xref: /linux/fs/super.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include "internal.h"
37 
38 
39 LIST_HEAD(super_blocks);
40 DEFINE_SPINLOCK(sb_lock);
41 
42 /*
43  * One thing we have to be careful of with a per-sb shrinker is that we don't
44  * drop the last active reference to the superblock from within the shrinker.
45  * If that happens we could trigger unregistering the shrinker from within the
46  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
47  * take a passive reference to the superblock to avoid this from occurring.
48  */
49 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
50 {
51 	struct super_block *sb;
52 	int	fs_objects = 0;
53 	int	total_objects;
54 
55 	sb = container_of(shrink, struct super_block, s_shrink);
56 
57 	/*
58 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
59 	 * to recurse into the FS that called us in clear_inode() and friends..
60 	 */
61 	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
62 		return -1;
63 
64 	if (!grab_super_passive(sb))
65 		return !sc->nr_to_scan ? 0 : -1;
66 
67 	if (sb->s_op && sb->s_op->nr_cached_objects)
68 		fs_objects = sb->s_op->nr_cached_objects(sb);
69 
70 	total_objects = sb->s_nr_dentry_unused +
71 			sb->s_nr_inodes_unused + fs_objects + 1;
72 
73 	if (sc->nr_to_scan) {
74 		int	dentries;
75 		int	inodes;
76 
77 		/* proportion the scan between the caches */
78 		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
79 							total_objects;
80 		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
81 							total_objects;
82 		if (fs_objects)
83 			fs_objects = (sc->nr_to_scan * fs_objects) /
84 							total_objects;
85 		/*
86 		 * prune the dcache first as the icache is pinned by it, then
87 		 * prune the icache, followed by the filesystem specific caches
88 		 */
89 		prune_dcache_sb(sb, dentries);
90 		prune_icache_sb(sb, inodes);
91 
92 		if (fs_objects && sb->s_op->free_cached_objects) {
93 			sb->s_op->free_cached_objects(sb, fs_objects);
94 			fs_objects = sb->s_op->nr_cached_objects(sb);
95 		}
96 		total_objects = sb->s_nr_dentry_unused +
97 				sb->s_nr_inodes_unused + fs_objects;
98 	}
99 
100 	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
101 	drop_super(sb);
102 	return total_objects;
103 }
104 
105 /**
106  *	alloc_super	-	create new superblock
107  *	@type:	filesystem type superblock should belong to
108  *	@flags: the mount flags
109  *
110  *	Allocates and initializes a new &struct super_block.  alloc_super()
111  *	returns a pointer new superblock or %NULL if allocation had failed.
112  */
113 static struct super_block *alloc_super(struct file_system_type *type, int flags)
114 {
115 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
116 	static const struct super_operations default_op;
117 
118 	if (s) {
119 		if (security_sb_alloc(s)) {
120 			kfree(s);
121 			s = NULL;
122 			goto out;
123 		}
124 #ifdef CONFIG_SMP
125 		s->s_files = alloc_percpu(struct list_head);
126 		if (!s->s_files) {
127 			security_sb_free(s);
128 			kfree(s);
129 			s = NULL;
130 			goto out;
131 		} else {
132 			int i;
133 
134 			for_each_possible_cpu(i)
135 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
136 		}
137 #else
138 		INIT_LIST_HEAD(&s->s_files);
139 #endif
140 		s->s_flags = flags;
141 		s->s_bdi = &default_backing_dev_info;
142 		INIT_HLIST_NODE(&s->s_instances);
143 		INIT_HLIST_BL_HEAD(&s->s_anon);
144 		INIT_LIST_HEAD(&s->s_inodes);
145 		INIT_LIST_HEAD(&s->s_dentry_lru);
146 		INIT_LIST_HEAD(&s->s_inode_lru);
147 		spin_lock_init(&s->s_inode_lru_lock);
148 		INIT_LIST_HEAD(&s->s_mounts);
149 		init_rwsem(&s->s_umount);
150 		mutex_init(&s->s_lock);
151 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
152 		/*
153 		 * The locking rules for s_lock are up to the
154 		 * filesystem. For example ext3fs has different
155 		 * lock ordering than usbfs:
156 		 */
157 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
158 		/*
159 		 * sget() can have s_umount recursion.
160 		 *
161 		 * When it cannot find a suitable sb, it allocates a new
162 		 * one (this one), and tries again to find a suitable old
163 		 * one.
164 		 *
165 		 * In case that succeeds, it will acquire the s_umount
166 		 * lock of the old one. Since these are clearly distrinct
167 		 * locks, and this object isn't exposed yet, there's no
168 		 * risk of deadlocks.
169 		 *
170 		 * Annotate this by putting this lock in a different
171 		 * subclass.
172 		 */
173 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
174 		s->s_count = 1;
175 		atomic_set(&s->s_active, 1);
176 		mutex_init(&s->s_vfs_rename_mutex);
177 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
178 		mutex_init(&s->s_dquot.dqio_mutex);
179 		mutex_init(&s->s_dquot.dqonoff_mutex);
180 		init_rwsem(&s->s_dquot.dqptr_sem);
181 		init_waitqueue_head(&s->s_wait_unfrozen);
182 		s->s_maxbytes = MAX_NON_LFS;
183 		s->s_op = &default_op;
184 		s->s_time_gran = 1000000000;
185 		s->cleancache_poolid = -1;
186 
187 		s->s_shrink.seeks = DEFAULT_SEEKS;
188 		s->s_shrink.shrink = prune_super;
189 		s->s_shrink.batch = 1024;
190 	}
191 out:
192 	return s;
193 }
194 
195 /**
196  *	destroy_super	-	frees a superblock
197  *	@s: superblock to free
198  *
199  *	Frees a superblock.
200  */
201 static inline void destroy_super(struct super_block *s)
202 {
203 #ifdef CONFIG_SMP
204 	free_percpu(s->s_files);
205 #endif
206 	security_sb_free(s);
207 	WARN_ON(!list_empty(&s->s_mounts));
208 	kfree(s->s_subtype);
209 	kfree(s->s_options);
210 	kfree(s);
211 }
212 
213 /* Superblock refcounting  */
214 
215 /*
216  * Drop a superblock's refcount.  The caller must hold sb_lock.
217  */
218 static void __put_super(struct super_block *sb)
219 {
220 	if (!--sb->s_count) {
221 		list_del_init(&sb->s_list);
222 		destroy_super(sb);
223 	}
224 }
225 
226 /**
227  *	put_super	-	drop a temporary reference to superblock
228  *	@sb: superblock in question
229  *
230  *	Drops a temporary reference, frees superblock if there's no
231  *	references left.
232  */
233 static void put_super(struct super_block *sb)
234 {
235 	spin_lock(&sb_lock);
236 	__put_super(sb);
237 	spin_unlock(&sb_lock);
238 }
239 
240 
241 /**
242  *	deactivate_locked_super	-	drop an active reference to superblock
243  *	@s: superblock to deactivate
244  *
245  *	Drops an active reference to superblock, converting it into a temprory
246  *	one if there is no other active references left.  In that case we
247  *	tell fs driver to shut it down and drop the temporary reference we
248  *	had just acquired.
249  *
250  *	Caller holds exclusive lock on superblock; that lock is released.
251  */
252 void deactivate_locked_super(struct super_block *s)
253 {
254 	struct file_system_type *fs = s->s_type;
255 	if (atomic_dec_and_test(&s->s_active)) {
256 		cleancache_invalidate_fs(s);
257 		fs->kill_sb(s);
258 
259 		/* caches are now gone, we can safely kill the shrinker now */
260 		unregister_shrinker(&s->s_shrink);
261 
262 		/*
263 		 * We need to call rcu_barrier so all the delayed rcu free
264 		 * inodes are flushed before we release the fs module.
265 		 */
266 		rcu_barrier();
267 		put_filesystem(fs);
268 		put_super(s);
269 	} else {
270 		up_write(&s->s_umount);
271 	}
272 }
273 
274 EXPORT_SYMBOL(deactivate_locked_super);
275 
276 /**
277  *	deactivate_super	-	drop an active reference to superblock
278  *	@s: superblock to deactivate
279  *
280  *	Variant of deactivate_locked_super(), except that superblock is *not*
281  *	locked by caller.  If we are going to drop the final active reference,
282  *	lock will be acquired prior to that.
283  */
284 void deactivate_super(struct super_block *s)
285 {
286         if (!atomic_add_unless(&s->s_active, -1, 1)) {
287 		down_write(&s->s_umount);
288 		deactivate_locked_super(s);
289 	}
290 }
291 
292 EXPORT_SYMBOL(deactivate_super);
293 
294 /**
295  *	grab_super - acquire an active reference
296  *	@s: reference we are trying to make active
297  *
298  *	Tries to acquire an active reference.  grab_super() is used when we
299  * 	had just found a superblock in super_blocks or fs_type->fs_supers
300  *	and want to turn it into a full-blown active reference.  grab_super()
301  *	is called with sb_lock held and drops it.  Returns 1 in case of
302  *	success, 0 if we had failed (superblock contents was already dead or
303  *	dying when grab_super() had been called).
304  */
305 static int grab_super(struct super_block *s) __releases(sb_lock)
306 {
307 	if (atomic_inc_not_zero(&s->s_active)) {
308 		spin_unlock(&sb_lock);
309 		return 1;
310 	}
311 	/* it's going away */
312 	s->s_count++;
313 	spin_unlock(&sb_lock);
314 	/* wait for it to die */
315 	down_write(&s->s_umount);
316 	up_write(&s->s_umount);
317 	put_super(s);
318 	return 0;
319 }
320 
321 /*
322  *	grab_super_passive - acquire a passive reference
323  *	@s: reference we are trying to grab
324  *
325  *	Tries to acquire a passive reference. This is used in places where we
326  *	cannot take an active reference but we need to ensure that the
327  *	superblock does not go away while we are working on it. It returns
328  *	false if a reference was not gained, and returns true with the s_umount
329  *	lock held in read mode if a reference is gained. On successful return,
330  *	the caller must drop the s_umount lock and the passive reference when
331  *	done.
332  */
333 bool grab_super_passive(struct super_block *sb)
334 {
335 	spin_lock(&sb_lock);
336 	if (hlist_unhashed(&sb->s_instances)) {
337 		spin_unlock(&sb_lock);
338 		return false;
339 	}
340 
341 	sb->s_count++;
342 	spin_unlock(&sb_lock);
343 
344 	if (down_read_trylock(&sb->s_umount)) {
345 		if (sb->s_root && (sb->s_flags & MS_BORN))
346 			return true;
347 		up_read(&sb->s_umount);
348 	}
349 
350 	put_super(sb);
351 	return false;
352 }
353 
354 /*
355  * Superblock locking.  We really ought to get rid of these two.
356  */
357 void lock_super(struct super_block * sb)
358 {
359 	mutex_lock(&sb->s_lock);
360 }
361 
362 void unlock_super(struct super_block * sb)
363 {
364 	mutex_unlock(&sb->s_lock);
365 }
366 
367 EXPORT_SYMBOL(lock_super);
368 EXPORT_SYMBOL(unlock_super);
369 
370 /**
371  *	generic_shutdown_super	-	common helper for ->kill_sb()
372  *	@sb: superblock to kill
373  *
374  *	generic_shutdown_super() does all fs-independent work on superblock
375  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
376  *	that need destruction out of superblock, call generic_shutdown_super()
377  *	and release aforementioned objects.  Note: dentries and inodes _are_
378  *	taken care of and do not need specific handling.
379  *
380  *	Upon calling this function, the filesystem may no longer alter or
381  *	rearrange the set of dentries belonging to this super_block, nor may it
382  *	change the attachments of dentries to inodes.
383  */
384 void generic_shutdown_super(struct super_block *sb)
385 {
386 	const struct super_operations *sop = sb->s_op;
387 
388 	if (sb->s_root) {
389 		shrink_dcache_for_umount(sb);
390 		sync_filesystem(sb);
391 		sb->s_flags &= ~MS_ACTIVE;
392 
393 		fsnotify_unmount_inodes(&sb->s_inodes);
394 
395 		evict_inodes(sb);
396 
397 		if (sop->put_super)
398 			sop->put_super(sb);
399 
400 		if (!list_empty(&sb->s_inodes)) {
401 			printk("VFS: Busy inodes after unmount of %s. "
402 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
403 			   sb->s_id);
404 		}
405 	}
406 	spin_lock(&sb_lock);
407 	/* should be initialized for __put_super_and_need_restart() */
408 	hlist_del_init(&sb->s_instances);
409 	spin_unlock(&sb_lock);
410 	up_write(&sb->s_umount);
411 }
412 
413 EXPORT_SYMBOL(generic_shutdown_super);
414 
415 /**
416  *	sget	-	find or create a superblock
417  *	@type:	filesystem type superblock should belong to
418  *	@test:	comparison callback
419  *	@set:	setup callback
420  *	@flags:	mount flags
421  *	@data:	argument to each of them
422  */
423 struct super_block *sget(struct file_system_type *type,
424 			int (*test)(struct super_block *,void *),
425 			int (*set)(struct super_block *,void *),
426 			int flags,
427 			void *data)
428 {
429 	struct super_block *s = NULL;
430 	struct hlist_node *node;
431 	struct super_block *old;
432 	int err;
433 
434 retry:
435 	spin_lock(&sb_lock);
436 	if (test) {
437 		hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
438 			if (!test(old, data))
439 				continue;
440 			if (!grab_super(old))
441 				goto retry;
442 			if (s) {
443 				up_write(&s->s_umount);
444 				destroy_super(s);
445 				s = NULL;
446 			}
447 			down_write(&old->s_umount);
448 			if (unlikely(!(old->s_flags & MS_BORN))) {
449 				deactivate_locked_super(old);
450 				goto retry;
451 			}
452 			return old;
453 		}
454 	}
455 	if (!s) {
456 		spin_unlock(&sb_lock);
457 		s = alloc_super(type, flags);
458 		if (!s)
459 			return ERR_PTR(-ENOMEM);
460 		goto retry;
461 	}
462 
463 	err = set(s, data);
464 	if (err) {
465 		spin_unlock(&sb_lock);
466 		up_write(&s->s_umount);
467 		destroy_super(s);
468 		return ERR_PTR(err);
469 	}
470 	s->s_type = type;
471 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
472 	list_add_tail(&s->s_list, &super_blocks);
473 	hlist_add_head(&s->s_instances, &type->fs_supers);
474 	spin_unlock(&sb_lock);
475 	get_filesystem(type);
476 	register_shrinker(&s->s_shrink);
477 	return s;
478 }
479 
480 EXPORT_SYMBOL(sget);
481 
482 void drop_super(struct super_block *sb)
483 {
484 	up_read(&sb->s_umount);
485 	put_super(sb);
486 }
487 
488 EXPORT_SYMBOL(drop_super);
489 
490 /**
491  * sync_supers - helper for periodic superblock writeback
492  *
493  * Call the write_super method if present on all dirty superblocks in
494  * the system.  This is for the periodic writeback used by most older
495  * filesystems.  For data integrity superblock writeback use
496  * sync_filesystems() instead.
497  *
498  * Note: check the dirty flag before waiting, so we don't
499  * hold up the sync while mounting a device. (The newly
500  * mounted device won't need syncing.)
501  */
502 void sync_supers(void)
503 {
504 	struct super_block *sb, *p = NULL;
505 
506 	spin_lock(&sb_lock);
507 	list_for_each_entry(sb, &super_blocks, s_list) {
508 		if (hlist_unhashed(&sb->s_instances))
509 			continue;
510 		if (sb->s_op->write_super && sb->s_dirt) {
511 			sb->s_count++;
512 			spin_unlock(&sb_lock);
513 
514 			down_read(&sb->s_umount);
515 			if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN))
516 				sb->s_op->write_super(sb);
517 			up_read(&sb->s_umount);
518 
519 			spin_lock(&sb_lock);
520 			if (p)
521 				__put_super(p);
522 			p = sb;
523 		}
524 	}
525 	if (p)
526 		__put_super(p);
527 	spin_unlock(&sb_lock);
528 }
529 
530 /**
531  *	iterate_supers - call function for all active superblocks
532  *	@f: function to call
533  *	@arg: argument to pass to it
534  *
535  *	Scans the superblock list and calls given function, passing it
536  *	locked superblock and given argument.
537  */
538 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
539 {
540 	struct super_block *sb, *p = NULL;
541 
542 	spin_lock(&sb_lock);
543 	list_for_each_entry(sb, &super_blocks, s_list) {
544 		if (hlist_unhashed(&sb->s_instances))
545 			continue;
546 		sb->s_count++;
547 		spin_unlock(&sb_lock);
548 
549 		down_read(&sb->s_umount);
550 		if (sb->s_root && (sb->s_flags & MS_BORN))
551 			f(sb, arg);
552 		up_read(&sb->s_umount);
553 
554 		spin_lock(&sb_lock);
555 		if (p)
556 			__put_super(p);
557 		p = sb;
558 	}
559 	if (p)
560 		__put_super(p);
561 	spin_unlock(&sb_lock);
562 }
563 
564 /**
565  *	iterate_supers_type - call function for superblocks of given type
566  *	@type: fs type
567  *	@f: function to call
568  *	@arg: argument to pass to it
569  *
570  *	Scans the superblock list and calls given function, passing it
571  *	locked superblock and given argument.
572  */
573 void iterate_supers_type(struct file_system_type *type,
574 	void (*f)(struct super_block *, void *), void *arg)
575 {
576 	struct super_block *sb, *p = NULL;
577 	struct hlist_node *node;
578 
579 	spin_lock(&sb_lock);
580 	hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
581 		sb->s_count++;
582 		spin_unlock(&sb_lock);
583 
584 		down_read(&sb->s_umount);
585 		if (sb->s_root && (sb->s_flags & MS_BORN))
586 			f(sb, arg);
587 		up_read(&sb->s_umount);
588 
589 		spin_lock(&sb_lock);
590 		if (p)
591 			__put_super(p);
592 		p = sb;
593 	}
594 	if (p)
595 		__put_super(p);
596 	spin_unlock(&sb_lock);
597 }
598 
599 EXPORT_SYMBOL(iterate_supers_type);
600 
601 /**
602  *	get_super - get the superblock of a device
603  *	@bdev: device to get the superblock for
604  *
605  *	Scans the superblock list and finds the superblock of the file system
606  *	mounted on the device given. %NULL is returned if no match is found.
607  */
608 
609 struct super_block *get_super(struct block_device *bdev)
610 {
611 	struct super_block *sb;
612 
613 	if (!bdev)
614 		return NULL;
615 
616 	spin_lock(&sb_lock);
617 rescan:
618 	list_for_each_entry(sb, &super_blocks, s_list) {
619 		if (hlist_unhashed(&sb->s_instances))
620 			continue;
621 		if (sb->s_bdev == bdev) {
622 			sb->s_count++;
623 			spin_unlock(&sb_lock);
624 			down_read(&sb->s_umount);
625 			/* still alive? */
626 			if (sb->s_root && (sb->s_flags & MS_BORN))
627 				return sb;
628 			up_read(&sb->s_umount);
629 			/* nope, got unmounted */
630 			spin_lock(&sb_lock);
631 			__put_super(sb);
632 			goto rescan;
633 		}
634 	}
635 	spin_unlock(&sb_lock);
636 	return NULL;
637 }
638 
639 EXPORT_SYMBOL(get_super);
640 
641 /**
642  *	get_super_thawed - get thawed superblock of a device
643  *	@bdev: device to get the superblock for
644  *
645  *	Scans the superblock list and finds the superblock of the file system
646  *	mounted on the device. The superblock is returned once it is thawed
647  *	(or immediately if it was not frozen). %NULL is returned if no match
648  *	is found.
649  */
650 struct super_block *get_super_thawed(struct block_device *bdev)
651 {
652 	while (1) {
653 		struct super_block *s = get_super(bdev);
654 		if (!s || s->s_frozen == SB_UNFROZEN)
655 			return s;
656 		up_read(&s->s_umount);
657 		vfs_check_frozen(s, SB_FREEZE_WRITE);
658 		put_super(s);
659 	}
660 }
661 EXPORT_SYMBOL(get_super_thawed);
662 
663 /**
664  * get_active_super - get an active reference to the superblock of a device
665  * @bdev: device to get the superblock for
666  *
667  * Scans the superblock list and finds the superblock of the file system
668  * mounted on the device given.  Returns the superblock with an active
669  * reference or %NULL if none was found.
670  */
671 struct super_block *get_active_super(struct block_device *bdev)
672 {
673 	struct super_block *sb;
674 
675 	if (!bdev)
676 		return NULL;
677 
678 restart:
679 	spin_lock(&sb_lock);
680 	list_for_each_entry(sb, &super_blocks, s_list) {
681 		if (hlist_unhashed(&sb->s_instances))
682 			continue;
683 		if (sb->s_bdev == bdev) {
684 			if (grab_super(sb)) /* drops sb_lock */
685 				return sb;
686 			else
687 				goto restart;
688 		}
689 	}
690 	spin_unlock(&sb_lock);
691 	return NULL;
692 }
693 
694 struct super_block *user_get_super(dev_t dev)
695 {
696 	struct super_block *sb;
697 
698 	spin_lock(&sb_lock);
699 rescan:
700 	list_for_each_entry(sb, &super_blocks, s_list) {
701 		if (hlist_unhashed(&sb->s_instances))
702 			continue;
703 		if (sb->s_dev ==  dev) {
704 			sb->s_count++;
705 			spin_unlock(&sb_lock);
706 			down_read(&sb->s_umount);
707 			/* still alive? */
708 			if (sb->s_root && (sb->s_flags & MS_BORN))
709 				return sb;
710 			up_read(&sb->s_umount);
711 			/* nope, got unmounted */
712 			spin_lock(&sb_lock);
713 			__put_super(sb);
714 			goto rescan;
715 		}
716 	}
717 	spin_unlock(&sb_lock);
718 	return NULL;
719 }
720 
721 /**
722  *	do_remount_sb - asks filesystem to change mount options.
723  *	@sb:	superblock in question
724  *	@flags:	numeric part of options
725  *	@data:	the rest of options
726  *      @force: whether or not to force the change
727  *
728  *	Alters the mount options of a mounted file system.
729  */
730 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
731 {
732 	int retval;
733 	int remount_ro;
734 
735 	if (sb->s_frozen != SB_UNFROZEN)
736 		return -EBUSY;
737 
738 #ifdef CONFIG_BLOCK
739 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
740 		return -EACCES;
741 #endif
742 
743 	if (flags & MS_RDONLY)
744 		acct_auto_close(sb);
745 	shrink_dcache_sb(sb);
746 	sync_filesystem(sb);
747 
748 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
749 
750 	/* If we are remounting RDONLY and current sb is read/write,
751 	   make sure there are no rw files opened */
752 	if (remount_ro) {
753 		if (force) {
754 			mark_files_ro(sb);
755 		} else {
756 			retval = sb_prepare_remount_readonly(sb);
757 			if (retval)
758 				return retval;
759 		}
760 	}
761 
762 	if (sb->s_op->remount_fs) {
763 		retval = sb->s_op->remount_fs(sb, &flags, data);
764 		if (retval) {
765 			if (!force)
766 				goto cancel_readonly;
767 			/* If forced remount, go ahead despite any errors */
768 			WARN(1, "forced remount of a %s fs returned %i\n",
769 			     sb->s_type->name, retval);
770 		}
771 	}
772 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
773 	/* Needs to be ordered wrt mnt_is_readonly() */
774 	smp_wmb();
775 	sb->s_readonly_remount = 0;
776 
777 	/*
778 	 * Some filesystems modify their metadata via some other path than the
779 	 * bdev buffer cache (eg. use a private mapping, or directories in
780 	 * pagecache, etc). Also file data modifications go via their own
781 	 * mappings. So If we try to mount readonly then copy the filesystem
782 	 * from bdev, we could get stale data, so invalidate it to give a best
783 	 * effort at coherency.
784 	 */
785 	if (remount_ro && sb->s_bdev)
786 		invalidate_bdev(sb->s_bdev);
787 	return 0;
788 
789 cancel_readonly:
790 	sb->s_readonly_remount = 0;
791 	return retval;
792 }
793 
794 static void do_emergency_remount(struct work_struct *work)
795 {
796 	struct super_block *sb, *p = NULL;
797 
798 	spin_lock(&sb_lock);
799 	list_for_each_entry(sb, &super_blocks, s_list) {
800 		if (hlist_unhashed(&sb->s_instances))
801 			continue;
802 		sb->s_count++;
803 		spin_unlock(&sb_lock);
804 		down_write(&sb->s_umount);
805 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
806 		    !(sb->s_flags & MS_RDONLY)) {
807 			/*
808 			 * What lock protects sb->s_flags??
809 			 */
810 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
811 		}
812 		up_write(&sb->s_umount);
813 		spin_lock(&sb_lock);
814 		if (p)
815 			__put_super(p);
816 		p = sb;
817 	}
818 	if (p)
819 		__put_super(p);
820 	spin_unlock(&sb_lock);
821 	kfree(work);
822 	printk("Emergency Remount complete\n");
823 }
824 
825 void emergency_remount(void)
826 {
827 	struct work_struct *work;
828 
829 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
830 	if (work) {
831 		INIT_WORK(work, do_emergency_remount);
832 		schedule_work(work);
833 	}
834 }
835 
836 /*
837  * Unnamed block devices are dummy devices used by virtual
838  * filesystems which don't use real block-devices.  -- jrs
839  */
840 
841 static DEFINE_IDA(unnamed_dev_ida);
842 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
843 static int unnamed_dev_start = 0; /* don't bother trying below it */
844 
845 int get_anon_bdev(dev_t *p)
846 {
847 	int dev;
848 	int error;
849 
850  retry:
851 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
852 		return -ENOMEM;
853 	spin_lock(&unnamed_dev_lock);
854 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
855 	if (!error)
856 		unnamed_dev_start = dev + 1;
857 	spin_unlock(&unnamed_dev_lock);
858 	if (error == -EAGAIN)
859 		/* We raced and lost with another CPU. */
860 		goto retry;
861 	else if (error)
862 		return -EAGAIN;
863 
864 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
865 		spin_lock(&unnamed_dev_lock);
866 		ida_remove(&unnamed_dev_ida, dev);
867 		if (unnamed_dev_start > dev)
868 			unnamed_dev_start = dev;
869 		spin_unlock(&unnamed_dev_lock);
870 		return -EMFILE;
871 	}
872 	*p = MKDEV(0, dev & MINORMASK);
873 	return 0;
874 }
875 EXPORT_SYMBOL(get_anon_bdev);
876 
877 void free_anon_bdev(dev_t dev)
878 {
879 	int slot = MINOR(dev);
880 	spin_lock(&unnamed_dev_lock);
881 	ida_remove(&unnamed_dev_ida, slot);
882 	if (slot < unnamed_dev_start)
883 		unnamed_dev_start = slot;
884 	spin_unlock(&unnamed_dev_lock);
885 }
886 EXPORT_SYMBOL(free_anon_bdev);
887 
888 int set_anon_super(struct super_block *s, void *data)
889 {
890 	int error = get_anon_bdev(&s->s_dev);
891 	if (!error)
892 		s->s_bdi = &noop_backing_dev_info;
893 	return error;
894 }
895 
896 EXPORT_SYMBOL(set_anon_super);
897 
898 void kill_anon_super(struct super_block *sb)
899 {
900 	dev_t dev = sb->s_dev;
901 	generic_shutdown_super(sb);
902 	free_anon_bdev(dev);
903 }
904 
905 EXPORT_SYMBOL(kill_anon_super);
906 
907 void kill_litter_super(struct super_block *sb)
908 {
909 	if (sb->s_root)
910 		d_genocide(sb->s_root);
911 	kill_anon_super(sb);
912 }
913 
914 EXPORT_SYMBOL(kill_litter_super);
915 
916 static int ns_test_super(struct super_block *sb, void *data)
917 {
918 	return sb->s_fs_info == data;
919 }
920 
921 static int ns_set_super(struct super_block *sb, void *data)
922 {
923 	sb->s_fs_info = data;
924 	return set_anon_super(sb, NULL);
925 }
926 
927 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
928 	void *data, int (*fill_super)(struct super_block *, void *, int))
929 {
930 	struct super_block *sb;
931 
932 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
933 	if (IS_ERR(sb))
934 		return ERR_CAST(sb);
935 
936 	if (!sb->s_root) {
937 		int err;
938 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
939 		if (err) {
940 			deactivate_locked_super(sb);
941 			return ERR_PTR(err);
942 		}
943 
944 		sb->s_flags |= MS_ACTIVE;
945 	}
946 
947 	return dget(sb->s_root);
948 }
949 
950 EXPORT_SYMBOL(mount_ns);
951 
952 #ifdef CONFIG_BLOCK
953 static int set_bdev_super(struct super_block *s, void *data)
954 {
955 	s->s_bdev = data;
956 	s->s_dev = s->s_bdev->bd_dev;
957 
958 	/*
959 	 * We set the bdi here to the queue backing, file systems can
960 	 * overwrite this in ->fill_super()
961 	 */
962 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
963 	return 0;
964 }
965 
966 static int test_bdev_super(struct super_block *s, void *data)
967 {
968 	return (void *)s->s_bdev == data;
969 }
970 
971 struct dentry *mount_bdev(struct file_system_type *fs_type,
972 	int flags, const char *dev_name, void *data,
973 	int (*fill_super)(struct super_block *, void *, int))
974 {
975 	struct block_device *bdev;
976 	struct super_block *s;
977 	fmode_t mode = FMODE_READ | FMODE_EXCL;
978 	int error = 0;
979 
980 	if (!(flags & MS_RDONLY))
981 		mode |= FMODE_WRITE;
982 
983 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
984 	if (IS_ERR(bdev))
985 		return ERR_CAST(bdev);
986 
987 	/*
988 	 * once the super is inserted into the list by sget, s_umount
989 	 * will protect the lockfs code from trying to start a snapshot
990 	 * while we are mounting
991 	 */
992 	mutex_lock(&bdev->bd_fsfreeze_mutex);
993 	if (bdev->bd_fsfreeze_count > 0) {
994 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
995 		error = -EBUSY;
996 		goto error_bdev;
997 	}
998 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
999 		 bdev);
1000 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1001 	if (IS_ERR(s))
1002 		goto error_s;
1003 
1004 	if (s->s_root) {
1005 		if ((flags ^ s->s_flags) & MS_RDONLY) {
1006 			deactivate_locked_super(s);
1007 			error = -EBUSY;
1008 			goto error_bdev;
1009 		}
1010 
1011 		/*
1012 		 * s_umount nests inside bd_mutex during
1013 		 * __invalidate_device().  blkdev_put() acquires
1014 		 * bd_mutex and can't be called under s_umount.  Drop
1015 		 * s_umount temporarily.  This is safe as we're
1016 		 * holding an active reference.
1017 		 */
1018 		up_write(&s->s_umount);
1019 		blkdev_put(bdev, mode);
1020 		down_write(&s->s_umount);
1021 	} else {
1022 		char b[BDEVNAME_SIZE];
1023 
1024 		s->s_mode = mode;
1025 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1026 		sb_set_blocksize(s, block_size(bdev));
1027 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1028 		if (error) {
1029 			deactivate_locked_super(s);
1030 			goto error;
1031 		}
1032 
1033 		s->s_flags |= MS_ACTIVE;
1034 		bdev->bd_super = s;
1035 	}
1036 
1037 	return dget(s->s_root);
1038 
1039 error_s:
1040 	error = PTR_ERR(s);
1041 error_bdev:
1042 	blkdev_put(bdev, mode);
1043 error:
1044 	return ERR_PTR(error);
1045 }
1046 EXPORT_SYMBOL(mount_bdev);
1047 
1048 void kill_block_super(struct super_block *sb)
1049 {
1050 	struct block_device *bdev = sb->s_bdev;
1051 	fmode_t mode = sb->s_mode;
1052 
1053 	bdev->bd_super = NULL;
1054 	generic_shutdown_super(sb);
1055 	sync_blockdev(bdev);
1056 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1057 	blkdev_put(bdev, mode | FMODE_EXCL);
1058 }
1059 
1060 EXPORT_SYMBOL(kill_block_super);
1061 #endif
1062 
1063 struct dentry *mount_nodev(struct file_system_type *fs_type,
1064 	int flags, void *data,
1065 	int (*fill_super)(struct super_block *, void *, int))
1066 {
1067 	int error;
1068 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1069 
1070 	if (IS_ERR(s))
1071 		return ERR_CAST(s);
1072 
1073 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1074 	if (error) {
1075 		deactivate_locked_super(s);
1076 		return ERR_PTR(error);
1077 	}
1078 	s->s_flags |= MS_ACTIVE;
1079 	return dget(s->s_root);
1080 }
1081 EXPORT_SYMBOL(mount_nodev);
1082 
1083 static int compare_single(struct super_block *s, void *p)
1084 {
1085 	return 1;
1086 }
1087 
1088 struct dentry *mount_single(struct file_system_type *fs_type,
1089 	int flags, void *data,
1090 	int (*fill_super)(struct super_block *, void *, int))
1091 {
1092 	struct super_block *s;
1093 	int error;
1094 
1095 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1096 	if (IS_ERR(s))
1097 		return ERR_CAST(s);
1098 	if (!s->s_root) {
1099 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1100 		if (error) {
1101 			deactivate_locked_super(s);
1102 			return ERR_PTR(error);
1103 		}
1104 		s->s_flags |= MS_ACTIVE;
1105 	} else {
1106 		do_remount_sb(s, flags, data, 0);
1107 	}
1108 	return dget(s->s_root);
1109 }
1110 EXPORT_SYMBOL(mount_single);
1111 
1112 struct dentry *
1113 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1114 {
1115 	struct dentry *root;
1116 	struct super_block *sb;
1117 	char *secdata = NULL;
1118 	int error = -ENOMEM;
1119 
1120 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1121 		secdata = alloc_secdata();
1122 		if (!secdata)
1123 			goto out;
1124 
1125 		error = security_sb_copy_data(data, secdata);
1126 		if (error)
1127 			goto out_free_secdata;
1128 	}
1129 
1130 	root = type->mount(type, flags, name, data);
1131 	if (IS_ERR(root)) {
1132 		error = PTR_ERR(root);
1133 		goto out_free_secdata;
1134 	}
1135 	sb = root->d_sb;
1136 	BUG_ON(!sb);
1137 	WARN_ON(!sb->s_bdi);
1138 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1139 	sb->s_flags |= MS_BORN;
1140 
1141 	error = security_sb_kern_mount(sb, flags, secdata);
1142 	if (error)
1143 		goto out_sb;
1144 
1145 	/*
1146 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1147 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1148 	 * this warning for a little while to try and catch filesystems that
1149 	 * violate this rule.
1150 	 */
1151 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1152 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1153 
1154 	up_write(&sb->s_umount);
1155 	free_secdata(secdata);
1156 	return root;
1157 out_sb:
1158 	dput(root);
1159 	deactivate_locked_super(sb);
1160 out_free_secdata:
1161 	free_secdata(secdata);
1162 out:
1163 	return ERR_PTR(error);
1164 }
1165 
1166 /**
1167  * freeze_super - lock the filesystem and force it into a consistent state
1168  * @sb: the super to lock
1169  *
1170  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1171  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1172  * -EBUSY.
1173  */
1174 int freeze_super(struct super_block *sb)
1175 {
1176 	int ret;
1177 
1178 	atomic_inc(&sb->s_active);
1179 	down_write(&sb->s_umount);
1180 	if (sb->s_frozen) {
1181 		deactivate_locked_super(sb);
1182 		return -EBUSY;
1183 	}
1184 
1185 	if (!(sb->s_flags & MS_BORN)) {
1186 		up_write(&sb->s_umount);
1187 		return 0;	/* sic - it's "nothing to do" */
1188 	}
1189 
1190 	if (sb->s_flags & MS_RDONLY) {
1191 		sb->s_frozen = SB_FREEZE_TRANS;
1192 		smp_wmb();
1193 		up_write(&sb->s_umount);
1194 		return 0;
1195 	}
1196 
1197 	sb->s_frozen = SB_FREEZE_WRITE;
1198 	smp_wmb();
1199 
1200 	sync_filesystem(sb);
1201 
1202 	sb->s_frozen = SB_FREEZE_TRANS;
1203 	smp_wmb();
1204 
1205 	sync_blockdev(sb->s_bdev);
1206 	if (sb->s_op->freeze_fs) {
1207 		ret = sb->s_op->freeze_fs(sb);
1208 		if (ret) {
1209 			printk(KERN_ERR
1210 				"VFS:Filesystem freeze failed\n");
1211 			sb->s_frozen = SB_UNFROZEN;
1212 			smp_wmb();
1213 			wake_up(&sb->s_wait_unfrozen);
1214 			deactivate_locked_super(sb);
1215 			return ret;
1216 		}
1217 	}
1218 	up_write(&sb->s_umount);
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL(freeze_super);
1222 
1223 /**
1224  * thaw_super -- unlock filesystem
1225  * @sb: the super to thaw
1226  *
1227  * Unlocks the filesystem and marks it writeable again after freeze_super().
1228  */
1229 int thaw_super(struct super_block *sb)
1230 {
1231 	int error;
1232 
1233 	down_write(&sb->s_umount);
1234 	if (sb->s_frozen == SB_UNFROZEN) {
1235 		up_write(&sb->s_umount);
1236 		return -EINVAL;
1237 	}
1238 
1239 	if (sb->s_flags & MS_RDONLY)
1240 		goto out;
1241 
1242 	if (sb->s_op->unfreeze_fs) {
1243 		error = sb->s_op->unfreeze_fs(sb);
1244 		if (error) {
1245 			printk(KERN_ERR
1246 				"VFS:Filesystem thaw failed\n");
1247 			sb->s_frozen = SB_FREEZE_TRANS;
1248 			up_write(&sb->s_umount);
1249 			return error;
1250 		}
1251 	}
1252 
1253 out:
1254 	sb->s_frozen = SB_UNFROZEN;
1255 	smp_wmb();
1256 	wake_up(&sb->s_wait_unfrozen);
1257 	deactivate_locked_super(sb);
1258 
1259 	return 0;
1260 }
1261 EXPORT_SYMBOL(thaw_super);
1262