1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include "internal.h" 35 36 37 LIST_HEAD(super_blocks); 38 DEFINE_SPINLOCK(sb_lock); 39 40 /** 41 * alloc_super - create new superblock 42 * @type: filesystem type superblock should belong to 43 * 44 * Allocates and initializes a new &struct super_block. alloc_super() 45 * returns a pointer new superblock or %NULL if allocation had failed. 46 */ 47 static struct super_block *alloc_super(struct file_system_type *type) 48 { 49 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 50 static const struct super_operations default_op; 51 52 if (s) { 53 if (security_sb_alloc(s)) { 54 kfree(s); 55 s = NULL; 56 goto out; 57 } 58 #ifdef CONFIG_SMP 59 s->s_files = alloc_percpu(struct list_head); 60 if (!s->s_files) { 61 security_sb_free(s); 62 kfree(s); 63 s = NULL; 64 goto out; 65 } else { 66 int i; 67 68 for_each_possible_cpu(i) 69 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i)); 70 } 71 #else 72 INIT_LIST_HEAD(&s->s_files); 73 #endif 74 INIT_LIST_HEAD(&s->s_instances); 75 INIT_HLIST_BL_HEAD(&s->s_anon); 76 INIT_LIST_HEAD(&s->s_inodes); 77 INIT_LIST_HEAD(&s->s_dentry_lru); 78 init_rwsem(&s->s_umount); 79 mutex_init(&s->s_lock); 80 lockdep_set_class(&s->s_umount, &type->s_umount_key); 81 /* 82 * The locking rules for s_lock are up to the 83 * filesystem. For example ext3fs has different 84 * lock ordering than usbfs: 85 */ 86 lockdep_set_class(&s->s_lock, &type->s_lock_key); 87 /* 88 * sget() can have s_umount recursion. 89 * 90 * When it cannot find a suitable sb, it allocates a new 91 * one (this one), and tries again to find a suitable old 92 * one. 93 * 94 * In case that succeeds, it will acquire the s_umount 95 * lock of the old one. Since these are clearly distrinct 96 * locks, and this object isn't exposed yet, there's no 97 * risk of deadlocks. 98 * 99 * Annotate this by putting this lock in a different 100 * subclass. 101 */ 102 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 103 s->s_count = 1; 104 atomic_set(&s->s_active, 1); 105 mutex_init(&s->s_vfs_rename_mutex); 106 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 107 mutex_init(&s->s_dquot.dqio_mutex); 108 mutex_init(&s->s_dquot.dqonoff_mutex); 109 init_rwsem(&s->s_dquot.dqptr_sem); 110 init_waitqueue_head(&s->s_wait_unfrozen); 111 s->s_maxbytes = MAX_NON_LFS; 112 s->s_op = &default_op; 113 s->s_time_gran = 1000000000; 114 } 115 out: 116 return s; 117 } 118 119 /** 120 * destroy_super - frees a superblock 121 * @s: superblock to free 122 * 123 * Frees a superblock. 124 */ 125 static inline void destroy_super(struct super_block *s) 126 { 127 #ifdef CONFIG_SMP 128 free_percpu(s->s_files); 129 #endif 130 security_sb_free(s); 131 kfree(s->s_subtype); 132 kfree(s->s_options); 133 kfree(s); 134 } 135 136 /* Superblock refcounting */ 137 138 /* 139 * Drop a superblock's refcount. The caller must hold sb_lock. 140 */ 141 void __put_super(struct super_block *sb) 142 { 143 if (!--sb->s_count) { 144 list_del_init(&sb->s_list); 145 destroy_super(sb); 146 } 147 } 148 149 /** 150 * put_super - drop a temporary reference to superblock 151 * @sb: superblock in question 152 * 153 * Drops a temporary reference, frees superblock if there's no 154 * references left. 155 */ 156 void put_super(struct super_block *sb) 157 { 158 spin_lock(&sb_lock); 159 __put_super(sb); 160 spin_unlock(&sb_lock); 161 } 162 163 164 /** 165 * deactivate_locked_super - drop an active reference to superblock 166 * @s: superblock to deactivate 167 * 168 * Drops an active reference to superblock, converting it into a temprory 169 * one if there is no other active references left. In that case we 170 * tell fs driver to shut it down and drop the temporary reference we 171 * had just acquired. 172 * 173 * Caller holds exclusive lock on superblock; that lock is released. 174 */ 175 void deactivate_locked_super(struct super_block *s) 176 { 177 struct file_system_type *fs = s->s_type; 178 if (atomic_dec_and_test(&s->s_active)) { 179 fs->kill_sb(s); 180 put_filesystem(fs); 181 put_super(s); 182 } else { 183 up_write(&s->s_umount); 184 } 185 } 186 187 EXPORT_SYMBOL(deactivate_locked_super); 188 189 /** 190 * deactivate_super - drop an active reference to superblock 191 * @s: superblock to deactivate 192 * 193 * Variant of deactivate_locked_super(), except that superblock is *not* 194 * locked by caller. If we are going to drop the final active reference, 195 * lock will be acquired prior to that. 196 */ 197 void deactivate_super(struct super_block *s) 198 { 199 if (!atomic_add_unless(&s->s_active, -1, 1)) { 200 down_write(&s->s_umount); 201 deactivate_locked_super(s); 202 } 203 } 204 205 EXPORT_SYMBOL(deactivate_super); 206 207 /** 208 * grab_super - acquire an active reference 209 * @s: reference we are trying to make active 210 * 211 * Tries to acquire an active reference. grab_super() is used when we 212 * had just found a superblock in super_blocks or fs_type->fs_supers 213 * and want to turn it into a full-blown active reference. grab_super() 214 * is called with sb_lock held and drops it. Returns 1 in case of 215 * success, 0 if we had failed (superblock contents was already dead or 216 * dying when grab_super() had been called). 217 */ 218 static int grab_super(struct super_block *s) __releases(sb_lock) 219 { 220 if (atomic_inc_not_zero(&s->s_active)) { 221 spin_unlock(&sb_lock); 222 return 1; 223 } 224 /* it's going away */ 225 s->s_count++; 226 spin_unlock(&sb_lock); 227 /* wait for it to die */ 228 down_write(&s->s_umount); 229 up_write(&s->s_umount); 230 put_super(s); 231 return 0; 232 } 233 234 /* 235 * Superblock locking. We really ought to get rid of these two. 236 */ 237 void lock_super(struct super_block * sb) 238 { 239 get_fs_excl(); 240 mutex_lock(&sb->s_lock); 241 } 242 243 void unlock_super(struct super_block * sb) 244 { 245 put_fs_excl(); 246 mutex_unlock(&sb->s_lock); 247 } 248 249 EXPORT_SYMBOL(lock_super); 250 EXPORT_SYMBOL(unlock_super); 251 252 /** 253 * generic_shutdown_super - common helper for ->kill_sb() 254 * @sb: superblock to kill 255 * 256 * generic_shutdown_super() does all fs-independent work on superblock 257 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 258 * that need destruction out of superblock, call generic_shutdown_super() 259 * and release aforementioned objects. Note: dentries and inodes _are_ 260 * taken care of and do not need specific handling. 261 * 262 * Upon calling this function, the filesystem may no longer alter or 263 * rearrange the set of dentries belonging to this super_block, nor may it 264 * change the attachments of dentries to inodes. 265 */ 266 void generic_shutdown_super(struct super_block *sb) 267 { 268 const struct super_operations *sop = sb->s_op; 269 270 271 if (sb->s_root) { 272 shrink_dcache_for_umount(sb); 273 sync_filesystem(sb); 274 get_fs_excl(); 275 sb->s_flags &= ~MS_ACTIVE; 276 277 fsnotify_unmount_inodes(&sb->s_inodes); 278 279 evict_inodes(sb); 280 281 if (sop->put_super) 282 sop->put_super(sb); 283 284 if (!list_empty(&sb->s_inodes)) { 285 printk("VFS: Busy inodes after unmount of %s. " 286 "Self-destruct in 5 seconds. Have a nice day...\n", 287 sb->s_id); 288 } 289 put_fs_excl(); 290 } 291 spin_lock(&sb_lock); 292 /* should be initialized for __put_super_and_need_restart() */ 293 list_del_init(&sb->s_instances); 294 spin_unlock(&sb_lock); 295 up_write(&sb->s_umount); 296 } 297 298 EXPORT_SYMBOL(generic_shutdown_super); 299 300 /** 301 * sget - find or create a superblock 302 * @type: filesystem type superblock should belong to 303 * @test: comparison callback 304 * @set: setup callback 305 * @data: argument to each of them 306 */ 307 struct super_block *sget(struct file_system_type *type, 308 int (*test)(struct super_block *,void *), 309 int (*set)(struct super_block *,void *), 310 void *data) 311 { 312 struct super_block *s = NULL; 313 struct super_block *old; 314 int err; 315 316 retry: 317 spin_lock(&sb_lock); 318 if (test) { 319 list_for_each_entry(old, &type->fs_supers, s_instances) { 320 if (!test(old, data)) 321 continue; 322 if (!grab_super(old)) 323 goto retry; 324 if (s) { 325 up_write(&s->s_umount); 326 destroy_super(s); 327 s = NULL; 328 } 329 down_write(&old->s_umount); 330 if (unlikely(!(old->s_flags & MS_BORN))) { 331 deactivate_locked_super(old); 332 goto retry; 333 } 334 return old; 335 } 336 } 337 if (!s) { 338 spin_unlock(&sb_lock); 339 s = alloc_super(type); 340 if (!s) 341 return ERR_PTR(-ENOMEM); 342 goto retry; 343 } 344 345 err = set(s, data); 346 if (err) { 347 spin_unlock(&sb_lock); 348 up_write(&s->s_umount); 349 destroy_super(s); 350 return ERR_PTR(err); 351 } 352 s->s_type = type; 353 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 354 list_add_tail(&s->s_list, &super_blocks); 355 list_add(&s->s_instances, &type->fs_supers); 356 spin_unlock(&sb_lock); 357 get_filesystem(type); 358 return s; 359 } 360 361 EXPORT_SYMBOL(sget); 362 363 void drop_super(struct super_block *sb) 364 { 365 up_read(&sb->s_umount); 366 put_super(sb); 367 } 368 369 EXPORT_SYMBOL(drop_super); 370 371 /** 372 * sync_supers - helper for periodic superblock writeback 373 * 374 * Call the write_super method if present on all dirty superblocks in 375 * the system. This is for the periodic writeback used by most older 376 * filesystems. For data integrity superblock writeback use 377 * sync_filesystems() instead. 378 * 379 * Note: check the dirty flag before waiting, so we don't 380 * hold up the sync while mounting a device. (The newly 381 * mounted device won't need syncing.) 382 */ 383 void sync_supers(void) 384 { 385 struct super_block *sb, *p = NULL; 386 387 spin_lock(&sb_lock); 388 list_for_each_entry(sb, &super_blocks, s_list) { 389 if (list_empty(&sb->s_instances)) 390 continue; 391 if (sb->s_op->write_super && sb->s_dirt) { 392 sb->s_count++; 393 spin_unlock(&sb_lock); 394 395 down_read(&sb->s_umount); 396 if (sb->s_root && sb->s_dirt) 397 sb->s_op->write_super(sb); 398 up_read(&sb->s_umount); 399 400 spin_lock(&sb_lock); 401 if (p) 402 __put_super(p); 403 p = sb; 404 } 405 } 406 if (p) 407 __put_super(p); 408 spin_unlock(&sb_lock); 409 } 410 411 /** 412 * iterate_supers - call function for all active superblocks 413 * @f: function to call 414 * @arg: argument to pass to it 415 * 416 * Scans the superblock list and calls given function, passing it 417 * locked superblock and given argument. 418 */ 419 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 420 { 421 struct super_block *sb, *p = NULL; 422 423 spin_lock(&sb_lock); 424 list_for_each_entry(sb, &super_blocks, s_list) { 425 if (list_empty(&sb->s_instances)) 426 continue; 427 sb->s_count++; 428 spin_unlock(&sb_lock); 429 430 down_read(&sb->s_umount); 431 if (sb->s_root) 432 f(sb, arg); 433 up_read(&sb->s_umount); 434 435 spin_lock(&sb_lock); 436 if (p) 437 __put_super(p); 438 p = sb; 439 } 440 if (p) 441 __put_super(p); 442 spin_unlock(&sb_lock); 443 } 444 445 /** 446 * get_super - get the superblock of a device 447 * @bdev: device to get the superblock for 448 * 449 * Scans the superblock list and finds the superblock of the file system 450 * mounted on the device given. %NULL is returned if no match is found. 451 */ 452 453 struct super_block *get_super(struct block_device *bdev) 454 { 455 struct super_block *sb; 456 457 if (!bdev) 458 return NULL; 459 460 spin_lock(&sb_lock); 461 rescan: 462 list_for_each_entry(sb, &super_blocks, s_list) { 463 if (list_empty(&sb->s_instances)) 464 continue; 465 if (sb->s_bdev == bdev) { 466 sb->s_count++; 467 spin_unlock(&sb_lock); 468 down_read(&sb->s_umount); 469 /* still alive? */ 470 if (sb->s_root) 471 return sb; 472 up_read(&sb->s_umount); 473 /* nope, got unmounted */ 474 spin_lock(&sb_lock); 475 __put_super(sb); 476 goto rescan; 477 } 478 } 479 spin_unlock(&sb_lock); 480 return NULL; 481 } 482 483 EXPORT_SYMBOL(get_super); 484 485 /** 486 * get_active_super - get an active reference to the superblock of a device 487 * @bdev: device to get the superblock for 488 * 489 * Scans the superblock list and finds the superblock of the file system 490 * mounted on the device given. Returns the superblock with an active 491 * reference or %NULL if none was found. 492 */ 493 struct super_block *get_active_super(struct block_device *bdev) 494 { 495 struct super_block *sb; 496 497 if (!bdev) 498 return NULL; 499 500 restart: 501 spin_lock(&sb_lock); 502 list_for_each_entry(sb, &super_blocks, s_list) { 503 if (list_empty(&sb->s_instances)) 504 continue; 505 if (sb->s_bdev == bdev) { 506 if (grab_super(sb)) /* drops sb_lock */ 507 return sb; 508 else 509 goto restart; 510 } 511 } 512 spin_unlock(&sb_lock); 513 return NULL; 514 } 515 516 struct super_block *user_get_super(dev_t dev) 517 { 518 struct super_block *sb; 519 520 spin_lock(&sb_lock); 521 rescan: 522 list_for_each_entry(sb, &super_blocks, s_list) { 523 if (list_empty(&sb->s_instances)) 524 continue; 525 if (sb->s_dev == dev) { 526 sb->s_count++; 527 spin_unlock(&sb_lock); 528 down_read(&sb->s_umount); 529 /* still alive? */ 530 if (sb->s_root) 531 return sb; 532 up_read(&sb->s_umount); 533 /* nope, got unmounted */ 534 spin_lock(&sb_lock); 535 __put_super(sb); 536 goto rescan; 537 } 538 } 539 spin_unlock(&sb_lock); 540 return NULL; 541 } 542 543 /** 544 * do_remount_sb - asks filesystem to change mount options. 545 * @sb: superblock in question 546 * @flags: numeric part of options 547 * @data: the rest of options 548 * @force: whether or not to force the change 549 * 550 * Alters the mount options of a mounted file system. 551 */ 552 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 553 { 554 int retval; 555 int remount_ro; 556 557 if (sb->s_frozen != SB_UNFROZEN) 558 return -EBUSY; 559 560 #ifdef CONFIG_BLOCK 561 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 562 return -EACCES; 563 #endif 564 565 if (flags & MS_RDONLY) 566 acct_auto_close(sb); 567 shrink_dcache_sb(sb); 568 sync_filesystem(sb); 569 570 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 571 572 /* If we are remounting RDONLY and current sb is read/write, 573 make sure there are no rw files opened */ 574 if (remount_ro) { 575 if (force) 576 mark_files_ro(sb); 577 else if (!fs_may_remount_ro(sb)) 578 return -EBUSY; 579 } 580 581 if (sb->s_op->remount_fs) { 582 retval = sb->s_op->remount_fs(sb, &flags, data); 583 if (retval) 584 return retval; 585 } 586 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 587 588 /* 589 * Some filesystems modify their metadata via some other path than the 590 * bdev buffer cache (eg. use a private mapping, or directories in 591 * pagecache, etc). Also file data modifications go via their own 592 * mappings. So If we try to mount readonly then copy the filesystem 593 * from bdev, we could get stale data, so invalidate it to give a best 594 * effort at coherency. 595 */ 596 if (remount_ro && sb->s_bdev) 597 invalidate_bdev(sb->s_bdev); 598 return 0; 599 } 600 601 static void do_emergency_remount(struct work_struct *work) 602 { 603 struct super_block *sb, *p = NULL; 604 605 spin_lock(&sb_lock); 606 list_for_each_entry(sb, &super_blocks, s_list) { 607 if (list_empty(&sb->s_instances)) 608 continue; 609 sb->s_count++; 610 spin_unlock(&sb_lock); 611 down_write(&sb->s_umount); 612 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) { 613 /* 614 * What lock protects sb->s_flags?? 615 */ 616 do_remount_sb(sb, MS_RDONLY, NULL, 1); 617 } 618 up_write(&sb->s_umount); 619 spin_lock(&sb_lock); 620 if (p) 621 __put_super(p); 622 p = sb; 623 } 624 if (p) 625 __put_super(p); 626 spin_unlock(&sb_lock); 627 kfree(work); 628 printk("Emergency Remount complete\n"); 629 } 630 631 void emergency_remount(void) 632 { 633 struct work_struct *work; 634 635 work = kmalloc(sizeof(*work), GFP_ATOMIC); 636 if (work) { 637 INIT_WORK(work, do_emergency_remount); 638 schedule_work(work); 639 } 640 } 641 642 /* 643 * Unnamed block devices are dummy devices used by virtual 644 * filesystems which don't use real block-devices. -- jrs 645 */ 646 647 static DEFINE_IDA(unnamed_dev_ida); 648 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 649 static int unnamed_dev_start = 0; /* don't bother trying below it */ 650 651 int set_anon_super(struct super_block *s, void *data) 652 { 653 int dev; 654 int error; 655 656 retry: 657 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 658 return -ENOMEM; 659 spin_lock(&unnamed_dev_lock); 660 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 661 if (!error) 662 unnamed_dev_start = dev + 1; 663 spin_unlock(&unnamed_dev_lock); 664 if (error == -EAGAIN) 665 /* We raced and lost with another CPU. */ 666 goto retry; 667 else if (error) 668 return -EAGAIN; 669 670 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) { 671 spin_lock(&unnamed_dev_lock); 672 ida_remove(&unnamed_dev_ida, dev); 673 if (unnamed_dev_start > dev) 674 unnamed_dev_start = dev; 675 spin_unlock(&unnamed_dev_lock); 676 return -EMFILE; 677 } 678 s->s_dev = MKDEV(0, dev & MINORMASK); 679 s->s_bdi = &noop_backing_dev_info; 680 return 0; 681 } 682 683 EXPORT_SYMBOL(set_anon_super); 684 685 void kill_anon_super(struct super_block *sb) 686 { 687 int slot = MINOR(sb->s_dev); 688 689 generic_shutdown_super(sb); 690 spin_lock(&unnamed_dev_lock); 691 ida_remove(&unnamed_dev_ida, slot); 692 if (slot < unnamed_dev_start) 693 unnamed_dev_start = slot; 694 spin_unlock(&unnamed_dev_lock); 695 } 696 697 EXPORT_SYMBOL(kill_anon_super); 698 699 void kill_litter_super(struct super_block *sb) 700 { 701 if (sb->s_root) 702 d_genocide(sb->s_root); 703 kill_anon_super(sb); 704 } 705 706 EXPORT_SYMBOL(kill_litter_super); 707 708 static int ns_test_super(struct super_block *sb, void *data) 709 { 710 return sb->s_fs_info == data; 711 } 712 713 static int ns_set_super(struct super_block *sb, void *data) 714 { 715 sb->s_fs_info = data; 716 return set_anon_super(sb, NULL); 717 } 718 719 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 720 void *data, int (*fill_super)(struct super_block *, void *, int)) 721 { 722 struct super_block *sb; 723 724 sb = sget(fs_type, ns_test_super, ns_set_super, data); 725 if (IS_ERR(sb)) 726 return ERR_CAST(sb); 727 728 if (!sb->s_root) { 729 int err; 730 sb->s_flags = flags; 731 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 732 if (err) { 733 deactivate_locked_super(sb); 734 return ERR_PTR(err); 735 } 736 737 sb->s_flags |= MS_ACTIVE; 738 } 739 740 return dget(sb->s_root); 741 } 742 743 EXPORT_SYMBOL(mount_ns); 744 745 #ifdef CONFIG_BLOCK 746 static int set_bdev_super(struct super_block *s, void *data) 747 { 748 s->s_bdev = data; 749 s->s_dev = s->s_bdev->bd_dev; 750 751 /* 752 * We set the bdi here to the queue backing, file systems can 753 * overwrite this in ->fill_super() 754 */ 755 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 756 return 0; 757 } 758 759 static int test_bdev_super(struct super_block *s, void *data) 760 { 761 return (void *)s->s_bdev == data; 762 } 763 764 struct dentry *mount_bdev(struct file_system_type *fs_type, 765 int flags, const char *dev_name, void *data, 766 int (*fill_super)(struct super_block *, void *, int)) 767 { 768 struct block_device *bdev; 769 struct super_block *s; 770 fmode_t mode = FMODE_READ | FMODE_EXCL; 771 int error = 0; 772 773 if (!(flags & MS_RDONLY)) 774 mode |= FMODE_WRITE; 775 776 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 777 if (IS_ERR(bdev)) 778 return ERR_CAST(bdev); 779 780 /* 781 * once the super is inserted into the list by sget, s_umount 782 * will protect the lockfs code from trying to start a snapshot 783 * while we are mounting 784 */ 785 mutex_lock(&bdev->bd_fsfreeze_mutex); 786 if (bdev->bd_fsfreeze_count > 0) { 787 mutex_unlock(&bdev->bd_fsfreeze_mutex); 788 error = -EBUSY; 789 goto error_bdev; 790 } 791 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev); 792 mutex_unlock(&bdev->bd_fsfreeze_mutex); 793 if (IS_ERR(s)) 794 goto error_s; 795 796 if (s->s_root) { 797 if ((flags ^ s->s_flags) & MS_RDONLY) { 798 deactivate_locked_super(s); 799 error = -EBUSY; 800 goto error_bdev; 801 } 802 803 /* 804 * s_umount nests inside bd_mutex during 805 * __invalidate_device(). blkdev_put() acquires 806 * bd_mutex and can't be called under s_umount. Drop 807 * s_umount temporarily. This is safe as we're 808 * holding an active reference. 809 */ 810 up_write(&s->s_umount); 811 blkdev_put(bdev, mode); 812 down_write(&s->s_umount); 813 } else { 814 char b[BDEVNAME_SIZE]; 815 816 s->s_flags = flags; 817 s->s_mode = mode; 818 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 819 sb_set_blocksize(s, block_size(bdev)); 820 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 821 if (error) { 822 deactivate_locked_super(s); 823 goto error; 824 } 825 826 s->s_flags |= MS_ACTIVE; 827 bdev->bd_super = s; 828 } 829 830 return dget(s->s_root); 831 832 error_s: 833 error = PTR_ERR(s); 834 error_bdev: 835 blkdev_put(bdev, mode); 836 error: 837 return ERR_PTR(error); 838 } 839 EXPORT_SYMBOL(mount_bdev); 840 841 int get_sb_bdev(struct file_system_type *fs_type, 842 int flags, const char *dev_name, void *data, 843 int (*fill_super)(struct super_block *, void *, int), 844 struct vfsmount *mnt) 845 { 846 struct dentry *root; 847 848 root = mount_bdev(fs_type, flags, dev_name, data, fill_super); 849 if (IS_ERR(root)) 850 return PTR_ERR(root); 851 mnt->mnt_root = root; 852 mnt->mnt_sb = root->d_sb; 853 return 0; 854 } 855 856 EXPORT_SYMBOL(get_sb_bdev); 857 858 void kill_block_super(struct super_block *sb) 859 { 860 struct block_device *bdev = sb->s_bdev; 861 fmode_t mode = sb->s_mode; 862 863 bdev->bd_super = NULL; 864 generic_shutdown_super(sb); 865 sync_blockdev(bdev); 866 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 867 blkdev_put(bdev, mode | FMODE_EXCL); 868 } 869 870 EXPORT_SYMBOL(kill_block_super); 871 #endif 872 873 struct dentry *mount_nodev(struct file_system_type *fs_type, 874 int flags, void *data, 875 int (*fill_super)(struct super_block *, void *, int)) 876 { 877 int error; 878 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 879 880 if (IS_ERR(s)) 881 return ERR_CAST(s); 882 883 s->s_flags = flags; 884 885 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 886 if (error) { 887 deactivate_locked_super(s); 888 return ERR_PTR(error); 889 } 890 s->s_flags |= MS_ACTIVE; 891 return dget(s->s_root); 892 } 893 EXPORT_SYMBOL(mount_nodev); 894 895 int get_sb_nodev(struct file_system_type *fs_type, 896 int flags, void *data, 897 int (*fill_super)(struct super_block *, void *, int), 898 struct vfsmount *mnt) 899 { 900 struct dentry *root; 901 902 root = mount_nodev(fs_type, flags, data, fill_super); 903 if (IS_ERR(root)) 904 return PTR_ERR(root); 905 mnt->mnt_root = root; 906 mnt->mnt_sb = root->d_sb; 907 return 0; 908 } 909 EXPORT_SYMBOL(get_sb_nodev); 910 911 static int compare_single(struct super_block *s, void *p) 912 { 913 return 1; 914 } 915 916 struct dentry *mount_single(struct file_system_type *fs_type, 917 int flags, void *data, 918 int (*fill_super)(struct super_block *, void *, int)) 919 { 920 struct super_block *s; 921 int error; 922 923 s = sget(fs_type, compare_single, set_anon_super, NULL); 924 if (IS_ERR(s)) 925 return ERR_CAST(s); 926 if (!s->s_root) { 927 s->s_flags = flags; 928 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 929 if (error) { 930 deactivate_locked_super(s); 931 return ERR_PTR(error); 932 } 933 s->s_flags |= MS_ACTIVE; 934 } else { 935 do_remount_sb(s, flags, data, 0); 936 } 937 return dget(s->s_root); 938 } 939 EXPORT_SYMBOL(mount_single); 940 941 int get_sb_single(struct file_system_type *fs_type, 942 int flags, void *data, 943 int (*fill_super)(struct super_block *, void *, int), 944 struct vfsmount *mnt) 945 { 946 struct dentry *root; 947 root = mount_single(fs_type, flags, data, fill_super); 948 if (IS_ERR(root)) 949 return PTR_ERR(root); 950 mnt->mnt_root = root; 951 mnt->mnt_sb = root->d_sb; 952 return 0; 953 } 954 955 EXPORT_SYMBOL(get_sb_single); 956 957 struct vfsmount * 958 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 959 { 960 struct vfsmount *mnt; 961 struct dentry *root; 962 char *secdata = NULL; 963 int error; 964 965 if (!type) 966 return ERR_PTR(-ENODEV); 967 968 error = -ENOMEM; 969 mnt = alloc_vfsmnt(name); 970 if (!mnt) 971 goto out; 972 973 if (flags & MS_KERNMOUNT) 974 mnt->mnt_flags = MNT_INTERNAL; 975 976 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 977 secdata = alloc_secdata(); 978 if (!secdata) 979 goto out_mnt; 980 981 error = security_sb_copy_data(data, secdata); 982 if (error) 983 goto out_free_secdata; 984 } 985 986 if (type->mount) { 987 root = type->mount(type, flags, name, data); 988 if (IS_ERR(root)) { 989 error = PTR_ERR(root); 990 goto out_free_secdata; 991 } 992 mnt->mnt_root = root; 993 mnt->mnt_sb = root->d_sb; 994 } else { 995 error = type->get_sb(type, flags, name, data, mnt); 996 if (error < 0) 997 goto out_free_secdata; 998 } 999 BUG_ON(!mnt->mnt_sb); 1000 WARN_ON(!mnt->mnt_sb->s_bdi); 1001 mnt->mnt_sb->s_flags |= MS_BORN; 1002 1003 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata); 1004 if (error) 1005 goto out_sb; 1006 1007 /* 1008 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1009 * but s_maxbytes was an unsigned long long for many releases. Throw 1010 * this warning for a little while to try and catch filesystems that 1011 * violate this rule. This warning should be either removed or 1012 * converted to a BUG() in 2.6.34. 1013 */ 1014 WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1015 "negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes); 1016 1017 mnt->mnt_mountpoint = mnt->mnt_root; 1018 mnt->mnt_parent = mnt; 1019 up_write(&mnt->mnt_sb->s_umount); 1020 free_secdata(secdata); 1021 return mnt; 1022 out_sb: 1023 dput(mnt->mnt_root); 1024 deactivate_locked_super(mnt->mnt_sb); 1025 out_free_secdata: 1026 free_secdata(secdata); 1027 out_mnt: 1028 free_vfsmnt(mnt); 1029 out: 1030 return ERR_PTR(error); 1031 } 1032 1033 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1034 1035 /** 1036 * freeze_super - lock the filesystem and force it into a consistent state 1037 * @sb: the super to lock 1038 * 1039 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1040 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1041 * -EBUSY. 1042 */ 1043 int freeze_super(struct super_block *sb) 1044 { 1045 int ret; 1046 1047 atomic_inc(&sb->s_active); 1048 down_write(&sb->s_umount); 1049 if (sb->s_frozen) { 1050 deactivate_locked_super(sb); 1051 return -EBUSY; 1052 } 1053 1054 if (sb->s_flags & MS_RDONLY) { 1055 sb->s_frozen = SB_FREEZE_TRANS; 1056 smp_wmb(); 1057 up_write(&sb->s_umount); 1058 return 0; 1059 } 1060 1061 sb->s_frozen = SB_FREEZE_WRITE; 1062 smp_wmb(); 1063 1064 sync_filesystem(sb); 1065 1066 sb->s_frozen = SB_FREEZE_TRANS; 1067 smp_wmb(); 1068 1069 sync_blockdev(sb->s_bdev); 1070 if (sb->s_op->freeze_fs) { 1071 ret = sb->s_op->freeze_fs(sb); 1072 if (ret) { 1073 printk(KERN_ERR 1074 "VFS:Filesystem freeze failed\n"); 1075 sb->s_frozen = SB_UNFROZEN; 1076 deactivate_locked_super(sb); 1077 return ret; 1078 } 1079 } 1080 up_write(&sb->s_umount); 1081 return 0; 1082 } 1083 EXPORT_SYMBOL(freeze_super); 1084 1085 /** 1086 * thaw_super -- unlock filesystem 1087 * @sb: the super to thaw 1088 * 1089 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1090 */ 1091 int thaw_super(struct super_block *sb) 1092 { 1093 int error; 1094 1095 down_write(&sb->s_umount); 1096 if (sb->s_frozen == SB_UNFROZEN) { 1097 up_write(&sb->s_umount); 1098 return -EINVAL; 1099 } 1100 1101 if (sb->s_flags & MS_RDONLY) 1102 goto out; 1103 1104 if (sb->s_op->unfreeze_fs) { 1105 error = sb->s_op->unfreeze_fs(sb); 1106 if (error) { 1107 printk(KERN_ERR 1108 "VFS:Filesystem thaw failed\n"); 1109 sb->s_frozen = SB_FREEZE_TRANS; 1110 up_write(&sb->s_umount); 1111 return error; 1112 } 1113 } 1114 1115 out: 1116 sb->s_frozen = SB_UNFROZEN; 1117 smp_wmb(); 1118 wake_up(&sb->s_wait_unfrozen); 1119 deactivate_locked_super(sb); 1120 1121 return 0; 1122 } 1123 EXPORT_SYMBOL(thaw_super); 1124 1125 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1126 { 1127 int err; 1128 const char *subtype = strchr(fstype, '.'); 1129 if (subtype) { 1130 subtype++; 1131 err = -EINVAL; 1132 if (!subtype[0]) 1133 goto err; 1134 } else 1135 subtype = ""; 1136 1137 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1138 err = -ENOMEM; 1139 if (!mnt->mnt_sb->s_subtype) 1140 goto err; 1141 return mnt; 1142 1143 err: 1144 mntput(mnt); 1145 return ERR_PTR(err); 1146 } 1147 1148 struct vfsmount * 1149 do_kern_mount(const char *fstype, int flags, const char *name, void *data) 1150 { 1151 struct file_system_type *type = get_fs_type(fstype); 1152 struct vfsmount *mnt; 1153 if (!type) 1154 return ERR_PTR(-ENODEV); 1155 mnt = vfs_kern_mount(type, flags, name, data); 1156 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 1157 !mnt->mnt_sb->s_subtype) 1158 mnt = fs_set_subtype(mnt, fstype); 1159 put_filesystem(type); 1160 return mnt; 1161 } 1162 EXPORT_SYMBOL_GPL(do_kern_mount); 1163 1164 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 1165 { 1166 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 1167 } 1168 1169 EXPORT_SYMBOL_GPL(kern_mount_data); 1170