xref: /linux/fs/super.c (revision c5aec4c76af1a2d89ee2f2d4d5463b2ad2d85de5)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38 
39 
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
42 
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 	"sb_writers",
45 	"sb_pagefaults",
46 	"sb_internal",
47 };
48 
49 /*
50  * One thing we have to be careful of with a per-sb shrinker is that we don't
51  * drop the last active reference to the superblock from within the shrinker.
52  * If that happens we could trigger unregistering the shrinker from within the
53  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54  * take a passive reference to the superblock to avoid this from occurring.
55  */
56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 				      struct shrink_control *sc)
58 {
59 	struct super_block *sb;
60 	long	fs_objects = 0;
61 	long	total_objects;
62 	long	freed = 0;
63 	long	dentries;
64 	long	inodes;
65 
66 	sb = container_of(shrink, struct super_block, s_shrink);
67 
68 	/*
69 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
70 	 * to recurse into the FS that called us in clear_inode() and friends..
71 	 */
72 	if (!(sc->gfp_mask & __GFP_FS))
73 		return SHRINK_STOP;
74 
75 	if (!grab_super_passive(sb))
76 		return SHRINK_STOP;
77 
78 	if (sb->s_op->nr_cached_objects)
79 		fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
80 
81 	inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
82 	dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
83 	total_objects = dentries + inodes + fs_objects + 1;
84 
85 	/* proportion the scan between the caches */
86 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
87 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
88 
89 	/*
90 	 * prune the dcache first as the icache is pinned by it, then
91 	 * prune the icache, followed by the filesystem specific caches
92 	 */
93 	freed = prune_dcache_sb(sb, dentries, sc->nid);
94 	freed += prune_icache_sb(sb, inodes, sc->nid);
95 
96 	if (fs_objects) {
97 		fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
98 								total_objects);
99 		freed += sb->s_op->free_cached_objects(sb, fs_objects,
100 						       sc->nid);
101 	}
102 
103 	drop_super(sb);
104 	return freed;
105 }
106 
107 static unsigned long super_cache_count(struct shrinker *shrink,
108 				       struct shrink_control *sc)
109 {
110 	struct super_block *sb;
111 	long	total_objects = 0;
112 
113 	sb = container_of(shrink, struct super_block, s_shrink);
114 
115 	/*
116 	 * Don't call grab_super_passive as it is a potential
117 	 * scalability bottleneck. The counts could get updated
118 	 * between super_cache_count and super_cache_scan anyway.
119 	 * Call to super_cache_count with shrinker_rwsem held
120 	 * ensures the safety of call to list_lru_count_node() and
121 	 * s_op->nr_cached_objects().
122 	 */
123 	if (sb->s_op && sb->s_op->nr_cached_objects)
124 		total_objects = sb->s_op->nr_cached_objects(sb,
125 						 sc->nid);
126 
127 	total_objects += list_lru_count_node(&sb->s_dentry_lru,
128 						 sc->nid);
129 	total_objects += list_lru_count_node(&sb->s_inode_lru,
130 						 sc->nid);
131 
132 	total_objects = vfs_pressure_ratio(total_objects);
133 	return total_objects;
134 }
135 
136 /**
137  *	destroy_super	-	frees a superblock
138  *	@s: superblock to free
139  *
140  *	Frees a superblock.
141  */
142 static void destroy_super(struct super_block *s)
143 {
144 	int i;
145 	list_lru_destroy(&s->s_dentry_lru);
146 	list_lru_destroy(&s->s_inode_lru);
147 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
148 		percpu_counter_destroy(&s->s_writers.counter[i]);
149 	security_sb_free(s);
150 	WARN_ON(!list_empty(&s->s_mounts));
151 	kfree(s->s_subtype);
152 	kfree(s->s_options);
153 	kfree_rcu(s, rcu);
154 }
155 
156 /**
157  *	alloc_super	-	create new superblock
158  *	@type:	filesystem type superblock should belong to
159  *	@flags: the mount flags
160  *
161  *	Allocates and initializes a new &struct super_block.  alloc_super()
162  *	returns a pointer new superblock or %NULL if allocation had failed.
163  */
164 static struct super_block *alloc_super(struct file_system_type *type, int flags)
165 {
166 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
167 	static const struct super_operations default_op;
168 	int i;
169 
170 	if (!s)
171 		return NULL;
172 
173 	INIT_LIST_HEAD(&s->s_mounts);
174 
175 	if (security_sb_alloc(s))
176 		goto fail;
177 
178 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
179 		if (percpu_counter_init(&s->s_writers.counter[i], 0) < 0)
180 			goto fail;
181 		lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
182 				 &type->s_writers_key[i], 0);
183 	}
184 	init_waitqueue_head(&s->s_writers.wait);
185 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
186 	s->s_flags = flags;
187 	s->s_bdi = &default_backing_dev_info;
188 	INIT_HLIST_NODE(&s->s_instances);
189 	INIT_HLIST_BL_HEAD(&s->s_anon);
190 	INIT_LIST_HEAD(&s->s_inodes);
191 
192 	if (list_lru_init(&s->s_dentry_lru))
193 		goto fail;
194 	if (list_lru_init(&s->s_inode_lru))
195 		goto fail;
196 
197 	init_rwsem(&s->s_umount);
198 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
199 	/*
200 	 * sget() can have s_umount recursion.
201 	 *
202 	 * When it cannot find a suitable sb, it allocates a new
203 	 * one (this one), and tries again to find a suitable old
204 	 * one.
205 	 *
206 	 * In case that succeeds, it will acquire the s_umount
207 	 * lock of the old one. Since these are clearly distrinct
208 	 * locks, and this object isn't exposed yet, there's no
209 	 * risk of deadlocks.
210 	 *
211 	 * Annotate this by putting this lock in a different
212 	 * subclass.
213 	 */
214 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
215 	s->s_count = 1;
216 	atomic_set(&s->s_active, 1);
217 	mutex_init(&s->s_vfs_rename_mutex);
218 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
219 	mutex_init(&s->s_dquot.dqio_mutex);
220 	mutex_init(&s->s_dquot.dqonoff_mutex);
221 	init_rwsem(&s->s_dquot.dqptr_sem);
222 	s->s_maxbytes = MAX_NON_LFS;
223 	s->s_op = &default_op;
224 	s->s_time_gran = 1000000000;
225 	s->cleancache_poolid = -1;
226 
227 	s->s_shrink.seeks = DEFAULT_SEEKS;
228 	s->s_shrink.scan_objects = super_cache_scan;
229 	s->s_shrink.count_objects = super_cache_count;
230 	s->s_shrink.batch = 1024;
231 	s->s_shrink.flags = SHRINKER_NUMA_AWARE;
232 	return s;
233 
234 fail:
235 	destroy_super(s);
236 	return NULL;
237 }
238 
239 /* Superblock refcounting  */
240 
241 /*
242  * Drop a superblock's refcount.  The caller must hold sb_lock.
243  */
244 static void __put_super(struct super_block *sb)
245 {
246 	if (!--sb->s_count) {
247 		list_del_init(&sb->s_list);
248 		destroy_super(sb);
249 	}
250 }
251 
252 /**
253  *	put_super	-	drop a temporary reference to superblock
254  *	@sb: superblock in question
255  *
256  *	Drops a temporary reference, frees superblock if there's no
257  *	references left.
258  */
259 static void put_super(struct super_block *sb)
260 {
261 	spin_lock(&sb_lock);
262 	__put_super(sb);
263 	spin_unlock(&sb_lock);
264 }
265 
266 
267 /**
268  *	deactivate_locked_super	-	drop an active reference to superblock
269  *	@s: superblock to deactivate
270  *
271  *	Drops an active reference to superblock, converting it into a temprory
272  *	one if there is no other active references left.  In that case we
273  *	tell fs driver to shut it down and drop the temporary reference we
274  *	had just acquired.
275  *
276  *	Caller holds exclusive lock on superblock; that lock is released.
277  */
278 void deactivate_locked_super(struct super_block *s)
279 {
280 	struct file_system_type *fs = s->s_type;
281 	if (atomic_dec_and_test(&s->s_active)) {
282 		cleancache_invalidate_fs(s);
283 		unregister_shrinker(&s->s_shrink);
284 		fs->kill_sb(s);
285 
286 		put_filesystem(fs);
287 		put_super(s);
288 	} else {
289 		up_write(&s->s_umount);
290 	}
291 }
292 
293 EXPORT_SYMBOL(deactivate_locked_super);
294 
295 /**
296  *	deactivate_super	-	drop an active reference to superblock
297  *	@s: superblock to deactivate
298  *
299  *	Variant of deactivate_locked_super(), except that superblock is *not*
300  *	locked by caller.  If we are going to drop the final active reference,
301  *	lock will be acquired prior to that.
302  */
303 void deactivate_super(struct super_block *s)
304 {
305         if (!atomic_add_unless(&s->s_active, -1, 1)) {
306 		down_write(&s->s_umount);
307 		deactivate_locked_super(s);
308 	}
309 }
310 
311 EXPORT_SYMBOL(deactivate_super);
312 
313 /**
314  *	grab_super - acquire an active reference
315  *	@s: reference we are trying to make active
316  *
317  *	Tries to acquire an active reference.  grab_super() is used when we
318  * 	had just found a superblock in super_blocks or fs_type->fs_supers
319  *	and want to turn it into a full-blown active reference.  grab_super()
320  *	is called with sb_lock held and drops it.  Returns 1 in case of
321  *	success, 0 if we had failed (superblock contents was already dead or
322  *	dying when grab_super() had been called).  Note that this is only
323  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
324  *	of their type), so increment of ->s_count is OK here.
325  */
326 static int grab_super(struct super_block *s) __releases(sb_lock)
327 {
328 	s->s_count++;
329 	spin_unlock(&sb_lock);
330 	down_write(&s->s_umount);
331 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
332 		put_super(s);
333 		return 1;
334 	}
335 	up_write(&s->s_umount);
336 	put_super(s);
337 	return 0;
338 }
339 
340 /*
341  *	grab_super_passive - acquire a passive reference
342  *	@sb: reference we are trying to grab
343  *
344  *	Tries to acquire a passive reference. This is used in places where we
345  *	cannot take an active reference but we need to ensure that the
346  *	superblock does not go away while we are working on it. It returns
347  *	false if a reference was not gained, and returns true with the s_umount
348  *	lock held in read mode if a reference is gained. On successful return,
349  *	the caller must drop the s_umount lock and the passive reference when
350  *	done.
351  */
352 bool grab_super_passive(struct super_block *sb)
353 {
354 	spin_lock(&sb_lock);
355 	if (hlist_unhashed(&sb->s_instances)) {
356 		spin_unlock(&sb_lock);
357 		return false;
358 	}
359 
360 	sb->s_count++;
361 	spin_unlock(&sb_lock);
362 
363 	if (down_read_trylock(&sb->s_umount)) {
364 		if (sb->s_root && (sb->s_flags & MS_BORN))
365 			return true;
366 		up_read(&sb->s_umount);
367 	}
368 
369 	put_super(sb);
370 	return false;
371 }
372 
373 /**
374  *	generic_shutdown_super	-	common helper for ->kill_sb()
375  *	@sb: superblock to kill
376  *
377  *	generic_shutdown_super() does all fs-independent work on superblock
378  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
379  *	that need destruction out of superblock, call generic_shutdown_super()
380  *	and release aforementioned objects.  Note: dentries and inodes _are_
381  *	taken care of and do not need specific handling.
382  *
383  *	Upon calling this function, the filesystem may no longer alter or
384  *	rearrange the set of dentries belonging to this super_block, nor may it
385  *	change the attachments of dentries to inodes.
386  */
387 void generic_shutdown_super(struct super_block *sb)
388 {
389 	const struct super_operations *sop = sb->s_op;
390 
391 	if (sb->s_root) {
392 		shrink_dcache_for_umount(sb);
393 		sync_filesystem(sb);
394 		sb->s_flags &= ~MS_ACTIVE;
395 
396 		fsnotify_unmount_inodes(&sb->s_inodes);
397 
398 		evict_inodes(sb);
399 
400 		if (sb->s_dio_done_wq) {
401 			destroy_workqueue(sb->s_dio_done_wq);
402 			sb->s_dio_done_wq = NULL;
403 		}
404 
405 		if (sop->put_super)
406 			sop->put_super(sb);
407 
408 		if (!list_empty(&sb->s_inodes)) {
409 			printk("VFS: Busy inodes after unmount of %s. "
410 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
411 			   sb->s_id);
412 		}
413 	}
414 	spin_lock(&sb_lock);
415 	/* should be initialized for __put_super_and_need_restart() */
416 	hlist_del_init(&sb->s_instances);
417 	spin_unlock(&sb_lock);
418 	up_write(&sb->s_umount);
419 }
420 
421 EXPORT_SYMBOL(generic_shutdown_super);
422 
423 /**
424  *	sget	-	find or create a superblock
425  *	@type:	filesystem type superblock should belong to
426  *	@test:	comparison callback
427  *	@set:	setup callback
428  *	@flags:	mount flags
429  *	@data:	argument to each of them
430  */
431 struct super_block *sget(struct file_system_type *type,
432 			int (*test)(struct super_block *,void *),
433 			int (*set)(struct super_block *,void *),
434 			int flags,
435 			void *data)
436 {
437 	struct super_block *s = NULL;
438 	struct super_block *old;
439 	int err;
440 
441 retry:
442 	spin_lock(&sb_lock);
443 	if (test) {
444 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
445 			if (!test(old, data))
446 				continue;
447 			if (!grab_super(old))
448 				goto retry;
449 			if (s) {
450 				up_write(&s->s_umount);
451 				destroy_super(s);
452 				s = NULL;
453 			}
454 			return old;
455 		}
456 	}
457 	if (!s) {
458 		spin_unlock(&sb_lock);
459 		s = alloc_super(type, flags);
460 		if (!s)
461 			return ERR_PTR(-ENOMEM);
462 		goto retry;
463 	}
464 
465 	err = set(s, data);
466 	if (err) {
467 		spin_unlock(&sb_lock);
468 		up_write(&s->s_umount);
469 		destroy_super(s);
470 		return ERR_PTR(err);
471 	}
472 	s->s_type = type;
473 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
474 	list_add_tail(&s->s_list, &super_blocks);
475 	hlist_add_head(&s->s_instances, &type->fs_supers);
476 	spin_unlock(&sb_lock);
477 	get_filesystem(type);
478 	register_shrinker(&s->s_shrink);
479 	return s;
480 }
481 
482 EXPORT_SYMBOL(sget);
483 
484 void drop_super(struct super_block *sb)
485 {
486 	up_read(&sb->s_umount);
487 	put_super(sb);
488 }
489 
490 EXPORT_SYMBOL(drop_super);
491 
492 /**
493  *	iterate_supers - call function for all active superblocks
494  *	@f: function to call
495  *	@arg: argument to pass to it
496  *
497  *	Scans the superblock list and calls given function, passing it
498  *	locked superblock and given argument.
499  */
500 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
501 {
502 	struct super_block *sb, *p = NULL;
503 
504 	spin_lock(&sb_lock);
505 	list_for_each_entry(sb, &super_blocks, s_list) {
506 		if (hlist_unhashed(&sb->s_instances))
507 			continue;
508 		sb->s_count++;
509 		spin_unlock(&sb_lock);
510 
511 		down_read(&sb->s_umount);
512 		if (sb->s_root && (sb->s_flags & MS_BORN))
513 			f(sb, arg);
514 		up_read(&sb->s_umount);
515 
516 		spin_lock(&sb_lock);
517 		if (p)
518 			__put_super(p);
519 		p = sb;
520 	}
521 	if (p)
522 		__put_super(p);
523 	spin_unlock(&sb_lock);
524 }
525 
526 /**
527  *	iterate_supers_type - call function for superblocks of given type
528  *	@type: fs type
529  *	@f: function to call
530  *	@arg: argument to pass to it
531  *
532  *	Scans the superblock list and calls given function, passing it
533  *	locked superblock and given argument.
534  */
535 void iterate_supers_type(struct file_system_type *type,
536 	void (*f)(struct super_block *, void *), void *arg)
537 {
538 	struct super_block *sb, *p = NULL;
539 
540 	spin_lock(&sb_lock);
541 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
542 		sb->s_count++;
543 		spin_unlock(&sb_lock);
544 
545 		down_read(&sb->s_umount);
546 		if (sb->s_root && (sb->s_flags & MS_BORN))
547 			f(sb, arg);
548 		up_read(&sb->s_umount);
549 
550 		spin_lock(&sb_lock);
551 		if (p)
552 			__put_super(p);
553 		p = sb;
554 	}
555 	if (p)
556 		__put_super(p);
557 	spin_unlock(&sb_lock);
558 }
559 
560 EXPORT_SYMBOL(iterate_supers_type);
561 
562 /**
563  *	get_super - get the superblock of a device
564  *	@bdev: device to get the superblock for
565  *
566  *	Scans the superblock list and finds the superblock of the file system
567  *	mounted on the device given. %NULL is returned if no match is found.
568  */
569 
570 struct super_block *get_super(struct block_device *bdev)
571 {
572 	struct super_block *sb;
573 
574 	if (!bdev)
575 		return NULL;
576 
577 	spin_lock(&sb_lock);
578 rescan:
579 	list_for_each_entry(sb, &super_blocks, s_list) {
580 		if (hlist_unhashed(&sb->s_instances))
581 			continue;
582 		if (sb->s_bdev == bdev) {
583 			sb->s_count++;
584 			spin_unlock(&sb_lock);
585 			down_read(&sb->s_umount);
586 			/* still alive? */
587 			if (sb->s_root && (sb->s_flags & MS_BORN))
588 				return sb;
589 			up_read(&sb->s_umount);
590 			/* nope, got unmounted */
591 			spin_lock(&sb_lock);
592 			__put_super(sb);
593 			goto rescan;
594 		}
595 	}
596 	spin_unlock(&sb_lock);
597 	return NULL;
598 }
599 
600 EXPORT_SYMBOL(get_super);
601 
602 /**
603  *	get_super_thawed - get thawed superblock of a device
604  *	@bdev: device to get the superblock for
605  *
606  *	Scans the superblock list and finds the superblock of the file system
607  *	mounted on the device. The superblock is returned once it is thawed
608  *	(or immediately if it was not frozen). %NULL is returned if no match
609  *	is found.
610  */
611 struct super_block *get_super_thawed(struct block_device *bdev)
612 {
613 	while (1) {
614 		struct super_block *s = get_super(bdev);
615 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
616 			return s;
617 		up_read(&s->s_umount);
618 		wait_event(s->s_writers.wait_unfrozen,
619 			   s->s_writers.frozen == SB_UNFROZEN);
620 		put_super(s);
621 	}
622 }
623 EXPORT_SYMBOL(get_super_thawed);
624 
625 /**
626  * get_active_super - get an active reference to the superblock of a device
627  * @bdev: device to get the superblock for
628  *
629  * Scans the superblock list and finds the superblock of the file system
630  * mounted on the device given.  Returns the superblock with an active
631  * reference or %NULL if none was found.
632  */
633 struct super_block *get_active_super(struct block_device *bdev)
634 {
635 	struct super_block *sb;
636 
637 	if (!bdev)
638 		return NULL;
639 
640 restart:
641 	spin_lock(&sb_lock);
642 	list_for_each_entry(sb, &super_blocks, s_list) {
643 		if (hlist_unhashed(&sb->s_instances))
644 			continue;
645 		if (sb->s_bdev == bdev) {
646 			if (!grab_super(sb))
647 				goto restart;
648 			up_write(&sb->s_umount);
649 			return sb;
650 		}
651 	}
652 	spin_unlock(&sb_lock);
653 	return NULL;
654 }
655 
656 struct super_block *user_get_super(dev_t dev)
657 {
658 	struct super_block *sb;
659 
660 	spin_lock(&sb_lock);
661 rescan:
662 	list_for_each_entry(sb, &super_blocks, s_list) {
663 		if (hlist_unhashed(&sb->s_instances))
664 			continue;
665 		if (sb->s_dev ==  dev) {
666 			sb->s_count++;
667 			spin_unlock(&sb_lock);
668 			down_read(&sb->s_umount);
669 			/* still alive? */
670 			if (sb->s_root && (sb->s_flags & MS_BORN))
671 				return sb;
672 			up_read(&sb->s_umount);
673 			/* nope, got unmounted */
674 			spin_lock(&sb_lock);
675 			__put_super(sb);
676 			goto rescan;
677 		}
678 	}
679 	spin_unlock(&sb_lock);
680 	return NULL;
681 }
682 
683 /**
684  *	do_remount_sb - asks filesystem to change mount options.
685  *	@sb:	superblock in question
686  *	@flags:	numeric part of options
687  *	@data:	the rest of options
688  *      @force: whether or not to force the change
689  *
690  *	Alters the mount options of a mounted file system.
691  */
692 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
693 {
694 	int retval;
695 	int remount_ro;
696 
697 	if (sb->s_writers.frozen != SB_UNFROZEN)
698 		return -EBUSY;
699 
700 #ifdef CONFIG_BLOCK
701 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
702 		return -EACCES;
703 #endif
704 
705 	if (flags & MS_RDONLY)
706 		acct_auto_close(sb);
707 	shrink_dcache_sb(sb);
708 
709 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
710 
711 	/* If we are remounting RDONLY and current sb is read/write,
712 	   make sure there are no rw files opened */
713 	if (remount_ro) {
714 		if (force) {
715 			sb->s_readonly_remount = 1;
716 			smp_wmb();
717 		} else {
718 			retval = sb_prepare_remount_readonly(sb);
719 			if (retval)
720 				return retval;
721 		}
722 	}
723 
724 	if (sb->s_op->remount_fs) {
725 		retval = sb->s_op->remount_fs(sb, &flags, data);
726 		if (retval) {
727 			if (!force)
728 				goto cancel_readonly;
729 			/* If forced remount, go ahead despite any errors */
730 			WARN(1, "forced remount of a %s fs returned %i\n",
731 			     sb->s_type->name, retval);
732 		}
733 	}
734 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
735 	/* Needs to be ordered wrt mnt_is_readonly() */
736 	smp_wmb();
737 	sb->s_readonly_remount = 0;
738 
739 	/*
740 	 * Some filesystems modify their metadata via some other path than the
741 	 * bdev buffer cache (eg. use a private mapping, or directories in
742 	 * pagecache, etc). Also file data modifications go via their own
743 	 * mappings. So If we try to mount readonly then copy the filesystem
744 	 * from bdev, we could get stale data, so invalidate it to give a best
745 	 * effort at coherency.
746 	 */
747 	if (remount_ro && sb->s_bdev)
748 		invalidate_bdev(sb->s_bdev);
749 	return 0;
750 
751 cancel_readonly:
752 	sb->s_readonly_remount = 0;
753 	return retval;
754 }
755 
756 static void do_emergency_remount(struct work_struct *work)
757 {
758 	struct super_block *sb, *p = NULL;
759 
760 	spin_lock(&sb_lock);
761 	list_for_each_entry(sb, &super_blocks, s_list) {
762 		if (hlist_unhashed(&sb->s_instances))
763 			continue;
764 		sb->s_count++;
765 		spin_unlock(&sb_lock);
766 		down_write(&sb->s_umount);
767 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
768 		    !(sb->s_flags & MS_RDONLY)) {
769 			/*
770 			 * What lock protects sb->s_flags??
771 			 */
772 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
773 		}
774 		up_write(&sb->s_umount);
775 		spin_lock(&sb_lock);
776 		if (p)
777 			__put_super(p);
778 		p = sb;
779 	}
780 	if (p)
781 		__put_super(p);
782 	spin_unlock(&sb_lock);
783 	kfree(work);
784 	printk("Emergency Remount complete\n");
785 }
786 
787 void emergency_remount(void)
788 {
789 	struct work_struct *work;
790 
791 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
792 	if (work) {
793 		INIT_WORK(work, do_emergency_remount);
794 		schedule_work(work);
795 	}
796 }
797 
798 /*
799  * Unnamed block devices are dummy devices used by virtual
800  * filesystems which don't use real block-devices.  -- jrs
801  */
802 
803 static DEFINE_IDA(unnamed_dev_ida);
804 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
805 /* Many userspace utilities consider an FSID of 0 invalid.
806  * Always return at least 1 from get_anon_bdev.
807  */
808 static int unnamed_dev_start = 1;
809 
810 int get_anon_bdev(dev_t *p)
811 {
812 	int dev;
813 	int error;
814 
815  retry:
816 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
817 		return -ENOMEM;
818 	spin_lock(&unnamed_dev_lock);
819 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
820 	if (!error)
821 		unnamed_dev_start = dev + 1;
822 	spin_unlock(&unnamed_dev_lock);
823 	if (error == -EAGAIN)
824 		/* We raced and lost with another CPU. */
825 		goto retry;
826 	else if (error)
827 		return -EAGAIN;
828 
829 	if (dev == (1 << MINORBITS)) {
830 		spin_lock(&unnamed_dev_lock);
831 		ida_remove(&unnamed_dev_ida, dev);
832 		if (unnamed_dev_start > dev)
833 			unnamed_dev_start = dev;
834 		spin_unlock(&unnamed_dev_lock);
835 		return -EMFILE;
836 	}
837 	*p = MKDEV(0, dev & MINORMASK);
838 	return 0;
839 }
840 EXPORT_SYMBOL(get_anon_bdev);
841 
842 void free_anon_bdev(dev_t dev)
843 {
844 	int slot = MINOR(dev);
845 	spin_lock(&unnamed_dev_lock);
846 	ida_remove(&unnamed_dev_ida, slot);
847 	if (slot < unnamed_dev_start)
848 		unnamed_dev_start = slot;
849 	spin_unlock(&unnamed_dev_lock);
850 }
851 EXPORT_SYMBOL(free_anon_bdev);
852 
853 int set_anon_super(struct super_block *s, void *data)
854 {
855 	int error = get_anon_bdev(&s->s_dev);
856 	if (!error)
857 		s->s_bdi = &noop_backing_dev_info;
858 	return error;
859 }
860 
861 EXPORT_SYMBOL(set_anon_super);
862 
863 void kill_anon_super(struct super_block *sb)
864 {
865 	dev_t dev = sb->s_dev;
866 	generic_shutdown_super(sb);
867 	free_anon_bdev(dev);
868 }
869 
870 EXPORT_SYMBOL(kill_anon_super);
871 
872 void kill_litter_super(struct super_block *sb)
873 {
874 	if (sb->s_root)
875 		d_genocide(sb->s_root);
876 	kill_anon_super(sb);
877 }
878 
879 EXPORT_SYMBOL(kill_litter_super);
880 
881 static int ns_test_super(struct super_block *sb, void *data)
882 {
883 	return sb->s_fs_info == data;
884 }
885 
886 static int ns_set_super(struct super_block *sb, void *data)
887 {
888 	sb->s_fs_info = data;
889 	return set_anon_super(sb, NULL);
890 }
891 
892 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
893 	void *data, int (*fill_super)(struct super_block *, void *, int))
894 {
895 	struct super_block *sb;
896 
897 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
898 	if (IS_ERR(sb))
899 		return ERR_CAST(sb);
900 
901 	if (!sb->s_root) {
902 		int err;
903 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
904 		if (err) {
905 			deactivate_locked_super(sb);
906 			return ERR_PTR(err);
907 		}
908 
909 		sb->s_flags |= MS_ACTIVE;
910 	}
911 
912 	return dget(sb->s_root);
913 }
914 
915 EXPORT_SYMBOL(mount_ns);
916 
917 #ifdef CONFIG_BLOCK
918 static int set_bdev_super(struct super_block *s, void *data)
919 {
920 	s->s_bdev = data;
921 	s->s_dev = s->s_bdev->bd_dev;
922 
923 	/*
924 	 * We set the bdi here to the queue backing, file systems can
925 	 * overwrite this in ->fill_super()
926 	 */
927 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
928 	return 0;
929 }
930 
931 static int test_bdev_super(struct super_block *s, void *data)
932 {
933 	return (void *)s->s_bdev == data;
934 }
935 
936 struct dentry *mount_bdev(struct file_system_type *fs_type,
937 	int flags, const char *dev_name, void *data,
938 	int (*fill_super)(struct super_block *, void *, int))
939 {
940 	struct block_device *bdev;
941 	struct super_block *s;
942 	fmode_t mode = FMODE_READ | FMODE_EXCL;
943 	int error = 0;
944 
945 	if (!(flags & MS_RDONLY))
946 		mode |= FMODE_WRITE;
947 
948 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
949 	if (IS_ERR(bdev))
950 		return ERR_CAST(bdev);
951 
952 	/*
953 	 * once the super is inserted into the list by sget, s_umount
954 	 * will protect the lockfs code from trying to start a snapshot
955 	 * while we are mounting
956 	 */
957 	mutex_lock(&bdev->bd_fsfreeze_mutex);
958 	if (bdev->bd_fsfreeze_count > 0) {
959 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
960 		error = -EBUSY;
961 		goto error_bdev;
962 	}
963 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
964 		 bdev);
965 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
966 	if (IS_ERR(s))
967 		goto error_s;
968 
969 	if (s->s_root) {
970 		if ((flags ^ s->s_flags) & MS_RDONLY) {
971 			deactivate_locked_super(s);
972 			error = -EBUSY;
973 			goto error_bdev;
974 		}
975 
976 		/*
977 		 * s_umount nests inside bd_mutex during
978 		 * __invalidate_device().  blkdev_put() acquires
979 		 * bd_mutex and can't be called under s_umount.  Drop
980 		 * s_umount temporarily.  This is safe as we're
981 		 * holding an active reference.
982 		 */
983 		up_write(&s->s_umount);
984 		blkdev_put(bdev, mode);
985 		down_write(&s->s_umount);
986 	} else {
987 		char b[BDEVNAME_SIZE];
988 
989 		s->s_mode = mode;
990 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
991 		sb_set_blocksize(s, block_size(bdev));
992 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
993 		if (error) {
994 			deactivate_locked_super(s);
995 			goto error;
996 		}
997 
998 		s->s_flags |= MS_ACTIVE;
999 		bdev->bd_super = s;
1000 	}
1001 
1002 	return dget(s->s_root);
1003 
1004 error_s:
1005 	error = PTR_ERR(s);
1006 error_bdev:
1007 	blkdev_put(bdev, mode);
1008 error:
1009 	return ERR_PTR(error);
1010 }
1011 EXPORT_SYMBOL(mount_bdev);
1012 
1013 void kill_block_super(struct super_block *sb)
1014 {
1015 	struct block_device *bdev = sb->s_bdev;
1016 	fmode_t mode = sb->s_mode;
1017 
1018 	bdev->bd_super = NULL;
1019 	generic_shutdown_super(sb);
1020 	sync_blockdev(bdev);
1021 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1022 	blkdev_put(bdev, mode | FMODE_EXCL);
1023 }
1024 
1025 EXPORT_SYMBOL(kill_block_super);
1026 #endif
1027 
1028 struct dentry *mount_nodev(struct file_system_type *fs_type,
1029 	int flags, void *data,
1030 	int (*fill_super)(struct super_block *, void *, int))
1031 {
1032 	int error;
1033 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1034 
1035 	if (IS_ERR(s))
1036 		return ERR_CAST(s);
1037 
1038 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1039 	if (error) {
1040 		deactivate_locked_super(s);
1041 		return ERR_PTR(error);
1042 	}
1043 	s->s_flags |= MS_ACTIVE;
1044 	return dget(s->s_root);
1045 }
1046 EXPORT_SYMBOL(mount_nodev);
1047 
1048 static int compare_single(struct super_block *s, void *p)
1049 {
1050 	return 1;
1051 }
1052 
1053 struct dentry *mount_single(struct file_system_type *fs_type,
1054 	int flags, void *data,
1055 	int (*fill_super)(struct super_block *, void *, int))
1056 {
1057 	struct super_block *s;
1058 	int error;
1059 
1060 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1061 	if (IS_ERR(s))
1062 		return ERR_CAST(s);
1063 	if (!s->s_root) {
1064 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1065 		if (error) {
1066 			deactivate_locked_super(s);
1067 			return ERR_PTR(error);
1068 		}
1069 		s->s_flags |= MS_ACTIVE;
1070 	} else {
1071 		do_remount_sb(s, flags, data, 0);
1072 	}
1073 	return dget(s->s_root);
1074 }
1075 EXPORT_SYMBOL(mount_single);
1076 
1077 struct dentry *
1078 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1079 {
1080 	struct dentry *root;
1081 	struct super_block *sb;
1082 	char *secdata = NULL;
1083 	int error = -ENOMEM;
1084 
1085 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1086 		secdata = alloc_secdata();
1087 		if (!secdata)
1088 			goto out;
1089 
1090 		error = security_sb_copy_data(data, secdata);
1091 		if (error)
1092 			goto out_free_secdata;
1093 	}
1094 
1095 	root = type->mount(type, flags, name, data);
1096 	if (IS_ERR(root)) {
1097 		error = PTR_ERR(root);
1098 		goto out_free_secdata;
1099 	}
1100 	sb = root->d_sb;
1101 	BUG_ON(!sb);
1102 	WARN_ON(!sb->s_bdi);
1103 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1104 	sb->s_flags |= MS_BORN;
1105 
1106 	error = security_sb_kern_mount(sb, flags, secdata);
1107 	if (error)
1108 		goto out_sb;
1109 
1110 	/*
1111 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1112 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1113 	 * this warning for a little while to try and catch filesystems that
1114 	 * violate this rule.
1115 	 */
1116 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1117 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1118 
1119 	up_write(&sb->s_umount);
1120 	free_secdata(secdata);
1121 	return root;
1122 out_sb:
1123 	dput(root);
1124 	deactivate_locked_super(sb);
1125 out_free_secdata:
1126 	free_secdata(secdata);
1127 out:
1128 	return ERR_PTR(error);
1129 }
1130 
1131 /*
1132  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1133  * instead.
1134  */
1135 void __sb_end_write(struct super_block *sb, int level)
1136 {
1137 	percpu_counter_dec(&sb->s_writers.counter[level-1]);
1138 	/*
1139 	 * Make sure s_writers are updated before we wake up waiters in
1140 	 * freeze_super().
1141 	 */
1142 	smp_mb();
1143 	if (waitqueue_active(&sb->s_writers.wait))
1144 		wake_up(&sb->s_writers.wait);
1145 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1146 }
1147 EXPORT_SYMBOL(__sb_end_write);
1148 
1149 #ifdef CONFIG_LOCKDEP
1150 /*
1151  * We want lockdep to tell us about possible deadlocks with freezing but
1152  * it's it bit tricky to properly instrument it. Getting a freeze protection
1153  * works as getting a read lock but there are subtle problems. XFS for example
1154  * gets freeze protection on internal level twice in some cases, which is OK
1155  * only because we already hold a freeze protection also on higher level. Due
1156  * to these cases we have to tell lockdep we are doing trylock when we
1157  * already hold a freeze protection for a higher freeze level.
1158  */
1159 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1160 				unsigned long ip)
1161 {
1162 	int i;
1163 
1164 	if (!trylock) {
1165 		for (i = 0; i < level - 1; i++)
1166 			if (lock_is_held(&sb->s_writers.lock_map[i])) {
1167 				trylock = true;
1168 				break;
1169 			}
1170 	}
1171 	rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1172 }
1173 #endif
1174 
1175 /*
1176  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1177  * instead.
1178  */
1179 int __sb_start_write(struct super_block *sb, int level, bool wait)
1180 {
1181 retry:
1182 	if (unlikely(sb->s_writers.frozen >= level)) {
1183 		if (!wait)
1184 			return 0;
1185 		wait_event(sb->s_writers.wait_unfrozen,
1186 			   sb->s_writers.frozen < level);
1187 	}
1188 
1189 #ifdef CONFIG_LOCKDEP
1190 	acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1191 #endif
1192 	percpu_counter_inc(&sb->s_writers.counter[level-1]);
1193 	/*
1194 	 * Make sure counter is updated before we check for frozen.
1195 	 * freeze_super() first sets frozen and then checks the counter.
1196 	 */
1197 	smp_mb();
1198 	if (unlikely(sb->s_writers.frozen >= level)) {
1199 		__sb_end_write(sb, level);
1200 		goto retry;
1201 	}
1202 	return 1;
1203 }
1204 EXPORT_SYMBOL(__sb_start_write);
1205 
1206 /**
1207  * sb_wait_write - wait until all writers to given file system finish
1208  * @sb: the super for which we wait
1209  * @level: type of writers we wait for (normal vs page fault)
1210  *
1211  * This function waits until there are no writers of given type to given file
1212  * system. Caller of this function should make sure there can be no new writers
1213  * of type @level before calling this function. Otherwise this function can
1214  * livelock.
1215  */
1216 static void sb_wait_write(struct super_block *sb, int level)
1217 {
1218 	s64 writers;
1219 
1220 	/*
1221 	 * We just cycle-through lockdep here so that it does not complain
1222 	 * about returning with lock to userspace
1223 	 */
1224 	rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1225 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1226 
1227 	do {
1228 		DEFINE_WAIT(wait);
1229 
1230 		/*
1231 		 * We use a barrier in prepare_to_wait() to separate setting
1232 		 * of frozen and checking of the counter
1233 		 */
1234 		prepare_to_wait(&sb->s_writers.wait, &wait,
1235 				TASK_UNINTERRUPTIBLE);
1236 
1237 		writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1238 		if (writers)
1239 			schedule();
1240 
1241 		finish_wait(&sb->s_writers.wait, &wait);
1242 	} while (writers);
1243 }
1244 
1245 /**
1246  * freeze_super - lock the filesystem and force it into a consistent state
1247  * @sb: the super to lock
1248  *
1249  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1250  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1251  * -EBUSY.
1252  *
1253  * During this function, sb->s_writers.frozen goes through these values:
1254  *
1255  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1256  *
1257  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1258  * writes should be blocked, though page faults are still allowed. We wait for
1259  * all writes to complete and then proceed to the next stage.
1260  *
1261  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1262  * but internal fs threads can still modify the filesystem (although they
1263  * should not dirty new pages or inodes), writeback can run etc. After waiting
1264  * for all running page faults we sync the filesystem which will clean all
1265  * dirty pages and inodes (no new dirty pages or inodes can be created when
1266  * sync is running).
1267  *
1268  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1269  * modification are blocked (e.g. XFS preallocation truncation on inode
1270  * reclaim). This is usually implemented by blocking new transactions for
1271  * filesystems that have them and need this additional guard. After all
1272  * internal writers are finished we call ->freeze_fs() to finish filesystem
1273  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1274  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1275  *
1276  * sb->s_writers.frozen is protected by sb->s_umount.
1277  */
1278 int freeze_super(struct super_block *sb)
1279 {
1280 	int ret;
1281 
1282 	atomic_inc(&sb->s_active);
1283 	down_write(&sb->s_umount);
1284 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1285 		deactivate_locked_super(sb);
1286 		return -EBUSY;
1287 	}
1288 
1289 	if (!(sb->s_flags & MS_BORN)) {
1290 		up_write(&sb->s_umount);
1291 		return 0;	/* sic - it's "nothing to do" */
1292 	}
1293 
1294 	if (sb->s_flags & MS_RDONLY) {
1295 		/* Nothing to do really... */
1296 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1297 		up_write(&sb->s_umount);
1298 		return 0;
1299 	}
1300 
1301 	/* From now on, no new normal writers can start */
1302 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1303 	smp_wmb();
1304 
1305 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1306 	up_write(&sb->s_umount);
1307 
1308 	sb_wait_write(sb, SB_FREEZE_WRITE);
1309 
1310 	/* Now we go and block page faults... */
1311 	down_write(&sb->s_umount);
1312 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1313 	smp_wmb();
1314 
1315 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1316 
1317 	/* All writers are done so after syncing there won't be dirty data */
1318 	sync_filesystem(sb);
1319 
1320 	/* Now wait for internal filesystem counter */
1321 	sb->s_writers.frozen = SB_FREEZE_FS;
1322 	smp_wmb();
1323 	sb_wait_write(sb, SB_FREEZE_FS);
1324 
1325 	if (sb->s_op->freeze_fs) {
1326 		ret = sb->s_op->freeze_fs(sb);
1327 		if (ret) {
1328 			printk(KERN_ERR
1329 				"VFS:Filesystem freeze failed\n");
1330 			sb->s_writers.frozen = SB_UNFROZEN;
1331 			smp_wmb();
1332 			wake_up(&sb->s_writers.wait_unfrozen);
1333 			deactivate_locked_super(sb);
1334 			return ret;
1335 		}
1336 	}
1337 	/*
1338 	 * This is just for debugging purposes so that fs can warn if it
1339 	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1340 	 */
1341 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1342 	up_write(&sb->s_umount);
1343 	return 0;
1344 }
1345 EXPORT_SYMBOL(freeze_super);
1346 
1347 /**
1348  * thaw_super -- unlock filesystem
1349  * @sb: the super to thaw
1350  *
1351  * Unlocks the filesystem and marks it writeable again after freeze_super().
1352  */
1353 int thaw_super(struct super_block *sb)
1354 {
1355 	int error;
1356 
1357 	down_write(&sb->s_umount);
1358 	if (sb->s_writers.frozen == SB_UNFROZEN) {
1359 		up_write(&sb->s_umount);
1360 		return -EINVAL;
1361 	}
1362 
1363 	if (sb->s_flags & MS_RDONLY)
1364 		goto out;
1365 
1366 	if (sb->s_op->unfreeze_fs) {
1367 		error = sb->s_op->unfreeze_fs(sb);
1368 		if (error) {
1369 			printk(KERN_ERR
1370 				"VFS:Filesystem thaw failed\n");
1371 			up_write(&sb->s_umount);
1372 			return error;
1373 		}
1374 	}
1375 
1376 out:
1377 	sb->s_writers.frozen = SB_UNFROZEN;
1378 	smp_wmb();
1379 	wake_up(&sb->s_writers.wait_unfrozen);
1380 	deactivate_locked_super(sb);
1381 
1382 	return 0;
1383 }
1384 EXPORT_SYMBOL(thaw_super);
1385