xref: /linux/fs/super.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42 
43 static int thaw_super_locked(struct super_block *sb);
44 
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47 
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 	"sb_writers",
50 	"sb_pagefaults",
51 	"sb_internal",
52 };
53 
54 /*
55  * One thing we have to be careful of with a per-sb shrinker is that we don't
56  * drop the last active reference to the superblock from within the shrinker.
57  * If that happens we could trigger unregistering the shrinker from within the
58  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59  * take a passive reference to the superblock to avoid this from occurring.
60  */
61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 				      struct shrink_control *sc)
63 {
64 	struct super_block *sb;
65 	long	fs_objects = 0;
66 	long	total_objects;
67 	long	freed = 0;
68 	long	dentries;
69 	long	inodes;
70 
71 	sb = container_of(shrink, struct super_block, s_shrink);
72 
73 	/*
74 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
75 	 * to recurse into the FS that called us in clear_inode() and friends..
76 	 */
77 	if (!(sc->gfp_mask & __GFP_FS))
78 		return SHRINK_STOP;
79 
80 	if (!trylock_super(sb))
81 		return SHRINK_STOP;
82 
83 	if (sb->s_op->nr_cached_objects)
84 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85 
86 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 	total_objects = dentries + inodes + fs_objects + 1;
89 	if (!total_objects)
90 		total_objects = 1;
91 
92 	/* proportion the scan between the caches */
93 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96 
97 	/*
98 	 * prune the dcache first as the icache is pinned by it, then
99 	 * prune the icache, followed by the filesystem specific caches
100 	 *
101 	 * Ensure that we always scan at least one object - memcg kmem
102 	 * accounting uses this to fully empty the caches.
103 	 */
104 	sc->nr_to_scan = dentries + 1;
105 	freed = prune_dcache_sb(sb, sc);
106 	sc->nr_to_scan = inodes + 1;
107 	freed += prune_icache_sb(sb, sc);
108 
109 	if (fs_objects) {
110 		sc->nr_to_scan = fs_objects + 1;
111 		freed += sb->s_op->free_cached_objects(sb, sc);
112 	}
113 
114 	up_read(&sb->s_umount);
115 	return freed;
116 }
117 
118 static unsigned long super_cache_count(struct shrinker *shrink,
119 				       struct shrink_control *sc)
120 {
121 	struct super_block *sb;
122 	long	total_objects = 0;
123 
124 	sb = container_of(shrink, struct super_block, s_shrink);
125 
126 	/*
127 	 * We don't call trylock_super() here as it is a scalability bottleneck,
128 	 * so we're exposed to partial setup state. The shrinker rwsem does not
129 	 * protect filesystem operations backing list_lru_shrink_count() or
130 	 * s_op->nr_cached_objects(). Counts can change between
131 	 * super_cache_count and super_cache_scan, so we really don't need locks
132 	 * here.
133 	 *
134 	 * However, if we are currently mounting the superblock, the underlying
135 	 * filesystem might be in a state of partial construction and hence it
136 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
137 	 * avoid this situation, so do the same here. The memory barrier is
138 	 * matched with the one in mount_fs() as we don't hold locks here.
139 	 */
140 	if (!(sb->s_flags & SB_BORN))
141 		return 0;
142 	smp_rmb();
143 
144 	if (sb->s_op && sb->s_op->nr_cached_objects)
145 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
146 
147 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149 
150 	if (!total_objects)
151 		return SHRINK_EMPTY;
152 
153 	total_objects = vfs_pressure_ratio(total_objects);
154 	return total_objects;
155 }
156 
157 static void destroy_super_work(struct work_struct *work)
158 {
159 	struct super_block *s = container_of(work, struct super_block,
160 							destroy_work);
161 	int i;
162 
163 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 	kfree(s);
166 }
167 
168 static void destroy_super_rcu(struct rcu_head *head)
169 {
170 	struct super_block *s = container_of(head, struct super_block, rcu);
171 	INIT_WORK(&s->destroy_work, destroy_super_work);
172 	schedule_work(&s->destroy_work);
173 }
174 
175 /* Free a superblock that has never been seen by anyone */
176 static void destroy_unused_super(struct super_block *s)
177 {
178 	if (!s)
179 		return;
180 	up_write(&s->s_umount);
181 	list_lru_destroy(&s->s_dentry_lru);
182 	list_lru_destroy(&s->s_inode_lru);
183 	security_sb_free(s);
184 	put_user_ns(s->s_user_ns);
185 	kfree(s->s_subtype);
186 	free_prealloced_shrinker(&s->s_shrink);
187 	/* no delays needed */
188 	destroy_super_work(&s->destroy_work);
189 }
190 
191 /**
192  *	alloc_super	-	create new superblock
193  *	@type:	filesystem type superblock should belong to
194  *	@flags: the mount flags
195  *	@user_ns: User namespace for the super_block
196  *
197  *	Allocates and initializes a new &struct super_block.  alloc_super()
198  *	returns a pointer new superblock or %NULL if allocation had failed.
199  */
200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 				       struct user_namespace *user_ns)
202 {
203 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
204 	static const struct super_operations default_op;
205 	int i;
206 
207 	if (!s)
208 		return NULL;
209 
210 	INIT_LIST_HEAD(&s->s_mounts);
211 	s->s_user_ns = get_user_ns(user_ns);
212 	init_rwsem(&s->s_umount);
213 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 	/*
215 	 * sget() can have s_umount recursion.
216 	 *
217 	 * When it cannot find a suitable sb, it allocates a new
218 	 * one (this one), and tries again to find a suitable old
219 	 * one.
220 	 *
221 	 * In case that succeeds, it will acquire the s_umount
222 	 * lock of the old one. Since these are clearly distrinct
223 	 * locks, and this object isn't exposed yet, there's no
224 	 * risk of deadlocks.
225 	 *
226 	 * Annotate this by putting this lock in a different
227 	 * subclass.
228 	 */
229 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230 
231 	if (security_sb_alloc(s))
232 		goto fail;
233 
234 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 					sb_writers_name[i],
237 					&type->s_writers_key[i]))
238 			goto fail;
239 	}
240 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 	s->s_bdi = &noop_backing_dev_info;
242 	s->s_flags = flags;
243 	if (s->s_user_ns != &init_user_ns)
244 		s->s_iflags |= SB_I_NODEV;
245 	INIT_HLIST_NODE(&s->s_instances);
246 	INIT_HLIST_BL_HEAD(&s->s_roots);
247 	mutex_init(&s->s_sync_lock);
248 	INIT_LIST_HEAD(&s->s_inodes);
249 	spin_lock_init(&s->s_inode_list_lock);
250 	INIT_LIST_HEAD(&s->s_inodes_wb);
251 	spin_lock_init(&s->s_inode_wblist_lock);
252 
253 	s->s_count = 1;
254 	atomic_set(&s->s_active, 1);
255 	mutex_init(&s->s_vfs_rename_mutex);
256 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 	init_rwsem(&s->s_dquot.dqio_sem);
258 	s->s_maxbytes = MAX_NON_LFS;
259 	s->s_op = &default_op;
260 	s->s_time_gran = 1000000000;
261 	s->s_time_min = TIME64_MIN;
262 	s->s_time_max = TIME64_MAX;
263 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
264 
265 	s->s_shrink.seeks = DEFAULT_SEEKS;
266 	s->s_shrink.scan_objects = super_cache_scan;
267 	s->s_shrink.count_objects = super_cache_count;
268 	s->s_shrink.batch = 1024;
269 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 	if (prealloc_shrinker(&s->s_shrink))
271 		goto fail;
272 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 		goto fail;
274 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 		goto fail;
276 	return s;
277 
278 fail:
279 	destroy_unused_super(s);
280 	return NULL;
281 }
282 
283 /* Superblock refcounting  */
284 
285 /*
286  * Drop a superblock's refcount.  The caller must hold sb_lock.
287  */
288 static void __put_super(struct super_block *s)
289 {
290 	if (!--s->s_count) {
291 		list_del_init(&s->s_list);
292 		WARN_ON(s->s_dentry_lru.node);
293 		WARN_ON(s->s_inode_lru.node);
294 		WARN_ON(!list_empty(&s->s_mounts));
295 		security_sb_free(s);
296 		fscrypt_sb_free(s);
297 		put_user_ns(s->s_user_ns);
298 		kfree(s->s_subtype);
299 		call_rcu(&s->rcu, destroy_super_rcu);
300 	}
301 }
302 
303 /**
304  *	put_super	-	drop a temporary reference to superblock
305  *	@sb: superblock in question
306  *
307  *	Drops a temporary reference, frees superblock if there's no
308  *	references left.
309  */
310 void put_super(struct super_block *sb)
311 {
312 	spin_lock(&sb_lock);
313 	__put_super(sb);
314 	spin_unlock(&sb_lock);
315 }
316 
317 
318 /**
319  *	deactivate_locked_super	-	drop an active reference to superblock
320  *	@s: superblock to deactivate
321  *
322  *	Drops an active reference to superblock, converting it into a temporary
323  *	one if there is no other active references left.  In that case we
324  *	tell fs driver to shut it down and drop the temporary reference we
325  *	had just acquired.
326  *
327  *	Caller holds exclusive lock on superblock; that lock is released.
328  */
329 void deactivate_locked_super(struct super_block *s)
330 {
331 	struct file_system_type *fs = s->s_type;
332 	if (atomic_dec_and_test(&s->s_active)) {
333 		cleancache_invalidate_fs(s);
334 		unregister_shrinker(&s->s_shrink);
335 		fs->kill_sb(s);
336 
337 		/*
338 		 * Since list_lru_destroy() may sleep, we cannot call it from
339 		 * put_super(), where we hold the sb_lock. Therefore we destroy
340 		 * the lru lists right now.
341 		 */
342 		list_lru_destroy(&s->s_dentry_lru);
343 		list_lru_destroy(&s->s_inode_lru);
344 
345 		put_filesystem(fs);
346 		put_super(s);
347 	} else {
348 		up_write(&s->s_umount);
349 	}
350 }
351 
352 EXPORT_SYMBOL(deactivate_locked_super);
353 
354 /**
355  *	deactivate_super	-	drop an active reference to superblock
356  *	@s: superblock to deactivate
357  *
358  *	Variant of deactivate_locked_super(), except that superblock is *not*
359  *	locked by caller.  If we are going to drop the final active reference,
360  *	lock will be acquired prior to that.
361  */
362 void deactivate_super(struct super_block *s)
363 {
364 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
365 		down_write(&s->s_umount);
366 		deactivate_locked_super(s);
367 	}
368 }
369 
370 EXPORT_SYMBOL(deactivate_super);
371 
372 /**
373  *	grab_super - acquire an active reference
374  *	@s: reference we are trying to make active
375  *
376  *	Tries to acquire an active reference.  grab_super() is used when we
377  * 	had just found a superblock in super_blocks or fs_type->fs_supers
378  *	and want to turn it into a full-blown active reference.  grab_super()
379  *	is called with sb_lock held and drops it.  Returns 1 in case of
380  *	success, 0 if we had failed (superblock contents was already dead or
381  *	dying when grab_super() had been called).  Note that this is only
382  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
383  *	of their type), so increment of ->s_count is OK here.
384  */
385 static int grab_super(struct super_block *s) __releases(sb_lock)
386 {
387 	s->s_count++;
388 	spin_unlock(&sb_lock);
389 	down_write(&s->s_umount);
390 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
391 		put_super(s);
392 		return 1;
393 	}
394 	up_write(&s->s_umount);
395 	put_super(s);
396 	return 0;
397 }
398 
399 /*
400  *	trylock_super - try to grab ->s_umount shared
401  *	@sb: reference we are trying to grab
402  *
403  *	Try to prevent fs shutdown.  This is used in places where we
404  *	cannot take an active reference but we need to ensure that the
405  *	filesystem is not shut down while we are working on it. It returns
406  *	false if we cannot acquire s_umount or if we lose the race and
407  *	filesystem already got into shutdown, and returns true with the s_umount
408  *	lock held in read mode in case of success. On successful return,
409  *	the caller must drop the s_umount lock when done.
410  *
411  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
412  *	The reason why it's safe is that we are OK with doing trylock instead
413  *	of down_read().  There's a couple of places that are OK with that, but
414  *	it's very much not a general-purpose interface.
415  */
416 bool trylock_super(struct super_block *sb)
417 {
418 	if (down_read_trylock(&sb->s_umount)) {
419 		if (!hlist_unhashed(&sb->s_instances) &&
420 		    sb->s_root && (sb->s_flags & SB_BORN))
421 			return true;
422 		up_read(&sb->s_umount);
423 	}
424 
425 	return false;
426 }
427 
428 /**
429  *	generic_shutdown_super	-	common helper for ->kill_sb()
430  *	@sb: superblock to kill
431  *
432  *	generic_shutdown_super() does all fs-independent work on superblock
433  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
434  *	that need destruction out of superblock, call generic_shutdown_super()
435  *	and release aforementioned objects.  Note: dentries and inodes _are_
436  *	taken care of and do not need specific handling.
437  *
438  *	Upon calling this function, the filesystem may no longer alter or
439  *	rearrange the set of dentries belonging to this super_block, nor may it
440  *	change the attachments of dentries to inodes.
441  */
442 void generic_shutdown_super(struct super_block *sb)
443 {
444 	const struct super_operations *sop = sb->s_op;
445 
446 	if (sb->s_root) {
447 		shrink_dcache_for_umount(sb);
448 		sync_filesystem(sb);
449 		sb->s_flags &= ~SB_ACTIVE;
450 
451 		cgroup_writeback_umount();
452 
453 		/* evict all inodes with zero refcount */
454 		evict_inodes(sb);
455 		/* only nonzero refcount inodes can have marks */
456 		fsnotify_sb_delete(sb);
457 
458 		if (sb->s_dio_done_wq) {
459 			destroy_workqueue(sb->s_dio_done_wq);
460 			sb->s_dio_done_wq = NULL;
461 		}
462 
463 		if (sop->put_super)
464 			sop->put_super(sb);
465 
466 		if (!list_empty(&sb->s_inodes)) {
467 			printk("VFS: Busy inodes after unmount of %s. "
468 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
469 			   sb->s_id);
470 		}
471 	}
472 	spin_lock(&sb_lock);
473 	/* should be initialized for __put_super_and_need_restart() */
474 	hlist_del_init(&sb->s_instances);
475 	spin_unlock(&sb_lock);
476 	up_write(&sb->s_umount);
477 	if (sb->s_bdi != &noop_backing_dev_info) {
478 		bdi_put(sb->s_bdi);
479 		sb->s_bdi = &noop_backing_dev_info;
480 	}
481 }
482 
483 EXPORT_SYMBOL(generic_shutdown_super);
484 
485 bool mount_capable(struct fs_context *fc)
486 {
487 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
488 		return capable(CAP_SYS_ADMIN);
489 	else
490 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
491 }
492 
493 /**
494  * sget_fc - Find or create a superblock
495  * @fc:	Filesystem context.
496  * @test: Comparison callback
497  * @set: Setup callback
498  *
499  * Find or create a superblock using the parameters stored in the filesystem
500  * context and the two callback functions.
501  *
502  * If an extant superblock is matched, then that will be returned with an
503  * elevated reference count that the caller must transfer or discard.
504  *
505  * If no match is made, a new superblock will be allocated and basic
506  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
507  * the set() callback will be invoked), the superblock will be published and it
508  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
509  * as yet unset.
510  */
511 struct super_block *sget_fc(struct fs_context *fc,
512 			    int (*test)(struct super_block *, struct fs_context *),
513 			    int (*set)(struct super_block *, struct fs_context *))
514 {
515 	struct super_block *s = NULL;
516 	struct super_block *old;
517 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
518 	int err;
519 
520 retry:
521 	spin_lock(&sb_lock);
522 	if (test) {
523 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
524 			if (test(old, fc))
525 				goto share_extant_sb;
526 		}
527 	}
528 	if (!s) {
529 		spin_unlock(&sb_lock);
530 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
531 		if (!s)
532 			return ERR_PTR(-ENOMEM);
533 		goto retry;
534 	}
535 
536 	s->s_fs_info = fc->s_fs_info;
537 	err = set(s, fc);
538 	if (err) {
539 		s->s_fs_info = NULL;
540 		spin_unlock(&sb_lock);
541 		destroy_unused_super(s);
542 		return ERR_PTR(err);
543 	}
544 	fc->s_fs_info = NULL;
545 	s->s_type = fc->fs_type;
546 	s->s_iflags |= fc->s_iflags;
547 	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
548 	list_add_tail(&s->s_list, &super_blocks);
549 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
550 	spin_unlock(&sb_lock);
551 	get_filesystem(s->s_type);
552 	register_shrinker_prepared(&s->s_shrink);
553 	return s;
554 
555 share_extant_sb:
556 	if (user_ns != old->s_user_ns) {
557 		spin_unlock(&sb_lock);
558 		destroy_unused_super(s);
559 		return ERR_PTR(-EBUSY);
560 	}
561 	if (!grab_super(old))
562 		goto retry;
563 	destroy_unused_super(s);
564 	return old;
565 }
566 EXPORT_SYMBOL(sget_fc);
567 
568 /**
569  *	sget	-	find or create a superblock
570  *	@type:	  filesystem type superblock should belong to
571  *	@test:	  comparison callback
572  *	@set:	  setup callback
573  *	@flags:	  mount flags
574  *	@data:	  argument to each of them
575  */
576 struct super_block *sget(struct file_system_type *type,
577 			int (*test)(struct super_block *,void *),
578 			int (*set)(struct super_block *,void *),
579 			int flags,
580 			void *data)
581 {
582 	struct user_namespace *user_ns = current_user_ns();
583 	struct super_block *s = NULL;
584 	struct super_block *old;
585 	int err;
586 
587 	/* We don't yet pass the user namespace of the parent
588 	 * mount through to here so always use &init_user_ns
589 	 * until that changes.
590 	 */
591 	if (flags & SB_SUBMOUNT)
592 		user_ns = &init_user_ns;
593 
594 retry:
595 	spin_lock(&sb_lock);
596 	if (test) {
597 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
598 			if (!test(old, data))
599 				continue;
600 			if (user_ns != old->s_user_ns) {
601 				spin_unlock(&sb_lock);
602 				destroy_unused_super(s);
603 				return ERR_PTR(-EBUSY);
604 			}
605 			if (!grab_super(old))
606 				goto retry;
607 			destroy_unused_super(s);
608 			return old;
609 		}
610 	}
611 	if (!s) {
612 		spin_unlock(&sb_lock);
613 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
614 		if (!s)
615 			return ERR_PTR(-ENOMEM);
616 		goto retry;
617 	}
618 
619 	err = set(s, data);
620 	if (err) {
621 		spin_unlock(&sb_lock);
622 		destroy_unused_super(s);
623 		return ERR_PTR(err);
624 	}
625 	s->s_type = type;
626 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
627 	list_add_tail(&s->s_list, &super_blocks);
628 	hlist_add_head(&s->s_instances, &type->fs_supers);
629 	spin_unlock(&sb_lock);
630 	get_filesystem(type);
631 	register_shrinker_prepared(&s->s_shrink);
632 	return s;
633 }
634 EXPORT_SYMBOL(sget);
635 
636 void drop_super(struct super_block *sb)
637 {
638 	up_read(&sb->s_umount);
639 	put_super(sb);
640 }
641 
642 EXPORT_SYMBOL(drop_super);
643 
644 void drop_super_exclusive(struct super_block *sb)
645 {
646 	up_write(&sb->s_umount);
647 	put_super(sb);
648 }
649 EXPORT_SYMBOL(drop_super_exclusive);
650 
651 static void __iterate_supers(void (*f)(struct super_block *))
652 {
653 	struct super_block *sb, *p = NULL;
654 
655 	spin_lock(&sb_lock);
656 	list_for_each_entry(sb, &super_blocks, s_list) {
657 		if (hlist_unhashed(&sb->s_instances))
658 			continue;
659 		sb->s_count++;
660 		spin_unlock(&sb_lock);
661 
662 		f(sb);
663 
664 		spin_lock(&sb_lock);
665 		if (p)
666 			__put_super(p);
667 		p = sb;
668 	}
669 	if (p)
670 		__put_super(p);
671 	spin_unlock(&sb_lock);
672 }
673 /**
674  *	iterate_supers - call function for all active superblocks
675  *	@f: function to call
676  *	@arg: argument to pass to it
677  *
678  *	Scans the superblock list and calls given function, passing it
679  *	locked superblock and given argument.
680  */
681 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
682 {
683 	struct super_block *sb, *p = NULL;
684 
685 	spin_lock(&sb_lock);
686 	list_for_each_entry(sb, &super_blocks, s_list) {
687 		if (hlist_unhashed(&sb->s_instances))
688 			continue;
689 		sb->s_count++;
690 		spin_unlock(&sb_lock);
691 
692 		down_read(&sb->s_umount);
693 		if (sb->s_root && (sb->s_flags & SB_BORN))
694 			f(sb, arg);
695 		up_read(&sb->s_umount);
696 
697 		spin_lock(&sb_lock);
698 		if (p)
699 			__put_super(p);
700 		p = sb;
701 	}
702 	if (p)
703 		__put_super(p);
704 	spin_unlock(&sb_lock);
705 }
706 
707 /**
708  *	iterate_supers_type - call function for superblocks of given type
709  *	@type: fs type
710  *	@f: function to call
711  *	@arg: argument to pass to it
712  *
713  *	Scans the superblock list and calls given function, passing it
714  *	locked superblock and given argument.
715  */
716 void iterate_supers_type(struct file_system_type *type,
717 	void (*f)(struct super_block *, void *), void *arg)
718 {
719 	struct super_block *sb, *p = NULL;
720 
721 	spin_lock(&sb_lock);
722 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
723 		sb->s_count++;
724 		spin_unlock(&sb_lock);
725 
726 		down_read(&sb->s_umount);
727 		if (sb->s_root && (sb->s_flags & SB_BORN))
728 			f(sb, arg);
729 		up_read(&sb->s_umount);
730 
731 		spin_lock(&sb_lock);
732 		if (p)
733 			__put_super(p);
734 		p = sb;
735 	}
736 	if (p)
737 		__put_super(p);
738 	spin_unlock(&sb_lock);
739 }
740 
741 EXPORT_SYMBOL(iterate_supers_type);
742 
743 /**
744  * get_super - get the superblock of a device
745  * @bdev: device to get the superblock for
746  *
747  * Scans the superblock list and finds the superblock of the file system
748  * mounted on the device given. %NULL is returned if no match is found.
749  */
750 struct super_block *get_super(struct block_device *bdev)
751 {
752 	struct super_block *sb;
753 
754 	if (!bdev)
755 		return NULL;
756 
757 	spin_lock(&sb_lock);
758 rescan:
759 	list_for_each_entry(sb, &super_blocks, s_list) {
760 		if (hlist_unhashed(&sb->s_instances))
761 			continue;
762 		if (sb->s_bdev == bdev) {
763 			sb->s_count++;
764 			spin_unlock(&sb_lock);
765 			down_read(&sb->s_umount);
766 			/* still alive? */
767 			if (sb->s_root && (sb->s_flags & SB_BORN))
768 				return sb;
769 			up_read(&sb->s_umount);
770 			/* nope, got unmounted */
771 			spin_lock(&sb_lock);
772 			__put_super(sb);
773 			goto rescan;
774 		}
775 	}
776 	spin_unlock(&sb_lock);
777 	return NULL;
778 }
779 
780 /**
781  * get_active_super - get an active reference to the superblock of a device
782  * @bdev: device to get the superblock for
783  *
784  * Scans the superblock list and finds the superblock of the file system
785  * mounted on the device given.  Returns the superblock with an active
786  * reference or %NULL if none was found.
787  */
788 struct super_block *get_active_super(struct block_device *bdev)
789 {
790 	struct super_block *sb;
791 
792 	if (!bdev)
793 		return NULL;
794 
795 restart:
796 	spin_lock(&sb_lock);
797 	list_for_each_entry(sb, &super_blocks, s_list) {
798 		if (hlist_unhashed(&sb->s_instances))
799 			continue;
800 		if (sb->s_bdev == bdev) {
801 			if (!grab_super(sb))
802 				goto restart;
803 			up_write(&sb->s_umount);
804 			return sb;
805 		}
806 	}
807 	spin_unlock(&sb_lock);
808 	return NULL;
809 }
810 
811 struct super_block *user_get_super(dev_t dev, bool excl)
812 {
813 	struct super_block *sb;
814 
815 	spin_lock(&sb_lock);
816 rescan:
817 	list_for_each_entry(sb, &super_blocks, s_list) {
818 		if (hlist_unhashed(&sb->s_instances))
819 			continue;
820 		if (sb->s_dev ==  dev) {
821 			sb->s_count++;
822 			spin_unlock(&sb_lock);
823 			if (excl)
824 				down_write(&sb->s_umount);
825 			else
826 				down_read(&sb->s_umount);
827 			/* still alive? */
828 			if (sb->s_root && (sb->s_flags & SB_BORN))
829 				return sb;
830 			if (excl)
831 				up_write(&sb->s_umount);
832 			else
833 				up_read(&sb->s_umount);
834 			/* nope, got unmounted */
835 			spin_lock(&sb_lock);
836 			__put_super(sb);
837 			goto rescan;
838 		}
839 	}
840 	spin_unlock(&sb_lock);
841 	return NULL;
842 }
843 
844 /**
845  * reconfigure_super - asks filesystem to change superblock parameters
846  * @fc: The superblock and configuration
847  *
848  * Alters the configuration parameters of a live superblock.
849  */
850 int reconfigure_super(struct fs_context *fc)
851 {
852 	struct super_block *sb = fc->root->d_sb;
853 	int retval;
854 	bool remount_ro = false;
855 	bool force = fc->sb_flags & SB_FORCE;
856 
857 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
858 		return -EINVAL;
859 	if (sb->s_writers.frozen != SB_UNFROZEN)
860 		return -EBUSY;
861 
862 	retval = security_sb_remount(sb, fc->security);
863 	if (retval)
864 		return retval;
865 
866 	if (fc->sb_flags_mask & SB_RDONLY) {
867 #ifdef CONFIG_BLOCK
868 		if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
869 			return -EACCES;
870 #endif
871 
872 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
873 	}
874 
875 	if (remount_ro) {
876 		if (!hlist_empty(&sb->s_pins)) {
877 			up_write(&sb->s_umount);
878 			group_pin_kill(&sb->s_pins);
879 			down_write(&sb->s_umount);
880 			if (!sb->s_root)
881 				return 0;
882 			if (sb->s_writers.frozen != SB_UNFROZEN)
883 				return -EBUSY;
884 			remount_ro = !sb_rdonly(sb);
885 		}
886 	}
887 	shrink_dcache_sb(sb);
888 
889 	/* If we are reconfiguring to RDONLY and current sb is read/write,
890 	 * make sure there are no files open for writing.
891 	 */
892 	if (remount_ro) {
893 		if (force) {
894 			sb->s_readonly_remount = 1;
895 			smp_wmb();
896 		} else {
897 			retval = sb_prepare_remount_readonly(sb);
898 			if (retval)
899 				return retval;
900 		}
901 	}
902 
903 	if (fc->ops->reconfigure) {
904 		retval = fc->ops->reconfigure(fc);
905 		if (retval) {
906 			if (!force)
907 				goto cancel_readonly;
908 			/* If forced remount, go ahead despite any errors */
909 			WARN(1, "forced remount of a %s fs returned %i\n",
910 			     sb->s_type->name, retval);
911 		}
912 	}
913 
914 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
915 				 (fc->sb_flags & fc->sb_flags_mask)));
916 	/* Needs to be ordered wrt mnt_is_readonly() */
917 	smp_wmb();
918 	sb->s_readonly_remount = 0;
919 
920 	/*
921 	 * Some filesystems modify their metadata via some other path than the
922 	 * bdev buffer cache (eg. use a private mapping, or directories in
923 	 * pagecache, etc). Also file data modifications go via their own
924 	 * mappings. So If we try to mount readonly then copy the filesystem
925 	 * from bdev, we could get stale data, so invalidate it to give a best
926 	 * effort at coherency.
927 	 */
928 	if (remount_ro && sb->s_bdev)
929 		invalidate_bdev(sb->s_bdev);
930 	return 0;
931 
932 cancel_readonly:
933 	sb->s_readonly_remount = 0;
934 	return retval;
935 }
936 
937 static void do_emergency_remount_callback(struct super_block *sb)
938 {
939 	down_write(&sb->s_umount);
940 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
941 	    !sb_rdonly(sb)) {
942 		struct fs_context *fc;
943 
944 		fc = fs_context_for_reconfigure(sb->s_root,
945 					SB_RDONLY | SB_FORCE, SB_RDONLY);
946 		if (!IS_ERR(fc)) {
947 			if (parse_monolithic_mount_data(fc, NULL) == 0)
948 				(void)reconfigure_super(fc);
949 			put_fs_context(fc);
950 		}
951 	}
952 	up_write(&sb->s_umount);
953 }
954 
955 static void do_emergency_remount(struct work_struct *work)
956 {
957 	__iterate_supers(do_emergency_remount_callback);
958 	kfree(work);
959 	printk("Emergency Remount complete\n");
960 }
961 
962 void emergency_remount(void)
963 {
964 	struct work_struct *work;
965 
966 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
967 	if (work) {
968 		INIT_WORK(work, do_emergency_remount);
969 		schedule_work(work);
970 	}
971 }
972 
973 static void do_thaw_all_callback(struct super_block *sb)
974 {
975 	down_write(&sb->s_umount);
976 	if (sb->s_root && sb->s_flags & SB_BORN) {
977 		emergency_thaw_bdev(sb);
978 		thaw_super_locked(sb);
979 	} else {
980 		up_write(&sb->s_umount);
981 	}
982 }
983 
984 static void do_thaw_all(struct work_struct *work)
985 {
986 	__iterate_supers(do_thaw_all_callback);
987 	kfree(work);
988 	printk(KERN_WARNING "Emergency Thaw complete\n");
989 }
990 
991 /**
992  * emergency_thaw_all -- forcibly thaw every frozen filesystem
993  *
994  * Used for emergency unfreeze of all filesystems via SysRq
995  */
996 void emergency_thaw_all(void)
997 {
998 	struct work_struct *work;
999 
1000 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1001 	if (work) {
1002 		INIT_WORK(work, do_thaw_all);
1003 		schedule_work(work);
1004 	}
1005 }
1006 
1007 static DEFINE_IDA(unnamed_dev_ida);
1008 
1009 /**
1010  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1011  * @p: Pointer to a dev_t.
1012  *
1013  * Filesystems which don't use real block devices can call this function
1014  * to allocate a virtual block device.
1015  *
1016  * Context: Any context.  Frequently called while holding sb_lock.
1017  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1018  * or -ENOMEM if memory allocation failed.
1019  */
1020 int get_anon_bdev(dev_t *p)
1021 {
1022 	int dev;
1023 
1024 	/*
1025 	 * Many userspace utilities consider an FSID of 0 invalid.
1026 	 * Always return at least 1 from get_anon_bdev.
1027 	 */
1028 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1029 			GFP_ATOMIC);
1030 	if (dev == -ENOSPC)
1031 		dev = -EMFILE;
1032 	if (dev < 0)
1033 		return dev;
1034 
1035 	*p = MKDEV(0, dev);
1036 	return 0;
1037 }
1038 EXPORT_SYMBOL(get_anon_bdev);
1039 
1040 void free_anon_bdev(dev_t dev)
1041 {
1042 	ida_free(&unnamed_dev_ida, MINOR(dev));
1043 }
1044 EXPORT_SYMBOL(free_anon_bdev);
1045 
1046 int set_anon_super(struct super_block *s, void *data)
1047 {
1048 	return get_anon_bdev(&s->s_dev);
1049 }
1050 EXPORT_SYMBOL(set_anon_super);
1051 
1052 void kill_anon_super(struct super_block *sb)
1053 {
1054 	dev_t dev = sb->s_dev;
1055 	generic_shutdown_super(sb);
1056 	free_anon_bdev(dev);
1057 }
1058 EXPORT_SYMBOL(kill_anon_super);
1059 
1060 void kill_litter_super(struct super_block *sb)
1061 {
1062 	if (sb->s_root)
1063 		d_genocide(sb->s_root);
1064 	kill_anon_super(sb);
1065 }
1066 EXPORT_SYMBOL(kill_litter_super);
1067 
1068 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1069 {
1070 	return set_anon_super(sb, NULL);
1071 }
1072 EXPORT_SYMBOL(set_anon_super_fc);
1073 
1074 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1075 {
1076 	return sb->s_fs_info == fc->s_fs_info;
1077 }
1078 
1079 static int test_single_super(struct super_block *s, struct fs_context *fc)
1080 {
1081 	return 1;
1082 }
1083 
1084 /**
1085  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1086  * @fc: The filesystem context holding the parameters
1087  * @keying: How to distinguish superblocks
1088  * @fill_super: Helper to initialise a new superblock
1089  *
1090  * Search for a superblock and create a new one if not found.  The search
1091  * criterion is controlled by @keying.  If the search fails, a new superblock
1092  * is created and @fill_super() is called to initialise it.
1093  *
1094  * @keying can take one of a number of values:
1095  *
1096  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1097  *     system.  This is typically used for special system filesystems.
1098  *
1099  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1100  *     distinct keys (where the key is in s_fs_info).  Searching for the same
1101  *     key again will turn up the superblock for that key.
1102  *
1103  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1104  *     unkeyed.  Each call will get a new superblock.
1105  *
1106  * A permissions check is made by sget_fc() unless we're getting a superblock
1107  * for a kernel-internal mount or a submount.
1108  */
1109 int vfs_get_super(struct fs_context *fc,
1110 		  enum vfs_get_super_keying keying,
1111 		  int (*fill_super)(struct super_block *sb,
1112 				    struct fs_context *fc))
1113 {
1114 	int (*test)(struct super_block *, struct fs_context *);
1115 	struct super_block *sb;
1116 	int err;
1117 
1118 	switch (keying) {
1119 	case vfs_get_single_super:
1120 	case vfs_get_single_reconf_super:
1121 		test = test_single_super;
1122 		break;
1123 	case vfs_get_keyed_super:
1124 		test = test_keyed_super;
1125 		break;
1126 	case vfs_get_independent_super:
1127 		test = NULL;
1128 		break;
1129 	default:
1130 		BUG();
1131 	}
1132 
1133 	sb = sget_fc(fc, test, set_anon_super_fc);
1134 	if (IS_ERR(sb))
1135 		return PTR_ERR(sb);
1136 
1137 	if (!sb->s_root) {
1138 		err = fill_super(sb, fc);
1139 		if (err)
1140 			goto error;
1141 
1142 		sb->s_flags |= SB_ACTIVE;
1143 		fc->root = dget(sb->s_root);
1144 	} else {
1145 		fc->root = dget(sb->s_root);
1146 		if (keying == vfs_get_single_reconf_super) {
1147 			err = reconfigure_super(fc);
1148 			if (err < 0) {
1149 				dput(fc->root);
1150 				fc->root = NULL;
1151 				goto error;
1152 			}
1153 		}
1154 	}
1155 
1156 	return 0;
1157 
1158 error:
1159 	deactivate_locked_super(sb);
1160 	return err;
1161 }
1162 EXPORT_SYMBOL(vfs_get_super);
1163 
1164 int get_tree_nodev(struct fs_context *fc,
1165 		  int (*fill_super)(struct super_block *sb,
1166 				    struct fs_context *fc))
1167 {
1168 	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1169 }
1170 EXPORT_SYMBOL(get_tree_nodev);
1171 
1172 int get_tree_single(struct fs_context *fc,
1173 		  int (*fill_super)(struct super_block *sb,
1174 				    struct fs_context *fc))
1175 {
1176 	return vfs_get_super(fc, vfs_get_single_super, fill_super);
1177 }
1178 EXPORT_SYMBOL(get_tree_single);
1179 
1180 int get_tree_single_reconf(struct fs_context *fc,
1181 		  int (*fill_super)(struct super_block *sb,
1182 				    struct fs_context *fc))
1183 {
1184 	return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1185 }
1186 EXPORT_SYMBOL(get_tree_single_reconf);
1187 
1188 int get_tree_keyed(struct fs_context *fc,
1189 		  int (*fill_super)(struct super_block *sb,
1190 				    struct fs_context *fc),
1191 		void *key)
1192 {
1193 	fc->s_fs_info = key;
1194 	return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1195 }
1196 EXPORT_SYMBOL(get_tree_keyed);
1197 
1198 #ifdef CONFIG_BLOCK
1199 
1200 static int set_bdev_super(struct super_block *s, void *data)
1201 {
1202 	s->s_bdev = data;
1203 	s->s_dev = s->s_bdev->bd_dev;
1204 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1205 
1206 	if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
1207 		s->s_iflags |= SB_I_STABLE_WRITES;
1208 	return 0;
1209 }
1210 
1211 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1212 {
1213 	return set_bdev_super(s, fc->sget_key);
1214 }
1215 
1216 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1217 {
1218 	return s->s_bdev == fc->sget_key;
1219 }
1220 
1221 /**
1222  * get_tree_bdev - Get a superblock based on a single block device
1223  * @fc: The filesystem context holding the parameters
1224  * @fill_super: Helper to initialise a new superblock
1225  */
1226 int get_tree_bdev(struct fs_context *fc,
1227 		int (*fill_super)(struct super_block *,
1228 				  struct fs_context *))
1229 {
1230 	struct block_device *bdev;
1231 	struct super_block *s;
1232 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1233 	int error = 0;
1234 
1235 	if (!(fc->sb_flags & SB_RDONLY))
1236 		mode |= FMODE_WRITE;
1237 
1238 	if (!fc->source)
1239 		return invalf(fc, "No source specified");
1240 
1241 	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1242 	if (IS_ERR(bdev)) {
1243 		errorf(fc, "%s: Can't open blockdev", fc->source);
1244 		return PTR_ERR(bdev);
1245 	}
1246 
1247 	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1248 	 * will protect the lockfs code from trying to start a snapshot while
1249 	 * we are mounting
1250 	 */
1251 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1252 	if (bdev->bd_fsfreeze_count > 0) {
1253 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1254 		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1255 		blkdev_put(bdev, mode);
1256 		return -EBUSY;
1257 	}
1258 
1259 	fc->sb_flags |= SB_NOSEC;
1260 	fc->sget_key = bdev;
1261 	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1262 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1263 	if (IS_ERR(s)) {
1264 		blkdev_put(bdev, mode);
1265 		return PTR_ERR(s);
1266 	}
1267 
1268 	if (s->s_root) {
1269 		/* Don't summarily change the RO/RW state. */
1270 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1271 			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1272 			deactivate_locked_super(s);
1273 			blkdev_put(bdev, mode);
1274 			return -EBUSY;
1275 		}
1276 
1277 		/*
1278 		 * s_umount nests inside bd_mutex during
1279 		 * __invalidate_device().  blkdev_put() acquires
1280 		 * bd_mutex and can't be called under s_umount.  Drop
1281 		 * s_umount temporarily.  This is safe as we're
1282 		 * holding an active reference.
1283 		 */
1284 		up_write(&s->s_umount);
1285 		blkdev_put(bdev, mode);
1286 		down_write(&s->s_umount);
1287 	} else {
1288 		s->s_mode = mode;
1289 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1290 		sb_set_blocksize(s, block_size(bdev));
1291 		error = fill_super(s, fc);
1292 		if (error) {
1293 			deactivate_locked_super(s);
1294 			return error;
1295 		}
1296 
1297 		s->s_flags |= SB_ACTIVE;
1298 		bdev->bd_super = s;
1299 	}
1300 
1301 	BUG_ON(fc->root);
1302 	fc->root = dget(s->s_root);
1303 	return 0;
1304 }
1305 EXPORT_SYMBOL(get_tree_bdev);
1306 
1307 static int test_bdev_super(struct super_block *s, void *data)
1308 {
1309 	return (void *)s->s_bdev == data;
1310 }
1311 
1312 struct dentry *mount_bdev(struct file_system_type *fs_type,
1313 	int flags, const char *dev_name, void *data,
1314 	int (*fill_super)(struct super_block *, void *, int))
1315 {
1316 	struct block_device *bdev;
1317 	struct super_block *s;
1318 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1319 	int error = 0;
1320 
1321 	if (!(flags & SB_RDONLY))
1322 		mode |= FMODE_WRITE;
1323 
1324 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1325 	if (IS_ERR(bdev))
1326 		return ERR_CAST(bdev);
1327 
1328 	/*
1329 	 * once the super is inserted into the list by sget, s_umount
1330 	 * will protect the lockfs code from trying to start a snapshot
1331 	 * while we are mounting
1332 	 */
1333 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1334 	if (bdev->bd_fsfreeze_count > 0) {
1335 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1336 		error = -EBUSY;
1337 		goto error_bdev;
1338 	}
1339 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1340 		 bdev);
1341 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1342 	if (IS_ERR(s))
1343 		goto error_s;
1344 
1345 	if (s->s_root) {
1346 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1347 			deactivate_locked_super(s);
1348 			error = -EBUSY;
1349 			goto error_bdev;
1350 		}
1351 
1352 		/*
1353 		 * s_umount nests inside bd_mutex during
1354 		 * __invalidate_device().  blkdev_put() acquires
1355 		 * bd_mutex and can't be called under s_umount.  Drop
1356 		 * s_umount temporarily.  This is safe as we're
1357 		 * holding an active reference.
1358 		 */
1359 		up_write(&s->s_umount);
1360 		blkdev_put(bdev, mode);
1361 		down_write(&s->s_umount);
1362 	} else {
1363 		s->s_mode = mode;
1364 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1365 		sb_set_blocksize(s, block_size(bdev));
1366 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1367 		if (error) {
1368 			deactivate_locked_super(s);
1369 			goto error;
1370 		}
1371 
1372 		s->s_flags |= SB_ACTIVE;
1373 		bdev->bd_super = s;
1374 	}
1375 
1376 	return dget(s->s_root);
1377 
1378 error_s:
1379 	error = PTR_ERR(s);
1380 error_bdev:
1381 	blkdev_put(bdev, mode);
1382 error:
1383 	return ERR_PTR(error);
1384 }
1385 EXPORT_SYMBOL(mount_bdev);
1386 
1387 void kill_block_super(struct super_block *sb)
1388 {
1389 	struct block_device *bdev = sb->s_bdev;
1390 	fmode_t mode = sb->s_mode;
1391 
1392 	bdev->bd_super = NULL;
1393 	generic_shutdown_super(sb);
1394 	sync_blockdev(bdev);
1395 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1396 	blkdev_put(bdev, mode | FMODE_EXCL);
1397 }
1398 
1399 EXPORT_SYMBOL(kill_block_super);
1400 #endif
1401 
1402 struct dentry *mount_nodev(struct file_system_type *fs_type,
1403 	int flags, void *data,
1404 	int (*fill_super)(struct super_block *, void *, int))
1405 {
1406 	int error;
1407 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1408 
1409 	if (IS_ERR(s))
1410 		return ERR_CAST(s);
1411 
1412 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1413 	if (error) {
1414 		deactivate_locked_super(s);
1415 		return ERR_PTR(error);
1416 	}
1417 	s->s_flags |= SB_ACTIVE;
1418 	return dget(s->s_root);
1419 }
1420 EXPORT_SYMBOL(mount_nodev);
1421 
1422 static int reconfigure_single(struct super_block *s,
1423 			      int flags, void *data)
1424 {
1425 	struct fs_context *fc;
1426 	int ret;
1427 
1428 	/* The caller really need to be passing fc down into mount_single(),
1429 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1430 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1431 	 * mount should be rejected if the parameters are not compatible.
1432 	 */
1433 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1434 	if (IS_ERR(fc))
1435 		return PTR_ERR(fc);
1436 
1437 	ret = parse_monolithic_mount_data(fc, data);
1438 	if (ret < 0)
1439 		goto out;
1440 
1441 	ret = reconfigure_super(fc);
1442 out:
1443 	put_fs_context(fc);
1444 	return ret;
1445 }
1446 
1447 static int compare_single(struct super_block *s, void *p)
1448 {
1449 	return 1;
1450 }
1451 
1452 struct dentry *mount_single(struct file_system_type *fs_type,
1453 	int flags, void *data,
1454 	int (*fill_super)(struct super_block *, void *, int))
1455 {
1456 	struct super_block *s;
1457 	int error;
1458 
1459 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1460 	if (IS_ERR(s))
1461 		return ERR_CAST(s);
1462 	if (!s->s_root) {
1463 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1464 		if (!error)
1465 			s->s_flags |= SB_ACTIVE;
1466 	} else {
1467 		error = reconfigure_single(s, flags, data);
1468 	}
1469 	if (unlikely(error)) {
1470 		deactivate_locked_super(s);
1471 		return ERR_PTR(error);
1472 	}
1473 	return dget(s->s_root);
1474 }
1475 EXPORT_SYMBOL(mount_single);
1476 
1477 /**
1478  * vfs_get_tree - Get the mountable root
1479  * @fc: The superblock configuration context.
1480  *
1481  * The filesystem is invoked to get or create a superblock which can then later
1482  * be used for mounting.  The filesystem places a pointer to the root to be
1483  * used for mounting in @fc->root.
1484  */
1485 int vfs_get_tree(struct fs_context *fc)
1486 {
1487 	struct super_block *sb;
1488 	int error;
1489 
1490 	if (fc->root)
1491 		return -EBUSY;
1492 
1493 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1494 	 * on the superblock.
1495 	 */
1496 	error = fc->ops->get_tree(fc);
1497 	if (error < 0)
1498 		return error;
1499 
1500 	if (!fc->root) {
1501 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1502 		       fc->fs_type->name);
1503 		/* We don't know what the locking state of the superblock is -
1504 		 * if there is a superblock.
1505 		 */
1506 		BUG();
1507 	}
1508 
1509 	sb = fc->root->d_sb;
1510 	WARN_ON(!sb->s_bdi);
1511 
1512 	/*
1513 	 * Write barrier is for super_cache_count(). We place it before setting
1514 	 * SB_BORN as the data dependency between the two functions is the
1515 	 * superblock structure contents that we just set up, not the SB_BORN
1516 	 * flag.
1517 	 */
1518 	smp_wmb();
1519 	sb->s_flags |= SB_BORN;
1520 
1521 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1522 	if (unlikely(error)) {
1523 		fc_drop_locked(fc);
1524 		return error;
1525 	}
1526 
1527 	/*
1528 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1529 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1530 	 * this warning for a little while to try and catch filesystems that
1531 	 * violate this rule.
1532 	 */
1533 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1534 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1535 
1536 	return 0;
1537 }
1538 EXPORT_SYMBOL(vfs_get_tree);
1539 
1540 /*
1541  * Setup private BDI for given superblock. It gets automatically cleaned up
1542  * in generic_shutdown_super().
1543  */
1544 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1545 {
1546 	struct backing_dev_info *bdi;
1547 	int err;
1548 	va_list args;
1549 
1550 	bdi = bdi_alloc(NUMA_NO_NODE);
1551 	if (!bdi)
1552 		return -ENOMEM;
1553 
1554 	va_start(args, fmt);
1555 	err = bdi_register_va(bdi, fmt, args);
1556 	va_end(args);
1557 	if (err) {
1558 		bdi_put(bdi);
1559 		return err;
1560 	}
1561 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1562 	sb->s_bdi = bdi;
1563 
1564 	return 0;
1565 }
1566 EXPORT_SYMBOL(super_setup_bdi_name);
1567 
1568 /*
1569  * Setup private BDI for given superblock. I gets automatically cleaned up
1570  * in generic_shutdown_super().
1571  */
1572 int super_setup_bdi(struct super_block *sb)
1573 {
1574 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1575 
1576 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1577 				    atomic_long_inc_return(&bdi_seq));
1578 }
1579 EXPORT_SYMBOL(super_setup_bdi);
1580 
1581 /**
1582  * sb_wait_write - wait until all writers to given file system finish
1583  * @sb: the super for which we wait
1584  * @level: type of writers we wait for (normal vs page fault)
1585  *
1586  * This function waits until there are no writers of given type to given file
1587  * system.
1588  */
1589 static void sb_wait_write(struct super_block *sb, int level)
1590 {
1591 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1592 }
1593 
1594 /*
1595  * We are going to return to userspace and forget about these locks, the
1596  * ownership goes to the caller of thaw_super() which does unlock().
1597  */
1598 static void lockdep_sb_freeze_release(struct super_block *sb)
1599 {
1600 	int level;
1601 
1602 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1603 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1604 }
1605 
1606 /*
1607  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1608  */
1609 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1610 {
1611 	int level;
1612 
1613 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1614 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1615 }
1616 
1617 static void sb_freeze_unlock(struct super_block *sb)
1618 {
1619 	int level;
1620 
1621 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1622 		percpu_up_write(sb->s_writers.rw_sem + level);
1623 }
1624 
1625 /**
1626  * freeze_super - lock the filesystem and force it into a consistent state
1627  * @sb: the super to lock
1628  *
1629  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1630  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1631  * -EBUSY.
1632  *
1633  * During this function, sb->s_writers.frozen goes through these values:
1634  *
1635  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1636  *
1637  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1638  * writes should be blocked, though page faults are still allowed. We wait for
1639  * all writes to complete and then proceed to the next stage.
1640  *
1641  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1642  * but internal fs threads can still modify the filesystem (although they
1643  * should not dirty new pages or inodes), writeback can run etc. After waiting
1644  * for all running page faults we sync the filesystem which will clean all
1645  * dirty pages and inodes (no new dirty pages or inodes can be created when
1646  * sync is running).
1647  *
1648  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1649  * modification are blocked (e.g. XFS preallocation truncation on inode
1650  * reclaim). This is usually implemented by blocking new transactions for
1651  * filesystems that have them and need this additional guard. After all
1652  * internal writers are finished we call ->freeze_fs() to finish filesystem
1653  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1654  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1655  *
1656  * sb->s_writers.frozen is protected by sb->s_umount.
1657  */
1658 int freeze_super(struct super_block *sb)
1659 {
1660 	int ret;
1661 
1662 	atomic_inc(&sb->s_active);
1663 	down_write(&sb->s_umount);
1664 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1665 		deactivate_locked_super(sb);
1666 		return -EBUSY;
1667 	}
1668 
1669 	if (!(sb->s_flags & SB_BORN)) {
1670 		up_write(&sb->s_umount);
1671 		return 0;	/* sic - it's "nothing to do" */
1672 	}
1673 
1674 	if (sb_rdonly(sb)) {
1675 		/* Nothing to do really... */
1676 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1677 		up_write(&sb->s_umount);
1678 		return 0;
1679 	}
1680 
1681 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1682 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1683 	up_write(&sb->s_umount);
1684 	sb_wait_write(sb, SB_FREEZE_WRITE);
1685 	down_write(&sb->s_umount);
1686 
1687 	/* Now we go and block page faults... */
1688 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1689 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1690 
1691 	/* All writers are done so after syncing there won't be dirty data */
1692 	sync_filesystem(sb);
1693 
1694 	/* Now wait for internal filesystem counter */
1695 	sb->s_writers.frozen = SB_FREEZE_FS;
1696 	sb_wait_write(sb, SB_FREEZE_FS);
1697 
1698 	if (sb->s_op->freeze_fs) {
1699 		ret = sb->s_op->freeze_fs(sb);
1700 		if (ret) {
1701 			printk(KERN_ERR
1702 				"VFS:Filesystem freeze failed\n");
1703 			sb->s_writers.frozen = SB_UNFROZEN;
1704 			sb_freeze_unlock(sb);
1705 			wake_up(&sb->s_writers.wait_unfrozen);
1706 			deactivate_locked_super(sb);
1707 			return ret;
1708 		}
1709 	}
1710 	/*
1711 	 * For debugging purposes so that fs can warn if it sees write activity
1712 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1713 	 */
1714 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1715 	lockdep_sb_freeze_release(sb);
1716 	up_write(&sb->s_umount);
1717 	return 0;
1718 }
1719 EXPORT_SYMBOL(freeze_super);
1720 
1721 /**
1722  * thaw_super -- unlock filesystem
1723  * @sb: the super to thaw
1724  *
1725  * Unlocks the filesystem and marks it writeable again after freeze_super().
1726  */
1727 static int thaw_super_locked(struct super_block *sb)
1728 {
1729 	int error;
1730 
1731 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1732 		up_write(&sb->s_umount);
1733 		return -EINVAL;
1734 	}
1735 
1736 	if (sb_rdonly(sb)) {
1737 		sb->s_writers.frozen = SB_UNFROZEN;
1738 		goto out;
1739 	}
1740 
1741 	lockdep_sb_freeze_acquire(sb);
1742 
1743 	if (sb->s_op->unfreeze_fs) {
1744 		error = sb->s_op->unfreeze_fs(sb);
1745 		if (error) {
1746 			printk(KERN_ERR
1747 				"VFS:Filesystem thaw failed\n");
1748 			lockdep_sb_freeze_release(sb);
1749 			up_write(&sb->s_umount);
1750 			return error;
1751 		}
1752 	}
1753 
1754 	sb->s_writers.frozen = SB_UNFROZEN;
1755 	sb_freeze_unlock(sb);
1756 out:
1757 	wake_up(&sb->s_writers.wait_unfrozen);
1758 	deactivate_locked_super(sb);
1759 	return 0;
1760 }
1761 
1762 int thaw_super(struct super_block *sb)
1763 {
1764 	down_write(&sb->s_umount);
1765 	return thaw_super_locked(sb);
1766 }
1767 EXPORT_SYMBOL(thaw_super);
1768