xref: /linux/fs/super.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include "internal.h"
34 
35 
36 LIST_HEAD(super_blocks);
37 DEFINE_SPINLOCK(sb_lock);
38 
39 /**
40  *	alloc_super	-	create new superblock
41  *	@type:	filesystem type superblock should belong to
42  *
43  *	Allocates and initializes a new &struct super_block.  alloc_super()
44  *	returns a pointer new superblock or %NULL if allocation had failed.
45  */
46 static struct super_block *alloc_super(struct file_system_type *type)
47 {
48 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
49 	static const struct super_operations default_op;
50 
51 	if (s) {
52 		if (security_sb_alloc(s)) {
53 			kfree(s);
54 			s = NULL;
55 			goto out;
56 		}
57 #ifdef CONFIG_SMP
58 		s->s_files = alloc_percpu(struct list_head);
59 		if (!s->s_files) {
60 			security_sb_free(s);
61 			kfree(s);
62 			s = NULL;
63 			goto out;
64 		} else {
65 			int i;
66 
67 			for_each_possible_cpu(i)
68 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
69 		}
70 #else
71 		INIT_LIST_HEAD(&s->s_files);
72 #endif
73 		INIT_LIST_HEAD(&s->s_instances);
74 		INIT_HLIST_HEAD(&s->s_anon);
75 		INIT_LIST_HEAD(&s->s_inodes);
76 		INIT_LIST_HEAD(&s->s_dentry_lru);
77 		init_rwsem(&s->s_umount);
78 		mutex_init(&s->s_lock);
79 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
80 		/*
81 		 * The locking rules for s_lock are up to the
82 		 * filesystem. For example ext3fs has different
83 		 * lock ordering than usbfs:
84 		 */
85 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
86 		/*
87 		 * sget() can have s_umount recursion.
88 		 *
89 		 * When it cannot find a suitable sb, it allocates a new
90 		 * one (this one), and tries again to find a suitable old
91 		 * one.
92 		 *
93 		 * In case that succeeds, it will acquire the s_umount
94 		 * lock of the old one. Since these are clearly distrinct
95 		 * locks, and this object isn't exposed yet, there's no
96 		 * risk of deadlocks.
97 		 *
98 		 * Annotate this by putting this lock in a different
99 		 * subclass.
100 		 */
101 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
102 		s->s_count = 1;
103 		atomic_set(&s->s_active, 1);
104 		mutex_init(&s->s_vfs_rename_mutex);
105 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
106 		mutex_init(&s->s_dquot.dqio_mutex);
107 		mutex_init(&s->s_dquot.dqonoff_mutex);
108 		init_rwsem(&s->s_dquot.dqptr_sem);
109 		init_waitqueue_head(&s->s_wait_unfrozen);
110 		s->s_maxbytes = MAX_NON_LFS;
111 		s->s_op = &default_op;
112 		s->s_time_gran = 1000000000;
113 	}
114 out:
115 	return s;
116 }
117 
118 /**
119  *	destroy_super	-	frees a superblock
120  *	@s: superblock to free
121  *
122  *	Frees a superblock.
123  */
124 static inline void destroy_super(struct super_block *s)
125 {
126 #ifdef CONFIG_SMP
127 	free_percpu(s->s_files);
128 #endif
129 	security_sb_free(s);
130 	kfree(s->s_subtype);
131 	kfree(s->s_options);
132 	kfree(s);
133 }
134 
135 /* Superblock refcounting  */
136 
137 /*
138  * Drop a superblock's refcount.  The caller must hold sb_lock.
139  */
140 void __put_super(struct super_block *sb)
141 {
142 	if (!--sb->s_count) {
143 		list_del_init(&sb->s_list);
144 		destroy_super(sb);
145 	}
146 }
147 
148 /**
149  *	put_super	-	drop a temporary reference to superblock
150  *	@sb: superblock in question
151  *
152  *	Drops a temporary reference, frees superblock if there's no
153  *	references left.
154  */
155 void put_super(struct super_block *sb)
156 {
157 	spin_lock(&sb_lock);
158 	__put_super(sb);
159 	spin_unlock(&sb_lock);
160 }
161 
162 
163 /**
164  *	deactivate_locked_super	-	drop an active reference to superblock
165  *	@s: superblock to deactivate
166  *
167  *	Drops an active reference to superblock, converting it into a temprory
168  *	one if there is no other active references left.  In that case we
169  *	tell fs driver to shut it down and drop the temporary reference we
170  *	had just acquired.
171  *
172  *	Caller holds exclusive lock on superblock; that lock is released.
173  */
174 void deactivate_locked_super(struct super_block *s)
175 {
176 	struct file_system_type *fs = s->s_type;
177 	if (atomic_dec_and_test(&s->s_active)) {
178 		fs->kill_sb(s);
179 		put_filesystem(fs);
180 		put_super(s);
181 	} else {
182 		up_write(&s->s_umount);
183 	}
184 }
185 
186 EXPORT_SYMBOL(deactivate_locked_super);
187 
188 /**
189  *	deactivate_super	-	drop an active reference to superblock
190  *	@s: superblock to deactivate
191  *
192  *	Variant of deactivate_locked_super(), except that superblock is *not*
193  *	locked by caller.  If we are going to drop the final active reference,
194  *	lock will be acquired prior to that.
195  */
196 void deactivate_super(struct super_block *s)
197 {
198         if (!atomic_add_unless(&s->s_active, -1, 1)) {
199 		down_write(&s->s_umount);
200 		deactivate_locked_super(s);
201 	}
202 }
203 
204 EXPORT_SYMBOL(deactivate_super);
205 
206 /**
207  *	grab_super - acquire an active reference
208  *	@s: reference we are trying to make active
209  *
210  *	Tries to acquire an active reference.  grab_super() is used when we
211  * 	had just found a superblock in super_blocks or fs_type->fs_supers
212  *	and want to turn it into a full-blown active reference.  grab_super()
213  *	is called with sb_lock held and drops it.  Returns 1 in case of
214  *	success, 0 if we had failed (superblock contents was already dead or
215  *	dying when grab_super() had been called).
216  */
217 static int grab_super(struct super_block *s) __releases(sb_lock)
218 {
219 	if (atomic_inc_not_zero(&s->s_active)) {
220 		spin_unlock(&sb_lock);
221 		return 1;
222 	}
223 	/* it's going away */
224 	s->s_count++;
225 	spin_unlock(&sb_lock);
226 	/* wait for it to die */
227 	down_write(&s->s_umount);
228 	up_write(&s->s_umount);
229 	put_super(s);
230 	return 0;
231 }
232 
233 /*
234  * Superblock locking.  We really ought to get rid of these two.
235  */
236 void lock_super(struct super_block * sb)
237 {
238 	get_fs_excl();
239 	mutex_lock(&sb->s_lock);
240 }
241 
242 void unlock_super(struct super_block * sb)
243 {
244 	put_fs_excl();
245 	mutex_unlock(&sb->s_lock);
246 }
247 
248 EXPORT_SYMBOL(lock_super);
249 EXPORT_SYMBOL(unlock_super);
250 
251 /**
252  *	generic_shutdown_super	-	common helper for ->kill_sb()
253  *	@sb: superblock to kill
254  *
255  *	generic_shutdown_super() does all fs-independent work on superblock
256  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
257  *	that need destruction out of superblock, call generic_shutdown_super()
258  *	and release aforementioned objects.  Note: dentries and inodes _are_
259  *	taken care of and do not need specific handling.
260  *
261  *	Upon calling this function, the filesystem may no longer alter or
262  *	rearrange the set of dentries belonging to this super_block, nor may it
263  *	change the attachments of dentries to inodes.
264  */
265 void generic_shutdown_super(struct super_block *sb)
266 {
267 	const struct super_operations *sop = sb->s_op;
268 
269 
270 	if (sb->s_root) {
271 		shrink_dcache_for_umount(sb);
272 		sync_filesystem(sb);
273 		get_fs_excl();
274 		sb->s_flags &= ~MS_ACTIVE;
275 
276 		/* bad name - it should be evict_inodes() */
277 		invalidate_inodes(sb);
278 
279 		if (sop->put_super)
280 			sop->put_super(sb);
281 
282 		/* Forget any remaining inodes */
283 		if (invalidate_inodes(sb)) {
284 			printk("VFS: Busy inodes after unmount of %s. "
285 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
286 			   sb->s_id);
287 		}
288 		put_fs_excl();
289 	}
290 	spin_lock(&sb_lock);
291 	/* should be initialized for __put_super_and_need_restart() */
292 	list_del_init(&sb->s_instances);
293 	spin_unlock(&sb_lock);
294 	up_write(&sb->s_umount);
295 }
296 
297 EXPORT_SYMBOL(generic_shutdown_super);
298 
299 /**
300  *	sget	-	find or create a superblock
301  *	@type:	filesystem type superblock should belong to
302  *	@test:	comparison callback
303  *	@set:	setup callback
304  *	@data:	argument to each of them
305  */
306 struct super_block *sget(struct file_system_type *type,
307 			int (*test)(struct super_block *,void *),
308 			int (*set)(struct super_block *,void *),
309 			void *data)
310 {
311 	struct super_block *s = NULL;
312 	struct super_block *old;
313 	int err;
314 
315 retry:
316 	spin_lock(&sb_lock);
317 	if (test) {
318 		list_for_each_entry(old, &type->fs_supers, s_instances) {
319 			if (!test(old, data))
320 				continue;
321 			if (!grab_super(old))
322 				goto retry;
323 			if (s) {
324 				up_write(&s->s_umount);
325 				destroy_super(s);
326 				s = NULL;
327 			}
328 			down_write(&old->s_umount);
329 			if (unlikely(!(old->s_flags & MS_BORN))) {
330 				deactivate_locked_super(old);
331 				goto retry;
332 			}
333 			return old;
334 		}
335 	}
336 	if (!s) {
337 		spin_unlock(&sb_lock);
338 		s = alloc_super(type);
339 		if (!s)
340 			return ERR_PTR(-ENOMEM);
341 		goto retry;
342 	}
343 
344 	err = set(s, data);
345 	if (err) {
346 		spin_unlock(&sb_lock);
347 		up_write(&s->s_umount);
348 		destroy_super(s);
349 		return ERR_PTR(err);
350 	}
351 	s->s_type = type;
352 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
353 	list_add_tail(&s->s_list, &super_blocks);
354 	list_add(&s->s_instances, &type->fs_supers);
355 	spin_unlock(&sb_lock);
356 	get_filesystem(type);
357 	return s;
358 }
359 
360 EXPORT_SYMBOL(sget);
361 
362 void drop_super(struct super_block *sb)
363 {
364 	up_read(&sb->s_umount);
365 	put_super(sb);
366 }
367 
368 EXPORT_SYMBOL(drop_super);
369 
370 /**
371  * sync_supers - helper for periodic superblock writeback
372  *
373  * Call the write_super method if present on all dirty superblocks in
374  * the system.  This is for the periodic writeback used by most older
375  * filesystems.  For data integrity superblock writeback use
376  * sync_filesystems() instead.
377  *
378  * Note: check the dirty flag before waiting, so we don't
379  * hold up the sync while mounting a device. (The newly
380  * mounted device won't need syncing.)
381  */
382 void sync_supers(void)
383 {
384 	struct super_block *sb, *p = NULL;
385 
386 	spin_lock(&sb_lock);
387 	list_for_each_entry(sb, &super_blocks, s_list) {
388 		if (list_empty(&sb->s_instances))
389 			continue;
390 		if (sb->s_op->write_super && sb->s_dirt) {
391 			sb->s_count++;
392 			spin_unlock(&sb_lock);
393 
394 			down_read(&sb->s_umount);
395 			if (sb->s_root && sb->s_dirt)
396 				sb->s_op->write_super(sb);
397 			up_read(&sb->s_umount);
398 
399 			spin_lock(&sb_lock);
400 			if (p)
401 				__put_super(p);
402 			p = sb;
403 		}
404 	}
405 	if (p)
406 		__put_super(p);
407 	spin_unlock(&sb_lock);
408 }
409 
410 /**
411  *	iterate_supers - call function for all active superblocks
412  *	@f: function to call
413  *	@arg: argument to pass to it
414  *
415  *	Scans the superblock list and calls given function, passing it
416  *	locked superblock and given argument.
417  */
418 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
419 {
420 	struct super_block *sb, *p = NULL;
421 
422 	spin_lock(&sb_lock);
423 	list_for_each_entry(sb, &super_blocks, s_list) {
424 		if (list_empty(&sb->s_instances))
425 			continue;
426 		sb->s_count++;
427 		spin_unlock(&sb_lock);
428 
429 		down_read(&sb->s_umount);
430 		if (sb->s_root)
431 			f(sb, arg);
432 		up_read(&sb->s_umount);
433 
434 		spin_lock(&sb_lock);
435 		if (p)
436 			__put_super(p);
437 		p = sb;
438 	}
439 	if (p)
440 		__put_super(p);
441 	spin_unlock(&sb_lock);
442 }
443 
444 /**
445  *	get_super - get the superblock of a device
446  *	@bdev: device to get the superblock for
447  *
448  *	Scans the superblock list and finds the superblock of the file system
449  *	mounted on the device given. %NULL is returned if no match is found.
450  */
451 
452 struct super_block *get_super(struct block_device *bdev)
453 {
454 	struct super_block *sb;
455 
456 	if (!bdev)
457 		return NULL;
458 
459 	spin_lock(&sb_lock);
460 rescan:
461 	list_for_each_entry(sb, &super_blocks, s_list) {
462 		if (list_empty(&sb->s_instances))
463 			continue;
464 		if (sb->s_bdev == bdev) {
465 			sb->s_count++;
466 			spin_unlock(&sb_lock);
467 			down_read(&sb->s_umount);
468 			/* still alive? */
469 			if (sb->s_root)
470 				return sb;
471 			up_read(&sb->s_umount);
472 			/* nope, got unmounted */
473 			spin_lock(&sb_lock);
474 			__put_super(sb);
475 			goto rescan;
476 		}
477 	}
478 	spin_unlock(&sb_lock);
479 	return NULL;
480 }
481 
482 EXPORT_SYMBOL(get_super);
483 
484 /**
485  * get_active_super - get an active reference to the superblock of a device
486  * @bdev: device to get the superblock for
487  *
488  * Scans the superblock list and finds the superblock of the file system
489  * mounted on the device given.  Returns the superblock with an active
490  * reference or %NULL if none was found.
491  */
492 struct super_block *get_active_super(struct block_device *bdev)
493 {
494 	struct super_block *sb;
495 
496 	if (!bdev)
497 		return NULL;
498 
499 restart:
500 	spin_lock(&sb_lock);
501 	list_for_each_entry(sb, &super_blocks, s_list) {
502 		if (list_empty(&sb->s_instances))
503 			continue;
504 		if (sb->s_bdev == bdev) {
505 			if (grab_super(sb)) /* drops sb_lock */
506 				return sb;
507 			else
508 				goto restart;
509 		}
510 	}
511 	spin_unlock(&sb_lock);
512 	return NULL;
513 }
514 
515 struct super_block *user_get_super(dev_t dev)
516 {
517 	struct super_block *sb;
518 
519 	spin_lock(&sb_lock);
520 rescan:
521 	list_for_each_entry(sb, &super_blocks, s_list) {
522 		if (list_empty(&sb->s_instances))
523 			continue;
524 		if (sb->s_dev ==  dev) {
525 			sb->s_count++;
526 			spin_unlock(&sb_lock);
527 			down_read(&sb->s_umount);
528 			/* still alive? */
529 			if (sb->s_root)
530 				return sb;
531 			up_read(&sb->s_umount);
532 			/* nope, got unmounted */
533 			spin_lock(&sb_lock);
534 			__put_super(sb);
535 			goto rescan;
536 		}
537 	}
538 	spin_unlock(&sb_lock);
539 	return NULL;
540 }
541 
542 /**
543  *	do_remount_sb - asks filesystem to change mount options.
544  *	@sb:	superblock in question
545  *	@flags:	numeric part of options
546  *	@data:	the rest of options
547  *      @force: whether or not to force the change
548  *
549  *	Alters the mount options of a mounted file system.
550  */
551 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
552 {
553 	int retval;
554 	int remount_ro;
555 
556 	if (sb->s_frozen != SB_UNFROZEN)
557 		return -EBUSY;
558 
559 #ifdef CONFIG_BLOCK
560 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
561 		return -EACCES;
562 #endif
563 
564 	if (flags & MS_RDONLY)
565 		acct_auto_close(sb);
566 	shrink_dcache_sb(sb);
567 	sync_filesystem(sb);
568 
569 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
570 
571 	/* If we are remounting RDONLY and current sb is read/write,
572 	   make sure there are no rw files opened */
573 	if (remount_ro) {
574 		if (force)
575 			mark_files_ro(sb);
576 		else if (!fs_may_remount_ro(sb))
577 			return -EBUSY;
578 	}
579 
580 	if (sb->s_op->remount_fs) {
581 		retval = sb->s_op->remount_fs(sb, &flags, data);
582 		if (retval)
583 			return retval;
584 	}
585 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
586 
587 	/*
588 	 * Some filesystems modify their metadata via some other path than the
589 	 * bdev buffer cache (eg. use a private mapping, or directories in
590 	 * pagecache, etc). Also file data modifications go via their own
591 	 * mappings. So If we try to mount readonly then copy the filesystem
592 	 * from bdev, we could get stale data, so invalidate it to give a best
593 	 * effort at coherency.
594 	 */
595 	if (remount_ro && sb->s_bdev)
596 		invalidate_bdev(sb->s_bdev);
597 	return 0;
598 }
599 
600 static void do_emergency_remount(struct work_struct *work)
601 {
602 	struct super_block *sb, *p = NULL;
603 
604 	spin_lock(&sb_lock);
605 	list_for_each_entry(sb, &super_blocks, s_list) {
606 		if (list_empty(&sb->s_instances))
607 			continue;
608 		sb->s_count++;
609 		spin_unlock(&sb_lock);
610 		down_write(&sb->s_umount);
611 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
612 			/*
613 			 * What lock protects sb->s_flags??
614 			 */
615 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
616 		}
617 		up_write(&sb->s_umount);
618 		spin_lock(&sb_lock);
619 		if (p)
620 			__put_super(p);
621 		p = sb;
622 	}
623 	if (p)
624 		__put_super(p);
625 	spin_unlock(&sb_lock);
626 	kfree(work);
627 	printk("Emergency Remount complete\n");
628 }
629 
630 void emergency_remount(void)
631 {
632 	struct work_struct *work;
633 
634 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
635 	if (work) {
636 		INIT_WORK(work, do_emergency_remount);
637 		schedule_work(work);
638 	}
639 }
640 
641 /*
642  * Unnamed block devices are dummy devices used by virtual
643  * filesystems which don't use real block-devices.  -- jrs
644  */
645 
646 static DEFINE_IDA(unnamed_dev_ida);
647 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
648 static int unnamed_dev_start = 0; /* don't bother trying below it */
649 
650 int set_anon_super(struct super_block *s, void *data)
651 {
652 	int dev;
653 	int error;
654 
655  retry:
656 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
657 		return -ENOMEM;
658 	spin_lock(&unnamed_dev_lock);
659 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
660 	if (!error)
661 		unnamed_dev_start = dev + 1;
662 	spin_unlock(&unnamed_dev_lock);
663 	if (error == -EAGAIN)
664 		/* We raced and lost with another CPU. */
665 		goto retry;
666 	else if (error)
667 		return -EAGAIN;
668 
669 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
670 		spin_lock(&unnamed_dev_lock);
671 		ida_remove(&unnamed_dev_ida, dev);
672 		if (unnamed_dev_start > dev)
673 			unnamed_dev_start = dev;
674 		spin_unlock(&unnamed_dev_lock);
675 		return -EMFILE;
676 	}
677 	s->s_dev = MKDEV(0, dev & MINORMASK);
678 	s->s_bdi = &noop_backing_dev_info;
679 	return 0;
680 }
681 
682 EXPORT_SYMBOL(set_anon_super);
683 
684 void kill_anon_super(struct super_block *sb)
685 {
686 	int slot = MINOR(sb->s_dev);
687 
688 	generic_shutdown_super(sb);
689 	spin_lock(&unnamed_dev_lock);
690 	ida_remove(&unnamed_dev_ida, slot);
691 	if (slot < unnamed_dev_start)
692 		unnamed_dev_start = slot;
693 	spin_unlock(&unnamed_dev_lock);
694 }
695 
696 EXPORT_SYMBOL(kill_anon_super);
697 
698 void kill_litter_super(struct super_block *sb)
699 {
700 	if (sb->s_root)
701 		d_genocide(sb->s_root);
702 	kill_anon_super(sb);
703 }
704 
705 EXPORT_SYMBOL(kill_litter_super);
706 
707 static int ns_test_super(struct super_block *sb, void *data)
708 {
709 	return sb->s_fs_info == data;
710 }
711 
712 static int ns_set_super(struct super_block *sb, void *data)
713 {
714 	sb->s_fs_info = data;
715 	return set_anon_super(sb, NULL);
716 }
717 
718 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
719 	int (*fill_super)(struct super_block *, void *, int),
720 	struct vfsmount *mnt)
721 {
722 	struct super_block *sb;
723 
724 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
725 	if (IS_ERR(sb))
726 		return PTR_ERR(sb);
727 
728 	if (!sb->s_root) {
729 		int err;
730 		sb->s_flags = flags;
731 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
732 		if (err) {
733 			deactivate_locked_super(sb);
734 			return err;
735 		}
736 
737 		sb->s_flags |= MS_ACTIVE;
738 	}
739 
740 	simple_set_mnt(mnt, sb);
741 	return 0;
742 }
743 
744 EXPORT_SYMBOL(get_sb_ns);
745 
746 #ifdef CONFIG_BLOCK
747 static int set_bdev_super(struct super_block *s, void *data)
748 {
749 	s->s_bdev = data;
750 	s->s_dev = s->s_bdev->bd_dev;
751 
752 	/*
753 	 * We set the bdi here to the queue backing, file systems can
754 	 * overwrite this in ->fill_super()
755 	 */
756 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
757 	return 0;
758 }
759 
760 static int test_bdev_super(struct super_block *s, void *data)
761 {
762 	return (void *)s->s_bdev == data;
763 }
764 
765 int get_sb_bdev(struct file_system_type *fs_type,
766 	int flags, const char *dev_name, void *data,
767 	int (*fill_super)(struct super_block *, void *, int),
768 	struct vfsmount *mnt)
769 {
770 	struct block_device *bdev;
771 	struct super_block *s;
772 	fmode_t mode = FMODE_READ;
773 	int error = 0;
774 
775 	if (!(flags & MS_RDONLY))
776 		mode |= FMODE_WRITE;
777 
778 	bdev = open_bdev_exclusive(dev_name, mode, fs_type);
779 	if (IS_ERR(bdev))
780 		return PTR_ERR(bdev);
781 
782 	/*
783 	 * once the super is inserted into the list by sget, s_umount
784 	 * will protect the lockfs code from trying to start a snapshot
785 	 * while we are mounting
786 	 */
787 	mutex_lock(&bdev->bd_fsfreeze_mutex);
788 	if (bdev->bd_fsfreeze_count > 0) {
789 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
790 		error = -EBUSY;
791 		goto error_bdev;
792 	}
793 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
794 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
795 	if (IS_ERR(s))
796 		goto error_s;
797 
798 	if (s->s_root) {
799 		if ((flags ^ s->s_flags) & MS_RDONLY) {
800 			deactivate_locked_super(s);
801 			error = -EBUSY;
802 			goto error_bdev;
803 		}
804 
805 		/*
806 		 * s_umount nests inside bd_mutex during
807 		 * __invalidate_device().  close_bdev_exclusive()
808 		 * acquires bd_mutex and can't be called under
809 		 * s_umount.  Drop s_umount temporarily.  This is safe
810 		 * as we're holding an active reference.
811 		 */
812 		up_write(&s->s_umount);
813 		close_bdev_exclusive(bdev, mode);
814 		down_write(&s->s_umount);
815 	} else {
816 		char b[BDEVNAME_SIZE];
817 
818 		s->s_flags = flags;
819 		s->s_mode = mode;
820 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
821 		sb_set_blocksize(s, block_size(bdev));
822 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
823 		if (error) {
824 			deactivate_locked_super(s);
825 			goto error;
826 		}
827 
828 		s->s_flags |= MS_ACTIVE;
829 		bdev->bd_super = s;
830 	}
831 
832 	simple_set_mnt(mnt, s);
833 	return 0;
834 
835 error_s:
836 	error = PTR_ERR(s);
837 error_bdev:
838 	close_bdev_exclusive(bdev, mode);
839 error:
840 	return error;
841 }
842 
843 EXPORT_SYMBOL(get_sb_bdev);
844 
845 void kill_block_super(struct super_block *sb)
846 {
847 	struct block_device *bdev = sb->s_bdev;
848 	fmode_t mode = sb->s_mode;
849 
850 	bdev->bd_super = NULL;
851 	generic_shutdown_super(sb);
852 	sync_blockdev(bdev);
853 	close_bdev_exclusive(bdev, mode);
854 }
855 
856 EXPORT_SYMBOL(kill_block_super);
857 #endif
858 
859 int get_sb_nodev(struct file_system_type *fs_type,
860 	int flags, void *data,
861 	int (*fill_super)(struct super_block *, void *, int),
862 	struct vfsmount *mnt)
863 {
864 	int error;
865 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
866 
867 	if (IS_ERR(s))
868 		return PTR_ERR(s);
869 
870 	s->s_flags = flags;
871 
872 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
873 	if (error) {
874 		deactivate_locked_super(s);
875 		return error;
876 	}
877 	s->s_flags |= MS_ACTIVE;
878 	simple_set_mnt(mnt, s);
879 	return 0;
880 }
881 
882 EXPORT_SYMBOL(get_sb_nodev);
883 
884 static int compare_single(struct super_block *s, void *p)
885 {
886 	return 1;
887 }
888 
889 int get_sb_single(struct file_system_type *fs_type,
890 	int flags, void *data,
891 	int (*fill_super)(struct super_block *, void *, int),
892 	struct vfsmount *mnt)
893 {
894 	struct super_block *s;
895 	int error;
896 
897 	s = sget(fs_type, compare_single, set_anon_super, NULL);
898 	if (IS_ERR(s))
899 		return PTR_ERR(s);
900 	if (!s->s_root) {
901 		s->s_flags = flags;
902 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
903 		if (error) {
904 			deactivate_locked_super(s);
905 			return error;
906 		}
907 		s->s_flags |= MS_ACTIVE;
908 	} else {
909 		do_remount_sb(s, flags, data, 0);
910 	}
911 	simple_set_mnt(mnt, s);
912 	return 0;
913 }
914 
915 EXPORT_SYMBOL(get_sb_single);
916 
917 struct vfsmount *
918 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
919 {
920 	struct vfsmount *mnt;
921 	char *secdata = NULL;
922 	int error;
923 
924 	if (!type)
925 		return ERR_PTR(-ENODEV);
926 
927 	error = -ENOMEM;
928 	mnt = alloc_vfsmnt(name);
929 	if (!mnt)
930 		goto out;
931 
932 	if (flags & MS_KERNMOUNT)
933 		mnt->mnt_flags = MNT_INTERNAL;
934 
935 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
936 		secdata = alloc_secdata();
937 		if (!secdata)
938 			goto out_mnt;
939 
940 		error = security_sb_copy_data(data, secdata);
941 		if (error)
942 			goto out_free_secdata;
943 	}
944 
945 	error = type->get_sb(type, flags, name, data, mnt);
946 	if (error < 0)
947 		goto out_free_secdata;
948 	BUG_ON(!mnt->mnt_sb);
949 	WARN_ON(!mnt->mnt_sb->s_bdi);
950 	mnt->mnt_sb->s_flags |= MS_BORN;
951 
952 	error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
953 	if (error)
954 		goto out_sb;
955 
956 	/*
957 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
958 	 * but s_maxbytes was an unsigned long long for many releases. Throw
959 	 * this warning for a little while to try and catch filesystems that
960 	 * violate this rule. This warning should be either removed or
961 	 * converted to a BUG() in 2.6.34.
962 	 */
963 	WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
964 		"negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes);
965 
966 	mnt->mnt_mountpoint = mnt->mnt_root;
967 	mnt->mnt_parent = mnt;
968 	up_write(&mnt->mnt_sb->s_umount);
969 	free_secdata(secdata);
970 	return mnt;
971 out_sb:
972 	dput(mnt->mnt_root);
973 	deactivate_locked_super(mnt->mnt_sb);
974 out_free_secdata:
975 	free_secdata(secdata);
976 out_mnt:
977 	free_vfsmnt(mnt);
978 out:
979 	return ERR_PTR(error);
980 }
981 
982 EXPORT_SYMBOL_GPL(vfs_kern_mount);
983 
984 /**
985  * freeze_super - lock the filesystem and force it into a consistent state
986  * @sb: the super to lock
987  *
988  * Syncs the super to make sure the filesystem is consistent and calls the fs's
989  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
990  * -EBUSY.
991  */
992 int freeze_super(struct super_block *sb)
993 {
994 	int ret;
995 
996 	atomic_inc(&sb->s_active);
997 	down_write(&sb->s_umount);
998 	if (sb->s_frozen) {
999 		deactivate_locked_super(sb);
1000 		return -EBUSY;
1001 	}
1002 
1003 	if (sb->s_flags & MS_RDONLY) {
1004 		sb->s_frozen = SB_FREEZE_TRANS;
1005 		smp_wmb();
1006 		up_write(&sb->s_umount);
1007 		return 0;
1008 	}
1009 
1010 	sb->s_frozen = SB_FREEZE_WRITE;
1011 	smp_wmb();
1012 
1013 	sync_filesystem(sb);
1014 
1015 	sb->s_frozen = SB_FREEZE_TRANS;
1016 	smp_wmb();
1017 
1018 	sync_blockdev(sb->s_bdev);
1019 	if (sb->s_op->freeze_fs) {
1020 		ret = sb->s_op->freeze_fs(sb);
1021 		if (ret) {
1022 			printk(KERN_ERR
1023 				"VFS:Filesystem freeze failed\n");
1024 			sb->s_frozen = SB_UNFROZEN;
1025 			deactivate_locked_super(sb);
1026 			return ret;
1027 		}
1028 	}
1029 	up_write(&sb->s_umount);
1030 	return 0;
1031 }
1032 EXPORT_SYMBOL(freeze_super);
1033 
1034 /**
1035  * thaw_super -- unlock filesystem
1036  * @sb: the super to thaw
1037  *
1038  * Unlocks the filesystem and marks it writeable again after freeze_super().
1039  */
1040 int thaw_super(struct super_block *sb)
1041 {
1042 	int error;
1043 
1044 	down_write(&sb->s_umount);
1045 	if (sb->s_frozen == SB_UNFROZEN) {
1046 		up_write(&sb->s_umount);
1047 		return -EINVAL;
1048 	}
1049 
1050 	if (sb->s_flags & MS_RDONLY)
1051 		goto out;
1052 
1053 	if (sb->s_op->unfreeze_fs) {
1054 		error = sb->s_op->unfreeze_fs(sb);
1055 		if (error) {
1056 			printk(KERN_ERR
1057 				"VFS:Filesystem thaw failed\n");
1058 			sb->s_frozen = SB_FREEZE_TRANS;
1059 			up_write(&sb->s_umount);
1060 			return error;
1061 		}
1062 	}
1063 
1064 out:
1065 	sb->s_frozen = SB_UNFROZEN;
1066 	smp_wmb();
1067 	wake_up(&sb->s_wait_unfrozen);
1068 	deactivate_locked_super(sb);
1069 
1070 	return 0;
1071 }
1072 EXPORT_SYMBOL(thaw_super);
1073 
1074 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1075 {
1076 	int err;
1077 	const char *subtype = strchr(fstype, '.');
1078 	if (subtype) {
1079 		subtype++;
1080 		err = -EINVAL;
1081 		if (!subtype[0])
1082 			goto err;
1083 	} else
1084 		subtype = "";
1085 
1086 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1087 	err = -ENOMEM;
1088 	if (!mnt->mnt_sb->s_subtype)
1089 		goto err;
1090 	return mnt;
1091 
1092  err:
1093 	mntput(mnt);
1094 	return ERR_PTR(err);
1095 }
1096 
1097 struct vfsmount *
1098 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1099 {
1100 	struct file_system_type *type = get_fs_type(fstype);
1101 	struct vfsmount *mnt;
1102 	if (!type)
1103 		return ERR_PTR(-ENODEV);
1104 	mnt = vfs_kern_mount(type, flags, name, data);
1105 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1106 	    !mnt->mnt_sb->s_subtype)
1107 		mnt = fs_set_subtype(mnt, fstype);
1108 	put_filesystem(type);
1109 	return mnt;
1110 }
1111 EXPORT_SYMBOL_GPL(do_kern_mount);
1112 
1113 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1114 {
1115 	return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1116 }
1117 
1118 EXPORT_SYMBOL_GPL(kern_mount_data);
1119