1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include "internal.h" 37 38 39 LIST_HEAD(super_blocks); 40 DEFINE_SPINLOCK(sb_lock); 41 42 /* 43 * One thing we have to be careful of with a per-sb shrinker is that we don't 44 * drop the last active reference to the superblock from within the shrinker. 45 * If that happens we could trigger unregistering the shrinker from within the 46 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 47 * take a passive reference to the superblock to avoid this from occurring. 48 */ 49 static int prune_super(struct shrinker *shrink, struct shrink_control *sc) 50 { 51 struct super_block *sb; 52 int fs_objects = 0; 53 int total_objects; 54 55 sb = container_of(shrink, struct super_block, s_shrink); 56 57 /* 58 * Deadlock avoidance. We may hold various FS locks, and we don't want 59 * to recurse into the FS that called us in clear_inode() and friends.. 60 */ 61 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS)) 62 return -1; 63 64 if (!grab_super_passive(sb)) 65 return !sc->nr_to_scan ? 0 : -1; 66 67 if (sb->s_op && sb->s_op->nr_cached_objects) 68 fs_objects = sb->s_op->nr_cached_objects(sb); 69 70 total_objects = sb->s_nr_dentry_unused + 71 sb->s_nr_inodes_unused + fs_objects + 1; 72 73 if (sc->nr_to_scan) { 74 int dentries; 75 int inodes; 76 77 /* proportion the scan between the caches */ 78 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) / 79 total_objects; 80 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) / 81 total_objects; 82 if (fs_objects) 83 fs_objects = (sc->nr_to_scan * fs_objects) / 84 total_objects; 85 /* 86 * prune the dcache first as the icache is pinned by it, then 87 * prune the icache, followed by the filesystem specific caches 88 */ 89 prune_dcache_sb(sb, dentries); 90 prune_icache_sb(sb, inodes); 91 92 if (fs_objects && sb->s_op->free_cached_objects) { 93 sb->s_op->free_cached_objects(sb, fs_objects); 94 fs_objects = sb->s_op->nr_cached_objects(sb); 95 } 96 total_objects = sb->s_nr_dentry_unused + 97 sb->s_nr_inodes_unused + fs_objects; 98 } 99 100 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure; 101 drop_super(sb); 102 return total_objects; 103 } 104 105 /** 106 * alloc_super - create new superblock 107 * @type: filesystem type superblock should belong to 108 * @flags: the mount flags 109 * 110 * Allocates and initializes a new &struct super_block. alloc_super() 111 * returns a pointer new superblock or %NULL if allocation had failed. 112 */ 113 static struct super_block *alloc_super(struct file_system_type *type, int flags) 114 { 115 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 116 static const struct super_operations default_op; 117 118 if (s) { 119 if (security_sb_alloc(s)) { 120 kfree(s); 121 s = NULL; 122 goto out; 123 } 124 #ifdef CONFIG_SMP 125 s->s_files = alloc_percpu(struct list_head); 126 if (!s->s_files) { 127 security_sb_free(s); 128 kfree(s); 129 s = NULL; 130 goto out; 131 } else { 132 int i; 133 134 for_each_possible_cpu(i) 135 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i)); 136 } 137 #else 138 INIT_LIST_HEAD(&s->s_files); 139 #endif 140 s->s_flags = flags; 141 s->s_bdi = &default_backing_dev_info; 142 INIT_HLIST_NODE(&s->s_instances); 143 INIT_HLIST_BL_HEAD(&s->s_anon); 144 INIT_LIST_HEAD(&s->s_inodes); 145 INIT_LIST_HEAD(&s->s_dentry_lru); 146 INIT_LIST_HEAD(&s->s_inode_lru); 147 spin_lock_init(&s->s_inode_lru_lock); 148 INIT_LIST_HEAD(&s->s_mounts); 149 init_rwsem(&s->s_umount); 150 mutex_init(&s->s_lock); 151 lockdep_set_class(&s->s_umount, &type->s_umount_key); 152 /* 153 * The locking rules for s_lock are up to the 154 * filesystem. For example ext3fs has different 155 * lock ordering than usbfs: 156 */ 157 lockdep_set_class(&s->s_lock, &type->s_lock_key); 158 /* 159 * sget() can have s_umount recursion. 160 * 161 * When it cannot find a suitable sb, it allocates a new 162 * one (this one), and tries again to find a suitable old 163 * one. 164 * 165 * In case that succeeds, it will acquire the s_umount 166 * lock of the old one. Since these are clearly distrinct 167 * locks, and this object isn't exposed yet, there's no 168 * risk of deadlocks. 169 * 170 * Annotate this by putting this lock in a different 171 * subclass. 172 */ 173 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 174 s->s_count = 1; 175 atomic_set(&s->s_active, 1); 176 mutex_init(&s->s_vfs_rename_mutex); 177 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 178 mutex_init(&s->s_dquot.dqio_mutex); 179 mutex_init(&s->s_dquot.dqonoff_mutex); 180 init_rwsem(&s->s_dquot.dqptr_sem); 181 init_waitqueue_head(&s->s_wait_unfrozen); 182 s->s_maxbytes = MAX_NON_LFS; 183 s->s_op = &default_op; 184 s->s_time_gran = 1000000000; 185 s->cleancache_poolid = -1; 186 187 s->s_shrink.seeks = DEFAULT_SEEKS; 188 s->s_shrink.shrink = prune_super; 189 s->s_shrink.batch = 1024; 190 } 191 out: 192 return s; 193 } 194 195 /** 196 * destroy_super - frees a superblock 197 * @s: superblock to free 198 * 199 * Frees a superblock. 200 */ 201 static inline void destroy_super(struct super_block *s) 202 { 203 #ifdef CONFIG_SMP 204 free_percpu(s->s_files); 205 #endif 206 security_sb_free(s); 207 WARN_ON(!list_empty(&s->s_mounts)); 208 kfree(s->s_subtype); 209 kfree(s->s_options); 210 kfree(s); 211 } 212 213 /* Superblock refcounting */ 214 215 /* 216 * Drop a superblock's refcount. The caller must hold sb_lock. 217 */ 218 static void __put_super(struct super_block *sb) 219 { 220 if (!--sb->s_count) { 221 list_del_init(&sb->s_list); 222 destroy_super(sb); 223 } 224 } 225 226 /** 227 * put_super - drop a temporary reference to superblock 228 * @sb: superblock in question 229 * 230 * Drops a temporary reference, frees superblock if there's no 231 * references left. 232 */ 233 static void put_super(struct super_block *sb) 234 { 235 spin_lock(&sb_lock); 236 __put_super(sb); 237 spin_unlock(&sb_lock); 238 } 239 240 241 /** 242 * deactivate_locked_super - drop an active reference to superblock 243 * @s: superblock to deactivate 244 * 245 * Drops an active reference to superblock, converting it into a temprory 246 * one if there is no other active references left. In that case we 247 * tell fs driver to shut it down and drop the temporary reference we 248 * had just acquired. 249 * 250 * Caller holds exclusive lock on superblock; that lock is released. 251 */ 252 void deactivate_locked_super(struct super_block *s) 253 { 254 struct file_system_type *fs = s->s_type; 255 if (atomic_dec_and_test(&s->s_active)) { 256 cleancache_invalidate_fs(s); 257 fs->kill_sb(s); 258 259 /* caches are now gone, we can safely kill the shrinker now */ 260 unregister_shrinker(&s->s_shrink); 261 262 /* 263 * We need to call rcu_barrier so all the delayed rcu free 264 * inodes are flushed before we release the fs module. 265 */ 266 rcu_barrier(); 267 put_filesystem(fs); 268 put_super(s); 269 } else { 270 up_write(&s->s_umount); 271 } 272 } 273 274 EXPORT_SYMBOL(deactivate_locked_super); 275 276 /** 277 * deactivate_super - drop an active reference to superblock 278 * @s: superblock to deactivate 279 * 280 * Variant of deactivate_locked_super(), except that superblock is *not* 281 * locked by caller. If we are going to drop the final active reference, 282 * lock will be acquired prior to that. 283 */ 284 void deactivate_super(struct super_block *s) 285 { 286 if (!atomic_add_unless(&s->s_active, -1, 1)) { 287 down_write(&s->s_umount); 288 deactivate_locked_super(s); 289 } 290 } 291 292 EXPORT_SYMBOL(deactivate_super); 293 294 /** 295 * grab_super - acquire an active reference 296 * @s: reference we are trying to make active 297 * 298 * Tries to acquire an active reference. grab_super() is used when we 299 * had just found a superblock in super_blocks or fs_type->fs_supers 300 * and want to turn it into a full-blown active reference. grab_super() 301 * is called with sb_lock held and drops it. Returns 1 in case of 302 * success, 0 if we had failed (superblock contents was already dead or 303 * dying when grab_super() had been called). 304 */ 305 static int grab_super(struct super_block *s) __releases(sb_lock) 306 { 307 if (atomic_inc_not_zero(&s->s_active)) { 308 spin_unlock(&sb_lock); 309 return 1; 310 } 311 /* it's going away */ 312 s->s_count++; 313 spin_unlock(&sb_lock); 314 /* wait for it to die */ 315 down_write(&s->s_umount); 316 up_write(&s->s_umount); 317 put_super(s); 318 return 0; 319 } 320 321 /* 322 * grab_super_passive - acquire a passive reference 323 * @s: reference we are trying to grab 324 * 325 * Tries to acquire a passive reference. This is used in places where we 326 * cannot take an active reference but we need to ensure that the 327 * superblock does not go away while we are working on it. It returns 328 * false if a reference was not gained, and returns true with the s_umount 329 * lock held in read mode if a reference is gained. On successful return, 330 * the caller must drop the s_umount lock and the passive reference when 331 * done. 332 */ 333 bool grab_super_passive(struct super_block *sb) 334 { 335 spin_lock(&sb_lock); 336 if (hlist_unhashed(&sb->s_instances)) { 337 spin_unlock(&sb_lock); 338 return false; 339 } 340 341 sb->s_count++; 342 spin_unlock(&sb_lock); 343 344 if (down_read_trylock(&sb->s_umount)) { 345 if (sb->s_root && (sb->s_flags & MS_BORN)) 346 return true; 347 up_read(&sb->s_umount); 348 } 349 350 put_super(sb); 351 return false; 352 } 353 354 /* 355 * Superblock locking. We really ought to get rid of these two. 356 */ 357 void lock_super(struct super_block * sb) 358 { 359 mutex_lock(&sb->s_lock); 360 } 361 362 void unlock_super(struct super_block * sb) 363 { 364 mutex_unlock(&sb->s_lock); 365 } 366 367 EXPORT_SYMBOL(lock_super); 368 EXPORT_SYMBOL(unlock_super); 369 370 /** 371 * generic_shutdown_super - common helper for ->kill_sb() 372 * @sb: superblock to kill 373 * 374 * generic_shutdown_super() does all fs-independent work on superblock 375 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 376 * that need destruction out of superblock, call generic_shutdown_super() 377 * and release aforementioned objects. Note: dentries and inodes _are_ 378 * taken care of and do not need specific handling. 379 * 380 * Upon calling this function, the filesystem may no longer alter or 381 * rearrange the set of dentries belonging to this super_block, nor may it 382 * change the attachments of dentries to inodes. 383 */ 384 void generic_shutdown_super(struct super_block *sb) 385 { 386 const struct super_operations *sop = sb->s_op; 387 388 if (sb->s_root) { 389 shrink_dcache_for_umount(sb); 390 sync_filesystem(sb); 391 sb->s_flags &= ~MS_ACTIVE; 392 393 fsnotify_unmount_inodes(&sb->s_inodes); 394 395 evict_inodes(sb); 396 397 if (sop->put_super) 398 sop->put_super(sb); 399 400 if (!list_empty(&sb->s_inodes)) { 401 printk("VFS: Busy inodes after unmount of %s. " 402 "Self-destruct in 5 seconds. Have a nice day...\n", 403 sb->s_id); 404 } 405 } 406 spin_lock(&sb_lock); 407 /* should be initialized for __put_super_and_need_restart() */ 408 hlist_del_init(&sb->s_instances); 409 spin_unlock(&sb_lock); 410 up_write(&sb->s_umount); 411 } 412 413 EXPORT_SYMBOL(generic_shutdown_super); 414 415 /** 416 * sget - find or create a superblock 417 * @type: filesystem type superblock should belong to 418 * @test: comparison callback 419 * @set: setup callback 420 * @flags: mount flags 421 * @data: argument to each of them 422 */ 423 struct super_block *sget(struct file_system_type *type, 424 int (*test)(struct super_block *,void *), 425 int (*set)(struct super_block *,void *), 426 int flags, 427 void *data) 428 { 429 struct super_block *s = NULL; 430 struct hlist_node *node; 431 struct super_block *old; 432 int err; 433 434 retry: 435 spin_lock(&sb_lock); 436 if (test) { 437 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) { 438 if (!test(old, data)) 439 continue; 440 if (!grab_super(old)) 441 goto retry; 442 if (s) { 443 up_write(&s->s_umount); 444 destroy_super(s); 445 s = NULL; 446 } 447 down_write(&old->s_umount); 448 if (unlikely(!(old->s_flags & MS_BORN))) { 449 deactivate_locked_super(old); 450 goto retry; 451 } 452 return old; 453 } 454 } 455 if (!s) { 456 spin_unlock(&sb_lock); 457 s = alloc_super(type, flags); 458 if (!s) 459 return ERR_PTR(-ENOMEM); 460 goto retry; 461 } 462 463 err = set(s, data); 464 if (err) { 465 spin_unlock(&sb_lock); 466 up_write(&s->s_umount); 467 destroy_super(s); 468 return ERR_PTR(err); 469 } 470 s->s_type = type; 471 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 472 list_add_tail(&s->s_list, &super_blocks); 473 hlist_add_head(&s->s_instances, &type->fs_supers); 474 spin_unlock(&sb_lock); 475 get_filesystem(type); 476 register_shrinker(&s->s_shrink); 477 return s; 478 } 479 480 EXPORT_SYMBOL(sget); 481 482 void drop_super(struct super_block *sb) 483 { 484 up_read(&sb->s_umount); 485 put_super(sb); 486 } 487 488 EXPORT_SYMBOL(drop_super); 489 490 /** 491 * sync_supers - helper for periodic superblock writeback 492 * 493 * Call the write_super method if present on all dirty superblocks in 494 * the system. This is for the periodic writeback used by most older 495 * filesystems. For data integrity superblock writeback use 496 * sync_filesystems() instead. 497 * 498 * Note: check the dirty flag before waiting, so we don't 499 * hold up the sync while mounting a device. (The newly 500 * mounted device won't need syncing.) 501 */ 502 void sync_supers(void) 503 { 504 struct super_block *sb, *p = NULL; 505 506 spin_lock(&sb_lock); 507 list_for_each_entry(sb, &super_blocks, s_list) { 508 if (hlist_unhashed(&sb->s_instances)) 509 continue; 510 if (sb->s_op->write_super && sb->s_dirt) { 511 sb->s_count++; 512 spin_unlock(&sb_lock); 513 514 down_read(&sb->s_umount); 515 if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN)) 516 sb->s_op->write_super(sb); 517 up_read(&sb->s_umount); 518 519 spin_lock(&sb_lock); 520 if (p) 521 __put_super(p); 522 p = sb; 523 } 524 } 525 if (p) 526 __put_super(p); 527 spin_unlock(&sb_lock); 528 } 529 530 /** 531 * iterate_supers - call function for all active superblocks 532 * @f: function to call 533 * @arg: argument to pass to it 534 * 535 * Scans the superblock list and calls given function, passing it 536 * locked superblock and given argument. 537 */ 538 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 539 { 540 struct super_block *sb, *p = NULL; 541 542 spin_lock(&sb_lock); 543 list_for_each_entry(sb, &super_blocks, s_list) { 544 if (hlist_unhashed(&sb->s_instances)) 545 continue; 546 sb->s_count++; 547 spin_unlock(&sb_lock); 548 549 down_read(&sb->s_umount); 550 if (sb->s_root && (sb->s_flags & MS_BORN)) 551 f(sb, arg); 552 up_read(&sb->s_umount); 553 554 spin_lock(&sb_lock); 555 if (p) 556 __put_super(p); 557 p = sb; 558 } 559 if (p) 560 __put_super(p); 561 spin_unlock(&sb_lock); 562 } 563 564 /** 565 * iterate_supers_type - call function for superblocks of given type 566 * @type: fs type 567 * @f: function to call 568 * @arg: argument to pass to it 569 * 570 * Scans the superblock list and calls given function, passing it 571 * locked superblock and given argument. 572 */ 573 void iterate_supers_type(struct file_system_type *type, 574 void (*f)(struct super_block *, void *), void *arg) 575 { 576 struct super_block *sb, *p = NULL; 577 struct hlist_node *node; 578 579 spin_lock(&sb_lock); 580 hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) { 581 sb->s_count++; 582 spin_unlock(&sb_lock); 583 584 down_read(&sb->s_umount); 585 if (sb->s_root && (sb->s_flags & MS_BORN)) 586 f(sb, arg); 587 up_read(&sb->s_umount); 588 589 spin_lock(&sb_lock); 590 if (p) 591 __put_super(p); 592 p = sb; 593 } 594 if (p) 595 __put_super(p); 596 spin_unlock(&sb_lock); 597 } 598 599 EXPORT_SYMBOL(iterate_supers_type); 600 601 /** 602 * get_super - get the superblock of a device 603 * @bdev: device to get the superblock for 604 * 605 * Scans the superblock list and finds the superblock of the file system 606 * mounted on the device given. %NULL is returned if no match is found. 607 */ 608 609 struct super_block *get_super(struct block_device *bdev) 610 { 611 struct super_block *sb; 612 613 if (!bdev) 614 return NULL; 615 616 spin_lock(&sb_lock); 617 rescan: 618 list_for_each_entry(sb, &super_blocks, s_list) { 619 if (hlist_unhashed(&sb->s_instances)) 620 continue; 621 if (sb->s_bdev == bdev) { 622 sb->s_count++; 623 spin_unlock(&sb_lock); 624 down_read(&sb->s_umount); 625 /* still alive? */ 626 if (sb->s_root && (sb->s_flags & MS_BORN)) 627 return sb; 628 up_read(&sb->s_umount); 629 /* nope, got unmounted */ 630 spin_lock(&sb_lock); 631 __put_super(sb); 632 goto rescan; 633 } 634 } 635 spin_unlock(&sb_lock); 636 return NULL; 637 } 638 639 EXPORT_SYMBOL(get_super); 640 641 /** 642 * get_super_thawed - get thawed superblock of a device 643 * @bdev: device to get the superblock for 644 * 645 * Scans the superblock list and finds the superblock of the file system 646 * mounted on the device. The superblock is returned once it is thawed 647 * (or immediately if it was not frozen). %NULL is returned if no match 648 * is found. 649 */ 650 struct super_block *get_super_thawed(struct block_device *bdev) 651 { 652 while (1) { 653 struct super_block *s = get_super(bdev); 654 if (!s || s->s_frozen == SB_UNFROZEN) 655 return s; 656 up_read(&s->s_umount); 657 vfs_check_frozen(s, SB_FREEZE_WRITE); 658 put_super(s); 659 } 660 } 661 EXPORT_SYMBOL(get_super_thawed); 662 663 /** 664 * get_active_super - get an active reference to the superblock of a device 665 * @bdev: device to get the superblock for 666 * 667 * Scans the superblock list and finds the superblock of the file system 668 * mounted on the device given. Returns the superblock with an active 669 * reference or %NULL if none was found. 670 */ 671 struct super_block *get_active_super(struct block_device *bdev) 672 { 673 struct super_block *sb; 674 675 if (!bdev) 676 return NULL; 677 678 restart: 679 spin_lock(&sb_lock); 680 list_for_each_entry(sb, &super_blocks, s_list) { 681 if (hlist_unhashed(&sb->s_instances)) 682 continue; 683 if (sb->s_bdev == bdev) { 684 if (grab_super(sb)) /* drops sb_lock */ 685 return sb; 686 else 687 goto restart; 688 } 689 } 690 spin_unlock(&sb_lock); 691 return NULL; 692 } 693 694 struct super_block *user_get_super(dev_t dev) 695 { 696 struct super_block *sb; 697 698 spin_lock(&sb_lock); 699 rescan: 700 list_for_each_entry(sb, &super_blocks, s_list) { 701 if (hlist_unhashed(&sb->s_instances)) 702 continue; 703 if (sb->s_dev == dev) { 704 sb->s_count++; 705 spin_unlock(&sb_lock); 706 down_read(&sb->s_umount); 707 /* still alive? */ 708 if (sb->s_root && (sb->s_flags & MS_BORN)) 709 return sb; 710 up_read(&sb->s_umount); 711 /* nope, got unmounted */ 712 spin_lock(&sb_lock); 713 __put_super(sb); 714 goto rescan; 715 } 716 } 717 spin_unlock(&sb_lock); 718 return NULL; 719 } 720 721 /** 722 * do_remount_sb - asks filesystem to change mount options. 723 * @sb: superblock in question 724 * @flags: numeric part of options 725 * @data: the rest of options 726 * @force: whether or not to force the change 727 * 728 * Alters the mount options of a mounted file system. 729 */ 730 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 731 { 732 int retval; 733 int remount_ro; 734 735 if (sb->s_frozen != SB_UNFROZEN) 736 return -EBUSY; 737 738 #ifdef CONFIG_BLOCK 739 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 740 return -EACCES; 741 #endif 742 743 if (flags & MS_RDONLY) 744 acct_auto_close(sb); 745 shrink_dcache_sb(sb); 746 sync_filesystem(sb); 747 748 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 749 750 /* If we are remounting RDONLY and current sb is read/write, 751 make sure there are no rw files opened */ 752 if (remount_ro) { 753 if (force) { 754 mark_files_ro(sb); 755 } else { 756 retval = sb_prepare_remount_readonly(sb); 757 if (retval) 758 return retval; 759 } 760 } 761 762 if (sb->s_op->remount_fs) { 763 retval = sb->s_op->remount_fs(sb, &flags, data); 764 if (retval) { 765 if (!force) 766 goto cancel_readonly; 767 /* If forced remount, go ahead despite any errors */ 768 WARN(1, "forced remount of a %s fs returned %i\n", 769 sb->s_type->name, retval); 770 } 771 } 772 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 773 /* Needs to be ordered wrt mnt_is_readonly() */ 774 smp_wmb(); 775 sb->s_readonly_remount = 0; 776 777 /* 778 * Some filesystems modify their metadata via some other path than the 779 * bdev buffer cache (eg. use a private mapping, or directories in 780 * pagecache, etc). Also file data modifications go via their own 781 * mappings. So If we try to mount readonly then copy the filesystem 782 * from bdev, we could get stale data, so invalidate it to give a best 783 * effort at coherency. 784 */ 785 if (remount_ro && sb->s_bdev) 786 invalidate_bdev(sb->s_bdev); 787 return 0; 788 789 cancel_readonly: 790 sb->s_readonly_remount = 0; 791 return retval; 792 } 793 794 static void do_emergency_remount(struct work_struct *work) 795 { 796 struct super_block *sb, *p = NULL; 797 798 spin_lock(&sb_lock); 799 list_for_each_entry(sb, &super_blocks, s_list) { 800 if (hlist_unhashed(&sb->s_instances)) 801 continue; 802 sb->s_count++; 803 spin_unlock(&sb_lock); 804 down_write(&sb->s_umount); 805 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 806 !(sb->s_flags & MS_RDONLY)) { 807 /* 808 * What lock protects sb->s_flags?? 809 */ 810 do_remount_sb(sb, MS_RDONLY, NULL, 1); 811 } 812 up_write(&sb->s_umount); 813 spin_lock(&sb_lock); 814 if (p) 815 __put_super(p); 816 p = sb; 817 } 818 if (p) 819 __put_super(p); 820 spin_unlock(&sb_lock); 821 kfree(work); 822 printk("Emergency Remount complete\n"); 823 } 824 825 void emergency_remount(void) 826 { 827 struct work_struct *work; 828 829 work = kmalloc(sizeof(*work), GFP_ATOMIC); 830 if (work) { 831 INIT_WORK(work, do_emergency_remount); 832 schedule_work(work); 833 } 834 } 835 836 /* 837 * Unnamed block devices are dummy devices used by virtual 838 * filesystems which don't use real block-devices. -- jrs 839 */ 840 841 static DEFINE_IDA(unnamed_dev_ida); 842 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 843 static int unnamed_dev_start = 0; /* don't bother trying below it */ 844 845 int get_anon_bdev(dev_t *p) 846 { 847 int dev; 848 int error; 849 850 retry: 851 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 852 return -ENOMEM; 853 spin_lock(&unnamed_dev_lock); 854 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 855 if (!error) 856 unnamed_dev_start = dev + 1; 857 spin_unlock(&unnamed_dev_lock); 858 if (error == -EAGAIN) 859 /* We raced and lost with another CPU. */ 860 goto retry; 861 else if (error) 862 return -EAGAIN; 863 864 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) { 865 spin_lock(&unnamed_dev_lock); 866 ida_remove(&unnamed_dev_ida, dev); 867 if (unnamed_dev_start > dev) 868 unnamed_dev_start = dev; 869 spin_unlock(&unnamed_dev_lock); 870 return -EMFILE; 871 } 872 *p = MKDEV(0, dev & MINORMASK); 873 return 0; 874 } 875 EXPORT_SYMBOL(get_anon_bdev); 876 877 void free_anon_bdev(dev_t dev) 878 { 879 int slot = MINOR(dev); 880 spin_lock(&unnamed_dev_lock); 881 ida_remove(&unnamed_dev_ida, slot); 882 if (slot < unnamed_dev_start) 883 unnamed_dev_start = slot; 884 spin_unlock(&unnamed_dev_lock); 885 } 886 EXPORT_SYMBOL(free_anon_bdev); 887 888 int set_anon_super(struct super_block *s, void *data) 889 { 890 int error = get_anon_bdev(&s->s_dev); 891 if (!error) 892 s->s_bdi = &noop_backing_dev_info; 893 return error; 894 } 895 896 EXPORT_SYMBOL(set_anon_super); 897 898 void kill_anon_super(struct super_block *sb) 899 { 900 dev_t dev = sb->s_dev; 901 generic_shutdown_super(sb); 902 free_anon_bdev(dev); 903 } 904 905 EXPORT_SYMBOL(kill_anon_super); 906 907 void kill_litter_super(struct super_block *sb) 908 { 909 if (sb->s_root) 910 d_genocide(sb->s_root); 911 kill_anon_super(sb); 912 } 913 914 EXPORT_SYMBOL(kill_litter_super); 915 916 static int ns_test_super(struct super_block *sb, void *data) 917 { 918 return sb->s_fs_info == data; 919 } 920 921 static int ns_set_super(struct super_block *sb, void *data) 922 { 923 sb->s_fs_info = data; 924 return set_anon_super(sb, NULL); 925 } 926 927 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 928 void *data, int (*fill_super)(struct super_block *, void *, int)) 929 { 930 struct super_block *sb; 931 932 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data); 933 if (IS_ERR(sb)) 934 return ERR_CAST(sb); 935 936 if (!sb->s_root) { 937 int err; 938 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 939 if (err) { 940 deactivate_locked_super(sb); 941 return ERR_PTR(err); 942 } 943 944 sb->s_flags |= MS_ACTIVE; 945 } 946 947 return dget(sb->s_root); 948 } 949 950 EXPORT_SYMBOL(mount_ns); 951 952 #ifdef CONFIG_BLOCK 953 static int set_bdev_super(struct super_block *s, void *data) 954 { 955 s->s_bdev = data; 956 s->s_dev = s->s_bdev->bd_dev; 957 958 /* 959 * We set the bdi here to the queue backing, file systems can 960 * overwrite this in ->fill_super() 961 */ 962 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 963 return 0; 964 } 965 966 static int test_bdev_super(struct super_block *s, void *data) 967 { 968 return (void *)s->s_bdev == data; 969 } 970 971 struct dentry *mount_bdev(struct file_system_type *fs_type, 972 int flags, const char *dev_name, void *data, 973 int (*fill_super)(struct super_block *, void *, int)) 974 { 975 struct block_device *bdev; 976 struct super_block *s; 977 fmode_t mode = FMODE_READ | FMODE_EXCL; 978 int error = 0; 979 980 if (!(flags & MS_RDONLY)) 981 mode |= FMODE_WRITE; 982 983 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 984 if (IS_ERR(bdev)) 985 return ERR_CAST(bdev); 986 987 /* 988 * once the super is inserted into the list by sget, s_umount 989 * will protect the lockfs code from trying to start a snapshot 990 * while we are mounting 991 */ 992 mutex_lock(&bdev->bd_fsfreeze_mutex); 993 if (bdev->bd_fsfreeze_count > 0) { 994 mutex_unlock(&bdev->bd_fsfreeze_mutex); 995 error = -EBUSY; 996 goto error_bdev; 997 } 998 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, 999 bdev); 1000 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1001 if (IS_ERR(s)) 1002 goto error_s; 1003 1004 if (s->s_root) { 1005 if ((flags ^ s->s_flags) & MS_RDONLY) { 1006 deactivate_locked_super(s); 1007 error = -EBUSY; 1008 goto error_bdev; 1009 } 1010 1011 /* 1012 * s_umount nests inside bd_mutex during 1013 * __invalidate_device(). blkdev_put() acquires 1014 * bd_mutex and can't be called under s_umount. Drop 1015 * s_umount temporarily. This is safe as we're 1016 * holding an active reference. 1017 */ 1018 up_write(&s->s_umount); 1019 blkdev_put(bdev, mode); 1020 down_write(&s->s_umount); 1021 } else { 1022 char b[BDEVNAME_SIZE]; 1023 1024 s->s_mode = mode; 1025 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1026 sb_set_blocksize(s, block_size(bdev)); 1027 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1028 if (error) { 1029 deactivate_locked_super(s); 1030 goto error; 1031 } 1032 1033 s->s_flags |= MS_ACTIVE; 1034 bdev->bd_super = s; 1035 } 1036 1037 return dget(s->s_root); 1038 1039 error_s: 1040 error = PTR_ERR(s); 1041 error_bdev: 1042 blkdev_put(bdev, mode); 1043 error: 1044 return ERR_PTR(error); 1045 } 1046 EXPORT_SYMBOL(mount_bdev); 1047 1048 void kill_block_super(struct super_block *sb) 1049 { 1050 struct block_device *bdev = sb->s_bdev; 1051 fmode_t mode = sb->s_mode; 1052 1053 bdev->bd_super = NULL; 1054 generic_shutdown_super(sb); 1055 sync_blockdev(bdev); 1056 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1057 blkdev_put(bdev, mode | FMODE_EXCL); 1058 } 1059 1060 EXPORT_SYMBOL(kill_block_super); 1061 #endif 1062 1063 struct dentry *mount_nodev(struct file_system_type *fs_type, 1064 int flags, void *data, 1065 int (*fill_super)(struct super_block *, void *, int)) 1066 { 1067 int error; 1068 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1069 1070 if (IS_ERR(s)) 1071 return ERR_CAST(s); 1072 1073 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1074 if (error) { 1075 deactivate_locked_super(s); 1076 return ERR_PTR(error); 1077 } 1078 s->s_flags |= MS_ACTIVE; 1079 return dget(s->s_root); 1080 } 1081 EXPORT_SYMBOL(mount_nodev); 1082 1083 static int compare_single(struct super_block *s, void *p) 1084 { 1085 return 1; 1086 } 1087 1088 struct dentry *mount_single(struct file_system_type *fs_type, 1089 int flags, void *data, 1090 int (*fill_super)(struct super_block *, void *, int)) 1091 { 1092 struct super_block *s; 1093 int error; 1094 1095 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1096 if (IS_ERR(s)) 1097 return ERR_CAST(s); 1098 if (!s->s_root) { 1099 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1100 if (error) { 1101 deactivate_locked_super(s); 1102 return ERR_PTR(error); 1103 } 1104 s->s_flags |= MS_ACTIVE; 1105 } else { 1106 do_remount_sb(s, flags, data, 0); 1107 } 1108 return dget(s->s_root); 1109 } 1110 EXPORT_SYMBOL(mount_single); 1111 1112 struct dentry * 1113 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1114 { 1115 struct dentry *root; 1116 struct super_block *sb; 1117 char *secdata = NULL; 1118 int error = -ENOMEM; 1119 1120 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1121 secdata = alloc_secdata(); 1122 if (!secdata) 1123 goto out; 1124 1125 error = security_sb_copy_data(data, secdata); 1126 if (error) 1127 goto out_free_secdata; 1128 } 1129 1130 root = type->mount(type, flags, name, data); 1131 if (IS_ERR(root)) { 1132 error = PTR_ERR(root); 1133 goto out_free_secdata; 1134 } 1135 sb = root->d_sb; 1136 BUG_ON(!sb); 1137 WARN_ON(!sb->s_bdi); 1138 WARN_ON(sb->s_bdi == &default_backing_dev_info); 1139 sb->s_flags |= MS_BORN; 1140 1141 error = security_sb_kern_mount(sb, flags, secdata); 1142 if (error) 1143 goto out_sb; 1144 1145 /* 1146 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1147 * but s_maxbytes was an unsigned long long for many releases. Throw 1148 * this warning for a little while to try and catch filesystems that 1149 * violate this rule. 1150 */ 1151 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1152 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1153 1154 up_write(&sb->s_umount); 1155 free_secdata(secdata); 1156 return root; 1157 out_sb: 1158 dput(root); 1159 deactivate_locked_super(sb); 1160 out_free_secdata: 1161 free_secdata(secdata); 1162 out: 1163 return ERR_PTR(error); 1164 } 1165 1166 /** 1167 * freeze_super - lock the filesystem and force it into a consistent state 1168 * @sb: the super to lock 1169 * 1170 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1171 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1172 * -EBUSY. 1173 */ 1174 int freeze_super(struct super_block *sb) 1175 { 1176 int ret; 1177 1178 atomic_inc(&sb->s_active); 1179 down_write(&sb->s_umount); 1180 if (sb->s_frozen) { 1181 deactivate_locked_super(sb); 1182 return -EBUSY; 1183 } 1184 1185 if (!(sb->s_flags & MS_BORN)) { 1186 up_write(&sb->s_umount); 1187 return 0; /* sic - it's "nothing to do" */ 1188 } 1189 1190 if (sb->s_flags & MS_RDONLY) { 1191 sb->s_frozen = SB_FREEZE_TRANS; 1192 smp_wmb(); 1193 up_write(&sb->s_umount); 1194 return 0; 1195 } 1196 1197 sb->s_frozen = SB_FREEZE_WRITE; 1198 smp_wmb(); 1199 1200 sync_filesystem(sb); 1201 1202 sb->s_frozen = SB_FREEZE_TRANS; 1203 smp_wmb(); 1204 1205 sync_blockdev(sb->s_bdev); 1206 if (sb->s_op->freeze_fs) { 1207 ret = sb->s_op->freeze_fs(sb); 1208 if (ret) { 1209 printk(KERN_ERR 1210 "VFS:Filesystem freeze failed\n"); 1211 sb->s_frozen = SB_UNFROZEN; 1212 smp_wmb(); 1213 wake_up(&sb->s_wait_unfrozen); 1214 deactivate_locked_super(sb); 1215 return ret; 1216 } 1217 } 1218 up_write(&sb->s_umount); 1219 return 0; 1220 } 1221 EXPORT_SYMBOL(freeze_super); 1222 1223 /** 1224 * thaw_super -- unlock filesystem 1225 * @sb: the super to thaw 1226 * 1227 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1228 */ 1229 int thaw_super(struct super_block *sb) 1230 { 1231 int error; 1232 1233 down_write(&sb->s_umount); 1234 if (sb->s_frozen == SB_UNFROZEN) { 1235 up_write(&sb->s_umount); 1236 return -EINVAL; 1237 } 1238 1239 if (sb->s_flags & MS_RDONLY) 1240 goto out; 1241 1242 if (sb->s_op->unfreeze_fs) { 1243 error = sb->s_op->unfreeze_fs(sb); 1244 if (error) { 1245 printk(KERN_ERR 1246 "VFS:Filesystem thaw failed\n"); 1247 sb->s_frozen = SB_FREEZE_TRANS; 1248 up_write(&sb->s_umount); 1249 return error; 1250 } 1251 } 1252 1253 out: 1254 sb->s_frozen = SB_UNFROZEN; 1255 smp_wmb(); 1256 wake_up(&sb->s_wait_unfrozen); 1257 deactivate_locked_super(sb); 1258 1259 return 0; 1260 } 1261 EXPORT_SYMBOL(thaw_super); 1262