1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/smp_lock.h> 27 #include <linux/acct.h> 28 #include <linux/blkdev.h> 29 #include <linux/quotaops.h> 30 #include <linux/namei.h> 31 #include <linux/buffer_head.h> /* for fsync_super() */ 32 #include <linux/mount.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/vfs.h> 36 #include <linux/writeback.h> /* for the emergency remount stuff */ 37 #include <linux/idr.h> 38 #include <linux/kobject.h> 39 #include <linux/mutex.h> 40 #include <linux/file.h> 41 #include <linux/async.h> 42 #include <asm/uaccess.h> 43 #include "internal.h" 44 45 46 LIST_HEAD(super_blocks); 47 DEFINE_SPINLOCK(sb_lock); 48 49 /** 50 * alloc_super - create new superblock 51 * @type: filesystem type superblock should belong to 52 * 53 * Allocates and initializes a new &struct super_block. alloc_super() 54 * returns a pointer new superblock or %NULL if allocation had failed. 55 */ 56 static struct super_block *alloc_super(struct file_system_type *type) 57 { 58 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 59 static struct super_operations default_op; 60 61 if (s) { 62 if (security_sb_alloc(s)) { 63 kfree(s); 64 s = NULL; 65 goto out; 66 } 67 INIT_LIST_HEAD(&s->s_dirty); 68 INIT_LIST_HEAD(&s->s_io); 69 INIT_LIST_HEAD(&s->s_more_io); 70 INIT_LIST_HEAD(&s->s_files); 71 INIT_LIST_HEAD(&s->s_instances); 72 INIT_HLIST_HEAD(&s->s_anon); 73 INIT_LIST_HEAD(&s->s_inodes); 74 INIT_LIST_HEAD(&s->s_dentry_lru); 75 INIT_LIST_HEAD(&s->s_async_list); 76 init_rwsem(&s->s_umount); 77 mutex_init(&s->s_lock); 78 lockdep_set_class(&s->s_umount, &type->s_umount_key); 79 /* 80 * The locking rules for s_lock are up to the 81 * filesystem. For example ext3fs has different 82 * lock ordering than usbfs: 83 */ 84 lockdep_set_class(&s->s_lock, &type->s_lock_key); 85 /* 86 * sget() can have s_umount recursion. 87 * 88 * When it cannot find a suitable sb, it allocates a new 89 * one (this one), and tries again to find a suitable old 90 * one. 91 * 92 * In case that succeeds, it will acquire the s_umount 93 * lock of the old one. Since these are clearly distrinct 94 * locks, and this object isn't exposed yet, there's no 95 * risk of deadlocks. 96 * 97 * Annotate this by putting this lock in a different 98 * subclass. 99 */ 100 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 101 s->s_count = S_BIAS; 102 atomic_set(&s->s_active, 1); 103 mutex_init(&s->s_vfs_rename_mutex); 104 mutex_init(&s->s_dquot.dqio_mutex); 105 mutex_init(&s->s_dquot.dqonoff_mutex); 106 init_rwsem(&s->s_dquot.dqptr_sem); 107 init_waitqueue_head(&s->s_wait_unfrozen); 108 s->s_maxbytes = MAX_NON_LFS; 109 s->dq_op = sb_dquot_ops; 110 s->s_qcop = sb_quotactl_ops; 111 s->s_op = &default_op; 112 s->s_time_gran = 1000000000; 113 } 114 out: 115 return s; 116 } 117 118 /** 119 * destroy_super - frees a superblock 120 * @s: superblock to free 121 * 122 * Frees a superblock. 123 */ 124 static inline void destroy_super(struct super_block *s) 125 { 126 security_sb_free(s); 127 kfree(s->s_subtype); 128 kfree(s->s_options); 129 kfree(s); 130 } 131 132 /* Superblock refcounting */ 133 134 /* 135 * Drop a superblock's refcount. Returns non-zero if the superblock was 136 * destroyed. The caller must hold sb_lock. 137 */ 138 static int __put_super(struct super_block *sb) 139 { 140 int ret = 0; 141 142 if (!--sb->s_count) { 143 destroy_super(sb); 144 ret = 1; 145 } 146 return ret; 147 } 148 149 /* 150 * Drop a superblock's refcount. 151 * Returns non-zero if the superblock is about to be destroyed and 152 * at least is already removed from super_blocks list, so if we are 153 * making a loop through super blocks then we need to restart. 154 * The caller must hold sb_lock. 155 */ 156 int __put_super_and_need_restart(struct super_block *sb) 157 { 158 /* check for race with generic_shutdown_super() */ 159 if (list_empty(&sb->s_list)) { 160 /* super block is removed, need to restart... */ 161 __put_super(sb); 162 return 1; 163 } 164 /* can't be the last, since s_list is still in use */ 165 sb->s_count--; 166 BUG_ON(sb->s_count == 0); 167 return 0; 168 } 169 170 /** 171 * put_super - drop a temporary reference to superblock 172 * @sb: superblock in question 173 * 174 * Drops a temporary reference, frees superblock if there's no 175 * references left. 176 */ 177 static void put_super(struct super_block *sb) 178 { 179 spin_lock(&sb_lock); 180 __put_super(sb); 181 spin_unlock(&sb_lock); 182 } 183 184 185 /** 186 * deactivate_super - drop an active reference to superblock 187 * @s: superblock to deactivate 188 * 189 * Drops an active reference to superblock, acquiring a temprory one if 190 * there is no active references left. In that case we lock superblock, 191 * tell fs driver to shut it down and drop the temporary reference we 192 * had just acquired. 193 */ 194 void deactivate_super(struct super_block *s) 195 { 196 struct file_system_type *fs = s->s_type; 197 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) { 198 s->s_count -= S_BIAS-1; 199 spin_unlock(&sb_lock); 200 vfs_dq_off(s, 0); 201 down_write(&s->s_umount); 202 fs->kill_sb(s); 203 put_filesystem(fs); 204 put_super(s); 205 } 206 } 207 208 EXPORT_SYMBOL(deactivate_super); 209 210 /** 211 * grab_super - acquire an active reference 212 * @s: reference we are trying to make active 213 * 214 * Tries to acquire an active reference. grab_super() is used when we 215 * had just found a superblock in super_blocks or fs_type->fs_supers 216 * and want to turn it into a full-blown active reference. grab_super() 217 * is called with sb_lock held and drops it. Returns 1 in case of 218 * success, 0 if we had failed (superblock contents was already dead or 219 * dying when grab_super() had been called). 220 */ 221 static int grab_super(struct super_block *s) __releases(sb_lock) 222 { 223 s->s_count++; 224 spin_unlock(&sb_lock); 225 down_write(&s->s_umount); 226 if (s->s_root) { 227 spin_lock(&sb_lock); 228 if (s->s_count > S_BIAS) { 229 atomic_inc(&s->s_active); 230 s->s_count--; 231 spin_unlock(&sb_lock); 232 return 1; 233 } 234 spin_unlock(&sb_lock); 235 } 236 up_write(&s->s_umount); 237 put_super(s); 238 yield(); 239 return 0; 240 } 241 242 /* 243 * Superblock locking. We really ought to get rid of these two. 244 */ 245 void lock_super(struct super_block * sb) 246 { 247 get_fs_excl(); 248 mutex_lock(&sb->s_lock); 249 } 250 251 void unlock_super(struct super_block * sb) 252 { 253 put_fs_excl(); 254 mutex_unlock(&sb->s_lock); 255 } 256 257 EXPORT_SYMBOL(lock_super); 258 EXPORT_SYMBOL(unlock_super); 259 260 /* 261 * Write out and wait upon all dirty data associated with this 262 * superblock. Filesystem data as well as the underlying block 263 * device. Takes the superblock lock. Requires a second blkdev 264 * flush by the caller to complete the operation. 265 */ 266 void __fsync_super(struct super_block *sb) 267 { 268 sync_inodes_sb(sb, 0); 269 vfs_dq_sync(sb); 270 lock_super(sb); 271 if (sb->s_dirt && sb->s_op->write_super) 272 sb->s_op->write_super(sb); 273 unlock_super(sb); 274 if (sb->s_op->sync_fs) 275 sb->s_op->sync_fs(sb, 1); 276 sync_blockdev(sb->s_bdev); 277 sync_inodes_sb(sb, 1); 278 } 279 280 /* 281 * Write out and wait upon all dirty data associated with this 282 * superblock. Filesystem data as well as the underlying block 283 * device. Takes the superblock lock. 284 */ 285 int fsync_super(struct super_block *sb) 286 { 287 __fsync_super(sb); 288 return sync_blockdev(sb->s_bdev); 289 } 290 EXPORT_SYMBOL_GPL(fsync_super); 291 292 /** 293 * generic_shutdown_super - common helper for ->kill_sb() 294 * @sb: superblock to kill 295 * 296 * generic_shutdown_super() does all fs-independent work on superblock 297 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 298 * that need destruction out of superblock, call generic_shutdown_super() 299 * and release aforementioned objects. Note: dentries and inodes _are_ 300 * taken care of and do not need specific handling. 301 * 302 * Upon calling this function, the filesystem may no longer alter or 303 * rearrange the set of dentries belonging to this super_block, nor may it 304 * change the attachments of dentries to inodes. 305 */ 306 void generic_shutdown_super(struct super_block *sb) 307 { 308 const struct super_operations *sop = sb->s_op; 309 310 311 if (sb->s_root) { 312 shrink_dcache_for_umount(sb); 313 fsync_super(sb); 314 lock_super(sb); 315 sb->s_flags &= ~MS_ACTIVE; 316 317 /* 318 * wait for asynchronous fs operations to finish before going further 319 */ 320 async_synchronize_full_domain(&sb->s_async_list); 321 322 /* bad name - it should be evict_inodes() */ 323 invalidate_inodes(sb); 324 lock_kernel(); 325 326 if (sop->write_super && sb->s_dirt) 327 sop->write_super(sb); 328 if (sop->put_super) 329 sop->put_super(sb); 330 331 /* Forget any remaining inodes */ 332 if (invalidate_inodes(sb)) { 333 printk("VFS: Busy inodes after unmount of %s. " 334 "Self-destruct in 5 seconds. Have a nice day...\n", 335 sb->s_id); 336 } 337 338 unlock_kernel(); 339 unlock_super(sb); 340 } 341 spin_lock(&sb_lock); 342 /* should be initialized for __put_super_and_need_restart() */ 343 list_del_init(&sb->s_list); 344 list_del(&sb->s_instances); 345 spin_unlock(&sb_lock); 346 up_write(&sb->s_umount); 347 } 348 349 EXPORT_SYMBOL(generic_shutdown_super); 350 351 /** 352 * sget - find or create a superblock 353 * @type: filesystem type superblock should belong to 354 * @test: comparison callback 355 * @set: setup callback 356 * @data: argument to each of them 357 */ 358 struct super_block *sget(struct file_system_type *type, 359 int (*test)(struct super_block *,void *), 360 int (*set)(struct super_block *,void *), 361 void *data) 362 { 363 struct super_block *s = NULL; 364 struct super_block *old; 365 int err; 366 367 retry: 368 spin_lock(&sb_lock); 369 if (test) { 370 list_for_each_entry(old, &type->fs_supers, s_instances) { 371 if (!test(old, data)) 372 continue; 373 if (!grab_super(old)) 374 goto retry; 375 if (s) { 376 up_write(&s->s_umount); 377 destroy_super(s); 378 } 379 return old; 380 } 381 } 382 if (!s) { 383 spin_unlock(&sb_lock); 384 s = alloc_super(type); 385 if (!s) 386 return ERR_PTR(-ENOMEM); 387 goto retry; 388 } 389 390 err = set(s, data); 391 if (err) { 392 spin_unlock(&sb_lock); 393 up_write(&s->s_umount); 394 destroy_super(s); 395 return ERR_PTR(err); 396 } 397 s->s_type = type; 398 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 399 list_add_tail(&s->s_list, &super_blocks); 400 list_add(&s->s_instances, &type->fs_supers); 401 spin_unlock(&sb_lock); 402 get_filesystem(type); 403 return s; 404 } 405 406 EXPORT_SYMBOL(sget); 407 408 void drop_super(struct super_block *sb) 409 { 410 up_read(&sb->s_umount); 411 put_super(sb); 412 } 413 414 EXPORT_SYMBOL(drop_super); 415 416 static inline void write_super(struct super_block *sb) 417 { 418 lock_super(sb); 419 if (sb->s_root && sb->s_dirt) 420 if (sb->s_op->write_super) 421 sb->s_op->write_super(sb); 422 unlock_super(sb); 423 } 424 425 /* 426 * Note: check the dirty flag before waiting, so we don't 427 * hold up the sync while mounting a device. (The newly 428 * mounted device won't need syncing.) 429 */ 430 void sync_supers(void) 431 { 432 struct super_block *sb; 433 434 spin_lock(&sb_lock); 435 restart: 436 list_for_each_entry(sb, &super_blocks, s_list) { 437 if (sb->s_dirt) { 438 sb->s_count++; 439 spin_unlock(&sb_lock); 440 down_read(&sb->s_umount); 441 write_super(sb); 442 up_read(&sb->s_umount); 443 spin_lock(&sb_lock); 444 if (__put_super_and_need_restart(sb)) 445 goto restart; 446 } 447 } 448 spin_unlock(&sb_lock); 449 } 450 451 /* 452 * Call the ->sync_fs super_op against all filesystems which are r/w and 453 * which implement it. 454 * 455 * This operation is careful to avoid the livelock which could easily happen 456 * if two or more filesystems are being continuously dirtied. s_need_sync_fs 457 * is used only here. We set it against all filesystems and then clear it as 458 * we sync them. So redirtied filesystems are skipped. 459 * 460 * But if process A is currently running sync_filesystems and then process B 461 * calls sync_filesystems as well, process B will set all the s_need_sync_fs 462 * flags again, which will cause process A to resync everything. Fix that with 463 * a local mutex. 464 * 465 * (Fabian) Avoid sync_fs with clean fs & wait mode 0 466 */ 467 void sync_filesystems(int wait) 468 { 469 struct super_block *sb; 470 static DEFINE_MUTEX(mutex); 471 472 mutex_lock(&mutex); /* Could be down_interruptible */ 473 spin_lock(&sb_lock); 474 list_for_each_entry(sb, &super_blocks, s_list) { 475 if (!sb->s_op->sync_fs) 476 continue; 477 if (sb->s_flags & MS_RDONLY) 478 continue; 479 sb->s_need_sync_fs = 1; 480 } 481 482 restart: 483 list_for_each_entry(sb, &super_blocks, s_list) { 484 if (!sb->s_need_sync_fs) 485 continue; 486 sb->s_need_sync_fs = 0; 487 if (sb->s_flags & MS_RDONLY) 488 continue; /* hm. Was remounted r/o meanwhile */ 489 sb->s_count++; 490 spin_unlock(&sb_lock); 491 down_read(&sb->s_umount); 492 async_synchronize_full_domain(&sb->s_async_list); 493 if (sb->s_root && (wait || sb->s_dirt)) 494 sb->s_op->sync_fs(sb, wait); 495 up_read(&sb->s_umount); 496 /* restart only when sb is no longer on the list */ 497 spin_lock(&sb_lock); 498 if (__put_super_and_need_restart(sb)) 499 goto restart; 500 } 501 spin_unlock(&sb_lock); 502 mutex_unlock(&mutex); 503 } 504 505 /** 506 * get_super - get the superblock of a device 507 * @bdev: device to get the superblock for 508 * 509 * Scans the superblock list and finds the superblock of the file system 510 * mounted on the device given. %NULL is returned if no match is found. 511 */ 512 513 struct super_block * get_super(struct block_device *bdev) 514 { 515 struct super_block *sb; 516 517 if (!bdev) 518 return NULL; 519 520 spin_lock(&sb_lock); 521 rescan: 522 list_for_each_entry(sb, &super_blocks, s_list) { 523 if (sb->s_bdev == bdev) { 524 sb->s_count++; 525 spin_unlock(&sb_lock); 526 down_read(&sb->s_umount); 527 if (sb->s_root) 528 return sb; 529 up_read(&sb->s_umount); 530 /* restart only when sb is no longer on the list */ 531 spin_lock(&sb_lock); 532 if (__put_super_and_need_restart(sb)) 533 goto rescan; 534 } 535 } 536 spin_unlock(&sb_lock); 537 return NULL; 538 } 539 540 EXPORT_SYMBOL(get_super); 541 542 struct super_block * user_get_super(dev_t dev) 543 { 544 struct super_block *sb; 545 546 spin_lock(&sb_lock); 547 rescan: 548 list_for_each_entry(sb, &super_blocks, s_list) { 549 if (sb->s_dev == dev) { 550 sb->s_count++; 551 spin_unlock(&sb_lock); 552 down_read(&sb->s_umount); 553 if (sb->s_root) 554 return sb; 555 up_read(&sb->s_umount); 556 /* restart only when sb is no longer on the list */ 557 spin_lock(&sb_lock); 558 if (__put_super_and_need_restart(sb)) 559 goto rescan; 560 } 561 } 562 spin_unlock(&sb_lock); 563 return NULL; 564 } 565 566 SYSCALL_DEFINE2(ustat, unsigned, dev, struct ustat __user *, ubuf) 567 { 568 struct super_block *s; 569 struct ustat tmp; 570 struct kstatfs sbuf; 571 int err = -EINVAL; 572 573 s = user_get_super(new_decode_dev(dev)); 574 if (s == NULL) 575 goto out; 576 err = vfs_statfs(s->s_root, &sbuf); 577 drop_super(s); 578 if (err) 579 goto out; 580 581 memset(&tmp,0,sizeof(struct ustat)); 582 tmp.f_tfree = sbuf.f_bfree; 583 tmp.f_tinode = sbuf.f_ffree; 584 585 err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0; 586 out: 587 return err; 588 } 589 590 /** 591 * mark_files_ro - mark all files read-only 592 * @sb: superblock in question 593 * 594 * All files are marked read-only. We don't care about pending 595 * delete files so this should be used in 'force' mode only. 596 */ 597 598 static void mark_files_ro(struct super_block *sb) 599 { 600 struct file *f; 601 602 retry: 603 file_list_lock(); 604 list_for_each_entry(f, &sb->s_files, f_u.fu_list) { 605 struct vfsmount *mnt; 606 if (!S_ISREG(f->f_path.dentry->d_inode->i_mode)) 607 continue; 608 if (!file_count(f)) 609 continue; 610 if (!(f->f_mode & FMODE_WRITE)) 611 continue; 612 f->f_mode &= ~FMODE_WRITE; 613 if (file_check_writeable(f) != 0) 614 continue; 615 file_release_write(f); 616 mnt = mntget(f->f_path.mnt); 617 file_list_unlock(); 618 /* 619 * This can sleep, so we can't hold 620 * the file_list_lock() spinlock. 621 */ 622 mnt_drop_write(mnt); 623 mntput(mnt); 624 goto retry; 625 } 626 file_list_unlock(); 627 } 628 629 /** 630 * do_remount_sb - asks filesystem to change mount options. 631 * @sb: superblock in question 632 * @flags: numeric part of options 633 * @data: the rest of options 634 * @force: whether or not to force the change 635 * 636 * Alters the mount options of a mounted file system. 637 */ 638 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 639 { 640 int retval; 641 int remount_rw; 642 643 #ifdef CONFIG_BLOCK 644 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 645 return -EACCES; 646 #endif 647 if (flags & MS_RDONLY) 648 acct_auto_close(sb); 649 shrink_dcache_sb(sb); 650 fsync_super(sb); 651 652 /* If we are remounting RDONLY and current sb is read/write, 653 make sure there are no rw files opened */ 654 if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) { 655 if (force) 656 mark_files_ro(sb); 657 else if (!fs_may_remount_ro(sb)) 658 return -EBUSY; 659 retval = vfs_dq_off(sb, 1); 660 if (retval < 0 && retval != -ENOSYS) 661 return -EBUSY; 662 } 663 remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY); 664 665 if (sb->s_op->remount_fs) { 666 lock_super(sb); 667 retval = sb->s_op->remount_fs(sb, &flags, data); 668 unlock_super(sb); 669 if (retval) 670 return retval; 671 } 672 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 673 if (remount_rw) 674 vfs_dq_quota_on_remount(sb); 675 return 0; 676 } 677 678 static void do_emergency_remount(struct work_struct *work) 679 { 680 struct super_block *sb; 681 682 spin_lock(&sb_lock); 683 list_for_each_entry(sb, &super_blocks, s_list) { 684 sb->s_count++; 685 spin_unlock(&sb_lock); 686 down_read(&sb->s_umount); 687 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) { 688 /* 689 * ->remount_fs needs lock_kernel(). 690 * 691 * What lock protects sb->s_flags?? 692 */ 693 lock_kernel(); 694 do_remount_sb(sb, MS_RDONLY, NULL, 1); 695 unlock_kernel(); 696 } 697 drop_super(sb); 698 spin_lock(&sb_lock); 699 } 700 spin_unlock(&sb_lock); 701 kfree(work); 702 printk("Emergency Remount complete\n"); 703 } 704 705 void emergency_remount(void) 706 { 707 struct work_struct *work; 708 709 work = kmalloc(sizeof(*work), GFP_ATOMIC); 710 if (work) { 711 INIT_WORK(work, do_emergency_remount); 712 schedule_work(work); 713 } 714 } 715 716 /* 717 * Unnamed block devices are dummy devices used by virtual 718 * filesystems which don't use real block-devices. -- jrs 719 */ 720 721 static DEFINE_IDA(unnamed_dev_ida); 722 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 723 724 int set_anon_super(struct super_block *s, void *data) 725 { 726 int dev; 727 int error; 728 729 retry: 730 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 731 return -ENOMEM; 732 spin_lock(&unnamed_dev_lock); 733 error = ida_get_new(&unnamed_dev_ida, &dev); 734 spin_unlock(&unnamed_dev_lock); 735 if (error == -EAGAIN) 736 /* We raced and lost with another CPU. */ 737 goto retry; 738 else if (error) 739 return -EAGAIN; 740 741 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) { 742 spin_lock(&unnamed_dev_lock); 743 ida_remove(&unnamed_dev_ida, dev); 744 spin_unlock(&unnamed_dev_lock); 745 return -EMFILE; 746 } 747 s->s_dev = MKDEV(0, dev & MINORMASK); 748 return 0; 749 } 750 751 EXPORT_SYMBOL(set_anon_super); 752 753 void kill_anon_super(struct super_block *sb) 754 { 755 int slot = MINOR(sb->s_dev); 756 757 generic_shutdown_super(sb); 758 spin_lock(&unnamed_dev_lock); 759 ida_remove(&unnamed_dev_ida, slot); 760 spin_unlock(&unnamed_dev_lock); 761 } 762 763 EXPORT_SYMBOL(kill_anon_super); 764 765 void kill_litter_super(struct super_block *sb) 766 { 767 if (sb->s_root) 768 d_genocide(sb->s_root); 769 kill_anon_super(sb); 770 } 771 772 EXPORT_SYMBOL(kill_litter_super); 773 774 static int ns_test_super(struct super_block *sb, void *data) 775 { 776 return sb->s_fs_info == data; 777 } 778 779 static int ns_set_super(struct super_block *sb, void *data) 780 { 781 sb->s_fs_info = data; 782 return set_anon_super(sb, NULL); 783 } 784 785 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data, 786 int (*fill_super)(struct super_block *, void *, int), 787 struct vfsmount *mnt) 788 { 789 struct super_block *sb; 790 791 sb = sget(fs_type, ns_test_super, ns_set_super, data); 792 if (IS_ERR(sb)) 793 return PTR_ERR(sb); 794 795 if (!sb->s_root) { 796 int err; 797 sb->s_flags = flags; 798 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 799 if (err) { 800 up_write(&sb->s_umount); 801 deactivate_super(sb); 802 return err; 803 } 804 805 sb->s_flags |= MS_ACTIVE; 806 } 807 808 simple_set_mnt(mnt, sb); 809 return 0; 810 } 811 812 EXPORT_SYMBOL(get_sb_ns); 813 814 #ifdef CONFIG_BLOCK 815 static int set_bdev_super(struct super_block *s, void *data) 816 { 817 s->s_bdev = data; 818 s->s_dev = s->s_bdev->bd_dev; 819 return 0; 820 } 821 822 static int test_bdev_super(struct super_block *s, void *data) 823 { 824 return (void *)s->s_bdev == data; 825 } 826 827 int get_sb_bdev(struct file_system_type *fs_type, 828 int flags, const char *dev_name, void *data, 829 int (*fill_super)(struct super_block *, void *, int), 830 struct vfsmount *mnt) 831 { 832 struct block_device *bdev; 833 struct super_block *s; 834 fmode_t mode = FMODE_READ; 835 int error = 0; 836 837 if (!(flags & MS_RDONLY)) 838 mode |= FMODE_WRITE; 839 840 bdev = open_bdev_exclusive(dev_name, mode, fs_type); 841 if (IS_ERR(bdev)) 842 return PTR_ERR(bdev); 843 844 /* 845 * once the super is inserted into the list by sget, s_umount 846 * will protect the lockfs code from trying to start a snapshot 847 * while we are mounting 848 */ 849 down(&bdev->bd_mount_sem); 850 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev); 851 up(&bdev->bd_mount_sem); 852 if (IS_ERR(s)) 853 goto error_s; 854 855 if (s->s_root) { 856 if ((flags ^ s->s_flags) & MS_RDONLY) { 857 up_write(&s->s_umount); 858 deactivate_super(s); 859 error = -EBUSY; 860 goto error_bdev; 861 } 862 863 close_bdev_exclusive(bdev, mode); 864 } else { 865 char b[BDEVNAME_SIZE]; 866 867 s->s_flags = flags; 868 s->s_mode = mode; 869 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 870 sb_set_blocksize(s, block_size(bdev)); 871 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 872 if (error) { 873 up_write(&s->s_umount); 874 deactivate_super(s); 875 goto error; 876 } 877 878 s->s_flags |= MS_ACTIVE; 879 bdev->bd_super = s; 880 } 881 882 simple_set_mnt(mnt, s); 883 return 0; 884 885 error_s: 886 error = PTR_ERR(s); 887 error_bdev: 888 close_bdev_exclusive(bdev, mode); 889 error: 890 return error; 891 } 892 893 EXPORT_SYMBOL(get_sb_bdev); 894 895 void kill_block_super(struct super_block *sb) 896 { 897 struct block_device *bdev = sb->s_bdev; 898 fmode_t mode = sb->s_mode; 899 900 bdev->bd_super = 0; 901 generic_shutdown_super(sb); 902 sync_blockdev(bdev); 903 close_bdev_exclusive(bdev, mode); 904 } 905 906 EXPORT_SYMBOL(kill_block_super); 907 #endif 908 909 int get_sb_nodev(struct file_system_type *fs_type, 910 int flags, void *data, 911 int (*fill_super)(struct super_block *, void *, int), 912 struct vfsmount *mnt) 913 { 914 int error; 915 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 916 917 if (IS_ERR(s)) 918 return PTR_ERR(s); 919 920 s->s_flags = flags; 921 922 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 923 if (error) { 924 up_write(&s->s_umount); 925 deactivate_super(s); 926 return error; 927 } 928 s->s_flags |= MS_ACTIVE; 929 simple_set_mnt(mnt, s); 930 return 0; 931 } 932 933 EXPORT_SYMBOL(get_sb_nodev); 934 935 static int compare_single(struct super_block *s, void *p) 936 { 937 return 1; 938 } 939 940 int get_sb_single(struct file_system_type *fs_type, 941 int flags, void *data, 942 int (*fill_super)(struct super_block *, void *, int), 943 struct vfsmount *mnt) 944 { 945 struct super_block *s; 946 int error; 947 948 s = sget(fs_type, compare_single, set_anon_super, NULL); 949 if (IS_ERR(s)) 950 return PTR_ERR(s); 951 if (!s->s_root) { 952 s->s_flags = flags; 953 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 954 if (error) { 955 up_write(&s->s_umount); 956 deactivate_super(s); 957 return error; 958 } 959 s->s_flags |= MS_ACTIVE; 960 } 961 do_remount_sb(s, flags, data, 0); 962 simple_set_mnt(mnt, s); 963 return 0; 964 } 965 966 EXPORT_SYMBOL(get_sb_single); 967 968 struct vfsmount * 969 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 970 { 971 struct vfsmount *mnt; 972 char *secdata = NULL; 973 int error; 974 975 if (!type) 976 return ERR_PTR(-ENODEV); 977 978 error = -ENOMEM; 979 mnt = alloc_vfsmnt(name); 980 if (!mnt) 981 goto out; 982 983 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 984 secdata = alloc_secdata(); 985 if (!secdata) 986 goto out_mnt; 987 988 error = security_sb_copy_data(data, secdata); 989 if (error) 990 goto out_free_secdata; 991 } 992 993 error = type->get_sb(type, flags, name, data, mnt); 994 if (error < 0) 995 goto out_free_secdata; 996 BUG_ON(!mnt->mnt_sb); 997 998 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata); 999 if (error) 1000 goto out_sb; 1001 1002 mnt->mnt_mountpoint = mnt->mnt_root; 1003 mnt->mnt_parent = mnt; 1004 up_write(&mnt->mnt_sb->s_umount); 1005 free_secdata(secdata); 1006 return mnt; 1007 out_sb: 1008 dput(mnt->mnt_root); 1009 up_write(&mnt->mnt_sb->s_umount); 1010 deactivate_super(mnt->mnt_sb); 1011 out_free_secdata: 1012 free_secdata(secdata); 1013 out_mnt: 1014 free_vfsmnt(mnt); 1015 out: 1016 return ERR_PTR(error); 1017 } 1018 1019 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1020 1021 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1022 { 1023 int err; 1024 const char *subtype = strchr(fstype, '.'); 1025 if (subtype) { 1026 subtype++; 1027 err = -EINVAL; 1028 if (!subtype[0]) 1029 goto err; 1030 } else 1031 subtype = ""; 1032 1033 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1034 err = -ENOMEM; 1035 if (!mnt->mnt_sb->s_subtype) 1036 goto err; 1037 return mnt; 1038 1039 err: 1040 mntput(mnt); 1041 return ERR_PTR(err); 1042 } 1043 1044 struct vfsmount * 1045 do_kern_mount(const char *fstype, int flags, const char *name, void *data) 1046 { 1047 struct file_system_type *type = get_fs_type(fstype); 1048 struct vfsmount *mnt; 1049 if (!type) 1050 return ERR_PTR(-ENODEV); 1051 mnt = vfs_kern_mount(type, flags, name, data); 1052 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 1053 !mnt->mnt_sb->s_subtype) 1054 mnt = fs_set_subtype(mnt, fstype); 1055 put_filesystem(type); 1056 return mnt; 1057 } 1058 EXPORT_SYMBOL_GPL(do_kern_mount); 1059 1060 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 1061 { 1062 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 1063 } 1064 1065 EXPORT_SYMBOL_GPL(kern_mount_data); 1066