xref: /linux/fs/super.c (revision cfbf1eecd70db9a7a49c42a0613c00f7a2a86dfb)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h>		/* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h>		/* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <linux/file.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43 #include "internal.h"
44 
45 
46 LIST_HEAD(super_blocks);
47 DEFINE_SPINLOCK(sb_lock);
48 
49 /**
50  *	alloc_super	-	create new superblock
51  *	@type:	filesystem type superblock should belong to
52  *
53  *	Allocates and initializes a new &struct super_block.  alloc_super()
54  *	returns a pointer new superblock or %NULL if allocation had failed.
55  */
56 static struct super_block *alloc_super(struct file_system_type *type)
57 {
58 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
59 	static struct super_operations default_op;
60 
61 	if (s) {
62 		if (security_sb_alloc(s)) {
63 			kfree(s);
64 			s = NULL;
65 			goto out;
66 		}
67 		INIT_LIST_HEAD(&s->s_dirty);
68 		INIT_LIST_HEAD(&s->s_io);
69 		INIT_LIST_HEAD(&s->s_more_io);
70 		INIT_LIST_HEAD(&s->s_files);
71 		INIT_LIST_HEAD(&s->s_instances);
72 		INIT_HLIST_HEAD(&s->s_anon);
73 		INIT_LIST_HEAD(&s->s_inodes);
74 		INIT_LIST_HEAD(&s->s_dentry_lru);
75 		INIT_LIST_HEAD(&s->s_async_list);
76 		init_rwsem(&s->s_umount);
77 		mutex_init(&s->s_lock);
78 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
79 		/*
80 		 * The locking rules for s_lock are up to the
81 		 * filesystem. For example ext3fs has different
82 		 * lock ordering than usbfs:
83 		 */
84 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
85 		/*
86 		 * sget() can have s_umount recursion.
87 		 *
88 		 * When it cannot find a suitable sb, it allocates a new
89 		 * one (this one), and tries again to find a suitable old
90 		 * one.
91 		 *
92 		 * In case that succeeds, it will acquire the s_umount
93 		 * lock of the old one. Since these are clearly distrinct
94 		 * locks, and this object isn't exposed yet, there's no
95 		 * risk of deadlocks.
96 		 *
97 		 * Annotate this by putting this lock in a different
98 		 * subclass.
99 		 */
100 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
101 		s->s_count = S_BIAS;
102 		atomic_set(&s->s_active, 1);
103 		mutex_init(&s->s_vfs_rename_mutex);
104 		mutex_init(&s->s_dquot.dqio_mutex);
105 		mutex_init(&s->s_dquot.dqonoff_mutex);
106 		init_rwsem(&s->s_dquot.dqptr_sem);
107 		init_waitqueue_head(&s->s_wait_unfrozen);
108 		s->s_maxbytes = MAX_NON_LFS;
109 		s->dq_op = sb_dquot_ops;
110 		s->s_qcop = sb_quotactl_ops;
111 		s->s_op = &default_op;
112 		s->s_time_gran = 1000000000;
113 	}
114 out:
115 	return s;
116 }
117 
118 /**
119  *	destroy_super	-	frees a superblock
120  *	@s: superblock to free
121  *
122  *	Frees a superblock.
123  */
124 static inline void destroy_super(struct super_block *s)
125 {
126 	security_sb_free(s);
127 	kfree(s->s_subtype);
128 	kfree(s->s_options);
129 	kfree(s);
130 }
131 
132 /* Superblock refcounting  */
133 
134 /*
135  * Drop a superblock's refcount.  Returns non-zero if the superblock was
136  * destroyed.  The caller must hold sb_lock.
137  */
138 static int __put_super(struct super_block *sb)
139 {
140 	int ret = 0;
141 
142 	if (!--sb->s_count) {
143 		destroy_super(sb);
144 		ret = 1;
145 	}
146 	return ret;
147 }
148 
149 /*
150  * Drop a superblock's refcount.
151  * Returns non-zero if the superblock is about to be destroyed and
152  * at least is already removed from super_blocks list, so if we are
153  * making a loop through super blocks then we need to restart.
154  * The caller must hold sb_lock.
155  */
156 int __put_super_and_need_restart(struct super_block *sb)
157 {
158 	/* check for race with generic_shutdown_super() */
159 	if (list_empty(&sb->s_list)) {
160 		/* super block is removed, need to restart... */
161 		__put_super(sb);
162 		return 1;
163 	}
164 	/* can't be the last, since s_list is still in use */
165 	sb->s_count--;
166 	BUG_ON(sb->s_count == 0);
167 	return 0;
168 }
169 
170 /**
171  *	put_super	-	drop a temporary reference to superblock
172  *	@sb: superblock in question
173  *
174  *	Drops a temporary reference, frees superblock if there's no
175  *	references left.
176  */
177 static void put_super(struct super_block *sb)
178 {
179 	spin_lock(&sb_lock);
180 	__put_super(sb);
181 	spin_unlock(&sb_lock);
182 }
183 
184 
185 /**
186  *	deactivate_super	-	drop an active reference to superblock
187  *	@s: superblock to deactivate
188  *
189  *	Drops an active reference to superblock, acquiring a temprory one if
190  *	there is no active references left.  In that case we lock superblock,
191  *	tell fs driver to shut it down and drop the temporary reference we
192  *	had just acquired.
193  */
194 void deactivate_super(struct super_block *s)
195 {
196 	struct file_system_type *fs = s->s_type;
197 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
198 		s->s_count -= S_BIAS-1;
199 		spin_unlock(&sb_lock);
200 		vfs_dq_off(s, 0);
201 		down_write(&s->s_umount);
202 		fs->kill_sb(s);
203 		put_filesystem(fs);
204 		put_super(s);
205 	}
206 }
207 
208 EXPORT_SYMBOL(deactivate_super);
209 
210 /**
211  *	grab_super - acquire an active reference
212  *	@s: reference we are trying to make active
213  *
214  *	Tries to acquire an active reference.  grab_super() is used when we
215  * 	had just found a superblock in super_blocks or fs_type->fs_supers
216  *	and want to turn it into a full-blown active reference.  grab_super()
217  *	is called with sb_lock held and drops it.  Returns 1 in case of
218  *	success, 0 if we had failed (superblock contents was already dead or
219  *	dying when grab_super() had been called).
220  */
221 static int grab_super(struct super_block *s) __releases(sb_lock)
222 {
223 	s->s_count++;
224 	spin_unlock(&sb_lock);
225 	down_write(&s->s_umount);
226 	if (s->s_root) {
227 		spin_lock(&sb_lock);
228 		if (s->s_count > S_BIAS) {
229 			atomic_inc(&s->s_active);
230 			s->s_count--;
231 			spin_unlock(&sb_lock);
232 			return 1;
233 		}
234 		spin_unlock(&sb_lock);
235 	}
236 	up_write(&s->s_umount);
237 	put_super(s);
238 	yield();
239 	return 0;
240 }
241 
242 /*
243  * Superblock locking.  We really ought to get rid of these two.
244  */
245 void lock_super(struct super_block * sb)
246 {
247 	get_fs_excl();
248 	mutex_lock(&sb->s_lock);
249 }
250 
251 void unlock_super(struct super_block * sb)
252 {
253 	put_fs_excl();
254 	mutex_unlock(&sb->s_lock);
255 }
256 
257 EXPORT_SYMBOL(lock_super);
258 EXPORT_SYMBOL(unlock_super);
259 
260 /*
261  * Write out and wait upon all dirty data associated with this
262  * superblock.  Filesystem data as well as the underlying block
263  * device.  Takes the superblock lock.  Requires a second blkdev
264  * flush by the caller to complete the operation.
265  */
266 void __fsync_super(struct super_block *sb)
267 {
268 	sync_inodes_sb(sb, 0);
269 	vfs_dq_sync(sb);
270 	lock_super(sb);
271 	if (sb->s_dirt && sb->s_op->write_super)
272 		sb->s_op->write_super(sb);
273 	unlock_super(sb);
274 	if (sb->s_op->sync_fs)
275 		sb->s_op->sync_fs(sb, 1);
276 	sync_blockdev(sb->s_bdev);
277 	sync_inodes_sb(sb, 1);
278 }
279 
280 /*
281  * Write out and wait upon all dirty data associated with this
282  * superblock.  Filesystem data as well as the underlying block
283  * device.  Takes the superblock lock.
284  */
285 int fsync_super(struct super_block *sb)
286 {
287 	__fsync_super(sb);
288 	return sync_blockdev(sb->s_bdev);
289 }
290 EXPORT_SYMBOL_GPL(fsync_super);
291 
292 /**
293  *	generic_shutdown_super	-	common helper for ->kill_sb()
294  *	@sb: superblock to kill
295  *
296  *	generic_shutdown_super() does all fs-independent work on superblock
297  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
298  *	that need destruction out of superblock, call generic_shutdown_super()
299  *	and release aforementioned objects.  Note: dentries and inodes _are_
300  *	taken care of and do not need specific handling.
301  *
302  *	Upon calling this function, the filesystem may no longer alter or
303  *	rearrange the set of dentries belonging to this super_block, nor may it
304  *	change the attachments of dentries to inodes.
305  */
306 void generic_shutdown_super(struct super_block *sb)
307 {
308 	const struct super_operations *sop = sb->s_op;
309 
310 
311 	if (sb->s_root) {
312 		shrink_dcache_for_umount(sb);
313 		fsync_super(sb);
314 		lock_super(sb);
315 		sb->s_flags &= ~MS_ACTIVE;
316 
317 		/*
318 		 * wait for asynchronous fs operations to finish before going further
319 		 */
320 		async_synchronize_full_domain(&sb->s_async_list);
321 
322 		/* bad name - it should be evict_inodes() */
323 		invalidate_inodes(sb);
324 		lock_kernel();
325 
326 		if (sop->write_super && sb->s_dirt)
327 			sop->write_super(sb);
328 		if (sop->put_super)
329 			sop->put_super(sb);
330 
331 		/* Forget any remaining inodes */
332 		if (invalidate_inodes(sb)) {
333 			printk("VFS: Busy inodes after unmount of %s. "
334 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
335 			   sb->s_id);
336 		}
337 
338 		unlock_kernel();
339 		unlock_super(sb);
340 	}
341 	spin_lock(&sb_lock);
342 	/* should be initialized for __put_super_and_need_restart() */
343 	list_del_init(&sb->s_list);
344 	list_del(&sb->s_instances);
345 	spin_unlock(&sb_lock);
346 	up_write(&sb->s_umount);
347 }
348 
349 EXPORT_SYMBOL(generic_shutdown_super);
350 
351 /**
352  *	sget	-	find or create a superblock
353  *	@type:	filesystem type superblock should belong to
354  *	@test:	comparison callback
355  *	@set:	setup callback
356  *	@data:	argument to each of them
357  */
358 struct super_block *sget(struct file_system_type *type,
359 			int (*test)(struct super_block *,void *),
360 			int (*set)(struct super_block *,void *),
361 			void *data)
362 {
363 	struct super_block *s = NULL;
364 	struct super_block *old;
365 	int err;
366 
367 retry:
368 	spin_lock(&sb_lock);
369 	if (test) {
370 		list_for_each_entry(old, &type->fs_supers, s_instances) {
371 			if (!test(old, data))
372 				continue;
373 			if (!grab_super(old))
374 				goto retry;
375 			if (s) {
376 				up_write(&s->s_umount);
377 				destroy_super(s);
378 			}
379 			return old;
380 		}
381 	}
382 	if (!s) {
383 		spin_unlock(&sb_lock);
384 		s = alloc_super(type);
385 		if (!s)
386 			return ERR_PTR(-ENOMEM);
387 		goto retry;
388 	}
389 
390 	err = set(s, data);
391 	if (err) {
392 		spin_unlock(&sb_lock);
393 		up_write(&s->s_umount);
394 		destroy_super(s);
395 		return ERR_PTR(err);
396 	}
397 	s->s_type = type;
398 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
399 	list_add_tail(&s->s_list, &super_blocks);
400 	list_add(&s->s_instances, &type->fs_supers);
401 	spin_unlock(&sb_lock);
402 	get_filesystem(type);
403 	return s;
404 }
405 
406 EXPORT_SYMBOL(sget);
407 
408 void drop_super(struct super_block *sb)
409 {
410 	up_read(&sb->s_umount);
411 	put_super(sb);
412 }
413 
414 EXPORT_SYMBOL(drop_super);
415 
416 static inline void write_super(struct super_block *sb)
417 {
418 	lock_super(sb);
419 	if (sb->s_root && sb->s_dirt)
420 		if (sb->s_op->write_super)
421 			sb->s_op->write_super(sb);
422 	unlock_super(sb);
423 }
424 
425 /*
426  * Note: check the dirty flag before waiting, so we don't
427  * hold up the sync while mounting a device. (The newly
428  * mounted device won't need syncing.)
429  */
430 void sync_supers(void)
431 {
432 	struct super_block *sb;
433 
434 	spin_lock(&sb_lock);
435 restart:
436 	list_for_each_entry(sb, &super_blocks, s_list) {
437 		if (sb->s_dirt) {
438 			sb->s_count++;
439 			spin_unlock(&sb_lock);
440 			down_read(&sb->s_umount);
441 			write_super(sb);
442 			up_read(&sb->s_umount);
443 			spin_lock(&sb_lock);
444 			if (__put_super_and_need_restart(sb))
445 				goto restart;
446 		}
447 	}
448 	spin_unlock(&sb_lock);
449 }
450 
451 /*
452  * Call the ->sync_fs super_op against all filesystems which are r/w and
453  * which implement it.
454  *
455  * This operation is careful to avoid the livelock which could easily happen
456  * if two or more filesystems are being continuously dirtied.  s_need_sync_fs
457  * is used only here.  We set it against all filesystems and then clear it as
458  * we sync them.  So redirtied filesystems are skipped.
459  *
460  * But if process A is currently running sync_filesystems and then process B
461  * calls sync_filesystems as well, process B will set all the s_need_sync_fs
462  * flags again, which will cause process A to resync everything.  Fix that with
463  * a local mutex.
464  *
465  * (Fabian) Avoid sync_fs with clean fs & wait mode 0
466  */
467 void sync_filesystems(int wait)
468 {
469 	struct super_block *sb;
470 	static DEFINE_MUTEX(mutex);
471 
472 	mutex_lock(&mutex);		/* Could be down_interruptible */
473 	spin_lock(&sb_lock);
474 	list_for_each_entry(sb, &super_blocks, s_list) {
475 		if (!sb->s_op->sync_fs)
476 			continue;
477 		if (sb->s_flags & MS_RDONLY)
478 			continue;
479 		sb->s_need_sync_fs = 1;
480 	}
481 
482 restart:
483 	list_for_each_entry(sb, &super_blocks, s_list) {
484 		if (!sb->s_need_sync_fs)
485 			continue;
486 		sb->s_need_sync_fs = 0;
487 		if (sb->s_flags & MS_RDONLY)
488 			continue;	/* hm.  Was remounted r/o meanwhile */
489 		sb->s_count++;
490 		spin_unlock(&sb_lock);
491 		down_read(&sb->s_umount);
492 		async_synchronize_full_domain(&sb->s_async_list);
493 		if (sb->s_root && (wait || sb->s_dirt))
494 			sb->s_op->sync_fs(sb, wait);
495 		up_read(&sb->s_umount);
496 		/* restart only when sb is no longer on the list */
497 		spin_lock(&sb_lock);
498 		if (__put_super_and_need_restart(sb))
499 			goto restart;
500 	}
501 	spin_unlock(&sb_lock);
502 	mutex_unlock(&mutex);
503 }
504 
505 /**
506  *	get_super - get the superblock of a device
507  *	@bdev: device to get the superblock for
508  *
509  *	Scans the superblock list and finds the superblock of the file system
510  *	mounted on the device given. %NULL is returned if no match is found.
511  */
512 
513 struct super_block * get_super(struct block_device *bdev)
514 {
515 	struct super_block *sb;
516 
517 	if (!bdev)
518 		return NULL;
519 
520 	spin_lock(&sb_lock);
521 rescan:
522 	list_for_each_entry(sb, &super_blocks, s_list) {
523 		if (sb->s_bdev == bdev) {
524 			sb->s_count++;
525 			spin_unlock(&sb_lock);
526 			down_read(&sb->s_umount);
527 			if (sb->s_root)
528 				return sb;
529 			up_read(&sb->s_umount);
530 			/* restart only when sb is no longer on the list */
531 			spin_lock(&sb_lock);
532 			if (__put_super_and_need_restart(sb))
533 				goto rescan;
534 		}
535 	}
536 	spin_unlock(&sb_lock);
537 	return NULL;
538 }
539 
540 EXPORT_SYMBOL(get_super);
541 
542 struct super_block * user_get_super(dev_t dev)
543 {
544 	struct super_block *sb;
545 
546 	spin_lock(&sb_lock);
547 rescan:
548 	list_for_each_entry(sb, &super_blocks, s_list) {
549 		if (sb->s_dev ==  dev) {
550 			sb->s_count++;
551 			spin_unlock(&sb_lock);
552 			down_read(&sb->s_umount);
553 			if (sb->s_root)
554 				return sb;
555 			up_read(&sb->s_umount);
556 			/* restart only when sb is no longer on the list */
557 			spin_lock(&sb_lock);
558 			if (__put_super_and_need_restart(sb))
559 				goto rescan;
560 		}
561 	}
562 	spin_unlock(&sb_lock);
563 	return NULL;
564 }
565 
566 SYSCALL_DEFINE2(ustat, unsigned, dev, struct ustat __user *, ubuf)
567 {
568         struct super_block *s;
569         struct ustat tmp;
570         struct kstatfs sbuf;
571 	int err = -EINVAL;
572 
573         s = user_get_super(new_decode_dev(dev));
574         if (s == NULL)
575                 goto out;
576 	err = vfs_statfs(s->s_root, &sbuf);
577 	drop_super(s);
578 	if (err)
579 		goto out;
580 
581         memset(&tmp,0,sizeof(struct ustat));
582         tmp.f_tfree = sbuf.f_bfree;
583         tmp.f_tinode = sbuf.f_ffree;
584 
585         err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
586 out:
587 	return err;
588 }
589 
590 /**
591  *	mark_files_ro - mark all files read-only
592  *	@sb: superblock in question
593  *
594  *	All files are marked read-only.  We don't care about pending
595  *	delete files so this should be used in 'force' mode only.
596  */
597 
598 static void mark_files_ro(struct super_block *sb)
599 {
600 	struct file *f;
601 
602 retry:
603 	file_list_lock();
604 	list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
605 		struct vfsmount *mnt;
606 		if (!S_ISREG(f->f_path.dentry->d_inode->i_mode))
607 		       continue;
608 		if (!file_count(f))
609 			continue;
610 		if (!(f->f_mode & FMODE_WRITE))
611 			continue;
612 		f->f_mode &= ~FMODE_WRITE;
613 		if (file_check_writeable(f) != 0)
614 			continue;
615 		file_release_write(f);
616 		mnt = mntget(f->f_path.mnt);
617 		file_list_unlock();
618 		/*
619 		 * This can sleep, so we can't hold
620 		 * the file_list_lock() spinlock.
621 		 */
622 		mnt_drop_write(mnt);
623 		mntput(mnt);
624 		goto retry;
625 	}
626 	file_list_unlock();
627 }
628 
629 /**
630  *	do_remount_sb - asks filesystem to change mount options.
631  *	@sb:	superblock in question
632  *	@flags:	numeric part of options
633  *	@data:	the rest of options
634  *      @force: whether or not to force the change
635  *
636  *	Alters the mount options of a mounted file system.
637  */
638 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
639 {
640 	int retval;
641 	int remount_rw;
642 
643 #ifdef CONFIG_BLOCK
644 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
645 		return -EACCES;
646 #endif
647 	if (flags & MS_RDONLY)
648 		acct_auto_close(sb);
649 	shrink_dcache_sb(sb);
650 	fsync_super(sb);
651 
652 	/* If we are remounting RDONLY and current sb is read/write,
653 	   make sure there are no rw files opened */
654 	if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
655 		if (force)
656 			mark_files_ro(sb);
657 		else if (!fs_may_remount_ro(sb))
658 			return -EBUSY;
659 		retval = vfs_dq_off(sb, 1);
660 		if (retval < 0 && retval != -ENOSYS)
661 			return -EBUSY;
662 	}
663 	remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY);
664 
665 	if (sb->s_op->remount_fs) {
666 		lock_super(sb);
667 		retval = sb->s_op->remount_fs(sb, &flags, data);
668 		unlock_super(sb);
669 		if (retval)
670 			return retval;
671 	}
672 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
673 	if (remount_rw)
674 		vfs_dq_quota_on_remount(sb);
675 	return 0;
676 }
677 
678 static void do_emergency_remount(struct work_struct *work)
679 {
680 	struct super_block *sb;
681 
682 	spin_lock(&sb_lock);
683 	list_for_each_entry(sb, &super_blocks, s_list) {
684 		sb->s_count++;
685 		spin_unlock(&sb_lock);
686 		down_read(&sb->s_umount);
687 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
688 			/*
689 			 * ->remount_fs needs lock_kernel().
690 			 *
691 			 * What lock protects sb->s_flags??
692 			 */
693 			lock_kernel();
694 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
695 			unlock_kernel();
696 		}
697 		drop_super(sb);
698 		spin_lock(&sb_lock);
699 	}
700 	spin_unlock(&sb_lock);
701 	kfree(work);
702 	printk("Emergency Remount complete\n");
703 }
704 
705 void emergency_remount(void)
706 {
707 	struct work_struct *work;
708 
709 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
710 	if (work) {
711 		INIT_WORK(work, do_emergency_remount);
712 		schedule_work(work);
713 	}
714 }
715 
716 /*
717  * Unnamed block devices are dummy devices used by virtual
718  * filesystems which don't use real block-devices.  -- jrs
719  */
720 
721 static DEFINE_IDA(unnamed_dev_ida);
722 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
723 
724 int set_anon_super(struct super_block *s, void *data)
725 {
726 	int dev;
727 	int error;
728 
729  retry:
730 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
731 		return -ENOMEM;
732 	spin_lock(&unnamed_dev_lock);
733 	error = ida_get_new(&unnamed_dev_ida, &dev);
734 	spin_unlock(&unnamed_dev_lock);
735 	if (error == -EAGAIN)
736 		/* We raced and lost with another CPU. */
737 		goto retry;
738 	else if (error)
739 		return -EAGAIN;
740 
741 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
742 		spin_lock(&unnamed_dev_lock);
743 		ida_remove(&unnamed_dev_ida, dev);
744 		spin_unlock(&unnamed_dev_lock);
745 		return -EMFILE;
746 	}
747 	s->s_dev = MKDEV(0, dev & MINORMASK);
748 	return 0;
749 }
750 
751 EXPORT_SYMBOL(set_anon_super);
752 
753 void kill_anon_super(struct super_block *sb)
754 {
755 	int slot = MINOR(sb->s_dev);
756 
757 	generic_shutdown_super(sb);
758 	spin_lock(&unnamed_dev_lock);
759 	ida_remove(&unnamed_dev_ida, slot);
760 	spin_unlock(&unnamed_dev_lock);
761 }
762 
763 EXPORT_SYMBOL(kill_anon_super);
764 
765 void kill_litter_super(struct super_block *sb)
766 {
767 	if (sb->s_root)
768 		d_genocide(sb->s_root);
769 	kill_anon_super(sb);
770 }
771 
772 EXPORT_SYMBOL(kill_litter_super);
773 
774 static int ns_test_super(struct super_block *sb, void *data)
775 {
776 	return sb->s_fs_info == data;
777 }
778 
779 static int ns_set_super(struct super_block *sb, void *data)
780 {
781 	sb->s_fs_info = data;
782 	return set_anon_super(sb, NULL);
783 }
784 
785 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
786 	int (*fill_super)(struct super_block *, void *, int),
787 	struct vfsmount *mnt)
788 {
789 	struct super_block *sb;
790 
791 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
792 	if (IS_ERR(sb))
793 		return PTR_ERR(sb);
794 
795 	if (!sb->s_root) {
796 		int err;
797 		sb->s_flags = flags;
798 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
799 		if (err) {
800 			up_write(&sb->s_umount);
801 			deactivate_super(sb);
802 			return err;
803 		}
804 
805 		sb->s_flags |= MS_ACTIVE;
806 	}
807 
808 	simple_set_mnt(mnt, sb);
809 	return 0;
810 }
811 
812 EXPORT_SYMBOL(get_sb_ns);
813 
814 #ifdef CONFIG_BLOCK
815 static int set_bdev_super(struct super_block *s, void *data)
816 {
817 	s->s_bdev = data;
818 	s->s_dev = s->s_bdev->bd_dev;
819 	return 0;
820 }
821 
822 static int test_bdev_super(struct super_block *s, void *data)
823 {
824 	return (void *)s->s_bdev == data;
825 }
826 
827 int get_sb_bdev(struct file_system_type *fs_type,
828 	int flags, const char *dev_name, void *data,
829 	int (*fill_super)(struct super_block *, void *, int),
830 	struct vfsmount *mnt)
831 {
832 	struct block_device *bdev;
833 	struct super_block *s;
834 	fmode_t mode = FMODE_READ;
835 	int error = 0;
836 
837 	if (!(flags & MS_RDONLY))
838 		mode |= FMODE_WRITE;
839 
840 	bdev = open_bdev_exclusive(dev_name, mode, fs_type);
841 	if (IS_ERR(bdev))
842 		return PTR_ERR(bdev);
843 
844 	/*
845 	 * once the super is inserted into the list by sget, s_umount
846 	 * will protect the lockfs code from trying to start a snapshot
847 	 * while we are mounting
848 	 */
849 	down(&bdev->bd_mount_sem);
850 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
851 	up(&bdev->bd_mount_sem);
852 	if (IS_ERR(s))
853 		goto error_s;
854 
855 	if (s->s_root) {
856 		if ((flags ^ s->s_flags) & MS_RDONLY) {
857 			up_write(&s->s_umount);
858 			deactivate_super(s);
859 			error = -EBUSY;
860 			goto error_bdev;
861 		}
862 
863 		close_bdev_exclusive(bdev, mode);
864 	} else {
865 		char b[BDEVNAME_SIZE];
866 
867 		s->s_flags = flags;
868 		s->s_mode = mode;
869 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
870 		sb_set_blocksize(s, block_size(bdev));
871 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
872 		if (error) {
873 			up_write(&s->s_umount);
874 			deactivate_super(s);
875 			goto error;
876 		}
877 
878 		s->s_flags |= MS_ACTIVE;
879 		bdev->bd_super = s;
880 	}
881 
882 	simple_set_mnt(mnt, s);
883 	return 0;
884 
885 error_s:
886 	error = PTR_ERR(s);
887 error_bdev:
888 	close_bdev_exclusive(bdev, mode);
889 error:
890 	return error;
891 }
892 
893 EXPORT_SYMBOL(get_sb_bdev);
894 
895 void kill_block_super(struct super_block *sb)
896 {
897 	struct block_device *bdev = sb->s_bdev;
898 	fmode_t mode = sb->s_mode;
899 
900 	bdev->bd_super = 0;
901 	generic_shutdown_super(sb);
902 	sync_blockdev(bdev);
903 	close_bdev_exclusive(bdev, mode);
904 }
905 
906 EXPORT_SYMBOL(kill_block_super);
907 #endif
908 
909 int get_sb_nodev(struct file_system_type *fs_type,
910 	int flags, void *data,
911 	int (*fill_super)(struct super_block *, void *, int),
912 	struct vfsmount *mnt)
913 {
914 	int error;
915 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
916 
917 	if (IS_ERR(s))
918 		return PTR_ERR(s);
919 
920 	s->s_flags = flags;
921 
922 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
923 	if (error) {
924 		up_write(&s->s_umount);
925 		deactivate_super(s);
926 		return error;
927 	}
928 	s->s_flags |= MS_ACTIVE;
929 	simple_set_mnt(mnt, s);
930 	return 0;
931 }
932 
933 EXPORT_SYMBOL(get_sb_nodev);
934 
935 static int compare_single(struct super_block *s, void *p)
936 {
937 	return 1;
938 }
939 
940 int get_sb_single(struct file_system_type *fs_type,
941 	int flags, void *data,
942 	int (*fill_super)(struct super_block *, void *, int),
943 	struct vfsmount *mnt)
944 {
945 	struct super_block *s;
946 	int error;
947 
948 	s = sget(fs_type, compare_single, set_anon_super, NULL);
949 	if (IS_ERR(s))
950 		return PTR_ERR(s);
951 	if (!s->s_root) {
952 		s->s_flags = flags;
953 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
954 		if (error) {
955 			up_write(&s->s_umount);
956 			deactivate_super(s);
957 			return error;
958 		}
959 		s->s_flags |= MS_ACTIVE;
960 	}
961 	do_remount_sb(s, flags, data, 0);
962 	simple_set_mnt(mnt, s);
963 	return 0;
964 }
965 
966 EXPORT_SYMBOL(get_sb_single);
967 
968 struct vfsmount *
969 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
970 {
971 	struct vfsmount *mnt;
972 	char *secdata = NULL;
973 	int error;
974 
975 	if (!type)
976 		return ERR_PTR(-ENODEV);
977 
978 	error = -ENOMEM;
979 	mnt = alloc_vfsmnt(name);
980 	if (!mnt)
981 		goto out;
982 
983 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
984 		secdata = alloc_secdata();
985 		if (!secdata)
986 			goto out_mnt;
987 
988 		error = security_sb_copy_data(data, secdata);
989 		if (error)
990 			goto out_free_secdata;
991 	}
992 
993 	error = type->get_sb(type, flags, name, data, mnt);
994 	if (error < 0)
995 		goto out_free_secdata;
996 	BUG_ON(!mnt->mnt_sb);
997 
998  	error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
999  	if (error)
1000  		goto out_sb;
1001 
1002 	mnt->mnt_mountpoint = mnt->mnt_root;
1003 	mnt->mnt_parent = mnt;
1004 	up_write(&mnt->mnt_sb->s_umount);
1005 	free_secdata(secdata);
1006 	return mnt;
1007 out_sb:
1008 	dput(mnt->mnt_root);
1009 	up_write(&mnt->mnt_sb->s_umount);
1010 	deactivate_super(mnt->mnt_sb);
1011 out_free_secdata:
1012 	free_secdata(secdata);
1013 out_mnt:
1014 	free_vfsmnt(mnt);
1015 out:
1016 	return ERR_PTR(error);
1017 }
1018 
1019 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1020 
1021 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1022 {
1023 	int err;
1024 	const char *subtype = strchr(fstype, '.');
1025 	if (subtype) {
1026 		subtype++;
1027 		err = -EINVAL;
1028 		if (!subtype[0])
1029 			goto err;
1030 	} else
1031 		subtype = "";
1032 
1033 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1034 	err = -ENOMEM;
1035 	if (!mnt->mnt_sb->s_subtype)
1036 		goto err;
1037 	return mnt;
1038 
1039  err:
1040 	mntput(mnt);
1041 	return ERR_PTR(err);
1042 }
1043 
1044 struct vfsmount *
1045 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1046 {
1047 	struct file_system_type *type = get_fs_type(fstype);
1048 	struct vfsmount *mnt;
1049 	if (!type)
1050 		return ERR_PTR(-ENODEV);
1051 	mnt = vfs_kern_mount(type, flags, name, data);
1052 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1053 	    !mnt->mnt_sb->s_subtype)
1054 		mnt = fs_set_subtype(mnt, fstype);
1055 	put_filesystem(type);
1056 	return mnt;
1057 }
1058 EXPORT_SYMBOL_GPL(do_kern_mount);
1059 
1060 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1061 {
1062 	return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1063 }
1064 
1065 EXPORT_SYMBOL_GPL(kern_mount_data);
1066