page faults... */ 2068 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 2069 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 2070 2071 /* All writers are done so after syncing there won't be dirty data */ 2072 ret = sync_filesystem(sb); 2073 if (ret) { 2074 sb->s_writers.frozen = SB_UNFROZEN; 2075 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 2076 wake_up_var(&sb->s_writers.frozen); 2077 deactivate_locked_super(sb); 2078 return ret; 2079 } 2080 2081 /* Now wait for internal filesystem counter */ 2082 sb->s_writers.frozen = SB_FREEZE_FS; 2083 sb_wait_write(sb, SB_FREEZE_FS); 2084 2085 if (sb->s_op->freeze_fs) { 2086 ret = sb->s_op->freeze_fs(sb); 2087 if (ret) { 2088 printk(KERN_ERR 2089 "VFS:Filesystem freeze failed\n"); 2090 sb->s_writers.frozen = SB_UNFROZEN; 2091 sb_freeze_unlock(sb, SB_FREEZE_FS); 2092 wake_up_var(&sb->s_writers.frozen); 2093 deactivate_locked_super(sb); 2094 return ret; 2095 } 2096 } 2097 /* 2098 * For debugging purposes so that fs can warn if it sees write activity 2099 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 2100 */ 2101 WARN_ON_ONCE(freeze_inc(sb, who) > 1); 2102 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2103 wake_up_var(&sb->s_writers.frozen); 2104 lockdep_sb_freeze_release(sb); 2105 super_unlock_excl(sb); 2106 return 0; 2107 } 2108 EXPORT_SYMBOL(freeze_super); 2109 2110 /* 2111 * Undoes the effect of a freeze_super_locked call. If the filesystem is 2112 * frozen both by userspace and the kernel, a thaw call from either source 2113 * removes that state without releasing the other state or unlocking the 2114 * filesystem. 2115 */ 2116 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who) 2117 { 2118 int error = -EINVAL; 2119 2120 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) 2121 goto out_unlock; 2122 2123 /* 2124 * All freezers share a single active reference. 2125 * So just unlock in case there are any left. 2126 */ 2127 if (freeze_dec(sb, who)) 2128 goto out_unlock; 2129 2130 if (sb_rdonly(sb)) { 2131 sb->s_writers.frozen = SB_UNFROZEN; 2132 wake_up_var(&sb->s_writers.frozen); 2133 goto out_deactivate; 2134 } 2135 2136 lockdep_sb_freeze_acquire(sb); 2137 2138 if (sb->s_op->unfreeze_fs) { 2139 error = sb->s_op->unfreeze_fs(sb); 2140 if (error) { 2141 pr_err("VFS: Filesystem thaw failed\n"); 2142 freeze_inc(sb, who); 2143 lockdep_sb_freeze_release(sb); 2144 goto out_unlock; 2145 } 2146 } 2147 2148 sb->s_writers.frozen = SB_UNFROZEN; 2149 wake_up_var(&sb->s_writers.frozen); 2150 sb_freeze_unlock(sb, SB_FREEZE_FS); 2151 out_deactivate: 2152 deactivate_locked_super(sb); 2153 return 0; 2154 2155 out_unlock: 2156 super_unlock_excl(sb); 2157 return error; 2158 } 2159 2160 /** 2161 * thaw_super -- unlock filesystem 2162 * @sb: the super to thaw 2163 * @who: context that wants to freeze 2164 * 2165 * Unlocks the filesystem and marks it writeable again after freeze_super() 2166 * if there are no remaining freezes on the filesystem. 2167 * 2168 * @who should be: 2169 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs; 2170 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs. 2171 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed 2172 * 2173 * A filesystem may hold multiple devices and thus a filesystems may 2174 * have been frozen through the block layer via multiple block devices. 2175 * The filesystem remains frozen until all block devices are unfrozen. 2176 */ 2177 int thaw_super(struct super_block *sb, enum freeze_holder who) 2178 { 2179 if (!super_lock_excl(sb)) { 2180 WARN_ON_ONCE("Dying superblock while thawing!"); 2181 return -EINVAL; 2182 } 2183 return thaw_super_locked(sb, who); 2184 } 2185 EXPORT_SYMBOL(thaw_super); 2186 2187 /* 2188 * Create workqueue for deferred direct IO completions. We allocate the 2189 * workqueue when it's first needed. This avoids creating workqueue for 2190 * filesystems that don't need it and also allows us to create the workqueue 2191 * late enough so the we can include s_id in the name of the workqueue. 2192 */ 2193 int sb_init_dio_done_wq(struct super_block *sb) 2194 { 2195 struct workqueue_struct *old; 2196 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 2197 WQ_MEM_RECLAIM, 0, 2198 sb->s_id); 2199 if (!wq) 2200 return -ENOMEM; 2201 /* 2202 * This has to be atomic as more DIOs can race to create the workqueue 2203 */ 2204 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 2205 /* Someone created workqueue before us? Free ours... */ 2206 if (old) 2207 destroy_workqueue(wq); 2208 return 0; 2209 } 2210 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq); 2211