1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbj�rn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/smp_lock.h> 27 #include <linux/acct.h> 28 #include <linux/blkdev.h> 29 #include <linux/quotaops.h> 30 #include <linux/namei.h> 31 #include <linux/buffer_head.h> /* for fsync_super() */ 32 #include <linux/mount.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/vfs.h> 36 #include <linux/writeback.h> /* for the emergency remount stuff */ 37 #include <linux/idr.h> 38 #include <linux/kobject.h> 39 #include <linux/mutex.h> 40 #include <asm/uaccess.h> 41 42 43 void get_filesystem(struct file_system_type *fs); 44 void put_filesystem(struct file_system_type *fs); 45 struct file_system_type *get_fs_type(const char *name); 46 47 LIST_HEAD(super_blocks); 48 DEFINE_SPINLOCK(sb_lock); 49 50 /** 51 * alloc_super - create new superblock 52 * @type: filesystem type superblock should belong to 53 * 54 * Allocates and initializes a new &struct super_block. alloc_super() 55 * returns a pointer new superblock or %NULL if allocation had failed. 56 */ 57 static struct super_block *alloc_super(struct file_system_type *type) 58 { 59 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 60 static struct super_operations default_op; 61 62 if (s) { 63 if (security_sb_alloc(s)) { 64 kfree(s); 65 s = NULL; 66 goto out; 67 } 68 INIT_LIST_HEAD(&s->s_dirty); 69 INIT_LIST_HEAD(&s->s_io); 70 INIT_LIST_HEAD(&s->s_files); 71 INIT_LIST_HEAD(&s->s_instances); 72 INIT_HLIST_HEAD(&s->s_anon); 73 INIT_LIST_HEAD(&s->s_inodes); 74 init_rwsem(&s->s_umount); 75 mutex_init(&s->s_lock); 76 lockdep_set_class(&s->s_umount, &type->s_umount_key); 77 /* 78 * The locking rules for s_lock are up to the 79 * filesystem. For example ext3fs has different 80 * lock ordering than usbfs: 81 */ 82 lockdep_set_class(&s->s_lock, &type->s_lock_key); 83 down_write(&s->s_umount); 84 s->s_count = S_BIAS; 85 atomic_set(&s->s_active, 1); 86 mutex_init(&s->s_vfs_rename_mutex); 87 mutex_init(&s->s_dquot.dqio_mutex); 88 mutex_init(&s->s_dquot.dqonoff_mutex); 89 init_rwsem(&s->s_dquot.dqptr_sem); 90 init_waitqueue_head(&s->s_wait_unfrozen); 91 s->s_maxbytes = MAX_NON_LFS; 92 s->dq_op = sb_dquot_ops; 93 s->s_qcop = sb_quotactl_ops; 94 s->s_op = &default_op; 95 s->s_time_gran = 1000000000; 96 } 97 out: 98 return s; 99 } 100 101 /** 102 * destroy_super - frees a superblock 103 * @s: superblock to free 104 * 105 * Frees a superblock. 106 */ 107 static inline void destroy_super(struct super_block *s) 108 { 109 security_sb_free(s); 110 kfree(s); 111 } 112 113 /* Superblock refcounting */ 114 115 /* 116 * Drop a superblock's refcount. Returns non-zero if the superblock was 117 * destroyed. The caller must hold sb_lock. 118 */ 119 int __put_super(struct super_block *sb) 120 { 121 int ret = 0; 122 123 if (!--sb->s_count) { 124 destroy_super(sb); 125 ret = 1; 126 } 127 return ret; 128 } 129 130 /* 131 * Drop a superblock's refcount. 132 * Returns non-zero if the superblock is about to be destroyed and 133 * at least is already removed from super_blocks list, so if we are 134 * making a loop through super blocks then we need to restart. 135 * The caller must hold sb_lock. 136 */ 137 int __put_super_and_need_restart(struct super_block *sb) 138 { 139 /* check for race with generic_shutdown_super() */ 140 if (list_empty(&sb->s_list)) { 141 /* super block is removed, need to restart... */ 142 __put_super(sb); 143 return 1; 144 } 145 /* can't be the last, since s_list is still in use */ 146 sb->s_count--; 147 BUG_ON(sb->s_count == 0); 148 return 0; 149 } 150 151 /** 152 * put_super - drop a temporary reference to superblock 153 * @sb: superblock in question 154 * 155 * Drops a temporary reference, frees superblock if there's no 156 * references left. 157 */ 158 static void put_super(struct super_block *sb) 159 { 160 spin_lock(&sb_lock); 161 __put_super(sb); 162 spin_unlock(&sb_lock); 163 } 164 165 166 /** 167 * deactivate_super - drop an active reference to superblock 168 * @s: superblock to deactivate 169 * 170 * Drops an active reference to superblock, acquiring a temprory one if 171 * there is no active references left. In that case we lock superblock, 172 * tell fs driver to shut it down and drop the temporary reference we 173 * had just acquired. 174 */ 175 void deactivate_super(struct super_block *s) 176 { 177 struct file_system_type *fs = s->s_type; 178 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) { 179 s->s_count -= S_BIAS-1; 180 spin_unlock(&sb_lock); 181 DQUOT_OFF(s); 182 down_write(&s->s_umount); 183 fs->kill_sb(s); 184 put_filesystem(fs); 185 put_super(s); 186 } 187 } 188 189 EXPORT_SYMBOL(deactivate_super); 190 191 /** 192 * grab_super - acquire an active reference 193 * @s: reference we are trying to make active 194 * 195 * Tries to acquire an active reference. grab_super() is used when we 196 * had just found a superblock in super_blocks or fs_type->fs_supers 197 * and want to turn it into a full-blown active reference. grab_super() 198 * is called with sb_lock held and drops it. Returns 1 in case of 199 * success, 0 if we had failed (superblock contents was already dead or 200 * dying when grab_super() had been called). 201 */ 202 static int grab_super(struct super_block *s) __releases(sb_lock) 203 { 204 s->s_count++; 205 spin_unlock(&sb_lock); 206 down_write(&s->s_umount); 207 if (s->s_root) { 208 spin_lock(&sb_lock); 209 if (s->s_count > S_BIAS) { 210 atomic_inc(&s->s_active); 211 s->s_count--; 212 spin_unlock(&sb_lock); 213 return 1; 214 } 215 spin_unlock(&sb_lock); 216 } 217 up_write(&s->s_umount); 218 put_super(s); 219 yield(); 220 return 0; 221 } 222 223 /* 224 * Superblock locking. We really ought to get rid of these two. 225 */ 226 void lock_super(struct super_block * sb) 227 { 228 get_fs_excl(); 229 mutex_lock(&sb->s_lock); 230 } 231 232 void unlock_super(struct super_block * sb) 233 { 234 put_fs_excl(); 235 mutex_unlock(&sb->s_lock); 236 } 237 238 EXPORT_SYMBOL(lock_super); 239 EXPORT_SYMBOL(unlock_super); 240 241 /* 242 * Write out and wait upon all dirty data associated with this 243 * superblock. Filesystem data as well as the underlying block 244 * device. Takes the superblock lock. Requires a second blkdev 245 * flush by the caller to complete the operation. 246 */ 247 void __fsync_super(struct super_block *sb) 248 { 249 sync_inodes_sb(sb, 0); 250 DQUOT_SYNC(sb); 251 lock_super(sb); 252 if (sb->s_dirt && sb->s_op->write_super) 253 sb->s_op->write_super(sb); 254 unlock_super(sb); 255 if (sb->s_op->sync_fs) 256 sb->s_op->sync_fs(sb, 1); 257 sync_blockdev(sb->s_bdev); 258 sync_inodes_sb(sb, 1); 259 } 260 261 /* 262 * Write out and wait upon all dirty data associated with this 263 * superblock. Filesystem data as well as the underlying block 264 * device. Takes the superblock lock. 265 */ 266 int fsync_super(struct super_block *sb) 267 { 268 __fsync_super(sb); 269 return sync_blockdev(sb->s_bdev); 270 } 271 272 /** 273 * generic_shutdown_super - common helper for ->kill_sb() 274 * @sb: superblock to kill 275 * 276 * generic_shutdown_super() does all fs-independent work on superblock 277 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 278 * that need destruction out of superblock, call generic_shutdown_super() 279 * and release aforementioned objects. Note: dentries and inodes _are_ 280 * taken care of and do not need specific handling. 281 * 282 * Upon calling this function, the filesystem may no longer alter or 283 * rearrange the set of dentries belonging to this super_block, nor may it 284 * change the attachments of dentries to inodes. 285 */ 286 void generic_shutdown_super(struct super_block *sb) 287 { 288 const struct super_operations *sop = sb->s_op; 289 290 if (sb->s_root) { 291 shrink_dcache_for_umount(sb); 292 fsync_super(sb); 293 lock_super(sb); 294 sb->s_flags &= ~MS_ACTIVE; 295 /* bad name - it should be evict_inodes() */ 296 invalidate_inodes(sb); 297 lock_kernel(); 298 299 if (sop->write_super && sb->s_dirt) 300 sop->write_super(sb); 301 if (sop->put_super) 302 sop->put_super(sb); 303 304 /* Forget any remaining inodes */ 305 if (invalidate_inodes(sb)) { 306 printk("VFS: Busy inodes after unmount of %s. " 307 "Self-destruct in 5 seconds. Have a nice day...\n", 308 sb->s_id); 309 } 310 311 unlock_kernel(); 312 unlock_super(sb); 313 } 314 spin_lock(&sb_lock); 315 /* should be initialized for __put_super_and_need_restart() */ 316 list_del_init(&sb->s_list); 317 list_del(&sb->s_instances); 318 spin_unlock(&sb_lock); 319 up_write(&sb->s_umount); 320 } 321 322 EXPORT_SYMBOL(generic_shutdown_super); 323 324 /** 325 * sget - find or create a superblock 326 * @type: filesystem type superblock should belong to 327 * @test: comparison callback 328 * @set: setup callback 329 * @data: argument to each of them 330 */ 331 struct super_block *sget(struct file_system_type *type, 332 int (*test)(struct super_block *,void *), 333 int (*set)(struct super_block *,void *), 334 void *data) 335 { 336 struct super_block *s = NULL; 337 struct list_head *p; 338 int err; 339 340 retry: 341 spin_lock(&sb_lock); 342 if (test) list_for_each(p, &type->fs_supers) { 343 struct super_block *old; 344 old = list_entry(p, struct super_block, s_instances); 345 if (!test(old, data)) 346 continue; 347 if (!grab_super(old)) 348 goto retry; 349 if (s) 350 destroy_super(s); 351 return old; 352 } 353 if (!s) { 354 spin_unlock(&sb_lock); 355 s = alloc_super(type); 356 if (!s) 357 return ERR_PTR(-ENOMEM); 358 goto retry; 359 } 360 361 err = set(s, data); 362 if (err) { 363 spin_unlock(&sb_lock); 364 destroy_super(s); 365 return ERR_PTR(err); 366 } 367 s->s_type = type; 368 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 369 list_add_tail(&s->s_list, &super_blocks); 370 list_add(&s->s_instances, &type->fs_supers); 371 spin_unlock(&sb_lock); 372 get_filesystem(type); 373 return s; 374 } 375 376 EXPORT_SYMBOL(sget); 377 378 void drop_super(struct super_block *sb) 379 { 380 up_read(&sb->s_umount); 381 put_super(sb); 382 } 383 384 EXPORT_SYMBOL(drop_super); 385 386 static inline void write_super(struct super_block *sb) 387 { 388 lock_super(sb); 389 if (sb->s_root && sb->s_dirt) 390 if (sb->s_op->write_super) 391 sb->s_op->write_super(sb); 392 unlock_super(sb); 393 } 394 395 /* 396 * Note: check the dirty flag before waiting, so we don't 397 * hold up the sync while mounting a device. (The newly 398 * mounted device won't need syncing.) 399 */ 400 void sync_supers(void) 401 { 402 struct super_block *sb; 403 404 spin_lock(&sb_lock); 405 restart: 406 list_for_each_entry(sb, &super_blocks, s_list) { 407 if (sb->s_dirt) { 408 sb->s_count++; 409 spin_unlock(&sb_lock); 410 down_read(&sb->s_umount); 411 write_super(sb); 412 up_read(&sb->s_umount); 413 spin_lock(&sb_lock); 414 if (__put_super_and_need_restart(sb)) 415 goto restart; 416 } 417 } 418 spin_unlock(&sb_lock); 419 } 420 421 /* 422 * Call the ->sync_fs super_op against all filesytems which are r/w and 423 * which implement it. 424 * 425 * This operation is careful to avoid the livelock which could easily happen 426 * if two or more filesystems are being continuously dirtied. s_need_sync_fs 427 * is used only here. We set it against all filesystems and then clear it as 428 * we sync them. So redirtied filesystems are skipped. 429 * 430 * But if process A is currently running sync_filesytems and then process B 431 * calls sync_filesystems as well, process B will set all the s_need_sync_fs 432 * flags again, which will cause process A to resync everything. Fix that with 433 * a local mutex. 434 * 435 * (Fabian) Avoid sync_fs with clean fs & wait mode 0 436 */ 437 void sync_filesystems(int wait) 438 { 439 struct super_block *sb; 440 static DEFINE_MUTEX(mutex); 441 442 mutex_lock(&mutex); /* Could be down_interruptible */ 443 spin_lock(&sb_lock); 444 list_for_each_entry(sb, &super_blocks, s_list) { 445 if (!sb->s_op->sync_fs) 446 continue; 447 if (sb->s_flags & MS_RDONLY) 448 continue; 449 sb->s_need_sync_fs = 1; 450 } 451 452 restart: 453 list_for_each_entry(sb, &super_blocks, s_list) { 454 if (!sb->s_need_sync_fs) 455 continue; 456 sb->s_need_sync_fs = 0; 457 if (sb->s_flags & MS_RDONLY) 458 continue; /* hm. Was remounted r/o meanwhile */ 459 sb->s_count++; 460 spin_unlock(&sb_lock); 461 down_read(&sb->s_umount); 462 if (sb->s_root && (wait || sb->s_dirt)) 463 sb->s_op->sync_fs(sb, wait); 464 up_read(&sb->s_umount); 465 /* restart only when sb is no longer on the list */ 466 spin_lock(&sb_lock); 467 if (__put_super_and_need_restart(sb)) 468 goto restart; 469 } 470 spin_unlock(&sb_lock); 471 mutex_unlock(&mutex); 472 } 473 474 /** 475 * get_super - get the superblock of a device 476 * @bdev: device to get the superblock for 477 * 478 * Scans the superblock list and finds the superblock of the file system 479 * mounted on the device given. %NULL is returned if no match is found. 480 */ 481 482 struct super_block * get_super(struct block_device *bdev) 483 { 484 struct super_block *sb; 485 486 if (!bdev) 487 return NULL; 488 489 spin_lock(&sb_lock); 490 rescan: 491 list_for_each_entry(sb, &super_blocks, s_list) { 492 if (sb->s_bdev == bdev) { 493 sb->s_count++; 494 spin_unlock(&sb_lock); 495 down_read(&sb->s_umount); 496 if (sb->s_root) 497 return sb; 498 up_read(&sb->s_umount); 499 /* restart only when sb is no longer on the list */ 500 spin_lock(&sb_lock); 501 if (__put_super_and_need_restart(sb)) 502 goto rescan; 503 } 504 } 505 spin_unlock(&sb_lock); 506 return NULL; 507 } 508 509 EXPORT_SYMBOL(get_super); 510 511 struct super_block * user_get_super(dev_t dev) 512 { 513 struct super_block *sb; 514 515 spin_lock(&sb_lock); 516 rescan: 517 list_for_each_entry(sb, &super_blocks, s_list) { 518 if (sb->s_dev == dev) { 519 sb->s_count++; 520 spin_unlock(&sb_lock); 521 down_read(&sb->s_umount); 522 if (sb->s_root) 523 return sb; 524 up_read(&sb->s_umount); 525 /* restart only when sb is no longer on the list */ 526 spin_lock(&sb_lock); 527 if (__put_super_and_need_restart(sb)) 528 goto rescan; 529 } 530 } 531 spin_unlock(&sb_lock); 532 return NULL; 533 } 534 535 asmlinkage long sys_ustat(unsigned dev, struct ustat __user * ubuf) 536 { 537 struct super_block *s; 538 struct ustat tmp; 539 struct kstatfs sbuf; 540 int err = -EINVAL; 541 542 s = user_get_super(new_decode_dev(dev)); 543 if (s == NULL) 544 goto out; 545 err = vfs_statfs(s->s_root, &sbuf); 546 drop_super(s); 547 if (err) 548 goto out; 549 550 memset(&tmp,0,sizeof(struct ustat)); 551 tmp.f_tfree = sbuf.f_bfree; 552 tmp.f_tinode = sbuf.f_ffree; 553 554 err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0; 555 out: 556 return err; 557 } 558 559 /** 560 * mark_files_ro 561 * @sb: superblock in question 562 * 563 * All files are marked read/only. We don't care about pending 564 * delete files so this should be used in 'force' mode only 565 */ 566 567 static void mark_files_ro(struct super_block *sb) 568 { 569 struct file *f; 570 571 file_list_lock(); 572 list_for_each_entry(f, &sb->s_files, f_u.fu_list) { 573 if (S_ISREG(f->f_path.dentry->d_inode->i_mode) && file_count(f)) 574 f->f_mode &= ~FMODE_WRITE; 575 } 576 file_list_unlock(); 577 } 578 579 /** 580 * do_remount_sb - asks filesystem to change mount options. 581 * @sb: superblock in question 582 * @flags: numeric part of options 583 * @data: the rest of options 584 * @force: whether or not to force the change 585 * 586 * Alters the mount options of a mounted file system. 587 */ 588 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 589 { 590 int retval; 591 592 #ifdef CONFIG_BLOCK 593 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 594 return -EACCES; 595 #endif 596 if (flags & MS_RDONLY) 597 acct_auto_close(sb); 598 shrink_dcache_sb(sb); 599 fsync_super(sb); 600 601 /* If we are remounting RDONLY and current sb is read/write, 602 make sure there are no rw files opened */ 603 if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) { 604 if (force) 605 mark_files_ro(sb); 606 else if (!fs_may_remount_ro(sb)) 607 return -EBUSY; 608 } 609 610 if (sb->s_op->remount_fs) { 611 lock_super(sb); 612 retval = sb->s_op->remount_fs(sb, &flags, data); 613 unlock_super(sb); 614 if (retval) 615 return retval; 616 } 617 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 618 return 0; 619 } 620 621 static void do_emergency_remount(unsigned long foo) 622 { 623 struct super_block *sb; 624 625 spin_lock(&sb_lock); 626 list_for_each_entry(sb, &super_blocks, s_list) { 627 sb->s_count++; 628 spin_unlock(&sb_lock); 629 down_read(&sb->s_umount); 630 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) { 631 /* 632 * ->remount_fs needs lock_kernel(). 633 * 634 * What lock protects sb->s_flags?? 635 */ 636 lock_kernel(); 637 do_remount_sb(sb, MS_RDONLY, NULL, 1); 638 unlock_kernel(); 639 } 640 drop_super(sb); 641 spin_lock(&sb_lock); 642 } 643 spin_unlock(&sb_lock); 644 printk("Emergency Remount complete\n"); 645 } 646 647 void emergency_remount(void) 648 { 649 pdflush_operation(do_emergency_remount, 0); 650 } 651 652 /* 653 * Unnamed block devices are dummy devices used by virtual 654 * filesystems which don't use real block-devices. -- jrs 655 */ 656 657 static struct idr unnamed_dev_idr; 658 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 659 660 int set_anon_super(struct super_block *s, void *data) 661 { 662 int dev; 663 int error; 664 665 retry: 666 if (idr_pre_get(&unnamed_dev_idr, GFP_ATOMIC) == 0) 667 return -ENOMEM; 668 spin_lock(&unnamed_dev_lock); 669 error = idr_get_new(&unnamed_dev_idr, NULL, &dev); 670 spin_unlock(&unnamed_dev_lock); 671 if (error == -EAGAIN) 672 /* We raced and lost with another CPU. */ 673 goto retry; 674 else if (error) 675 return -EAGAIN; 676 677 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) { 678 spin_lock(&unnamed_dev_lock); 679 idr_remove(&unnamed_dev_idr, dev); 680 spin_unlock(&unnamed_dev_lock); 681 return -EMFILE; 682 } 683 s->s_dev = MKDEV(0, dev & MINORMASK); 684 return 0; 685 } 686 687 EXPORT_SYMBOL(set_anon_super); 688 689 void kill_anon_super(struct super_block *sb) 690 { 691 int slot = MINOR(sb->s_dev); 692 693 generic_shutdown_super(sb); 694 spin_lock(&unnamed_dev_lock); 695 idr_remove(&unnamed_dev_idr, slot); 696 spin_unlock(&unnamed_dev_lock); 697 } 698 699 EXPORT_SYMBOL(kill_anon_super); 700 701 void __init unnamed_dev_init(void) 702 { 703 idr_init(&unnamed_dev_idr); 704 } 705 706 void kill_litter_super(struct super_block *sb) 707 { 708 if (sb->s_root) 709 d_genocide(sb->s_root); 710 kill_anon_super(sb); 711 } 712 713 EXPORT_SYMBOL(kill_litter_super); 714 715 #ifdef CONFIG_BLOCK 716 static int set_bdev_super(struct super_block *s, void *data) 717 { 718 s->s_bdev = data; 719 s->s_dev = s->s_bdev->bd_dev; 720 return 0; 721 } 722 723 static int test_bdev_super(struct super_block *s, void *data) 724 { 725 return (void *)s->s_bdev == data; 726 } 727 728 int get_sb_bdev(struct file_system_type *fs_type, 729 int flags, const char *dev_name, void *data, 730 int (*fill_super)(struct super_block *, void *, int), 731 struct vfsmount *mnt) 732 { 733 struct block_device *bdev; 734 struct super_block *s; 735 int error = 0; 736 737 bdev = open_bdev_excl(dev_name, flags, fs_type); 738 if (IS_ERR(bdev)) 739 return PTR_ERR(bdev); 740 741 /* 742 * once the super is inserted into the list by sget, s_umount 743 * will protect the lockfs code from trying to start a snapshot 744 * while we are mounting 745 */ 746 down(&bdev->bd_mount_sem); 747 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev); 748 up(&bdev->bd_mount_sem); 749 if (IS_ERR(s)) 750 goto error_s; 751 752 if (s->s_root) { 753 if ((flags ^ s->s_flags) & MS_RDONLY) { 754 up_write(&s->s_umount); 755 deactivate_super(s); 756 error = -EBUSY; 757 goto error_bdev; 758 } 759 760 close_bdev_excl(bdev); 761 } else { 762 char b[BDEVNAME_SIZE]; 763 764 s->s_flags = flags; 765 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 766 sb_set_blocksize(s, block_size(bdev)); 767 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 768 if (error) { 769 up_write(&s->s_umount); 770 deactivate_super(s); 771 goto error; 772 } 773 774 s->s_flags |= MS_ACTIVE; 775 } 776 777 return simple_set_mnt(mnt, s); 778 779 error_s: 780 error = PTR_ERR(s); 781 error_bdev: 782 close_bdev_excl(bdev); 783 error: 784 return error; 785 } 786 787 EXPORT_SYMBOL(get_sb_bdev); 788 789 void kill_block_super(struct super_block *sb) 790 { 791 struct block_device *bdev = sb->s_bdev; 792 793 generic_shutdown_super(sb); 794 sync_blockdev(bdev); 795 close_bdev_excl(bdev); 796 } 797 798 EXPORT_SYMBOL(kill_block_super); 799 #endif 800 801 int get_sb_nodev(struct file_system_type *fs_type, 802 int flags, void *data, 803 int (*fill_super)(struct super_block *, void *, int), 804 struct vfsmount *mnt) 805 { 806 int error; 807 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 808 809 if (IS_ERR(s)) 810 return PTR_ERR(s); 811 812 s->s_flags = flags; 813 814 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 815 if (error) { 816 up_write(&s->s_umount); 817 deactivate_super(s); 818 return error; 819 } 820 s->s_flags |= MS_ACTIVE; 821 return simple_set_mnt(mnt, s); 822 } 823 824 EXPORT_SYMBOL(get_sb_nodev); 825 826 static int compare_single(struct super_block *s, void *p) 827 { 828 return 1; 829 } 830 831 int get_sb_single(struct file_system_type *fs_type, 832 int flags, void *data, 833 int (*fill_super)(struct super_block *, void *, int), 834 struct vfsmount *mnt) 835 { 836 struct super_block *s; 837 int error; 838 839 s = sget(fs_type, compare_single, set_anon_super, NULL); 840 if (IS_ERR(s)) 841 return PTR_ERR(s); 842 if (!s->s_root) { 843 s->s_flags = flags; 844 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 845 if (error) { 846 up_write(&s->s_umount); 847 deactivate_super(s); 848 return error; 849 } 850 s->s_flags |= MS_ACTIVE; 851 } 852 do_remount_sb(s, flags, data, 0); 853 return simple_set_mnt(mnt, s); 854 } 855 856 EXPORT_SYMBOL(get_sb_single); 857 858 struct vfsmount * 859 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 860 { 861 struct vfsmount *mnt; 862 char *secdata = NULL; 863 int error; 864 865 if (!type) 866 return ERR_PTR(-ENODEV); 867 868 error = -ENOMEM; 869 mnt = alloc_vfsmnt(name); 870 if (!mnt) 871 goto out; 872 873 if (data) { 874 secdata = alloc_secdata(); 875 if (!secdata) 876 goto out_mnt; 877 878 error = security_sb_copy_data(type, data, secdata); 879 if (error) 880 goto out_free_secdata; 881 } 882 883 error = type->get_sb(type, flags, name, data, mnt); 884 if (error < 0) 885 goto out_free_secdata; 886 887 error = security_sb_kern_mount(mnt->mnt_sb, secdata); 888 if (error) 889 goto out_sb; 890 891 mnt->mnt_mountpoint = mnt->mnt_root; 892 mnt->mnt_parent = mnt; 893 up_write(&mnt->mnt_sb->s_umount); 894 free_secdata(secdata); 895 return mnt; 896 out_sb: 897 dput(mnt->mnt_root); 898 up_write(&mnt->mnt_sb->s_umount); 899 deactivate_super(mnt->mnt_sb); 900 out_free_secdata: 901 free_secdata(secdata); 902 out_mnt: 903 free_vfsmnt(mnt); 904 out: 905 return ERR_PTR(error); 906 } 907 908 EXPORT_SYMBOL_GPL(vfs_kern_mount); 909 910 struct vfsmount * 911 do_kern_mount(const char *fstype, int flags, const char *name, void *data) 912 { 913 struct file_system_type *type = get_fs_type(fstype); 914 struct vfsmount *mnt; 915 if (!type) 916 return ERR_PTR(-ENODEV); 917 mnt = vfs_kern_mount(type, flags, name, data); 918 put_filesystem(type); 919 return mnt; 920 } 921 922 struct vfsmount *kern_mount(struct file_system_type *type) 923 { 924 return vfs_kern_mount(type, 0, type->name, NULL); 925 } 926 927 EXPORT_SYMBOL(kern_mount); 928