xref: /linux/fs/super.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbj�rn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h>		/* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h>		/* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <asm/uaccess.h>
41 
42 
43 void get_filesystem(struct file_system_type *fs);
44 void put_filesystem(struct file_system_type *fs);
45 struct file_system_type *get_fs_type(const char *name);
46 
47 LIST_HEAD(super_blocks);
48 DEFINE_SPINLOCK(sb_lock);
49 
50 /**
51  *	alloc_super	-	create new superblock
52  *	@type:	filesystem type superblock should belong to
53  *
54  *	Allocates and initializes a new &struct super_block.  alloc_super()
55  *	returns a pointer new superblock or %NULL if allocation had failed.
56  */
57 static struct super_block *alloc_super(struct file_system_type *type)
58 {
59 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
60 	static struct super_operations default_op;
61 
62 	if (s) {
63 		if (security_sb_alloc(s)) {
64 			kfree(s);
65 			s = NULL;
66 			goto out;
67 		}
68 		INIT_LIST_HEAD(&s->s_dirty);
69 		INIT_LIST_HEAD(&s->s_io);
70 		INIT_LIST_HEAD(&s->s_files);
71 		INIT_LIST_HEAD(&s->s_instances);
72 		INIT_HLIST_HEAD(&s->s_anon);
73 		INIT_LIST_HEAD(&s->s_inodes);
74 		init_rwsem(&s->s_umount);
75 		mutex_init(&s->s_lock);
76 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
77 		/*
78 		 * The locking rules for s_lock are up to the
79 		 * filesystem. For example ext3fs has different
80 		 * lock ordering than usbfs:
81 		 */
82 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
83 		down_write(&s->s_umount);
84 		s->s_count = S_BIAS;
85 		atomic_set(&s->s_active, 1);
86 		mutex_init(&s->s_vfs_rename_mutex);
87 		mutex_init(&s->s_dquot.dqio_mutex);
88 		mutex_init(&s->s_dquot.dqonoff_mutex);
89 		init_rwsem(&s->s_dquot.dqptr_sem);
90 		init_waitqueue_head(&s->s_wait_unfrozen);
91 		s->s_maxbytes = MAX_NON_LFS;
92 		s->dq_op = sb_dquot_ops;
93 		s->s_qcop = sb_quotactl_ops;
94 		s->s_op = &default_op;
95 		s->s_time_gran = 1000000000;
96 	}
97 out:
98 	return s;
99 }
100 
101 /**
102  *	destroy_super	-	frees a superblock
103  *	@s: superblock to free
104  *
105  *	Frees a superblock.
106  */
107 static inline void destroy_super(struct super_block *s)
108 {
109 	security_sb_free(s);
110 	kfree(s);
111 }
112 
113 /* Superblock refcounting  */
114 
115 /*
116  * Drop a superblock's refcount.  Returns non-zero if the superblock was
117  * destroyed.  The caller must hold sb_lock.
118  */
119 int __put_super(struct super_block *sb)
120 {
121 	int ret = 0;
122 
123 	if (!--sb->s_count) {
124 		destroy_super(sb);
125 		ret = 1;
126 	}
127 	return ret;
128 }
129 
130 /*
131  * Drop a superblock's refcount.
132  * Returns non-zero if the superblock is about to be destroyed and
133  * at least is already removed from super_blocks list, so if we are
134  * making a loop through super blocks then we need to restart.
135  * The caller must hold sb_lock.
136  */
137 int __put_super_and_need_restart(struct super_block *sb)
138 {
139 	/* check for race with generic_shutdown_super() */
140 	if (list_empty(&sb->s_list)) {
141 		/* super block is removed, need to restart... */
142 		__put_super(sb);
143 		return 1;
144 	}
145 	/* can't be the last, since s_list is still in use */
146 	sb->s_count--;
147 	BUG_ON(sb->s_count == 0);
148 	return 0;
149 }
150 
151 /**
152  *	put_super	-	drop a temporary reference to superblock
153  *	@sb: superblock in question
154  *
155  *	Drops a temporary reference, frees superblock if there's no
156  *	references left.
157  */
158 static void put_super(struct super_block *sb)
159 {
160 	spin_lock(&sb_lock);
161 	__put_super(sb);
162 	spin_unlock(&sb_lock);
163 }
164 
165 
166 /**
167  *	deactivate_super	-	drop an active reference to superblock
168  *	@s: superblock to deactivate
169  *
170  *	Drops an active reference to superblock, acquiring a temprory one if
171  *	there is no active references left.  In that case we lock superblock,
172  *	tell fs driver to shut it down and drop the temporary reference we
173  *	had just acquired.
174  */
175 void deactivate_super(struct super_block *s)
176 {
177 	struct file_system_type *fs = s->s_type;
178 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
179 		s->s_count -= S_BIAS-1;
180 		spin_unlock(&sb_lock);
181 		DQUOT_OFF(s);
182 		down_write(&s->s_umount);
183 		fs->kill_sb(s);
184 		put_filesystem(fs);
185 		put_super(s);
186 	}
187 }
188 
189 EXPORT_SYMBOL(deactivate_super);
190 
191 /**
192  *	grab_super - acquire an active reference
193  *	@s: reference we are trying to make active
194  *
195  *	Tries to acquire an active reference.  grab_super() is used when we
196  * 	had just found a superblock in super_blocks or fs_type->fs_supers
197  *	and want to turn it into a full-blown active reference.  grab_super()
198  *	is called with sb_lock held and drops it.  Returns 1 in case of
199  *	success, 0 if we had failed (superblock contents was already dead or
200  *	dying when grab_super() had been called).
201  */
202 static int grab_super(struct super_block *s) __releases(sb_lock)
203 {
204 	s->s_count++;
205 	spin_unlock(&sb_lock);
206 	down_write(&s->s_umount);
207 	if (s->s_root) {
208 		spin_lock(&sb_lock);
209 		if (s->s_count > S_BIAS) {
210 			atomic_inc(&s->s_active);
211 			s->s_count--;
212 			spin_unlock(&sb_lock);
213 			return 1;
214 		}
215 		spin_unlock(&sb_lock);
216 	}
217 	up_write(&s->s_umount);
218 	put_super(s);
219 	yield();
220 	return 0;
221 }
222 
223 /*
224  * Superblock locking.  We really ought to get rid of these two.
225  */
226 void lock_super(struct super_block * sb)
227 {
228 	get_fs_excl();
229 	mutex_lock(&sb->s_lock);
230 }
231 
232 void unlock_super(struct super_block * sb)
233 {
234 	put_fs_excl();
235 	mutex_unlock(&sb->s_lock);
236 }
237 
238 EXPORT_SYMBOL(lock_super);
239 EXPORT_SYMBOL(unlock_super);
240 
241 /*
242  * Write out and wait upon all dirty data associated with this
243  * superblock.  Filesystem data as well as the underlying block
244  * device.  Takes the superblock lock.  Requires a second blkdev
245  * flush by the caller to complete the operation.
246  */
247 void __fsync_super(struct super_block *sb)
248 {
249 	sync_inodes_sb(sb, 0);
250 	DQUOT_SYNC(sb);
251 	lock_super(sb);
252 	if (sb->s_dirt && sb->s_op->write_super)
253 		sb->s_op->write_super(sb);
254 	unlock_super(sb);
255 	if (sb->s_op->sync_fs)
256 		sb->s_op->sync_fs(sb, 1);
257 	sync_blockdev(sb->s_bdev);
258 	sync_inodes_sb(sb, 1);
259 }
260 
261 /*
262  * Write out and wait upon all dirty data associated with this
263  * superblock.  Filesystem data as well as the underlying block
264  * device.  Takes the superblock lock.
265  */
266 int fsync_super(struct super_block *sb)
267 {
268 	__fsync_super(sb);
269 	return sync_blockdev(sb->s_bdev);
270 }
271 
272 /**
273  *	generic_shutdown_super	-	common helper for ->kill_sb()
274  *	@sb: superblock to kill
275  *
276  *	generic_shutdown_super() does all fs-independent work on superblock
277  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
278  *	that need destruction out of superblock, call generic_shutdown_super()
279  *	and release aforementioned objects.  Note: dentries and inodes _are_
280  *	taken care of and do not need specific handling.
281  *
282  *	Upon calling this function, the filesystem may no longer alter or
283  *	rearrange the set of dentries belonging to this super_block, nor may it
284  *	change the attachments of dentries to inodes.
285  */
286 void generic_shutdown_super(struct super_block *sb)
287 {
288 	const struct super_operations *sop = sb->s_op;
289 
290 	if (sb->s_root) {
291 		shrink_dcache_for_umount(sb);
292 		fsync_super(sb);
293 		lock_super(sb);
294 		sb->s_flags &= ~MS_ACTIVE;
295 		/* bad name - it should be evict_inodes() */
296 		invalidate_inodes(sb);
297 		lock_kernel();
298 
299 		if (sop->write_super && sb->s_dirt)
300 			sop->write_super(sb);
301 		if (sop->put_super)
302 			sop->put_super(sb);
303 
304 		/* Forget any remaining inodes */
305 		if (invalidate_inodes(sb)) {
306 			printk("VFS: Busy inodes after unmount of %s. "
307 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
308 			   sb->s_id);
309 		}
310 
311 		unlock_kernel();
312 		unlock_super(sb);
313 	}
314 	spin_lock(&sb_lock);
315 	/* should be initialized for __put_super_and_need_restart() */
316 	list_del_init(&sb->s_list);
317 	list_del(&sb->s_instances);
318 	spin_unlock(&sb_lock);
319 	up_write(&sb->s_umount);
320 }
321 
322 EXPORT_SYMBOL(generic_shutdown_super);
323 
324 /**
325  *	sget	-	find or create a superblock
326  *	@type:	filesystem type superblock should belong to
327  *	@test:	comparison callback
328  *	@set:	setup callback
329  *	@data:	argument to each of them
330  */
331 struct super_block *sget(struct file_system_type *type,
332 			int (*test)(struct super_block *,void *),
333 			int (*set)(struct super_block *,void *),
334 			void *data)
335 {
336 	struct super_block *s = NULL;
337 	struct list_head *p;
338 	int err;
339 
340 retry:
341 	spin_lock(&sb_lock);
342 	if (test) list_for_each(p, &type->fs_supers) {
343 		struct super_block *old;
344 		old = list_entry(p, struct super_block, s_instances);
345 		if (!test(old, data))
346 			continue;
347 		if (!grab_super(old))
348 			goto retry;
349 		if (s)
350 			destroy_super(s);
351 		return old;
352 	}
353 	if (!s) {
354 		spin_unlock(&sb_lock);
355 		s = alloc_super(type);
356 		if (!s)
357 			return ERR_PTR(-ENOMEM);
358 		goto retry;
359 	}
360 
361 	err = set(s, data);
362 	if (err) {
363 		spin_unlock(&sb_lock);
364 		destroy_super(s);
365 		return ERR_PTR(err);
366 	}
367 	s->s_type = type;
368 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
369 	list_add_tail(&s->s_list, &super_blocks);
370 	list_add(&s->s_instances, &type->fs_supers);
371 	spin_unlock(&sb_lock);
372 	get_filesystem(type);
373 	return s;
374 }
375 
376 EXPORT_SYMBOL(sget);
377 
378 void drop_super(struct super_block *sb)
379 {
380 	up_read(&sb->s_umount);
381 	put_super(sb);
382 }
383 
384 EXPORT_SYMBOL(drop_super);
385 
386 static inline void write_super(struct super_block *sb)
387 {
388 	lock_super(sb);
389 	if (sb->s_root && sb->s_dirt)
390 		if (sb->s_op->write_super)
391 			sb->s_op->write_super(sb);
392 	unlock_super(sb);
393 }
394 
395 /*
396  * Note: check the dirty flag before waiting, so we don't
397  * hold up the sync while mounting a device. (The newly
398  * mounted device won't need syncing.)
399  */
400 void sync_supers(void)
401 {
402 	struct super_block *sb;
403 
404 	spin_lock(&sb_lock);
405 restart:
406 	list_for_each_entry(sb, &super_blocks, s_list) {
407 		if (sb->s_dirt) {
408 			sb->s_count++;
409 			spin_unlock(&sb_lock);
410 			down_read(&sb->s_umount);
411 			write_super(sb);
412 			up_read(&sb->s_umount);
413 			spin_lock(&sb_lock);
414 			if (__put_super_and_need_restart(sb))
415 				goto restart;
416 		}
417 	}
418 	spin_unlock(&sb_lock);
419 }
420 
421 /*
422  * Call the ->sync_fs super_op against all filesytems which are r/w and
423  * which implement it.
424  *
425  * This operation is careful to avoid the livelock which could easily happen
426  * if two or more filesystems are being continuously dirtied.  s_need_sync_fs
427  * is used only here.  We set it against all filesystems and then clear it as
428  * we sync them.  So redirtied filesystems are skipped.
429  *
430  * But if process A is currently running sync_filesytems and then process B
431  * calls sync_filesystems as well, process B will set all the s_need_sync_fs
432  * flags again, which will cause process A to resync everything.  Fix that with
433  * a local mutex.
434  *
435  * (Fabian) Avoid sync_fs with clean fs & wait mode 0
436  */
437 void sync_filesystems(int wait)
438 {
439 	struct super_block *sb;
440 	static DEFINE_MUTEX(mutex);
441 
442 	mutex_lock(&mutex);		/* Could be down_interruptible */
443 	spin_lock(&sb_lock);
444 	list_for_each_entry(sb, &super_blocks, s_list) {
445 		if (!sb->s_op->sync_fs)
446 			continue;
447 		if (sb->s_flags & MS_RDONLY)
448 			continue;
449 		sb->s_need_sync_fs = 1;
450 	}
451 
452 restart:
453 	list_for_each_entry(sb, &super_blocks, s_list) {
454 		if (!sb->s_need_sync_fs)
455 			continue;
456 		sb->s_need_sync_fs = 0;
457 		if (sb->s_flags & MS_RDONLY)
458 			continue;	/* hm.  Was remounted r/o meanwhile */
459 		sb->s_count++;
460 		spin_unlock(&sb_lock);
461 		down_read(&sb->s_umount);
462 		if (sb->s_root && (wait || sb->s_dirt))
463 			sb->s_op->sync_fs(sb, wait);
464 		up_read(&sb->s_umount);
465 		/* restart only when sb is no longer on the list */
466 		spin_lock(&sb_lock);
467 		if (__put_super_and_need_restart(sb))
468 			goto restart;
469 	}
470 	spin_unlock(&sb_lock);
471 	mutex_unlock(&mutex);
472 }
473 
474 /**
475  *	get_super - get the superblock of a device
476  *	@bdev: device to get the superblock for
477  *
478  *	Scans the superblock list and finds the superblock of the file system
479  *	mounted on the device given. %NULL is returned if no match is found.
480  */
481 
482 struct super_block * get_super(struct block_device *bdev)
483 {
484 	struct super_block *sb;
485 
486 	if (!bdev)
487 		return NULL;
488 
489 	spin_lock(&sb_lock);
490 rescan:
491 	list_for_each_entry(sb, &super_blocks, s_list) {
492 		if (sb->s_bdev == bdev) {
493 			sb->s_count++;
494 			spin_unlock(&sb_lock);
495 			down_read(&sb->s_umount);
496 			if (sb->s_root)
497 				return sb;
498 			up_read(&sb->s_umount);
499 			/* restart only when sb is no longer on the list */
500 			spin_lock(&sb_lock);
501 			if (__put_super_and_need_restart(sb))
502 				goto rescan;
503 		}
504 	}
505 	spin_unlock(&sb_lock);
506 	return NULL;
507 }
508 
509 EXPORT_SYMBOL(get_super);
510 
511 struct super_block * user_get_super(dev_t dev)
512 {
513 	struct super_block *sb;
514 
515 	spin_lock(&sb_lock);
516 rescan:
517 	list_for_each_entry(sb, &super_blocks, s_list) {
518 		if (sb->s_dev ==  dev) {
519 			sb->s_count++;
520 			spin_unlock(&sb_lock);
521 			down_read(&sb->s_umount);
522 			if (sb->s_root)
523 				return sb;
524 			up_read(&sb->s_umount);
525 			/* restart only when sb is no longer on the list */
526 			spin_lock(&sb_lock);
527 			if (__put_super_and_need_restart(sb))
528 				goto rescan;
529 		}
530 	}
531 	spin_unlock(&sb_lock);
532 	return NULL;
533 }
534 
535 asmlinkage long sys_ustat(unsigned dev, struct ustat __user * ubuf)
536 {
537         struct super_block *s;
538         struct ustat tmp;
539         struct kstatfs sbuf;
540 	int err = -EINVAL;
541 
542         s = user_get_super(new_decode_dev(dev));
543         if (s == NULL)
544                 goto out;
545 	err = vfs_statfs(s->s_root, &sbuf);
546 	drop_super(s);
547 	if (err)
548 		goto out;
549 
550         memset(&tmp,0,sizeof(struct ustat));
551         tmp.f_tfree = sbuf.f_bfree;
552         tmp.f_tinode = sbuf.f_ffree;
553 
554         err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
555 out:
556 	return err;
557 }
558 
559 /**
560  *	mark_files_ro
561  *	@sb: superblock in question
562  *
563  *	All files are marked read/only.  We don't care about pending
564  *	delete files so this should be used in 'force' mode only
565  */
566 
567 static void mark_files_ro(struct super_block *sb)
568 {
569 	struct file *f;
570 
571 	file_list_lock();
572 	list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
573 		if (S_ISREG(f->f_path.dentry->d_inode->i_mode) && file_count(f))
574 			f->f_mode &= ~FMODE_WRITE;
575 	}
576 	file_list_unlock();
577 }
578 
579 /**
580  *	do_remount_sb - asks filesystem to change mount options.
581  *	@sb:	superblock in question
582  *	@flags:	numeric part of options
583  *	@data:	the rest of options
584  *      @force: whether or not to force the change
585  *
586  *	Alters the mount options of a mounted file system.
587  */
588 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
589 {
590 	int retval;
591 
592 #ifdef CONFIG_BLOCK
593 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
594 		return -EACCES;
595 #endif
596 	if (flags & MS_RDONLY)
597 		acct_auto_close(sb);
598 	shrink_dcache_sb(sb);
599 	fsync_super(sb);
600 
601 	/* If we are remounting RDONLY and current sb is read/write,
602 	   make sure there are no rw files opened */
603 	if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
604 		if (force)
605 			mark_files_ro(sb);
606 		else if (!fs_may_remount_ro(sb))
607 			return -EBUSY;
608 	}
609 
610 	if (sb->s_op->remount_fs) {
611 		lock_super(sb);
612 		retval = sb->s_op->remount_fs(sb, &flags, data);
613 		unlock_super(sb);
614 		if (retval)
615 			return retval;
616 	}
617 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
618 	return 0;
619 }
620 
621 static void do_emergency_remount(unsigned long foo)
622 {
623 	struct super_block *sb;
624 
625 	spin_lock(&sb_lock);
626 	list_for_each_entry(sb, &super_blocks, s_list) {
627 		sb->s_count++;
628 		spin_unlock(&sb_lock);
629 		down_read(&sb->s_umount);
630 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
631 			/*
632 			 * ->remount_fs needs lock_kernel().
633 			 *
634 			 * What lock protects sb->s_flags??
635 			 */
636 			lock_kernel();
637 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
638 			unlock_kernel();
639 		}
640 		drop_super(sb);
641 		spin_lock(&sb_lock);
642 	}
643 	spin_unlock(&sb_lock);
644 	printk("Emergency Remount complete\n");
645 }
646 
647 void emergency_remount(void)
648 {
649 	pdflush_operation(do_emergency_remount, 0);
650 }
651 
652 /*
653  * Unnamed block devices are dummy devices used by virtual
654  * filesystems which don't use real block-devices.  -- jrs
655  */
656 
657 static struct idr unnamed_dev_idr;
658 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
659 
660 int set_anon_super(struct super_block *s, void *data)
661 {
662 	int dev;
663 	int error;
664 
665  retry:
666 	if (idr_pre_get(&unnamed_dev_idr, GFP_ATOMIC) == 0)
667 		return -ENOMEM;
668 	spin_lock(&unnamed_dev_lock);
669 	error = idr_get_new(&unnamed_dev_idr, NULL, &dev);
670 	spin_unlock(&unnamed_dev_lock);
671 	if (error == -EAGAIN)
672 		/* We raced and lost with another CPU. */
673 		goto retry;
674 	else if (error)
675 		return -EAGAIN;
676 
677 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
678 		spin_lock(&unnamed_dev_lock);
679 		idr_remove(&unnamed_dev_idr, dev);
680 		spin_unlock(&unnamed_dev_lock);
681 		return -EMFILE;
682 	}
683 	s->s_dev = MKDEV(0, dev & MINORMASK);
684 	return 0;
685 }
686 
687 EXPORT_SYMBOL(set_anon_super);
688 
689 void kill_anon_super(struct super_block *sb)
690 {
691 	int slot = MINOR(sb->s_dev);
692 
693 	generic_shutdown_super(sb);
694 	spin_lock(&unnamed_dev_lock);
695 	idr_remove(&unnamed_dev_idr, slot);
696 	spin_unlock(&unnamed_dev_lock);
697 }
698 
699 EXPORT_SYMBOL(kill_anon_super);
700 
701 void __init unnamed_dev_init(void)
702 {
703 	idr_init(&unnamed_dev_idr);
704 }
705 
706 void kill_litter_super(struct super_block *sb)
707 {
708 	if (sb->s_root)
709 		d_genocide(sb->s_root);
710 	kill_anon_super(sb);
711 }
712 
713 EXPORT_SYMBOL(kill_litter_super);
714 
715 #ifdef CONFIG_BLOCK
716 static int set_bdev_super(struct super_block *s, void *data)
717 {
718 	s->s_bdev = data;
719 	s->s_dev = s->s_bdev->bd_dev;
720 	return 0;
721 }
722 
723 static int test_bdev_super(struct super_block *s, void *data)
724 {
725 	return (void *)s->s_bdev == data;
726 }
727 
728 static void bdev_uevent(struct block_device *bdev, enum kobject_action action)
729 {
730 	if (bdev->bd_disk) {
731 		if (bdev->bd_part)
732 			kobject_uevent(&bdev->bd_part->kobj, action);
733 		else
734 			kobject_uevent(&bdev->bd_disk->kobj, action);
735 	}
736 }
737 
738 int get_sb_bdev(struct file_system_type *fs_type,
739 	int flags, const char *dev_name, void *data,
740 	int (*fill_super)(struct super_block *, void *, int),
741 	struct vfsmount *mnt)
742 {
743 	struct block_device *bdev;
744 	struct super_block *s;
745 	int error = 0;
746 
747 	bdev = open_bdev_excl(dev_name, flags, fs_type);
748 	if (IS_ERR(bdev))
749 		return PTR_ERR(bdev);
750 
751 	/*
752 	 * once the super is inserted into the list by sget, s_umount
753 	 * will protect the lockfs code from trying to start a snapshot
754 	 * while we are mounting
755 	 */
756 	down(&bdev->bd_mount_sem);
757 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
758 	up(&bdev->bd_mount_sem);
759 	if (IS_ERR(s))
760 		goto error_s;
761 
762 	if (s->s_root) {
763 		if ((flags ^ s->s_flags) & MS_RDONLY) {
764 			up_write(&s->s_umount);
765 			deactivate_super(s);
766 			error = -EBUSY;
767 			goto error_bdev;
768 		}
769 
770 		close_bdev_excl(bdev);
771 	} else {
772 		char b[BDEVNAME_SIZE];
773 
774 		s->s_flags = flags;
775 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
776 		sb_set_blocksize(s, block_size(bdev));
777 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
778 		if (error) {
779 			up_write(&s->s_umount);
780 			deactivate_super(s);
781 			goto error;
782 		}
783 
784 		s->s_flags |= MS_ACTIVE;
785 		bdev_uevent(bdev, KOBJ_MOUNT);
786 	}
787 
788 	return simple_set_mnt(mnt, s);
789 
790 error_s:
791 	error = PTR_ERR(s);
792 error_bdev:
793 	close_bdev_excl(bdev);
794 error:
795 	return error;
796 }
797 
798 EXPORT_SYMBOL(get_sb_bdev);
799 
800 void kill_block_super(struct super_block *sb)
801 {
802 	struct block_device *bdev = sb->s_bdev;
803 
804 	bdev_uevent(bdev, KOBJ_UMOUNT);
805 	generic_shutdown_super(sb);
806 	sync_blockdev(bdev);
807 	close_bdev_excl(bdev);
808 }
809 
810 EXPORT_SYMBOL(kill_block_super);
811 #endif
812 
813 int get_sb_nodev(struct file_system_type *fs_type,
814 	int flags, void *data,
815 	int (*fill_super)(struct super_block *, void *, int),
816 	struct vfsmount *mnt)
817 {
818 	int error;
819 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
820 
821 	if (IS_ERR(s))
822 		return PTR_ERR(s);
823 
824 	s->s_flags = flags;
825 
826 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
827 	if (error) {
828 		up_write(&s->s_umount);
829 		deactivate_super(s);
830 		return error;
831 	}
832 	s->s_flags |= MS_ACTIVE;
833 	return simple_set_mnt(mnt, s);
834 }
835 
836 EXPORT_SYMBOL(get_sb_nodev);
837 
838 static int compare_single(struct super_block *s, void *p)
839 {
840 	return 1;
841 }
842 
843 int get_sb_single(struct file_system_type *fs_type,
844 	int flags, void *data,
845 	int (*fill_super)(struct super_block *, void *, int),
846 	struct vfsmount *mnt)
847 {
848 	struct super_block *s;
849 	int error;
850 
851 	s = sget(fs_type, compare_single, set_anon_super, NULL);
852 	if (IS_ERR(s))
853 		return PTR_ERR(s);
854 	if (!s->s_root) {
855 		s->s_flags = flags;
856 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
857 		if (error) {
858 			up_write(&s->s_umount);
859 			deactivate_super(s);
860 			return error;
861 		}
862 		s->s_flags |= MS_ACTIVE;
863 	}
864 	do_remount_sb(s, flags, data, 0);
865 	return simple_set_mnt(mnt, s);
866 }
867 
868 EXPORT_SYMBOL(get_sb_single);
869 
870 struct vfsmount *
871 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
872 {
873 	struct vfsmount *mnt;
874 	char *secdata = NULL;
875 	int error;
876 
877 	if (!type)
878 		return ERR_PTR(-ENODEV);
879 
880 	error = -ENOMEM;
881 	mnt = alloc_vfsmnt(name);
882 	if (!mnt)
883 		goto out;
884 
885 	if (data) {
886 		secdata = alloc_secdata();
887 		if (!secdata)
888 			goto out_mnt;
889 
890 		error = security_sb_copy_data(type, data, secdata);
891 		if (error)
892 			goto out_free_secdata;
893 	}
894 
895 	error = type->get_sb(type, flags, name, data, mnt);
896 	if (error < 0)
897 		goto out_free_secdata;
898 
899  	error = security_sb_kern_mount(mnt->mnt_sb, secdata);
900  	if (error)
901  		goto out_sb;
902 
903 	mnt->mnt_mountpoint = mnt->mnt_root;
904 	mnt->mnt_parent = mnt;
905 	up_write(&mnt->mnt_sb->s_umount);
906 	free_secdata(secdata);
907 	return mnt;
908 out_sb:
909 	dput(mnt->mnt_root);
910 	up_write(&mnt->mnt_sb->s_umount);
911 	deactivate_super(mnt->mnt_sb);
912 out_free_secdata:
913 	free_secdata(secdata);
914 out_mnt:
915 	free_vfsmnt(mnt);
916 out:
917 	return ERR_PTR(error);
918 }
919 
920 EXPORT_SYMBOL_GPL(vfs_kern_mount);
921 
922 struct vfsmount *
923 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
924 {
925 	struct file_system_type *type = get_fs_type(fstype);
926 	struct vfsmount *mnt;
927 	if (!type)
928 		return ERR_PTR(-ENODEV);
929 	mnt = vfs_kern_mount(type, flags, name, data);
930 	put_filesystem(type);
931 	return mnt;
932 }
933 
934 struct vfsmount *kern_mount(struct file_system_type *type)
935 {
936 	return vfs_kern_mount(type, 0, type->name, NULL);
937 }
938 
939 EXPORT_SYMBOL(kern_mount);
940