1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include "internal.h" 38 39 40 LIST_HEAD(super_blocks); 41 DEFINE_SPINLOCK(sb_lock); 42 43 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 44 "sb_writers", 45 "sb_pagefaults", 46 "sb_internal", 47 }; 48 49 /* 50 * One thing we have to be careful of with a per-sb shrinker is that we don't 51 * drop the last active reference to the superblock from within the shrinker. 52 * If that happens we could trigger unregistering the shrinker from within the 53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 54 * take a passive reference to the superblock to avoid this from occurring. 55 */ 56 static unsigned long super_cache_scan(struct shrinker *shrink, 57 struct shrink_control *sc) 58 { 59 struct super_block *sb; 60 long fs_objects = 0; 61 long total_objects; 62 long freed = 0; 63 long dentries; 64 long inodes; 65 66 sb = container_of(shrink, struct super_block, s_shrink); 67 68 /* 69 * Deadlock avoidance. We may hold various FS locks, and we don't want 70 * to recurse into the FS that called us in clear_inode() and friends.. 71 */ 72 if (!(sc->gfp_mask & __GFP_FS)) 73 return SHRINK_STOP; 74 75 if (!grab_super_passive(sb)) 76 return SHRINK_STOP; 77 78 if (sb->s_op->nr_cached_objects) 79 fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid); 80 81 inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid); 82 dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid); 83 total_objects = dentries + inodes + fs_objects + 1; 84 85 /* proportion the scan between the caches */ 86 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 87 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 88 89 /* 90 * prune the dcache first as the icache is pinned by it, then 91 * prune the icache, followed by the filesystem specific caches 92 */ 93 freed = prune_dcache_sb(sb, dentries, sc->nid); 94 freed += prune_icache_sb(sb, inodes, sc->nid); 95 96 if (fs_objects) { 97 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, 98 total_objects); 99 freed += sb->s_op->free_cached_objects(sb, fs_objects, 100 sc->nid); 101 } 102 103 drop_super(sb); 104 return freed; 105 } 106 107 static unsigned long super_cache_count(struct shrinker *shrink, 108 struct shrink_control *sc) 109 { 110 struct super_block *sb; 111 long total_objects = 0; 112 113 sb = container_of(shrink, struct super_block, s_shrink); 114 115 /* 116 * Don't call grab_super_passive as it is a potential 117 * scalability bottleneck. The counts could get updated 118 * between super_cache_count and super_cache_scan anyway. 119 * Call to super_cache_count with shrinker_rwsem held 120 * ensures the safety of call to list_lru_count_node() and 121 * s_op->nr_cached_objects(). 122 */ 123 if (sb->s_op && sb->s_op->nr_cached_objects) 124 total_objects = sb->s_op->nr_cached_objects(sb, 125 sc->nid); 126 127 total_objects += list_lru_count_node(&sb->s_dentry_lru, 128 sc->nid); 129 total_objects += list_lru_count_node(&sb->s_inode_lru, 130 sc->nid); 131 132 total_objects = vfs_pressure_ratio(total_objects); 133 return total_objects; 134 } 135 136 /** 137 * destroy_super - frees a superblock 138 * @s: superblock to free 139 * 140 * Frees a superblock. 141 */ 142 static void destroy_super(struct super_block *s) 143 { 144 int i; 145 list_lru_destroy(&s->s_dentry_lru); 146 list_lru_destroy(&s->s_inode_lru); 147 for (i = 0; i < SB_FREEZE_LEVELS; i++) 148 percpu_counter_destroy(&s->s_writers.counter[i]); 149 security_sb_free(s); 150 WARN_ON(!list_empty(&s->s_mounts)); 151 kfree(s->s_subtype); 152 kfree(s->s_options); 153 kfree_rcu(s, rcu); 154 } 155 156 /** 157 * alloc_super - create new superblock 158 * @type: filesystem type superblock should belong to 159 * @flags: the mount flags 160 * 161 * Allocates and initializes a new &struct super_block. alloc_super() 162 * returns a pointer new superblock or %NULL if allocation had failed. 163 */ 164 static struct super_block *alloc_super(struct file_system_type *type, int flags) 165 { 166 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 167 static const struct super_operations default_op; 168 int i; 169 170 if (!s) 171 return NULL; 172 173 INIT_LIST_HEAD(&s->s_mounts); 174 175 if (security_sb_alloc(s)) 176 goto fail; 177 178 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 179 if (percpu_counter_init(&s->s_writers.counter[i], 0) < 0) 180 goto fail; 181 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i], 182 &type->s_writers_key[i], 0); 183 } 184 init_waitqueue_head(&s->s_writers.wait); 185 init_waitqueue_head(&s->s_writers.wait_unfrozen); 186 s->s_flags = flags; 187 s->s_bdi = &default_backing_dev_info; 188 INIT_HLIST_NODE(&s->s_instances); 189 INIT_HLIST_BL_HEAD(&s->s_anon); 190 INIT_LIST_HEAD(&s->s_inodes); 191 192 if (list_lru_init(&s->s_dentry_lru)) 193 goto fail; 194 if (list_lru_init(&s->s_inode_lru)) 195 goto fail; 196 197 init_rwsem(&s->s_umount); 198 lockdep_set_class(&s->s_umount, &type->s_umount_key); 199 /* 200 * sget() can have s_umount recursion. 201 * 202 * When it cannot find a suitable sb, it allocates a new 203 * one (this one), and tries again to find a suitable old 204 * one. 205 * 206 * In case that succeeds, it will acquire the s_umount 207 * lock of the old one. Since these are clearly distrinct 208 * locks, and this object isn't exposed yet, there's no 209 * risk of deadlocks. 210 * 211 * Annotate this by putting this lock in a different 212 * subclass. 213 */ 214 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 215 s->s_count = 1; 216 atomic_set(&s->s_active, 1); 217 mutex_init(&s->s_vfs_rename_mutex); 218 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 219 mutex_init(&s->s_dquot.dqio_mutex); 220 mutex_init(&s->s_dquot.dqonoff_mutex); 221 init_rwsem(&s->s_dquot.dqptr_sem); 222 s->s_maxbytes = MAX_NON_LFS; 223 s->s_op = &default_op; 224 s->s_time_gran = 1000000000; 225 s->cleancache_poolid = -1; 226 227 s->s_shrink.seeks = DEFAULT_SEEKS; 228 s->s_shrink.scan_objects = super_cache_scan; 229 s->s_shrink.count_objects = super_cache_count; 230 s->s_shrink.batch = 1024; 231 s->s_shrink.flags = SHRINKER_NUMA_AWARE; 232 return s; 233 234 fail: 235 destroy_super(s); 236 return NULL; 237 } 238 239 /* Superblock refcounting */ 240 241 /* 242 * Drop a superblock's refcount. The caller must hold sb_lock. 243 */ 244 static void __put_super(struct super_block *sb) 245 { 246 if (!--sb->s_count) { 247 list_del_init(&sb->s_list); 248 destroy_super(sb); 249 } 250 } 251 252 /** 253 * put_super - drop a temporary reference to superblock 254 * @sb: superblock in question 255 * 256 * Drops a temporary reference, frees superblock if there's no 257 * references left. 258 */ 259 static void put_super(struct super_block *sb) 260 { 261 spin_lock(&sb_lock); 262 __put_super(sb); 263 spin_unlock(&sb_lock); 264 } 265 266 267 /** 268 * deactivate_locked_super - drop an active reference to superblock 269 * @s: superblock to deactivate 270 * 271 * Drops an active reference to superblock, converting it into a temprory 272 * one if there is no other active references left. In that case we 273 * tell fs driver to shut it down and drop the temporary reference we 274 * had just acquired. 275 * 276 * Caller holds exclusive lock on superblock; that lock is released. 277 */ 278 void deactivate_locked_super(struct super_block *s) 279 { 280 struct file_system_type *fs = s->s_type; 281 if (atomic_dec_and_test(&s->s_active)) { 282 cleancache_invalidate_fs(s); 283 unregister_shrinker(&s->s_shrink); 284 fs->kill_sb(s); 285 286 put_filesystem(fs); 287 put_super(s); 288 } else { 289 up_write(&s->s_umount); 290 } 291 } 292 293 EXPORT_SYMBOL(deactivate_locked_super); 294 295 /** 296 * deactivate_super - drop an active reference to superblock 297 * @s: superblock to deactivate 298 * 299 * Variant of deactivate_locked_super(), except that superblock is *not* 300 * locked by caller. If we are going to drop the final active reference, 301 * lock will be acquired prior to that. 302 */ 303 void deactivate_super(struct super_block *s) 304 { 305 if (!atomic_add_unless(&s->s_active, -1, 1)) { 306 down_write(&s->s_umount); 307 deactivate_locked_super(s); 308 } 309 } 310 311 EXPORT_SYMBOL(deactivate_super); 312 313 /** 314 * grab_super - acquire an active reference 315 * @s: reference we are trying to make active 316 * 317 * Tries to acquire an active reference. grab_super() is used when we 318 * had just found a superblock in super_blocks or fs_type->fs_supers 319 * and want to turn it into a full-blown active reference. grab_super() 320 * is called with sb_lock held and drops it. Returns 1 in case of 321 * success, 0 if we had failed (superblock contents was already dead or 322 * dying when grab_super() had been called). Note that this is only 323 * called for superblocks not in rundown mode (== ones still on ->fs_supers 324 * of their type), so increment of ->s_count is OK here. 325 */ 326 static int grab_super(struct super_block *s) __releases(sb_lock) 327 { 328 s->s_count++; 329 spin_unlock(&sb_lock); 330 down_write(&s->s_umount); 331 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) { 332 put_super(s); 333 return 1; 334 } 335 up_write(&s->s_umount); 336 put_super(s); 337 return 0; 338 } 339 340 /* 341 * grab_super_passive - acquire a passive reference 342 * @sb: reference we are trying to grab 343 * 344 * Tries to acquire a passive reference. This is used in places where we 345 * cannot take an active reference but we need to ensure that the 346 * superblock does not go away while we are working on it. It returns 347 * false if a reference was not gained, and returns true with the s_umount 348 * lock held in read mode if a reference is gained. On successful return, 349 * the caller must drop the s_umount lock and the passive reference when 350 * done. 351 */ 352 bool grab_super_passive(struct super_block *sb) 353 { 354 spin_lock(&sb_lock); 355 if (hlist_unhashed(&sb->s_instances)) { 356 spin_unlock(&sb_lock); 357 return false; 358 } 359 360 sb->s_count++; 361 spin_unlock(&sb_lock); 362 363 if (down_read_trylock(&sb->s_umount)) { 364 if (sb->s_root && (sb->s_flags & MS_BORN)) 365 return true; 366 up_read(&sb->s_umount); 367 } 368 369 put_super(sb); 370 return false; 371 } 372 373 /** 374 * generic_shutdown_super - common helper for ->kill_sb() 375 * @sb: superblock to kill 376 * 377 * generic_shutdown_super() does all fs-independent work on superblock 378 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 379 * that need destruction out of superblock, call generic_shutdown_super() 380 * and release aforementioned objects. Note: dentries and inodes _are_ 381 * taken care of and do not need specific handling. 382 * 383 * Upon calling this function, the filesystem may no longer alter or 384 * rearrange the set of dentries belonging to this super_block, nor may it 385 * change the attachments of dentries to inodes. 386 */ 387 void generic_shutdown_super(struct super_block *sb) 388 { 389 const struct super_operations *sop = sb->s_op; 390 391 if (sb->s_root) { 392 shrink_dcache_for_umount(sb); 393 sync_filesystem(sb); 394 sb->s_flags &= ~MS_ACTIVE; 395 396 fsnotify_unmount_inodes(&sb->s_inodes); 397 398 evict_inodes(sb); 399 400 if (sb->s_dio_done_wq) { 401 destroy_workqueue(sb->s_dio_done_wq); 402 sb->s_dio_done_wq = NULL; 403 } 404 405 if (sop->put_super) 406 sop->put_super(sb); 407 408 if (!list_empty(&sb->s_inodes)) { 409 printk("VFS: Busy inodes after unmount of %s. " 410 "Self-destruct in 5 seconds. Have a nice day...\n", 411 sb->s_id); 412 } 413 } 414 spin_lock(&sb_lock); 415 /* should be initialized for __put_super_and_need_restart() */ 416 hlist_del_init(&sb->s_instances); 417 spin_unlock(&sb_lock); 418 up_write(&sb->s_umount); 419 } 420 421 EXPORT_SYMBOL(generic_shutdown_super); 422 423 /** 424 * sget - find or create a superblock 425 * @type: filesystem type superblock should belong to 426 * @test: comparison callback 427 * @set: setup callback 428 * @flags: mount flags 429 * @data: argument to each of them 430 */ 431 struct super_block *sget(struct file_system_type *type, 432 int (*test)(struct super_block *,void *), 433 int (*set)(struct super_block *,void *), 434 int flags, 435 void *data) 436 { 437 struct super_block *s = NULL; 438 struct super_block *old; 439 int err; 440 441 retry: 442 spin_lock(&sb_lock); 443 if (test) { 444 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 445 if (!test(old, data)) 446 continue; 447 if (!grab_super(old)) 448 goto retry; 449 if (s) { 450 up_write(&s->s_umount); 451 destroy_super(s); 452 s = NULL; 453 } 454 return old; 455 } 456 } 457 if (!s) { 458 spin_unlock(&sb_lock); 459 s = alloc_super(type, flags); 460 if (!s) 461 return ERR_PTR(-ENOMEM); 462 goto retry; 463 } 464 465 err = set(s, data); 466 if (err) { 467 spin_unlock(&sb_lock); 468 up_write(&s->s_umount); 469 destroy_super(s); 470 return ERR_PTR(err); 471 } 472 s->s_type = type; 473 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 474 list_add_tail(&s->s_list, &super_blocks); 475 hlist_add_head(&s->s_instances, &type->fs_supers); 476 spin_unlock(&sb_lock); 477 get_filesystem(type); 478 register_shrinker(&s->s_shrink); 479 return s; 480 } 481 482 EXPORT_SYMBOL(sget); 483 484 void drop_super(struct super_block *sb) 485 { 486 up_read(&sb->s_umount); 487 put_super(sb); 488 } 489 490 EXPORT_SYMBOL(drop_super); 491 492 /** 493 * iterate_supers - call function for all active superblocks 494 * @f: function to call 495 * @arg: argument to pass to it 496 * 497 * Scans the superblock list and calls given function, passing it 498 * locked superblock and given argument. 499 */ 500 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 501 { 502 struct super_block *sb, *p = NULL; 503 504 spin_lock(&sb_lock); 505 list_for_each_entry(sb, &super_blocks, s_list) { 506 if (hlist_unhashed(&sb->s_instances)) 507 continue; 508 sb->s_count++; 509 spin_unlock(&sb_lock); 510 511 down_read(&sb->s_umount); 512 if (sb->s_root && (sb->s_flags & MS_BORN)) 513 f(sb, arg); 514 up_read(&sb->s_umount); 515 516 spin_lock(&sb_lock); 517 if (p) 518 __put_super(p); 519 p = sb; 520 } 521 if (p) 522 __put_super(p); 523 spin_unlock(&sb_lock); 524 } 525 526 /** 527 * iterate_supers_type - call function for superblocks of given type 528 * @type: fs type 529 * @f: function to call 530 * @arg: argument to pass to it 531 * 532 * Scans the superblock list and calls given function, passing it 533 * locked superblock and given argument. 534 */ 535 void iterate_supers_type(struct file_system_type *type, 536 void (*f)(struct super_block *, void *), void *arg) 537 { 538 struct super_block *sb, *p = NULL; 539 540 spin_lock(&sb_lock); 541 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 542 sb->s_count++; 543 spin_unlock(&sb_lock); 544 545 down_read(&sb->s_umount); 546 if (sb->s_root && (sb->s_flags & MS_BORN)) 547 f(sb, arg); 548 up_read(&sb->s_umount); 549 550 spin_lock(&sb_lock); 551 if (p) 552 __put_super(p); 553 p = sb; 554 } 555 if (p) 556 __put_super(p); 557 spin_unlock(&sb_lock); 558 } 559 560 EXPORT_SYMBOL(iterate_supers_type); 561 562 /** 563 * get_super - get the superblock of a device 564 * @bdev: device to get the superblock for 565 * 566 * Scans the superblock list and finds the superblock of the file system 567 * mounted on the device given. %NULL is returned if no match is found. 568 */ 569 570 struct super_block *get_super(struct block_device *bdev) 571 { 572 struct super_block *sb; 573 574 if (!bdev) 575 return NULL; 576 577 spin_lock(&sb_lock); 578 rescan: 579 list_for_each_entry(sb, &super_blocks, s_list) { 580 if (hlist_unhashed(&sb->s_instances)) 581 continue; 582 if (sb->s_bdev == bdev) { 583 sb->s_count++; 584 spin_unlock(&sb_lock); 585 down_read(&sb->s_umount); 586 /* still alive? */ 587 if (sb->s_root && (sb->s_flags & MS_BORN)) 588 return sb; 589 up_read(&sb->s_umount); 590 /* nope, got unmounted */ 591 spin_lock(&sb_lock); 592 __put_super(sb); 593 goto rescan; 594 } 595 } 596 spin_unlock(&sb_lock); 597 return NULL; 598 } 599 600 EXPORT_SYMBOL(get_super); 601 602 /** 603 * get_super_thawed - get thawed superblock of a device 604 * @bdev: device to get the superblock for 605 * 606 * Scans the superblock list and finds the superblock of the file system 607 * mounted on the device. The superblock is returned once it is thawed 608 * (or immediately if it was not frozen). %NULL is returned if no match 609 * is found. 610 */ 611 struct super_block *get_super_thawed(struct block_device *bdev) 612 { 613 while (1) { 614 struct super_block *s = get_super(bdev); 615 if (!s || s->s_writers.frozen == SB_UNFROZEN) 616 return s; 617 up_read(&s->s_umount); 618 wait_event(s->s_writers.wait_unfrozen, 619 s->s_writers.frozen == SB_UNFROZEN); 620 put_super(s); 621 } 622 } 623 EXPORT_SYMBOL(get_super_thawed); 624 625 /** 626 * get_active_super - get an active reference to the superblock of a device 627 * @bdev: device to get the superblock for 628 * 629 * Scans the superblock list and finds the superblock of the file system 630 * mounted on the device given. Returns the superblock with an active 631 * reference or %NULL if none was found. 632 */ 633 struct super_block *get_active_super(struct block_device *bdev) 634 { 635 struct super_block *sb; 636 637 if (!bdev) 638 return NULL; 639 640 restart: 641 spin_lock(&sb_lock); 642 list_for_each_entry(sb, &super_blocks, s_list) { 643 if (hlist_unhashed(&sb->s_instances)) 644 continue; 645 if (sb->s_bdev == bdev) { 646 if (!grab_super(sb)) 647 goto restart; 648 up_write(&sb->s_umount); 649 return sb; 650 } 651 } 652 spin_unlock(&sb_lock); 653 return NULL; 654 } 655 656 struct super_block *user_get_super(dev_t dev) 657 { 658 struct super_block *sb; 659 660 spin_lock(&sb_lock); 661 rescan: 662 list_for_each_entry(sb, &super_blocks, s_list) { 663 if (hlist_unhashed(&sb->s_instances)) 664 continue; 665 if (sb->s_dev == dev) { 666 sb->s_count++; 667 spin_unlock(&sb_lock); 668 down_read(&sb->s_umount); 669 /* still alive? */ 670 if (sb->s_root && (sb->s_flags & MS_BORN)) 671 return sb; 672 up_read(&sb->s_umount); 673 /* nope, got unmounted */ 674 spin_lock(&sb_lock); 675 __put_super(sb); 676 goto rescan; 677 } 678 } 679 spin_unlock(&sb_lock); 680 return NULL; 681 } 682 683 /** 684 * do_remount_sb - asks filesystem to change mount options. 685 * @sb: superblock in question 686 * @flags: numeric part of options 687 * @data: the rest of options 688 * @force: whether or not to force the change 689 * 690 * Alters the mount options of a mounted file system. 691 */ 692 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 693 { 694 int retval; 695 int remount_ro; 696 697 if (sb->s_writers.frozen != SB_UNFROZEN) 698 return -EBUSY; 699 700 #ifdef CONFIG_BLOCK 701 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 702 return -EACCES; 703 #endif 704 705 if (flags & MS_RDONLY) 706 acct_auto_close(sb); 707 shrink_dcache_sb(sb); 708 709 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 710 711 /* If we are remounting RDONLY and current sb is read/write, 712 make sure there are no rw files opened */ 713 if (remount_ro) { 714 if (force) { 715 sb->s_readonly_remount = 1; 716 smp_wmb(); 717 } else { 718 retval = sb_prepare_remount_readonly(sb); 719 if (retval) 720 return retval; 721 } 722 } 723 724 if (sb->s_op->remount_fs) { 725 retval = sb->s_op->remount_fs(sb, &flags, data); 726 if (retval) { 727 if (!force) 728 goto cancel_readonly; 729 /* If forced remount, go ahead despite any errors */ 730 WARN(1, "forced remount of a %s fs returned %i\n", 731 sb->s_type->name, retval); 732 } 733 } 734 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 735 /* Needs to be ordered wrt mnt_is_readonly() */ 736 smp_wmb(); 737 sb->s_readonly_remount = 0; 738 739 /* 740 * Some filesystems modify their metadata via some other path than the 741 * bdev buffer cache (eg. use a private mapping, or directories in 742 * pagecache, etc). Also file data modifications go via their own 743 * mappings. So If we try to mount readonly then copy the filesystem 744 * from bdev, we could get stale data, so invalidate it to give a best 745 * effort at coherency. 746 */ 747 if (remount_ro && sb->s_bdev) 748 invalidate_bdev(sb->s_bdev); 749 return 0; 750 751 cancel_readonly: 752 sb->s_readonly_remount = 0; 753 return retval; 754 } 755 756 static void do_emergency_remount(struct work_struct *work) 757 { 758 struct super_block *sb, *p = NULL; 759 760 spin_lock(&sb_lock); 761 list_for_each_entry(sb, &super_blocks, s_list) { 762 if (hlist_unhashed(&sb->s_instances)) 763 continue; 764 sb->s_count++; 765 spin_unlock(&sb_lock); 766 down_write(&sb->s_umount); 767 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 768 !(sb->s_flags & MS_RDONLY)) { 769 /* 770 * What lock protects sb->s_flags?? 771 */ 772 do_remount_sb(sb, MS_RDONLY, NULL, 1); 773 } 774 up_write(&sb->s_umount); 775 spin_lock(&sb_lock); 776 if (p) 777 __put_super(p); 778 p = sb; 779 } 780 if (p) 781 __put_super(p); 782 spin_unlock(&sb_lock); 783 kfree(work); 784 printk("Emergency Remount complete\n"); 785 } 786 787 void emergency_remount(void) 788 { 789 struct work_struct *work; 790 791 work = kmalloc(sizeof(*work), GFP_ATOMIC); 792 if (work) { 793 INIT_WORK(work, do_emergency_remount); 794 schedule_work(work); 795 } 796 } 797 798 /* 799 * Unnamed block devices are dummy devices used by virtual 800 * filesystems which don't use real block-devices. -- jrs 801 */ 802 803 static DEFINE_IDA(unnamed_dev_ida); 804 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 805 /* Many userspace utilities consider an FSID of 0 invalid. 806 * Always return at least 1 from get_anon_bdev. 807 */ 808 static int unnamed_dev_start = 1; 809 810 int get_anon_bdev(dev_t *p) 811 { 812 int dev; 813 int error; 814 815 retry: 816 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 817 return -ENOMEM; 818 spin_lock(&unnamed_dev_lock); 819 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 820 if (!error) 821 unnamed_dev_start = dev + 1; 822 spin_unlock(&unnamed_dev_lock); 823 if (error == -EAGAIN) 824 /* We raced and lost with another CPU. */ 825 goto retry; 826 else if (error) 827 return -EAGAIN; 828 829 if (dev == (1 << MINORBITS)) { 830 spin_lock(&unnamed_dev_lock); 831 ida_remove(&unnamed_dev_ida, dev); 832 if (unnamed_dev_start > dev) 833 unnamed_dev_start = dev; 834 spin_unlock(&unnamed_dev_lock); 835 return -EMFILE; 836 } 837 *p = MKDEV(0, dev & MINORMASK); 838 return 0; 839 } 840 EXPORT_SYMBOL(get_anon_bdev); 841 842 void free_anon_bdev(dev_t dev) 843 { 844 int slot = MINOR(dev); 845 spin_lock(&unnamed_dev_lock); 846 ida_remove(&unnamed_dev_ida, slot); 847 if (slot < unnamed_dev_start) 848 unnamed_dev_start = slot; 849 spin_unlock(&unnamed_dev_lock); 850 } 851 EXPORT_SYMBOL(free_anon_bdev); 852 853 int set_anon_super(struct super_block *s, void *data) 854 { 855 int error = get_anon_bdev(&s->s_dev); 856 if (!error) 857 s->s_bdi = &noop_backing_dev_info; 858 return error; 859 } 860 861 EXPORT_SYMBOL(set_anon_super); 862 863 void kill_anon_super(struct super_block *sb) 864 { 865 dev_t dev = sb->s_dev; 866 generic_shutdown_super(sb); 867 free_anon_bdev(dev); 868 } 869 870 EXPORT_SYMBOL(kill_anon_super); 871 872 void kill_litter_super(struct super_block *sb) 873 { 874 if (sb->s_root) 875 d_genocide(sb->s_root); 876 kill_anon_super(sb); 877 } 878 879 EXPORT_SYMBOL(kill_litter_super); 880 881 static int ns_test_super(struct super_block *sb, void *data) 882 { 883 return sb->s_fs_info == data; 884 } 885 886 static int ns_set_super(struct super_block *sb, void *data) 887 { 888 sb->s_fs_info = data; 889 return set_anon_super(sb, NULL); 890 } 891 892 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 893 void *data, int (*fill_super)(struct super_block *, void *, int)) 894 { 895 struct super_block *sb; 896 897 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data); 898 if (IS_ERR(sb)) 899 return ERR_CAST(sb); 900 901 if (!sb->s_root) { 902 int err; 903 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 904 if (err) { 905 deactivate_locked_super(sb); 906 return ERR_PTR(err); 907 } 908 909 sb->s_flags |= MS_ACTIVE; 910 } 911 912 return dget(sb->s_root); 913 } 914 915 EXPORT_SYMBOL(mount_ns); 916 917 #ifdef CONFIG_BLOCK 918 static int set_bdev_super(struct super_block *s, void *data) 919 { 920 s->s_bdev = data; 921 s->s_dev = s->s_bdev->bd_dev; 922 923 /* 924 * We set the bdi here to the queue backing, file systems can 925 * overwrite this in ->fill_super() 926 */ 927 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 928 return 0; 929 } 930 931 static int test_bdev_super(struct super_block *s, void *data) 932 { 933 return (void *)s->s_bdev == data; 934 } 935 936 struct dentry *mount_bdev(struct file_system_type *fs_type, 937 int flags, const char *dev_name, void *data, 938 int (*fill_super)(struct super_block *, void *, int)) 939 { 940 struct block_device *bdev; 941 struct super_block *s; 942 fmode_t mode = FMODE_READ | FMODE_EXCL; 943 int error = 0; 944 945 if (!(flags & MS_RDONLY)) 946 mode |= FMODE_WRITE; 947 948 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 949 if (IS_ERR(bdev)) 950 return ERR_CAST(bdev); 951 952 /* 953 * once the super is inserted into the list by sget, s_umount 954 * will protect the lockfs code from trying to start a snapshot 955 * while we are mounting 956 */ 957 mutex_lock(&bdev->bd_fsfreeze_mutex); 958 if (bdev->bd_fsfreeze_count > 0) { 959 mutex_unlock(&bdev->bd_fsfreeze_mutex); 960 error = -EBUSY; 961 goto error_bdev; 962 } 963 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, 964 bdev); 965 mutex_unlock(&bdev->bd_fsfreeze_mutex); 966 if (IS_ERR(s)) 967 goto error_s; 968 969 if (s->s_root) { 970 if ((flags ^ s->s_flags) & MS_RDONLY) { 971 deactivate_locked_super(s); 972 error = -EBUSY; 973 goto error_bdev; 974 } 975 976 /* 977 * s_umount nests inside bd_mutex during 978 * __invalidate_device(). blkdev_put() acquires 979 * bd_mutex and can't be called under s_umount. Drop 980 * s_umount temporarily. This is safe as we're 981 * holding an active reference. 982 */ 983 up_write(&s->s_umount); 984 blkdev_put(bdev, mode); 985 down_write(&s->s_umount); 986 } else { 987 char b[BDEVNAME_SIZE]; 988 989 s->s_mode = mode; 990 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 991 sb_set_blocksize(s, block_size(bdev)); 992 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 993 if (error) { 994 deactivate_locked_super(s); 995 goto error; 996 } 997 998 s->s_flags |= MS_ACTIVE; 999 bdev->bd_super = s; 1000 } 1001 1002 return dget(s->s_root); 1003 1004 error_s: 1005 error = PTR_ERR(s); 1006 error_bdev: 1007 blkdev_put(bdev, mode); 1008 error: 1009 return ERR_PTR(error); 1010 } 1011 EXPORT_SYMBOL(mount_bdev); 1012 1013 void kill_block_super(struct super_block *sb) 1014 { 1015 struct block_device *bdev = sb->s_bdev; 1016 fmode_t mode = sb->s_mode; 1017 1018 bdev->bd_super = NULL; 1019 generic_shutdown_super(sb); 1020 sync_blockdev(bdev); 1021 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1022 blkdev_put(bdev, mode | FMODE_EXCL); 1023 } 1024 1025 EXPORT_SYMBOL(kill_block_super); 1026 #endif 1027 1028 struct dentry *mount_nodev(struct file_system_type *fs_type, 1029 int flags, void *data, 1030 int (*fill_super)(struct super_block *, void *, int)) 1031 { 1032 int error; 1033 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1034 1035 if (IS_ERR(s)) 1036 return ERR_CAST(s); 1037 1038 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1039 if (error) { 1040 deactivate_locked_super(s); 1041 return ERR_PTR(error); 1042 } 1043 s->s_flags |= MS_ACTIVE; 1044 return dget(s->s_root); 1045 } 1046 EXPORT_SYMBOL(mount_nodev); 1047 1048 static int compare_single(struct super_block *s, void *p) 1049 { 1050 return 1; 1051 } 1052 1053 struct dentry *mount_single(struct file_system_type *fs_type, 1054 int flags, void *data, 1055 int (*fill_super)(struct super_block *, void *, int)) 1056 { 1057 struct super_block *s; 1058 int error; 1059 1060 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1061 if (IS_ERR(s)) 1062 return ERR_CAST(s); 1063 if (!s->s_root) { 1064 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1065 if (error) { 1066 deactivate_locked_super(s); 1067 return ERR_PTR(error); 1068 } 1069 s->s_flags |= MS_ACTIVE; 1070 } else { 1071 do_remount_sb(s, flags, data, 0); 1072 } 1073 return dget(s->s_root); 1074 } 1075 EXPORT_SYMBOL(mount_single); 1076 1077 struct dentry * 1078 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1079 { 1080 struct dentry *root; 1081 struct super_block *sb; 1082 char *secdata = NULL; 1083 int error = -ENOMEM; 1084 1085 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1086 secdata = alloc_secdata(); 1087 if (!secdata) 1088 goto out; 1089 1090 error = security_sb_copy_data(data, secdata); 1091 if (error) 1092 goto out_free_secdata; 1093 } 1094 1095 root = type->mount(type, flags, name, data); 1096 if (IS_ERR(root)) { 1097 error = PTR_ERR(root); 1098 goto out_free_secdata; 1099 } 1100 sb = root->d_sb; 1101 BUG_ON(!sb); 1102 WARN_ON(!sb->s_bdi); 1103 WARN_ON(sb->s_bdi == &default_backing_dev_info); 1104 sb->s_flags |= MS_BORN; 1105 1106 error = security_sb_kern_mount(sb, flags, secdata); 1107 if (error) 1108 goto out_sb; 1109 1110 /* 1111 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1112 * but s_maxbytes was an unsigned long long for many releases. Throw 1113 * this warning for a little while to try and catch filesystems that 1114 * violate this rule. 1115 */ 1116 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1117 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1118 1119 up_write(&sb->s_umount); 1120 free_secdata(secdata); 1121 return root; 1122 out_sb: 1123 dput(root); 1124 deactivate_locked_super(sb); 1125 out_free_secdata: 1126 free_secdata(secdata); 1127 out: 1128 return ERR_PTR(error); 1129 } 1130 1131 /* 1132 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1133 * instead. 1134 */ 1135 void __sb_end_write(struct super_block *sb, int level) 1136 { 1137 percpu_counter_dec(&sb->s_writers.counter[level-1]); 1138 /* 1139 * Make sure s_writers are updated before we wake up waiters in 1140 * freeze_super(). 1141 */ 1142 smp_mb(); 1143 if (waitqueue_active(&sb->s_writers.wait)) 1144 wake_up(&sb->s_writers.wait); 1145 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_); 1146 } 1147 EXPORT_SYMBOL(__sb_end_write); 1148 1149 #ifdef CONFIG_LOCKDEP 1150 /* 1151 * We want lockdep to tell us about possible deadlocks with freezing but 1152 * it's it bit tricky to properly instrument it. Getting a freeze protection 1153 * works as getting a read lock but there are subtle problems. XFS for example 1154 * gets freeze protection on internal level twice in some cases, which is OK 1155 * only because we already hold a freeze protection also on higher level. Due 1156 * to these cases we have to tell lockdep we are doing trylock when we 1157 * already hold a freeze protection for a higher freeze level. 1158 */ 1159 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock, 1160 unsigned long ip) 1161 { 1162 int i; 1163 1164 if (!trylock) { 1165 for (i = 0; i < level - 1; i++) 1166 if (lock_is_held(&sb->s_writers.lock_map[i])) { 1167 trylock = true; 1168 break; 1169 } 1170 } 1171 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip); 1172 } 1173 #endif 1174 1175 /* 1176 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1177 * instead. 1178 */ 1179 int __sb_start_write(struct super_block *sb, int level, bool wait) 1180 { 1181 retry: 1182 if (unlikely(sb->s_writers.frozen >= level)) { 1183 if (!wait) 1184 return 0; 1185 wait_event(sb->s_writers.wait_unfrozen, 1186 sb->s_writers.frozen < level); 1187 } 1188 1189 #ifdef CONFIG_LOCKDEP 1190 acquire_freeze_lock(sb, level, !wait, _RET_IP_); 1191 #endif 1192 percpu_counter_inc(&sb->s_writers.counter[level-1]); 1193 /* 1194 * Make sure counter is updated before we check for frozen. 1195 * freeze_super() first sets frozen and then checks the counter. 1196 */ 1197 smp_mb(); 1198 if (unlikely(sb->s_writers.frozen >= level)) { 1199 __sb_end_write(sb, level); 1200 goto retry; 1201 } 1202 return 1; 1203 } 1204 EXPORT_SYMBOL(__sb_start_write); 1205 1206 /** 1207 * sb_wait_write - wait until all writers to given file system finish 1208 * @sb: the super for which we wait 1209 * @level: type of writers we wait for (normal vs page fault) 1210 * 1211 * This function waits until there are no writers of given type to given file 1212 * system. Caller of this function should make sure there can be no new writers 1213 * of type @level before calling this function. Otherwise this function can 1214 * livelock. 1215 */ 1216 static void sb_wait_write(struct super_block *sb, int level) 1217 { 1218 s64 writers; 1219 1220 /* 1221 * We just cycle-through lockdep here so that it does not complain 1222 * about returning with lock to userspace 1223 */ 1224 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_); 1225 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_); 1226 1227 do { 1228 DEFINE_WAIT(wait); 1229 1230 /* 1231 * We use a barrier in prepare_to_wait() to separate setting 1232 * of frozen and checking of the counter 1233 */ 1234 prepare_to_wait(&sb->s_writers.wait, &wait, 1235 TASK_UNINTERRUPTIBLE); 1236 1237 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]); 1238 if (writers) 1239 schedule(); 1240 1241 finish_wait(&sb->s_writers.wait, &wait); 1242 } while (writers); 1243 } 1244 1245 /** 1246 * freeze_super - lock the filesystem and force it into a consistent state 1247 * @sb: the super to lock 1248 * 1249 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1250 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1251 * -EBUSY. 1252 * 1253 * During this function, sb->s_writers.frozen goes through these values: 1254 * 1255 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1256 * 1257 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1258 * writes should be blocked, though page faults are still allowed. We wait for 1259 * all writes to complete and then proceed to the next stage. 1260 * 1261 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1262 * but internal fs threads can still modify the filesystem (although they 1263 * should not dirty new pages or inodes), writeback can run etc. After waiting 1264 * for all running page faults we sync the filesystem which will clean all 1265 * dirty pages and inodes (no new dirty pages or inodes can be created when 1266 * sync is running). 1267 * 1268 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1269 * modification are blocked (e.g. XFS preallocation truncation on inode 1270 * reclaim). This is usually implemented by blocking new transactions for 1271 * filesystems that have them and need this additional guard. After all 1272 * internal writers are finished we call ->freeze_fs() to finish filesystem 1273 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1274 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1275 * 1276 * sb->s_writers.frozen is protected by sb->s_umount. 1277 */ 1278 int freeze_super(struct super_block *sb) 1279 { 1280 int ret; 1281 1282 atomic_inc(&sb->s_active); 1283 down_write(&sb->s_umount); 1284 if (sb->s_writers.frozen != SB_UNFROZEN) { 1285 deactivate_locked_super(sb); 1286 return -EBUSY; 1287 } 1288 1289 if (!(sb->s_flags & MS_BORN)) { 1290 up_write(&sb->s_umount); 1291 return 0; /* sic - it's "nothing to do" */ 1292 } 1293 1294 if (sb->s_flags & MS_RDONLY) { 1295 /* Nothing to do really... */ 1296 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1297 up_write(&sb->s_umount); 1298 return 0; 1299 } 1300 1301 /* From now on, no new normal writers can start */ 1302 sb->s_writers.frozen = SB_FREEZE_WRITE; 1303 smp_wmb(); 1304 1305 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1306 up_write(&sb->s_umount); 1307 1308 sb_wait_write(sb, SB_FREEZE_WRITE); 1309 1310 /* Now we go and block page faults... */ 1311 down_write(&sb->s_umount); 1312 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1313 smp_wmb(); 1314 1315 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1316 1317 /* All writers are done so after syncing there won't be dirty data */ 1318 sync_filesystem(sb); 1319 1320 /* Now wait for internal filesystem counter */ 1321 sb->s_writers.frozen = SB_FREEZE_FS; 1322 smp_wmb(); 1323 sb_wait_write(sb, SB_FREEZE_FS); 1324 1325 if (sb->s_op->freeze_fs) { 1326 ret = sb->s_op->freeze_fs(sb); 1327 if (ret) { 1328 printk(KERN_ERR 1329 "VFS:Filesystem freeze failed\n"); 1330 sb->s_writers.frozen = SB_UNFROZEN; 1331 smp_wmb(); 1332 wake_up(&sb->s_writers.wait_unfrozen); 1333 deactivate_locked_super(sb); 1334 return ret; 1335 } 1336 } 1337 /* 1338 * This is just for debugging purposes so that fs can warn if it 1339 * sees write activity when frozen is set to SB_FREEZE_COMPLETE. 1340 */ 1341 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1342 up_write(&sb->s_umount); 1343 return 0; 1344 } 1345 EXPORT_SYMBOL(freeze_super); 1346 1347 /** 1348 * thaw_super -- unlock filesystem 1349 * @sb: the super to thaw 1350 * 1351 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1352 */ 1353 int thaw_super(struct super_block *sb) 1354 { 1355 int error; 1356 1357 down_write(&sb->s_umount); 1358 if (sb->s_writers.frozen == SB_UNFROZEN) { 1359 up_write(&sb->s_umount); 1360 return -EINVAL; 1361 } 1362 1363 if (sb->s_flags & MS_RDONLY) 1364 goto out; 1365 1366 if (sb->s_op->unfreeze_fs) { 1367 error = sb->s_op->unfreeze_fs(sb); 1368 if (error) { 1369 printk(KERN_ERR 1370 "VFS:Filesystem thaw failed\n"); 1371 up_write(&sb->s_umount); 1372 return error; 1373 } 1374 } 1375 1376 out: 1377 sb->s_writers.frozen = SB_UNFROZEN; 1378 smp_wmb(); 1379 wake_up(&sb->s_writers.wait_unfrozen); 1380 deactivate_locked_super(sb); 1381 1382 return 0; 1383 } 1384 EXPORT_SYMBOL(thaw_super); 1385