xref: /linux/fs/super.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h>		/* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h>		/* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <linux/file.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43 #include "internal.h"
44 
45 
46 LIST_HEAD(super_blocks);
47 DEFINE_SPINLOCK(sb_lock);
48 
49 /**
50  *	alloc_super	-	create new superblock
51  *	@type:	filesystem type superblock should belong to
52  *
53  *	Allocates and initializes a new &struct super_block.  alloc_super()
54  *	returns a pointer new superblock or %NULL if allocation had failed.
55  */
56 static struct super_block *alloc_super(struct file_system_type *type)
57 {
58 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
59 	static struct super_operations default_op;
60 
61 	if (s) {
62 		if (security_sb_alloc(s)) {
63 			kfree(s);
64 			s = NULL;
65 			goto out;
66 		}
67 		INIT_LIST_HEAD(&s->s_dirty);
68 		INIT_LIST_HEAD(&s->s_io);
69 		INIT_LIST_HEAD(&s->s_more_io);
70 		INIT_LIST_HEAD(&s->s_files);
71 		INIT_LIST_HEAD(&s->s_instances);
72 		INIT_HLIST_HEAD(&s->s_anon);
73 		INIT_LIST_HEAD(&s->s_inodes);
74 		INIT_LIST_HEAD(&s->s_dentry_lru);
75 		INIT_LIST_HEAD(&s->s_async_list);
76 		init_rwsem(&s->s_umount);
77 		mutex_init(&s->s_lock);
78 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
79 		/*
80 		 * The locking rules for s_lock are up to the
81 		 * filesystem. For example ext3fs has different
82 		 * lock ordering than usbfs:
83 		 */
84 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
85 		/*
86 		 * sget() can have s_umount recursion.
87 		 *
88 		 * When it cannot find a suitable sb, it allocates a new
89 		 * one (this one), and tries again to find a suitable old
90 		 * one.
91 		 *
92 		 * In case that succeeds, it will acquire the s_umount
93 		 * lock of the old one. Since these are clearly distrinct
94 		 * locks, and this object isn't exposed yet, there's no
95 		 * risk of deadlocks.
96 		 *
97 		 * Annotate this by putting this lock in a different
98 		 * subclass.
99 		 */
100 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
101 		s->s_count = S_BIAS;
102 		atomic_set(&s->s_active, 1);
103 		mutex_init(&s->s_vfs_rename_mutex);
104 		mutex_init(&s->s_dquot.dqio_mutex);
105 		mutex_init(&s->s_dquot.dqonoff_mutex);
106 		init_rwsem(&s->s_dquot.dqptr_sem);
107 		init_waitqueue_head(&s->s_wait_unfrozen);
108 		s->s_maxbytes = MAX_NON_LFS;
109 		s->dq_op = sb_dquot_ops;
110 		s->s_qcop = sb_quotactl_ops;
111 		s->s_op = &default_op;
112 		s->s_time_gran = 1000000000;
113 	}
114 out:
115 	return s;
116 }
117 
118 /**
119  *	destroy_super	-	frees a superblock
120  *	@s: superblock to free
121  *
122  *	Frees a superblock.
123  */
124 static inline void destroy_super(struct super_block *s)
125 {
126 	security_sb_free(s);
127 	kfree(s->s_subtype);
128 	kfree(s->s_options);
129 	kfree(s);
130 }
131 
132 /* Superblock refcounting  */
133 
134 /*
135  * Drop a superblock's refcount.  Returns non-zero if the superblock was
136  * destroyed.  The caller must hold sb_lock.
137  */
138 static int __put_super(struct super_block *sb)
139 {
140 	int ret = 0;
141 
142 	if (!--sb->s_count) {
143 		destroy_super(sb);
144 		ret = 1;
145 	}
146 	return ret;
147 }
148 
149 /*
150  * Drop a superblock's refcount.
151  * Returns non-zero if the superblock is about to be destroyed and
152  * at least is already removed from super_blocks list, so if we are
153  * making a loop through super blocks then we need to restart.
154  * The caller must hold sb_lock.
155  */
156 int __put_super_and_need_restart(struct super_block *sb)
157 {
158 	/* check for race with generic_shutdown_super() */
159 	if (list_empty(&sb->s_list)) {
160 		/* super block is removed, need to restart... */
161 		__put_super(sb);
162 		return 1;
163 	}
164 	/* can't be the last, since s_list is still in use */
165 	sb->s_count--;
166 	BUG_ON(sb->s_count == 0);
167 	return 0;
168 }
169 
170 /**
171  *	put_super	-	drop a temporary reference to superblock
172  *	@sb: superblock in question
173  *
174  *	Drops a temporary reference, frees superblock if there's no
175  *	references left.
176  */
177 static void put_super(struct super_block *sb)
178 {
179 	spin_lock(&sb_lock);
180 	__put_super(sb);
181 	spin_unlock(&sb_lock);
182 }
183 
184 
185 /**
186  *	deactivate_super	-	drop an active reference to superblock
187  *	@s: superblock to deactivate
188  *
189  *	Drops an active reference to superblock, acquiring a temprory one if
190  *	there is no active references left.  In that case we lock superblock,
191  *	tell fs driver to shut it down and drop the temporary reference we
192  *	had just acquired.
193  */
194 void deactivate_super(struct super_block *s)
195 {
196 	struct file_system_type *fs = s->s_type;
197 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
198 		s->s_count -= S_BIAS-1;
199 		spin_unlock(&sb_lock);
200 		vfs_dq_off(s, 0);
201 		down_write(&s->s_umount);
202 		fs->kill_sb(s);
203 		put_filesystem(fs);
204 		put_super(s);
205 	}
206 }
207 
208 EXPORT_SYMBOL(deactivate_super);
209 
210 /**
211  *	grab_super - acquire an active reference
212  *	@s: reference we are trying to make active
213  *
214  *	Tries to acquire an active reference.  grab_super() is used when we
215  * 	had just found a superblock in super_blocks or fs_type->fs_supers
216  *	and want to turn it into a full-blown active reference.  grab_super()
217  *	is called with sb_lock held and drops it.  Returns 1 in case of
218  *	success, 0 if we had failed (superblock contents was already dead or
219  *	dying when grab_super() had been called).
220  */
221 static int grab_super(struct super_block *s) __releases(sb_lock)
222 {
223 	s->s_count++;
224 	spin_unlock(&sb_lock);
225 	down_write(&s->s_umount);
226 	if (s->s_root) {
227 		spin_lock(&sb_lock);
228 		if (s->s_count > S_BIAS) {
229 			atomic_inc(&s->s_active);
230 			s->s_count--;
231 			spin_unlock(&sb_lock);
232 			return 1;
233 		}
234 		spin_unlock(&sb_lock);
235 	}
236 	up_write(&s->s_umount);
237 	put_super(s);
238 	yield();
239 	return 0;
240 }
241 
242 /*
243  * Superblock locking.  We really ought to get rid of these two.
244  */
245 void lock_super(struct super_block * sb)
246 {
247 	get_fs_excl();
248 	mutex_lock(&sb->s_lock);
249 }
250 
251 void unlock_super(struct super_block * sb)
252 {
253 	put_fs_excl();
254 	mutex_unlock(&sb->s_lock);
255 }
256 
257 EXPORT_SYMBOL(lock_super);
258 EXPORT_SYMBOL(unlock_super);
259 
260 /*
261  * Write out and wait upon all dirty data associated with this
262  * superblock.  Filesystem data as well as the underlying block
263  * device.  Takes the superblock lock.  Requires a second blkdev
264  * flush by the caller to complete the operation.
265  */
266 void __fsync_super(struct super_block *sb)
267 {
268 	sync_inodes_sb(sb, 0);
269 	vfs_dq_sync(sb);
270 	lock_super(sb);
271 	if (sb->s_dirt && sb->s_op->write_super)
272 		sb->s_op->write_super(sb);
273 	unlock_super(sb);
274 	if (sb->s_op->sync_fs)
275 		sb->s_op->sync_fs(sb, 1);
276 	sync_blockdev(sb->s_bdev);
277 	sync_inodes_sb(sb, 1);
278 }
279 
280 /*
281  * Write out and wait upon all dirty data associated with this
282  * superblock.  Filesystem data as well as the underlying block
283  * device.  Takes the superblock lock.
284  */
285 int fsync_super(struct super_block *sb)
286 {
287 	__fsync_super(sb);
288 	return sync_blockdev(sb->s_bdev);
289 }
290 
291 /**
292  *	generic_shutdown_super	-	common helper for ->kill_sb()
293  *	@sb: superblock to kill
294  *
295  *	generic_shutdown_super() does all fs-independent work on superblock
296  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
297  *	that need destruction out of superblock, call generic_shutdown_super()
298  *	and release aforementioned objects.  Note: dentries and inodes _are_
299  *	taken care of and do not need specific handling.
300  *
301  *	Upon calling this function, the filesystem may no longer alter or
302  *	rearrange the set of dentries belonging to this super_block, nor may it
303  *	change the attachments of dentries to inodes.
304  */
305 void generic_shutdown_super(struct super_block *sb)
306 {
307 	const struct super_operations *sop = sb->s_op;
308 
309 
310 	if (sb->s_root) {
311 		shrink_dcache_for_umount(sb);
312 		fsync_super(sb);
313 		lock_super(sb);
314 		sb->s_flags &= ~MS_ACTIVE;
315 
316 		/*
317 		 * wait for asynchronous fs operations to finish before going further
318 		 */
319 		async_synchronize_full_domain(&sb->s_async_list);
320 
321 		/* bad name - it should be evict_inodes() */
322 		invalidate_inodes(sb);
323 		lock_kernel();
324 
325 		if (sop->write_super && sb->s_dirt)
326 			sop->write_super(sb);
327 		if (sop->put_super)
328 			sop->put_super(sb);
329 
330 		/* Forget any remaining inodes */
331 		if (invalidate_inodes(sb)) {
332 			printk("VFS: Busy inodes after unmount of %s. "
333 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
334 			   sb->s_id);
335 		}
336 
337 		unlock_kernel();
338 		unlock_super(sb);
339 	}
340 	spin_lock(&sb_lock);
341 	/* should be initialized for __put_super_and_need_restart() */
342 	list_del_init(&sb->s_list);
343 	list_del(&sb->s_instances);
344 	spin_unlock(&sb_lock);
345 	up_write(&sb->s_umount);
346 }
347 
348 EXPORT_SYMBOL(generic_shutdown_super);
349 
350 /**
351  *	sget	-	find or create a superblock
352  *	@type:	filesystem type superblock should belong to
353  *	@test:	comparison callback
354  *	@set:	setup callback
355  *	@data:	argument to each of them
356  */
357 struct super_block *sget(struct file_system_type *type,
358 			int (*test)(struct super_block *,void *),
359 			int (*set)(struct super_block *,void *),
360 			void *data)
361 {
362 	struct super_block *s = NULL;
363 	struct super_block *old;
364 	int err;
365 
366 retry:
367 	spin_lock(&sb_lock);
368 	if (test) {
369 		list_for_each_entry(old, &type->fs_supers, s_instances) {
370 			if (!test(old, data))
371 				continue;
372 			if (!grab_super(old))
373 				goto retry;
374 			if (s) {
375 				up_write(&s->s_umount);
376 				destroy_super(s);
377 			}
378 			return old;
379 		}
380 	}
381 	if (!s) {
382 		spin_unlock(&sb_lock);
383 		s = alloc_super(type);
384 		if (!s)
385 			return ERR_PTR(-ENOMEM);
386 		goto retry;
387 	}
388 
389 	err = set(s, data);
390 	if (err) {
391 		spin_unlock(&sb_lock);
392 		up_write(&s->s_umount);
393 		destroy_super(s);
394 		return ERR_PTR(err);
395 	}
396 	s->s_type = type;
397 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
398 	list_add_tail(&s->s_list, &super_blocks);
399 	list_add(&s->s_instances, &type->fs_supers);
400 	spin_unlock(&sb_lock);
401 	get_filesystem(type);
402 	return s;
403 }
404 
405 EXPORT_SYMBOL(sget);
406 
407 void drop_super(struct super_block *sb)
408 {
409 	up_read(&sb->s_umount);
410 	put_super(sb);
411 }
412 
413 EXPORT_SYMBOL(drop_super);
414 
415 static inline void write_super(struct super_block *sb)
416 {
417 	lock_super(sb);
418 	if (sb->s_root && sb->s_dirt)
419 		if (sb->s_op->write_super)
420 			sb->s_op->write_super(sb);
421 	unlock_super(sb);
422 }
423 
424 /*
425  * Note: check the dirty flag before waiting, so we don't
426  * hold up the sync while mounting a device. (The newly
427  * mounted device won't need syncing.)
428  */
429 void sync_supers(void)
430 {
431 	struct super_block *sb;
432 
433 	spin_lock(&sb_lock);
434 restart:
435 	list_for_each_entry(sb, &super_blocks, s_list) {
436 		if (sb->s_dirt) {
437 			sb->s_count++;
438 			spin_unlock(&sb_lock);
439 			down_read(&sb->s_umount);
440 			write_super(sb);
441 			up_read(&sb->s_umount);
442 			spin_lock(&sb_lock);
443 			if (__put_super_and_need_restart(sb))
444 				goto restart;
445 		}
446 	}
447 	spin_unlock(&sb_lock);
448 }
449 
450 /*
451  * Call the ->sync_fs super_op against all filesystems which are r/w and
452  * which implement it.
453  *
454  * This operation is careful to avoid the livelock which could easily happen
455  * if two or more filesystems are being continuously dirtied.  s_need_sync_fs
456  * is used only here.  We set it against all filesystems and then clear it as
457  * we sync them.  So redirtied filesystems are skipped.
458  *
459  * But if process A is currently running sync_filesystems and then process B
460  * calls sync_filesystems as well, process B will set all the s_need_sync_fs
461  * flags again, which will cause process A to resync everything.  Fix that with
462  * a local mutex.
463  *
464  * (Fabian) Avoid sync_fs with clean fs & wait mode 0
465  */
466 void sync_filesystems(int wait)
467 {
468 	struct super_block *sb;
469 	static DEFINE_MUTEX(mutex);
470 
471 	mutex_lock(&mutex);		/* Could be down_interruptible */
472 	spin_lock(&sb_lock);
473 	list_for_each_entry(sb, &super_blocks, s_list) {
474 		if (!sb->s_op->sync_fs)
475 			continue;
476 		if (sb->s_flags & MS_RDONLY)
477 			continue;
478 		sb->s_need_sync_fs = 1;
479 	}
480 
481 restart:
482 	list_for_each_entry(sb, &super_blocks, s_list) {
483 		if (!sb->s_need_sync_fs)
484 			continue;
485 		sb->s_need_sync_fs = 0;
486 		if (sb->s_flags & MS_RDONLY)
487 			continue;	/* hm.  Was remounted r/o meanwhile */
488 		sb->s_count++;
489 		spin_unlock(&sb_lock);
490 		down_read(&sb->s_umount);
491 		async_synchronize_full_domain(&sb->s_async_list);
492 		if (sb->s_root && (wait || sb->s_dirt))
493 			sb->s_op->sync_fs(sb, wait);
494 		up_read(&sb->s_umount);
495 		/* restart only when sb is no longer on the list */
496 		spin_lock(&sb_lock);
497 		if (__put_super_and_need_restart(sb))
498 			goto restart;
499 	}
500 	spin_unlock(&sb_lock);
501 	mutex_unlock(&mutex);
502 }
503 
504 /**
505  *	get_super - get the superblock of a device
506  *	@bdev: device to get the superblock for
507  *
508  *	Scans the superblock list and finds the superblock of the file system
509  *	mounted on the device given. %NULL is returned if no match is found.
510  */
511 
512 struct super_block * get_super(struct block_device *bdev)
513 {
514 	struct super_block *sb;
515 
516 	if (!bdev)
517 		return NULL;
518 
519 	spin_lock(&sb_lock);
520 rescan:
521 	list_for_each_entry(sb, &super_blocks, s_list) {
522 		if (sb->s_bdev == bdev) {
523 			sb->s_count++;
524 			spin_unlock(&sb_lock);
525 			down_read(&sb->s_umount);
526 			if (sb->s_root)
527 				return sb;
528 			up_read(&sb->s_umount);
529 			/* restart only when sb is no longer on the list */
530 			spin_lock(&sb_lock);
531 			if (__put_super_and_need_restart(sb))
532 				goto rescan;
533 		}
534 	}
535 	spin_unlock(&sb_lock);
536 	return NULL;
537 }
538 
539 EXPORT_SYMBOL(get_super);
540 
541 struct super_block * user_get_super(dev_t dev)
542 {
543 	struct super_block *sb;
544 
545 	spin_lock(&sb_lock);
546 rescan:
547 	list_for_each_entry(sb, &super_blocks, s_list) {
548 		if (sb->s_dev ==  dev) {
549 			sb->s_count++;
550 			spin_unlock(&sb_lock);
551 			down_read(&sb->s_umount);
552 			if (sb->s_root)
553 				return sb;
554 			up_read(&sb->s_umount);
555 			/* restart only when sb is no longer on the list */
556 			spin_lock(&sb_lock);
557 			if (__put_super_and_need_restart(sb))
558 				goto rescan;
559 		}
560 	}
561 	spin_unlock(&sb_lock);
562 	return NULL;
563 }
564 
565 SYSCALL_DEFINE2(ustat, unsigned, dev, struct ustat __user *, ubuf)
566 {
567         struct super_block *s;
568         struct ustat tmp;
569         struct kstatfs sbuf;
570 	int err = -EINVAL;
571 
572         s = user_get_super(new_decode_dev(dev));
573         if (s == NULL)
574                 goto out;
575 	err = vfs_statfs(s->s_root, &sbuf);
576 	drop_super(s);
577 	if (err)
578 		goto out;
579 
580         memset(&tmp,0,sizeof(struct ustat));
581         tmp.f_tfree = sbuf.f_bfree;
582         tmp.f_tinode = sbuf.f_ffree;
583 
584         err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
585 out:
586 	return err;
587 }
588 
589 /**
590  *	mark_files_ro - mark all files read-only
591  *	@sb: superblock in question
592  *
593  *	All files are marked read-only.  We don't care about pending
594  *	delete files so this should be used in 'force' mode only.
595  */
596 
597 static void mark_files_ro(struct super_block *sb)
598 {
599 	struct file *f;
600 
601 retry:
602 	file_list_lock();
603 	list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
604 		struct vfsmount *mnt;
605 		if (!S_ISREG(f->f_path.dentry->d_inode->i_mode))
606 		       continue;
607 		if (!file_count(f))
608 			continue;
609 		if (!(f->f_mode & FMODE_WRITE))
610 			continue;
611 		f->f_mode &= ~FMODE_WRITE;
612 		if (file_check_writeable(f) != 0)
613 			continue;
614 		file_release_write(f);
615 		mnt = mntget(f->f_path.mnt);
616 		file_list_unlock();
617 		/*
618 		 * This can sleep, so we can't hold
619 		 * the file_list_lock() spinlock.
620 		 */
621 		mnt_drop_write(mnt);
622 		mntput(mnt);
623 		goto retry;
624 	}
625 	file_list_unlock();
626 }
627 
628 /**
629  *	do_remount_sb - asks filesystem to change mount options.
630  *	@sb:	superblock in question
631  *	@flags:	numeric part of options
632  *	@data:	the rest of options
633  *      @force: whether or not to force the change
634  *
635  *	Alters the mount options of a mounted file system.
636  */
637 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
638 {
639 	int retval;
640 	int remount_rw;
641 
642 #ifdef CONFIG_BLOCK
643 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
644 		return -EACCES;
645 #endif
646 	if (flags & MS_RDONLY)
647 		acct_auto_close(sb);
648 	shrink_dcache_sb(sb);
649 	fsync_super(sb);
650 
651 	/* If we are remounting RDONLY and current sb is read/write,
652 	   make sure there are no rw files opened */
653 	if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
654 		if (force)
655 			mark_files_ro(sb);
656 		else if (!fs_may_remount_ro(sb))
657 			return -EBUSY;
658 		retval = vfs_dq_off(sb, 1);
659 		if (retval < 0 && retval != -ENOSYS)
660 			return -EBUSY;
661 	}
662 	remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY);
663 
664 	if (sb->s_op->remount_fs) {
665 		lock_super(sb);
666 		retval = sb->s_op->remount_fs(sb, &flags, data);
667 		unlock_super(sb);
668 		if (retval)
669 			return retval;
670 	}
671 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
672 	if (remount_rw)
673 		vfs_dq_quota_on_remount(sb);
674 	return 0;
675 }
676 
677 static void do_emergency_remount(struct work_struct *work)
678 {
679 	struct super_block *sb;
680 
681 	spin_lock(&sb_lock);
682 	list_for_each_entry(sb, &super_blocks, s_list) {
683 		sb->s_count++;
684 		spin_unlock(&sb_lock);
685 		down_read(&sb->s_umount);
686 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
687 			/*
688 			 * ->remount_fs needs lock_kernel().
689 			 *
690 			 * What lock protects sb->s_flags??
691 			 */
692 			lock_kernel();
693 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
694 			unlock_kernel();
695 		}
696 		drop_super(sb);
697 		spin_lock(&sb_lock);
698 	}
699 	spin_unlock(&sb_lock);
700 	kfree(work);
701 	printk("Emergency Remount complete\n");
702 }
703 
704 void emergency_remount(void)
705 {
706 	struct work_struct *work;
707 
708 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
709 	if (work) {
710 		INIT_WORK(work, do_emergency_remount);
711 		schedule_work(work);
712 	}
713 }
714 
715 /*
716  * Unnamed block devices are dummy devices used by virtual
717  * filesystems which don't use real block-devices.  -- jrs
718  */
719 
720 static DEFINE_IDA(unnamed_dev_ida);
721 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
722 
723 int set_anon_super(struct super_block *s, void *data)
724 {
725 	int dev;
726 	int error;
727 
728  retry:
729 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
730 		return -ENOMEM;
731 	spin_lock(&unnamed_dev_lock);
732 	error = ida_get_new(&unnamed_dev_ida, &dev);
733 	spin_unlock(&unnamed_dev_lock);
734 	if (error == -EAGAIN)
735 		/* We raced and lost with another CPU. */
736 		goto retry;
737 	else if (error)
738 		return -EAGAIN;
739 
740 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
741 		spin_lock(&unnamed_dev_lock);
742 		ida_remove(&unnamed_dev_ida, dev);
743 		spin_unlock(&unnamed_dev_lock);
744 		return -EMFILE;
745 	}
746 	s->s_dev = MKDEV(0, dev & MINORMASK);
747 	return 0;
748 }
749 
750 EXPORT_SYMBOL(set_anon_super);
751 
752 void kill_anon_super(struct super_block *sb)
753 {
754 	int slot = MINOR(sb->s_dev);
755 
756 	generic_shutdown_super(sb);
757 	spin_lock(&unnamed_dev_lock);
758 	ida_remove(&unnamed_dev_ida, slot);
759 	spin_unlock(&unnamed_dev_lock);
760 }
761 
762 EXPORT_SYMBOL(kill_anon_super);
763 
764 void kill_litter_super(struct super_block *sb)
765 {
766 	if (sb->s_root)
767 		d_genocide(sb->s_root);
768 	kill_anon_super(sb);
769 }
770 
771 EXPORT_SYMBOL(kill_litter_super);
772 
773 #ifdef CONFIG_BLOCK
774 static int set_bdev_super(struct super_block *s, void *data)
775 {
776 	s->s_bdev = data;
777 	s->s_dev = s->s_bdev->bd_dev;
778 	return 0;
779 }
780 
781 static int test_bdev_super(struct super_block *s, void *data)
782 {
783 	return (void *)s->s_bdev == data;
784 }
785 
786 int get_sb_bdev(struct file_system_type *fs_type,
787 	int flags, const char *dev_name, void *data,
788 	int (*fill_super)(struct super_block *, void *, int),
789 	struct vfsmount *mnt)
790 {
791 	struct block_device *bdev;
792 	struct super_block *s;
793 	fmode_t mode = FMODE_READ;
794 	int error = 0;
795 
796 	if (!(flags & MS_RDONLY))
797 		mode |= FMODE_WRITE;
798 
799 	bdev = open_bdev_exclusive(dev_name, mode, fs_type);
800 	if (IS_ERR(bdev))
801 		return PTR_ERR(bdev);
802 
803 	/*
804 	 * once the super is inserted into the list by sget, s_umount
805 	 * will protect the lockfs code from trying to start a snapshot
806 	 * while we are mounting
807 	 */
808 	down(&bdev->bd_mount_sem);
809 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
810 	up(&bdev->bd_mount_sem);
811 	if (IS_ERR(s))
812 		goto error_s;
813 
814 	if (s->s_root) {
815 		if ((flags ^ s->s_flags) & MS_RDONLY) {
816 			up_write(&s->s_umount);
817 			deactivate_super(s);
818 			error = -EBUSY;
819 			goto error_bdev;
820 		}
821 
822 		close_bdev_exclusive(bdev, mode);
823 	} else {
824 		char b[BDEVNAME_SIZE];
825 
826 		s->s_flags = flags;
827 		s->s_mode = mode;
828 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
829 		sb_set_blocksize(s, block_size(bdev));
830 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
831 		if (error) {
832 			up_write(&s->s_umount);
833 			deactivate_super(s);
834 			goto error;
835 		}
836 
837 		s->s_flags |= MS_ACTIVE;
838 		bdev->bd_super = s;
839 	}
840 
841 	simple_set_mnt(mnt, s);
842 	return 0;
843 
844 error_s:
845 	error = PTR_ERR(s);
846 error_bdev:
847 	close_bdev_exclusive(bdev, mode);
848 error:
849 	return error;
850 }
851 
852 EXPORT_SYMBOL(get_sb_bdev);
853 
854 void kill_block_super(struct super_block *sb)
855 {
856 	struct block_device *bdev = sb->s_bdev;
857 	fmode_t mode = sb->s_mode;
858 
859 	bdev->bd_super = 0;
860 	generic_shutdown_super(sb);
861 	sync_blockdev(bdev);
862 	close_bdev_exclusive(bdev, mode);
863 }
864 
865 EXPORT_SYMBOL(kill_block_super);
866 #endif
867 
868 int get_sb_nodev(struct file_system_type *fs_type,
869 	int flags, void *data,
870 	int (*fill_super)(struct super_block *, void *, int),
871 	struct vfsmount *mnt)
872 {
873 	int error;
874 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
875 
876 	if (IS_ERR(s))
877 		return PTR_ERR(s);
878 
879 	s->s_flags = flags;
880 
881 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
882 	if (error) {
883 		up_write(&s->s_umount);
884 		deactivate_super(s);
885 		return error;
886 	}
887 	s->s_flags |= MS_ACTIVE;
888 	simple_set_mnt(mnt, s);
889 	return 0;
890 }
891 
892 EXPORT_SYMBOL(get_sb_nodev);
893 
894 static int compare_single(struct super_block *s, void *p)
895 {
896 	return 1;
897 }
898 
899 int get_sb_single(struct file_system_type *fs_type,
900 	int flags, void *data,
901 	int (*fill_super)(struct super_block *, void *, int),
902 	struct vfsmount *mnt)
903 {
904 	struct super_block *s;
905 	int error;
906 
907 	s = sget(fs_type, compare_single, set_anon_super, NULL);
908 	if (IS_ERR(s))
909 		return PTR_ERR(s);
910 	if (!s->s_root) {
911 		s->s_flags = flags;
912 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
913 		if (error) {
914 			up_write(&s->s_umount);
915 			deactivate_super(s);
916 			return error;
917 		}
918 		s->s_flags |= MS_ACTIVE;
919 	}
920 	do_remount_sb(s, flags, data, 0);
921 	simple_set_mnt(mnt, s);
922 	return 0;
923 }
924 
925 EXPORT_SYMBOL(get_sb_single);
926 
927 struct vfsmount *
928 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
929 {
930 	struct vfsmount *mnt;
931 	char *secdata = NULL;
932 	int error;
933 
934 	if (!type)
935 		return ERR_PTR(-ENODEV);
936 
937 	error = -ENOMEM;
938 	mnt = alloc_vfsmnt(name);
939 	if (!mnt)
940 		goto out;
941 
942 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
943 		secdata = alloc_secdata();
944 		if (!secdata)
945 			goto out_mnt;
946 
947 		error = security_sb_copy_data(data, secdata);
948 		if (error)
949 			goto out_free_secdata;
950 	}
951 
952 	error = type->get_sb(type, flags, name, data, mnt);
953 	if (error < 0)
954 		goto out_free_secdata;
955 	BUG_ON(!mnt->mnt_sb);
956 
957  	error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
958  	if (error)
959  		goto out_sb;
960 
961 	mnt->mnt_mountpoint = mnt->mnt_root;
962 	mnt->mnt_parent = mnt;
963 	up_write(&mnt->mnt_sb->s_umount);
964 	free_secdata(secdata);
965 	return mnt;
966 out_sb:
967 	dput(mnt->mnt_root);
968 	up_write(&mnt->mnt_sb->s_umount);
969 	deactivate_super(mnt->mnt_sb);
970 out_free_secdata:
971 	free_secdata(secdata);
972 out_mnt:
973 	free_vfsmnt(mnt);
974 out:
975 	return ERR_PTR(error);
976 }
977 
978 EXPORT_SYMBOL_GPL(vfs_kern_mount);
979 
980 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
981 {
982 	int err;
983 	const char *subtype = strchr(fstype, '.');
984 	if (subtype) {
985 		subtype++;
986 		err = -EINVAL;
987 		if (!subtype[0])
988 			goto err;
989 	} else
990 		subtype = "";
991 
992 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
993 	err = -ENOMEM;
994 	if (!mnt->mnt_sb->s_subtype)
995 		goto err;
996 	return mnt;
997 
998  err:
999 	mntput(mnt);
1000 	return ERR_PTR(err);
1001 }
1002 
1003 struct vfsmount *
1004 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1005 {
1006 	struct file_system_type *type = get_fs_type(fstype);
1007 	struct vfsmount *mnt;
1008 	if (!type)
1009 		return ERR_PTR(-ENODEV);
1010 	mnt = vfs_kern_mount(type, flags, name, data);
1011 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1012 	    !mnt->mnt_sb->s_subtype)
1013 		mnt = fs_set_subtype(mnt, fstype);
1014 	put_filesystem(type);
1015 	return mnt;
1016 }
1017 EXPORT_SYMBOL_GPL(do_kern_mount);
1018 
1019 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1020 {
1021 	return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1022 }
1023 
1024 EXPORT_SYMBOL_GPL(kern_mount_data);
1025