xref: /linux/fs/super.c (revision e27ecdd94d81e5bc3d1f68591701db5adb342f0d)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/mount.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>		/* for the emergency remount stuff */
36 #include <linux/idr.h>
37 #include <linux/kobject.h>
38 #include <linux/mutex.h>
39 #include <linux/file.h>
40 #include <asm/uaccess.h>
41 #include "internal.h"
42 
43 
44 LIST_HEAD(super_blocks);
45 DEFINE_SPINLOCK(sb_lock);
46 
47 /**
48  *	alloc_super	-	create new superblock
49  *	@type:	filesystem type superblock should belong to
50  *
51  *	Allocates and initializes a new &struct super_block.  alloc_super()
52  *	returns a pointer new superblock or %NULL if allocation had failed.
53  */
54 static struct super_block *alloc_super(struct file_system_type *type)
55 {
56 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
57 	static struct super_operations default_op;
58 
59 	if (s) {
60 		if (security_sb_alloc(s)) {
61 			kfree(s);
62 			s = NULL;
63 			goto out;
64 		}
65 		INIT_LIST_HEAD(&s->s_dirty);
66 		INIT_LIST_HEAD(&s->s_io);
67 		INIT_LIST_HEAD(&s->s_more_io);
68 		INIT_LIST_HEAD(&s->s_files);
69 		INIT_LIST_HEAD(&s->s_instances);
70 		INIT_HLIST_HEAD(&s->s_anon);
71 		INIT_LIST_HEAD(&s->s_inodes);
72 		INIT_LIST_HEAD(&s->s_dentry_lru);
73 		init_rwsem(&s->s_umount);
74 		mutex_init(&s->s_lock);
75 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
76 		/*
77 		 * The locking rules for s_lock are up to the
78 		 * filesystem. For example ext3fs has different
79 		 * lock ordering than usbfs:
80 		 */
81 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
82 		/*
83 		 * sget() can have s_umount recursion.
84 		 *
85 		 * When it cannot find a suitable sb, it allocates a new
86 		 * one (this one), and tries again to find a suitable old
87 		 * one.
88 		 *
89 		 * In case that succeeds, it will acquire the s_umount
90 		 * lock of the old one. Since these are clearly distrinct
91 		 * locks, and this object isn't exposed yet, there's no
92 		 * risk of deadlocks.
93 		 *
94 		 * Annotate this by putting this lock in a different
95 		 * subclass.
96 		 */
97 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
98 		s->s_count = S_BIAS;
99 		atomic_set(&s->s_active, 1);
100 		mutex_init(&s->s_vfs_rename_mutex);
101 		mutex_init(&s->s_dquot.dqio_mutex);
102 		mutex_init(&s->s_dquot.dqonoff_mutex);
103 		init_rwsem(&s->s_dquot.dqptr_sem);
104 		init_waitqueue_head(&s->s_wait_unfrozen);
105 		s->s_maxbytes = MAX_NON_LFS;
106 		s->dq_op = sb_dquot_ops;
107 		s->s_qcop = sb_quotactl_ops;
108 		s->s_op = &default_op;
109 		s->s_time_gran = 1000000000;
110 	}
111 out:
112 	return s;
113 }
114 
115 /**
116  *	destroy_super	-	frees a superblock
117  *	@s: superblock to free
118  *
119  *	Frees a superblock.
120  */
121 static inline void destroy_super(struct super_block *s)
122 {
123 	security_sb_free(s);
124 	kfree(s->s_subtype);
125 	kfree(s->s_options);
126 	kfree(s);
127 }
128 
129 /* Superblock refcounting  */
130 
131 /*
132  * Drop a superblock's refcount.  Returns non-zero if the superblock was
133  * destroyed.  The caller must hold sb_lock.
134  */
135 static int __put_super(struct super_block *sb)
136 {
137 	int ret = 0;
138 
139 	if (!--sb->s_count) {
140 		destroy_super(sb);
141 		ret = 1;
142 	}
143 	return ret;
144 }
145 
146 /*
147  * Drop a superblock's refcount.
148  * Returns non-zero if the superblock is about to be destroyed and
149  * at least is already removed from super_blocks list, so if we are
150  * making a loop through super blocks then we need to restart.
151  * The caller must hold sb_lock.
152  */
153 int __put_super_and_need_restart(struct super_block *sb)
154 {
155 	/* check for race with generic_shutdown_super() */
156 	if (list_empty(&sb->s_list)) {
157 		/* super block is removed, need to restart... */
158 		__put_super(sb);
159 		return 1;
160 	}
161 	/* can't be the last, since s_list is still in use */
162 	sb->s_count--;
163 	BUG_ON(sb->s_count == 0);
164 	return 0;
165 }
166 
167 /**
168  *	put_super	-	drop a temporary reference to superblock
169  *	@sb: superblock in question
170  *
171  *	Drops a temporary reference, frees superblock if there's no
172  *	references left.
173  */
174 static void put_super(struct super_block *sb)
175 {
176 	spin_lock(&sb_lock);
177 	__put_super(sb);
178 	spin_unlock(&sb_lock);
179 }
180 
181 
182 /**
183  *	deactivate_super	-	drop an active reference to superblock
184  *	@s: superblock to deactivate
185  *
186  *	Drops an active reference to superblock, acquiring a temprory one if
187  *	there is no active references left.  In that case we lock superblock,
188  *	tell fs driver to shut it down and drop the temporary reference we
189  *	had just acquired.
190  */
191 void deactivate_super(struct super_block *s)
192 {
193 	struct file_system_type *fs = s->s_type;
194 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
195 		s->s_count -= S_BIAS-1;
196 		spin_unlock(&sb_lock);
197 		vfs_dq_off(s, 0);
198 		down_write(&s->s_umount);
199 		fs->kill_sb(s);
200 		put_filesystem(fs);
201 		put_super(s);
202 	}
203 }
204 
205 EXPORT_SYMBOL(deactivate_super);
206 
207 /**
208  *	deactivate_locked_super	-	drop an active reference to superblock
209  *	@s: superblock to deactivate
210  *
211  *	Equivalent of up_write(&s->s_umount); deactivate_super(s);, except that
212  *	it does not unlock it until it's all over.  As the result, it's safe to
213  *	use to dispose of new superblock on ->get_sb() failure exits - nobody
214  *	will see the sucker until it's all over.  Equivalent using up_write +
215  *	deactivate_super is safe for that purpose only if superblock is either
216  *	safe to use or has NULL ->s_root when we unlock.
217  */
218 void deactivate_locked_super(struct super_block *s)
219 {
220 	struct file_system_type *fs = s->s_type;
221 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
222 		s->s_count -= S_BIAS-1;
223 		spin_unlock(&sb_lock);
224 		vfs_dq_off(s, 0);
225 		fs->kill_sb(s);
226 		put_filesystem(fs);
227 		put_super(s);
228 	} else {
229 		up_write(&s->s_umount);
230 	}
231 }
232 
233 EXPORT_SYMBOL(deactivate_locked_super);
234 
235 /**
236  *	grab_super - acquire an active reference
237  *	@s: reference we are trying to make active
238  *
239  *	Tries to acquire an active reference.  grab_super() is used when we
240  * 	had just found a superblock in super_blocks or fs_type->fs_supers
241  *	and want to turn it into a full-blown active reference.  grab_super()
242  *	is called with sb_lock held and drops it.  Returns 1 in case of
243  *	success, 0 if we had failed (superblock contents was already dead or
244  *	dying when grab_super() had been called).
245  */
246 static int grab_super(struct super_block *s) __releases(sb_lock)
247 {
248 	s->s_count++;
249 	spin_unlock(&sb_lock);
250 	down_write(&s->s_umount);
251 	if (s->s_root) {
252 		spin_lock(&sb_lock);
253 		if (s->s_count > S_BIAS) {
254 			atomic_inc(&s->s_active);
255 			s->s_count--;
256 			spin_unlock(&sb_lock);
257 			return 1;
258 		}
259 		spin_unlock(&sb_lock);
260 	}
261 	up_write(&s->s_umount);
262 	put_super(s);
263 	yield();
264 	return 0;
265 }
266 
267 /*
268  * Superblock locking.  We really ought to get rid of these two.
269  */
270 void lock_super(struct super_block * sb)
271 {
272 	get_fs_excl();
273 	mutex_lock(&sb->s_lock);
274 }
275 
276 void unlock_super(struct super_block * sb)
277 {
278 	put_fs_excl();
279 	mutex_unlock(&sb->s_lock);
280 }
281 
282 EXPORT_SYMBOL(lock_super);
283 EXPORT_SYMBOL(unlock_super);
284 
285 /**
286  *	generic_shutdown_super	-	common helper for ->kill_sb()
287  *	@sb: superblock to kill
288  *
289  *	generic_shutdown_super() does all fs-independent work on superblock
290  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
291  *	that need destruction out of superblock, call generic_shutdown_super()
292  *	and release aforementioned objects.  Note: dentries and inodes _are_
293  *	taken care of and do not need specific handling.
294  *
295  *	Upon calling this function, the filesystem may no longer alter or
296  *	rearrange the set of dentries belonging to this super_block, nor may it
297  *	change the attachments of dentries to inodes.
298  */
299 void generic_shutdown_super(struct super_block *sb)
300 {
301 	const struct super_operations *sop = sb->s_op;
302 
303 
304 	if (sb->s_root) {
305 		shrink_dcache_for_umount(sb);
306 		sync_filesystem(sb);
307 		get_fs_excl();
308 		sb->s_flags &= ~MS_ACTIVE;
309 
310 		/* bad name - it should be evict_inodes() */
311 		invalidate_inodes(sb);
312 
313 		if (sop->put_super)
314 			sop->put_super(sb);
315 
316 		/* Forget any remaining inodes */
317 		if (invalidate_inodes(sb)) {
318 			printk("VFS: Busy inodes after unmount of %s. "
319 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
320 			   sb->s_id);
321 		}
322 		put_fs_excl();
323 	}
324 	spin_lock(&sb_lock);
325 	/* should be initialized for __put_super_and_need_restart() */
326 	list_del_init(&sb->s_list);
327 	list_del(&sb->s_instances);
328 	spin_unlock(&sb_lock);
329 	up_write(&sb->s_umount);
330 }
331 
332 EXPORT_SYMBOL(generic_shutdown_super);
333 
334 /**
335  *	sget	-	find or create a superblock
336  *	@type:	filesystem type superblock should belong to
337  *	@test:	comparison callback
338  *	@set:	setup callback
339  *	@data:	argument to each of them
340  */
341 struct super_block *sget(struct file_system_type *type,
342 			int (*test)(struct super_block *,void *),
343 			int (*set)(struct super_block *,void *),
344 			void *data)
345 {
346 	struct super_block *s = NULL;
347 	struct super_block *old;
348 	int err;
349 
350 retry:
351 	spin_lock(&sb_lock);
352 	if (test) {
353 		list_for_each_entry(old, &type->fs_supers, s_instances) {
354 			if (!test(old, data))
355 				continue;
356 			if (!grab_super(old))
357 				goto retry;
358 			if (s) {
359 				up_write(&s->s_umount);
360 				destroy_super(s);
361 			}
362 			return old;
363 		}
364 	}
365 	if (!s) {
366 		spin_unlock(&sb_lock);
367 		s = alloc_super(type);
368 		if (!s)
369 			return ERR_PTR(-ENOMEM);
370 		goto retry;
371 	}
372 
373 	err = set(s, data);
374 	if (err) {
375 		spin_unlock(&sb_lock);
376 		up_write(&s->s_umount);
377 		destroy_super(s);
378 		return ERR_PTR(err);
379 	}
380 	s->s_type = type;
381 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
382 	list_add_tail(&s->s_list, &super_blocks);
383 	list_add(&s->s_instances, &type->fs_supers);
384 	spin_unlock(&sb_lock);
385 	get_filesystem(type);
386 	return s;
387 }
388 
389 EXPORT_SYMBOL(sget);
390 
391 void drop_super(struct super_block *sb)
392 {
393 	up_read(&sb->s_umount);
394 	put_super(sb);
395 }
396 
397 EXPORT_SYMBOL(drop_super);
398 
399 /**
400  * sync_supers - helper for periodic superblock writeback
401  *
402  * Call the write_super method if present on all dirty superblocks in
403  * the system.  This is for the periodic writeback used by most older
404  * filesystems.  For data integrity superblock writeback use
405  * sync_filesystems() instead.
406  *
407  * Note: check the dirty flag before waiting, so we don't
408  * hold up the sync while mounting a device. (The newly
409  * mounted device won't need syncing.)
410  */
411 void sync_supers(void)
412 {
413 	struct super_block *sb;
414 
415 	spin_lock(&sb_lock);
416 restart:
417 	list_for_each_entry(sb, &super_blocks, s_list) {
418 		if (sb->s_op->write_super && sb->s_dirt) {
419 			sb->s_count++;
420 			spin_unlock(&sb_lock);
421 
422 			down_read(&sb->s_umount);
423 			if (sb->s_root && sb->s_dirt)
424 				sb->s_op->write_super(sb);
425 			up_read(&sb->s_umount);
426 
427 			spin_lock(&sb_lock);
428 			if (__put_super_and_need_restart(sb))
429 				goto restart;
430 		}
431 	}
432 	spin_unlock(&sb_lock);
433 }
434 
435 /**
436  *	get_super - get the superblock of a device
437  *	@bdev: device to get the superblock for
438  *
439  *	Scans the superblock list and finds the superblock of the file system
440  *	mounted on the device given. %NULL is returned if no match is found.
441  */
442 
443 struct super_block * get_super(struct block_device *bdev)
444 {
445 	struct super_block *sb;
446 
447 	if (!bdev)
448 		return NULL;
449 
450 	spin_lock(&sb_lock);
451 rescan:
452 	list_for_each_entry(sb, &super_blocks, s_list) {
453 		if (sb->s_bdev == bdev) {
454 			sb->s_count++;
455 			spin_unlock(&sb_lock);
456 			down_read(&sb->s_umount);
457 			if (sb->s_root)
458 				return sb;
459 			up_read(&sb->s_umount);
460 			/* restart only when sb is no longer on the list */
461 			spin_lock(&sb_lock);
462 			if (__put_super_and_need_restart(sb))
463 				goto rescan;
464 		}
465 	}
466 	spin_unlock(&sb_lock);
467 	return NULL;
468 }
469 
470 EXPORT_SYMBOL(get_super);
471 
472 struct super_block * user_get_super(dev_t dev)
473 {
474 	struct super_block *sb;
475 
476 	spin_lock(&sb_lock);
477 rescan:
478 	list_for_each_entry(sb, &super_blocks, s_list) {
479 		if (sb->s_dev ==  dev) {
480 			sb->s_count++;
481 			spin_unlock(&sb_lock);
482 			down_read(&sb->s_umount);
483 			if (sb->s_root)
484 				return sb;
485 			up_read(&sb->s_umount);
486 			/* restart only when sb is no longer on the list */
487 			spin_lock(&sb_lock);
488 			if (__put_super_and_need_restart(sb))
489 				goto rescan;
490 		}
491 	}
492 	spin_unlock(&sb_lock);
493 	return NULL;
494 }
495 
496 SYSCALL_DEFINE2(ustat, unsigned, dev, struct ustat __user *, ubuf)
497 {
498         struct super_block *s;
499         struct ustat tmp;
500         struct kstatfs sbuf;
501 	int err = -EINVAL;
502 
503         s = user_get_super(new_decode_dev(dev));
504         if (s == NULL)
505                 goto out;
506 	err = vfs_statfs(s->s_root, &sbuf);
507 	drop_super(s);
508 	if (err)
509 		goto out;
510 
511         memset(&tmp,0,sizeof(struct ustat));
512         tmp.f_tfree = sbuf.f_bfree;
513         tmp.f_tinode = sbuf.f_ffree;
514 
515         err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
516 out:
517 	return err;
518 }
519 
520 /**
521  *	do_remount_sb - asks filesystem to change mount options.
522  *	@sb:	superblock in question
523  *	@flags:	numeric part of options
524  *	@data:	the rest of options
525  *      @force: whether or not to force the change
526  *
527  *	Alters the mount options of a mounted file system.
528  */
529 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
530 {
531 	int retval;
532 	int remount_rw;
533 
534 #ifdef CONFIG_BLOCK
535 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
536 		return -EACCES;
537 #endif
538 	if (flags & MS_RDONLY)
539 		acct_auto_close(sb);
540 	shrink_dcache_sb(sb);
541 	sync_filesystem(sb);
542 
543 	/* If we are remounting RDONLY and current sb is read/write,
544 	   make sure there are no rw files opened */
545 	if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
546 		if (force)
547 			mark_files_ro(sb);
548 		else if (!fs_may_remount_ro(sb)) {
549 			unlock_kernel();
550 			return -EBUSY;
551 		}
552 		retval = vfs_dq_off(sb, 1);
553 		if (retval < 0 && retval != -ENOSYS) {
554 			unlock_kernel();
555 			return -EBUSY;
556 		}
557 	}
558 	remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY);
559 
560 	if (sb->s_op->remount_fs) {
561 		retval = sb->s_op->remount_fs(sb, &flags, data);
562 		if (retval) {
563 			unlock_kernel();
564 			return retval;
565 		}
566 	}
567 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
568 	if (remount_rw)
569 		vfs_dq_quota_on_remount(sb);
570 	return 0;
571 }
572 
573 static void do_emergency_remount(struct work_struct *work)
574 {
575 	struct super_block *sb;
576 
577 	spin_lock(&sb_lock);
578 	list_for_each_entry(sb, &super_blocks, s_list) {
579 		sb->s_count++;
580 		spin_unlock(&sb_lock);
581 		down_write(&sb->s_umount);
582 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
583 			/*
584 			 * ->remount_fs needs lock_kernel().
585 			 *
586 			 * What lock protects sb->s_flags??
587 			 */
588 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
589 		}
590 		up_write(&sb->s_umount);
591 		put_super(sb);
592 		spin_lock(&sb_lock);
593 	}
594 	spin_unlock(&sb_lock);
595 	kfree(work);
596 	printk("Emergency Remount complete\n");
597 }
598 
599 void emergency_remount(void)
600 {
601 	struct work_struct *work;
602 
603 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
604 	if (work) {
605 		INIT_WORK(work, do_emergency_remount);
606 		schedule_work(work);
607 	}
608 }
609 
610 /*
611  * Unnamed block devices are dummy devices used by virtual
612  * filesystems which don't use real block-devices.  -- jrs
613  */
614 
615 static DEFINE_IDA(unnamed_dev_ida);
616 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
617 
618 int set_anon_super(struct super_block *s, void *data)
619 {
620 	int dev;
621 	int error;
622 
623  retry:
624 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
625 		return -ENOMEM;
626 	spin_lock(&unnamed_dev_lock);
627 	error = ida_get_new(&unnamed_dev_ida, &dev);
628 	spin_unlock(&unnamed_dev_lock);
629 	if (error == -EAGAIN)
630 		/* We raced and lost with another CPU. */
631 		goto retry;
632 	else if (error)
633 		return -EAGAIN;
634 
635 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
636 		spin_lock(&unnamed_dev_lock);
637 		ida_remove(&unnamed_dev_ida, dev);
638 		spin_unlock(&unnamed_dev_lock);
639 		return -EMFILE;
640 	}
641 	s->s_dev = MKDEV(0, dev & MINORMASK);
642 	return 0;
643 }
644 
645 EXPORT_SYMBOL(set_anon_super);
646 
647 void kill_anon_super(struct super_block *sb)
648 {
649 	int slot = MINOR(sb->s_dev);
650 
651 	generic_shutdown_super(sb);
652 	spin_lock(&unnamed_dev_lock);
653 	ida_remove(&unnamed_dev_ida, slot);
654 	spin_unlock(&unnamed_dev_lock);
655 }
656 
657 EXPORT_SYMBOL(kill_anon_super);
658 
659 void kill_litter_super(struct super_block *sb)
660 {
661 	if (sb->s_root)
662 		d_genocide(sb->s_root);
663 	kill_anon_super(sb);
664 }
665 
666 EXPORT_SYMBOL(kill_litter_super);
667 
668 static int ns_test_super(struct super_block *sb, void *data)
669 {
670 	return sb->s_fs_info == data;
671 }
672 
673 static int ns_set_super(struct super_block *sb, void *data)
674 {
675 	sb->s_fs_info = data;
676 	return set_anon_super(sb, NULL);
677 }
678 
679 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
680 	int (*fill_super)(struct super_block *, void *, int),
681 	struct vfsmount *mnt)
682 {
683 	struct super_block *sb;
684 
685 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
686 	if (IS_ERR(sb))
687 		return PTR_ERR(sb);
688 
689 	if (!sb->s_root) {
690 		int err;
691 		sb->s_flags = flags;
692 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
693 		if (err) {
694 			deactivate_locked_super(sb);
695 			return err;
696 		}
697 
698 		sb->s_flags |= MS_ACTIVE;
699 	}
700 
701 	simple_set_mnt(mnt, sb);
702 	return 0;
703 }
704 
705 EXPORT_SYMBOL(get_sb_ns);
706 
707 #ifdef CONFIG_BLOCK
708 static int set_bdev_super(struct super_block *s, void *data)
709 {
710 	s->s_bdev = data;
711 	s->s_dev = s->s_bdev->bd_dev;
712 	return 0;
713 }
714 
715 static int test_bdev_super(struct super_block *s, void *data)
716 {
717 	return (void *)s->s_bdev == data;
718 }
719 
720 int get_sb_bdev(struct file_system_type *fs_type,
721 	int flags, const char *dev_name, void *data,
722 	int (*fill_super)(struct super_block *, void *, int),
723 	struct vfsmount *mnt)
724 {
725 	struct block_device *bdev;
726 	struct super_block *s;
727 	fmode_t mode = FMODE_READ;
728 	int error = 0;
729 
730 	if (!(flags & MS_RDONLY))
731 		mode |= FMODE_WRITE;
732 
733 	bdev = open_bdev_exclusive(dev_name, mode, fs_type);
734 	if (IS_ERR(bdev))
735 		return PTR_ERR(bdev);
736 
737 	/*
738 	 * once the super is inserted into the list by sget, s_umount
739 	 * will protect the lockfs code from trying to start a snapshot
740 	 * while we are mounting
741 	 */
742 	down(&bdev->bd_mount_sem);
743 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
744 	up(&bdev->bd_mount_sem);
745 	if (IS_ERR(s))
746 		goto error_s;
747 
748 	if (s->s_root) {
749 		if ((flags ^ s->s_flags) & MS_RDONLY) {
750 			deactivate_locked_super(s);
751 			error = -EBUSY;
752 			goto error_bdev;
753 		}
754 
755 		close_bdev_exclusive(bdev, mode);
756 	} else {
757 		char b[BDEVNAME_SIZE];
758 
759 		s->s_flags = flags;
760 		s->s_mode = mode;
761 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
762 		sb_set_blocksize(s, block_size(bdev));
763 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
764 		if (error) {
765 			deactivate_locked_super(s);
766 			goto error;
767 		}
768 
769 		s->s_flags |= MS_ACTIVE;
770 		bdev->bd_super = s;
771 	}
772 
773 	simple_set_mnt(mnt, s);
774 	return 0;
775 
776 error_s:
777 	error = PTR_ERR(s);
778 error_bdev:
779 	close_bdev_exclusive(bdev, mode);
780 error:
781 	return error;
782 }
783 
784 EXPORT_SYMBOL(get_sb_bdev);
785 
786 void kill_block_super(struct super_block *sb)
787 {
788 	struct block_device *bdev = sb->s_bdev;
789 	fmode_t mode = sb->s_mode;
790 
791 	bdev->bd_super = NULL;
792 	generic_shutdown_super(sb);
793 	sync_blockdev(bdev);
794 	close_bdev_exclusive(bdev, mode);
795 }
796 
797 EXPORT_SYMBOL(kill_block_super);
798 #endif
799 
800 int get_sb_nodev(struct file_system_type *fs_type,
801 	int flags, void *data,
802 	int (*fill_super)(struct super_block *, void *, int),
803 	struct vfsmount *mnt)
804 {
805 	int error;
806 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
807 
808 	if (IS_ERR(s))
809 		return PTR_ERR(s);
810 
811 	s->s_flags = flags;
812 
813 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
814 	if (error) {
815 		deactivate_locked_super(s);
816 		return error;
817 	}
818 	s->s_flags |= MS_ACTIVE;
819 	simple_set_mnt(mnt, s);
820 	return 0;
821 }
822 
823 EXPORT_SYMBOL(get_sb_nodev);
824 
825 static int compare_single(struct super_block *s, void *p)
826 {
827 	return 1;
828 }
829 
830 int get_sb_single(struct file_system_type *fs_type,
831 	int flags, void *data,
832 	int (*fill_super)(struct super_block *, void *, int),
833 	struct vfsmount *mnt)
834 {
835 	struct super_block *s;
836 	int error;
837 
838 	s = sget(fs_type, compare_single, set_anon_super, NULL);
839 	if (IS_ERR(s))
840 		return PTR_ERR(s);
841 	if (!s->s_root) {
842 		s->s_flags = flags;
843 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
844 		if (error) {
845 			deactivate_locked_super(s);
846 			return error;
847 		}
848 		s->s_flags |= MS_ACTIVE;
849 	}
850 	do_remount_sb(s, flags, data, 0);
851 	simple_set_mnt(mnt, s);
852 	return 0;
853 }
854 
855 EXPORT_SYMBOL(get_sb_single);
856 
857 struct vfsmount *
858 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
859 {
860 	struct vfsmount *mnt;
861 	char *secdata = NULL;
862 	int error;
863 
864 	if (!type)
865 		return ERR_PTR(-ENODEV);
866 
867 	error = -ENOMEM;
868 	mnt = alloc_vfsmnt(name);
869 	if (!mnt)
870 		goto out;
871 
872 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
873 		secdata = alloc_secdata();
874 		if (!secdata)
875 			goto out_mnt;
876 
877 		error = security_sb_copy_data(data, secdata);
878 		if (error)
879 			goto out_free_secdata;
880 	}
881 
882 	error = type->get_sb(type, flags, name, data, mnt);
883 	if (error < 0)
884 		goto out_free_secdata;
885 	BUG_ON(!mnt->mnt_sb);
886 
887  	error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
888  	if (error)
889  		goto out_sb;
890 
891 	mnt->mnt_mountpoint = mnt->mnt_root;
892 	mnt->mnt_parent = mnt;
893 	up_write(&mnt->mnt_sb->s_umount);
894 	free_secdata(secdata);
895 	return mnt;
896 out_sb:
897 	dput(mnt->mnt_root);
898 	deactivate_locked_super(mnt->mnt_sb);
899 out_free_secdata:
900 	free_secdata(secdata);
901 out_mnt:
902 	free_vfsmnt(mnt);
903 out:
904 	return ERR_PTR(error);
905 }
906 
907 EXPORT_SYMBOL_GPL(vfs_kern_mount);
908 
909 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
910 {
911 	int err;
912 	const char *subtype = strchr(fstype, '.');
913 	if (subtype) {
914 		subtype++;
915 		err = -EINVAL;
916 		if (!subtype[0])
917 			goto err;
918 	} else
919 		subtype = "";
920 
921 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
922 	err = -ENOMEM;
923 	if (!mnt->mnt_sb->s_subtype)
924 		goto err;
925 	return mnt;
926 
927  err:
928 	mntput(mnt);
929 	return ERR_PTR(err);
930 }
931 
932 struct vfsmount *
933 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
934 {
935 	struct file_system_type *type = get_fs_type(fstype);
936 	struct vfsmount *mnt;
937 	if (!type)
938 		return ERR_PTR(-ENODEV);
939 	mnt = vfs_kern_mount(type, flags, name, data);
940 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
941 	    !mnt->mnt_sb->s_subtype)
942 		mnt = fs_set_subtype(mnt, fstype);
943 	put_filesystem(type);
944 	return mnt;
945 }
946 EXPORT_SYMBOL_GPL(do_kern_mount);
947 
948 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
949 {
950 	return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
951 }
952 
953 EXPORT_SYMBOL_GPL(kern_mount_data);
954