xref: /linux/fs/super.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42 
43 static int thaw_super_locked(struct super_block *sb);
44 
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47 
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 	"sb_writers",
50 	"sb_pagefaults",
51 	"sb_internal",
52 };
53 
54 /*
55  * One thing we have to be careful of with a per-sb shrinker is that we don't
56  * drop the last active reference to the superblock from within the shrinker.
57  * If that happens we could trigger unregistering the shrinker from within the
58  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59  * take a passive reference to the superblock to avoid this from occurring.
60  */
61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 				      struct shrink_control *sc)
63 {
64 	struct super_block *sb;
65 	long	fs_objects = 0;
66 	long	total_objects;
67 	long	freed = 0;
68 	long	dentries;
69 	long	inodes;
70 
71 	sb = container_of(shrink, struct super_block, s_shrink);
72 
73 	/*
74 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
75 	 * to recurse into the FS that called us in clear_inode() and friends..
76 	 */
77 	if (!(sc->gfp_mask & __GFP_FS))
78 		return SHRINK_STOP;
79 
80 	if (!trylock_super(sb))
81 		return SHRINK_STOP;
82 
83 	if (sb->s_op->nr_cached_objects)
84 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85 
86 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 	total_objects = dentries + inodes + fs_objects + 1;
89 	if (!total_objects)
90 		total_objects = 1;
91 
92 	/* proportion the scan between the caches */
93 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96 
97 	/*
98 	 * prune the dcache first as the icache is pinned by it, then
99 	 * prune the icache, followed by the filesystem specific caches
100 	 *
101 	 * Ensure that we always scan at least one object - memcg kmem
102 	 * accounting uses this to fully empty the caches.
103 	 */
104 	sc->nr_to_scan = dentries + 1;
105 	freed = prune_dcache_sb(sb, sc);
106 	sc->nr_to_scan = inodes + 1;
107 	freed += prune_icache_sb(sb, sc);
108 
109 	if (fs_objects) {
110 		sc->nr_to_scan = fs_objects + 1;
111 		freed += sb->s_op->free_cached_objects(sb, sc);
112 	}
113 
114 	up_read(&sb->s_umount);
115 	return freed;
116 }
117 
118 static unsigned long super_cache_count(struct shrinker *shrink,
119 				       struct shrink_control *sc)
120 {
121 	struct super_block *sb;
122 	long	total_objects = 0;
123 
124 	sb = container_of(shrink, struct super_block, s_shrink);
125 
126 	/*
127 	 * We don't call trylock_super() here as it is a scalability bottleneck,
128 	 * so we're exposed to partial setup state. The shrinker rwsem does not
129 	 * protect filesystem operations backing list_lru_shrink_count() or
130 	 * s_op->nr_cached_objects(). Counts can change between
131 	 * super_cache_count and super_cache_scan, so we really don't need locks
132 	 * here.
133 	 *
134 	 * However, if we are currently mounting the superblock, the underlying
135 	 * filesystem might be in a state of partial construction and hence it
136 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
137 	 * avoid this situation, so do the same here. The memory barrier is
138 	 * matched with the one in mount_fs() as we don't hold locks here.
139 	 */
140 	if (!(sb->s_flags & SB_BORN))
141 		return 0;
142 	smp_rmb();
143 
144 	if (sb->s_op && sb->s_op->nr_cached_objects)
145 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
146 
147 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149 
150 	if (!total_objects)
151 		return SHRINK_EMPTY;
152 
153 	total_objects = vfs_pressure_ratio(total_objects);
154 	return total_objects;
155 }
156 
157 static void destroy_super_work(struct work_struct *work)
158 {
159 	struct super_block *s = container_of(work, struct super_block,
160 							destroy_work);
161 	int i;
162 
163 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 	kfree(s);
166 }
167 
168 static void destroy_super_rcu(struct rcu_head *head)
169 {
170 	struct super_block *s = container_of(head, struct super_block, rcu);
171 	INIT_WORK(&s->destroy_work, destroy_super_work);
172 	schedule_work(&s->destroy_work);
173 }
174 
175 /* Free a superblock that has never been seen by anyone */
176 static void destroy_unused_super(struct super_block *s)
177 {
178 	if (!s)
179 		return;
180 	up_write(&s->s_umount);
181 	list_lru_destroy(&s->s_dentry_lru);
182 	list_lru_destroy(&s->s_inode_lru);
183 	security_sb_free(s);
184 	put_user_ns(s->s_user_ns);
185 	kfree(s->s_subtype);
186 	free_prealloced_shrinker(&s->s_shrink);
187 	/* no delays needed */
188 	destroy_super_work(&s->destroy_work);
189 }
190 
191 /**
192  *	alloc_super	-	create new superblock
193  *	@type:	filesystem type superblock should belong to
194  *	@flags: the mount flags
195  *	@user_ns: User namespace for the super_block
196  *
197  *	Allocates and initializes a new &struct super_block.  alloc_super()
198  *	returns a pointer new superblock or %NULL if allocation had failed.
199  */
200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 				       struct user_namespace *user_ns)
202 {
203 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
204 	static const struct super_operations default_op;
205 	int i;
206 
207 	if (!s)
208 		return NULL;
209 
210 	INIT_LIST_HEAD(&s->s_mounts);
211 	s->s_user_ns = get_user_ns(user_ns);
212 	init_rwsem(&s->s_umount);
213 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 	/*
215 	 * sget() can have s_umount recursion.
216 	 *
217 	 * When it cannot find a suitable sb, it allocates a new
218 	 * one (this one), and tries again to find a suitable old
219 	 * one.
220 	 *
221 	 * In case that succeeds, it will acquire the s_umount
222 	 * lock of the old one. Since these are clearly distrinct
223 	 * locks, and this object isn't exposed yet, there's no
224 	 * risk of deadlocks.
225 	 *
226 	 * Annotate this by putting this lock in a different
227 	 * subclass.
228 	 */
229 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230 
231 	if (security_sb_alloc(s))
232 		goto fail;
233 
234 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 					sb_writers_name[i],
237 					&type->s_writers_key[i]))
238 			goto fail;
239 	}
240 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 	s->s_bdi = &noop_backing_dev_info;
242 	s->s_flags = flags;
243 	if (s->s_user_ns != &init_user_ns)
244 		s->s_iflags |= SB_I_NODEV;
245 	INIT_HLIST_NODE(&s->s_instances);
246 	INIT_HLIST_BL_HEAD(&s->s_roots);
247 	mutex_init(&s->s_sync_lock);
248 	INIT_LIST_HEAD(&s->s_inodes);
249 	spin_lock_init(&s->s_inode_list_lock);
250 	INIT_LIST_HEAD(&s->s_inodes_wb);
251 	spin_lock_init(&s->s_inode_wblist_lock);
252 
253 	s->s_count = 1;
254 	atomic_set(&s->s_active, 1);
255 	mutex_init(&s->s_vfs_rename_mutex);
256 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 	init_rwsem(&s->s_dquot.dqio_sem);
258 	s->s_maxbytes = MAX_NON_LFS;
259 	s->s_op = &default_op;
260 	s->s_time_gran = 1000000000;
261 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
262 
263 	s->s_shrink.seeks = DEFAULT_SEEKS;
264 	s->s_shrink.scan_objects = super_cache_scan;
265 	s->s_shrink.count_objects = super_cache_count;
266 	s->s_shrink.batch = 1024;
267 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
268 	if (prealloc_shrinker(&s->s_shrink))
269 		goto fail;
270 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
271 		goto fail;
272 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
273 		goto fail;
274 	return s;
275 
276 fail:
277 	destroy_unused_super(s);
278 	return NULL;
279 }
280 
281 /* Superblock refcounting  */
282 
283 /*
284  * Drop a superblock's refcount.  The caller must hold sb_lock.
285  */
286 static void __put_super(struct super_block *s)
287 {
288 	if (!--s->s_count) {
289 		list_del_init(&s->s_list);
290 		WARN_ON(s->s_dentry_lru.node);
291 		WARN_ON(s->s_inode_lru.node);
292 		WARN_ON(!list_empty(&s->s_mounts));
293 		security_sb_free(s);
294 		fscrypt_sb_free(s);
295 		put_user_ns(s->s_user_ns);
296 		kfree(s->s_subtype);
297 		call_rcu(&s->rcu, destroy_super_rcu);
298 	}
299 }
300 
301 /**
302  *	put_super	-	drop a temporary reference to superblock
303  *	@sb: superblock in question
304  *
305  *	Drops a temporary reference, frees superblock if there's no
306  *	references left.
307  */
308 static void put_super(struct super_block *sb)
309 {
310 	spin_lock(&sb_lock);
311 	__put_super(sb);
312 	spin_unlock(&sb_lock);
313 }
314 
315 
316 /**
317  *	deactivate_locked_super	-	drop an active reference to superblock
318  *	@s: superblock to deactivate
319  *
320  *	Drops an active reference to superblock, converting it into a temporary
321  *	one if there is no other active references left.  In that case we
322  *	tell fs driver to shut it down and drop the temporary reference we
323  *	had just acquired.
324  *
325  *	Caller holds exclusive lock on superblock; that lock is released.
326  */
327 void deactivate_locked_super(struct super_block *s)
328 {
329 	struct file_system_type *fs = s->s_type;
330 	if (atomic_dec_and_test(&s->s_active)) {
331 		cleancache_invalidate_fs(s);
332 		unregister_shrinker(&s->s_shrink);
333 		fs->kill_sb(s);
334 
335 		/*
336 		 * Since list_lru_destroy() may sleep, we cannot call it from
337 		 * put_super(), where we hold the sb_lock. Therefore we destroy
338 		 * the lru lists right now.
339 		 */
340 		list_lru_destroy(&s->s_dentry_lru);
341 		list_lru_destroy(&s->s_inode_lru);
342 
343 		put_filesystem(fs);
344 		put_super(s);
345 	} else {
346 		up_write(&s->s_umount);
347 	}
348 }
349 
350 EXPORT_SYMBOL(deactivate_locked_super);
351 
352 /**
353  *	deactivate_super	-	drop an active reference to superblock
354  *	@s: superblock to deactivate
355  *
356  *	Variant of deactivate_locked_super(), except that superblock is *not*
357  *	locked by caller.  If we are going to drop the final active reference,
358  *	lock will be acquired prior to that.
359  */
360 void deactivate_super(struct super_block *s)
361 {
362         if (!atomic_add_unless(&s->s_active, -1, 1)) {
363 		down_write(&s->s_umount);
364 		deactivate_locked_super(s);
365 	}
366 }
367 
368 EXPORT_SYMBOL(deactivate_super);
369 
370 /**
371  *	grab_super - acquire an active reference
372  *	@s: reference we are trying to make active
373  *
374  *	Tries to acquire an active reference.  grab_super() is used when we
375  * 	had just found a superblock in super_blocks or fs_type->fs_supers
376  *	and want to turn it into a full-blown active reference.  grab_super()
377  *	is called with sb_lock held and drops it.  Returns 1 in case of
378  *	success, 0 if we had failed (superblock contents was already dead or
379  *	dying when grab_super() had been called).  Note that this is only
380  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
381  *	of their type), so increment of ->s_count is OK here.
382  */
383 static int grab_super(struct super_block *s) __releases(sb_lock)
384 {
385 	s->s_count++;
386 	spin_unlock(&sb_lock);
387 	down_write(&s->s_umount);
388 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
389 		put_super(s);
390 		return 1;
391 	}
392 	up_write(&s->s_umount);
393 	put_super(s);
394 	return 0;
395 }
396 
397 /*
398  *	trylock_super - try to grab ->s_umount shared
399  *	@sb: reference we are trying to grab
400  *
401  *	Try to prevent fs shutdown.  This is used in places where we
402  *	cannot take an active reference but we need to ensure that the
403  *	filesystem is not shut down while we are working on it. It returns
404  *	false if we cannot acquire s_umount or if we lose the race and
405  *	filesystem already got into shutdown, and returns true with the s_umount
406  *	lock held in read mode in case of success. On successful return,
407  *	the caller must drop the s_umount lock when done.
408  *
409  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
410  *	The reason why it's safe is that we are OK with doing trylock instead
411  *	of down_read().  There's a couple of places that are OK with that, but
412  *	it's very much not a general-purpose interface.
413  */
414 bool trylock_super(struct super_block *sb)
415 {
416 	if (down_read_trylock(&sb->s_umount)) {
417 		if (!hlist_unhashed(&sb->s_instances) &&
418 		    sb->s_root && (sb->s_flags & SB_BORN))
419 			return true;
420 		up_read(&sb->s_umount);
421 	}
422 
423 	return false;
424 }
425 
426 /**
427  *	generic_shutdown_super	-	common helper for ->kill_sb()
428  *	@sb: superblock to kill
429  *
430  *	generic_shutdown_super() does all fs-independent work on superblock
431  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
432  *	that need destruction out of superblock, call generic_shutdown_super()
433  *	and release aforementioned objects.  Note: dentries and inodes _are_
434  *	taken care of and do not need specific handling.
435  *
436  *	Upon calling this function, the filesystem may no longer alter or
437  *	rearrange the set of dentries belonging to this super_block, nor may it
438  *	change the attachments of dentries to inodes.
439  */
440 void generic_shutdown_super(struct super_block *sb)
441 {
442 	const struct super_operations *sop = sb->s_op;
443 
444 	if (sb->s_root) {
445 		shrink_dcache_for_umount(sb);
446 		sync_filesystem(sb);
447 		sb->s_flags &= ~SB_ACTIVE;
448 
449 		fsnotify_sb_delete(sb);
450 		cgroup_writeback_umount();
451 
452 		evict_inodes(sb);
453 
454 		if (sb->s_dio_done_wq) {
455 			destroy_workqueue(sb->s_dio_done_wq);
456 			sb->s_dio_done_wq = NULL;
457 		}
458 
459 		if (sop->put_super)
460 			sop->put_super(sb);
461 
462 		if (!list_empty(&sb->s_inodes)) {
463 			printk("VFS: Busy inodes after unmount of %s. "
464 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
465 			   sb->s_id);
466 		}
467 	}
468 	spin_lock(&sb_lock);
469 	/* should be initialized for __put_super_and_need_restart() */
470 	hlist_del_init(&sb->s_instances);
471 	spin_unlock(&sb_lock);
472 	up_write(&sb->s_umount);
473 	if (sb->s_bdi != &noop_backing_dev_info) {
474 		bdi_put(sb->s_bdi);
475 		sb->s_bdi = &noop_backing_dev_info;
476 	}
477 }
478 
479 EXPORT_SYMBOL(generic_shutdown_super);
480 
481 bool mount_capable(struct fs_context *fc)
482 {
483 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
484 		return capable(CAP_SYS_ADMIN);
485 	else
486 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
487 }
488 
489 /**
490  * sget_fc - Find or create a superblock
491  * @fc:	Filesystem context.
492  * @test: Comparison callback
493  * @set: Setup callback
494  *
495  * Find or create a superblock using the parameters stored in the filesystem
496  * context and the two callback functions.
497  *
498  * If an extant superblock is matched, then that will be returned with an
499  * elevated reference count that the caller must transfer or discard.
500  *
501  * If no match is made, a new superblock will be allocated and basic
502  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
503  * the set() callback will be invoked), the superblock will be published and it
504  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
505  * as yet unset.
506  */
507 struct super_block *sget_fc(struct fs_context *fc,
508 			    int (*test)(struct super_block *, struct fs_context *),
509 			    int (*set)(struct super_block *, struct fs_context *))
510 {
511 	struct super_block *s = NULL;
512 	struct super_block *old;
513 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
514 	int err;
515 
516 retry:
517 	spin_lock(&sb_lock);
518 	if (test) {
519 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
520 			if (test(old, fc))
521 				goto share_extant_sb;
522 		}
523 	}
524 	if (!s) {
525 		spin_unlock(&sb_lock);
526 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
527 		if (!s)
528 			return ERR_PTR(-ENOMEM);
529 		goto retry;
530 	}
531 
532 	s->s_fs_info = fc->s_fs_info;
533 	err = set(s, fc);
534 	if (err) {
535 		s->s_fs_info = NULL;
536 		spin_unlock(&sb_lock);
537 		destroy_unused_super(s);
538 		return ERR_PTR(err);
539 	}
540 	fc->s_fs_info = NULL;
541 	s->s_type = fc->fs_type;
542 	s->s_iflags |= fc->s_iflags;
543 	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
544 	list_add_tail(&s->s_list, &super_blocks);
545 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
546 	spin_unlock(&sb_lock);
547 	get_filesystem(s->s_type);
548 	register_shrinker_prepared(&s->s_shrink);
549 	return s;
550 
551 share_extant_sb:
552 	if (user_ns != old->s_user_ns) {
553 		spin_unlock(&sb_lock);
554 		destroy_unused_super(s);
555 		return ERR_PTR(-EBUSY);
556 	}
557 	if (!grab_super(old))
558 		goto retry;
559 	destroy_unused_super(s);
560 	return old;
561 }
562 EXPORT_SYMBOL(sget_fc);
563 
564 /**
565  *	sget	-	find or create a superblock
566  *	@type:	  filesystem type superblock should belong to
567  *	@test:	  comparison callback
568  *	@set:	  setup callback
569  *	@flags:	  mount flags
570  *	@data:	  argument to each of them
571  */
572 struct super_block *sget(struct file_system_type *type,
573 			int (*test)(struct super_block *,void *),
574 			int (*set)(struct super_block *,void *),
575 			int flags,
576 			void *data)
577 {
578 	struct user_namespace *user_ns = current_user_ns();
579 	struct super_block *s = NULL;
580 	struct super_block *old;
581 	int err;
582 
583 	/* We don't yet pass the user namespace of the parent
584 	 * mount through to here so always use &init_user_ns
585 	 * until that changes.
586 	 */
587 	if (flags & SB_SUBMOUNT)
588 		user_ns = &init_user_ns;
589 
590 retry:
591 	spin_lock(&sb_lock);
592 	if (test) {
593 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
594 			if (!test(old, data))
595 				continue;
596 			if (user_ns != old->s_user_ns) {
597 				spin_unlock(&sb_lock);
598 				destroy_unused_super(s);
599 				return ERR_PTR(-EBUSY);
600 			}
601 			if (!grab_super(old))
602 				goto retry;
603 			destroy_unused_super(s);
604 			return old;
605 		}
606 	}
607 	if (!s) {
608 		spin_unlock(&sb_lock);
609 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
610 		if (!s)
611 			return ERR_PTR(-ENOMEM);
612 		goto retry;
613 	}
614 
615 	err = set(s, data);
616 	if (err) {
617 		spin_unlock(&sb_lock);
618 		destroy_unused_super(s);
619 		return ERR_PTR(err);
620 	}
621 	s->s_type = type;
622 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
623 	list_add_tail(&s->s_list, &super_blocks);
624 	hlist_add_head(&s->s_instances, &type->fs_supers);
625 	spin_unlock(&sb_lock);
626 	get_filesystem(type);
627 	register_shrinker_prepared(&s->s_shrink);
628 	return s;
629 }
630 EXPORT_SYMBOL(sget);
631 
632 void drop_super(struct super_block *sb)
633 {
634 	up_read(&sb->s_umount);
635 	put_super(sb);
636 }
637 
638 EXPORT_SYMBOL(drop_super);
639 
640 void drop_super_exclusive(struct super_block *sb)
641 {
642 	up_write(&sb->s_umount);
643 	put_super(sb);
644 }
645 EXPORT_SYMBOL(drop_super_exclusive);
646 
647 static void __iterate_supers(void (*f)(struct super_block *))
648 {
649 	struct super_block *sb, *p = NULL;
650 
651 	spin_lock(&sb_lock);
652 	list_for_each_entry(sb, &super_blocks, s_list) {
653 		if (hlist_unhashed(&sb->s_instances))
654 			continue;
655 		sb->s_count++;
656 		spin_unlock(&sb_lock);
657 
658 		f(sb);
659 
660 		spin_lock(&sb_lock);
661 		if (p)
662 			__put_super(p);
663 		p = sb;
664 	}
665 	if (p)
666 		__put_super(p);
667 	spin_unlock(&sb_lock);
668 }
669 /**
670  *	iterate_supers - call function for all active superblocks
671  *	@f: function to call
672  *	@arg: argument to pass to it
673  *
674  *	Scans the superblock list and calls given function, passing it
675  *	locked superblock and given argument.
676  */
677 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
678 {
679 	struct super_block *sb, *p = NULL;
680 
681 	spin_lock(&sb_lock);
682 	list_for_each_entry(sb, &super_blocks, s_list) {
683 		if (hlist_unhashed(&sb->s_instances))
684 			continue;
685 		sb->s_count++;
686 		spin_unlock(&sb_lock);
687 
688 		down_read(&sb->s_umount);
689 		if (sb->s_root && (sb->s_flags & SB_BORN))
690 			f(sb, arg);
691 		up_read(&sb->s_umount);
692 
693 		spin_lock(&sb_lock);
694 		if (p)
695 			__put_super(p);
696 		p = sb;
697 	}
698 	if (p)
699 		__put_super(p);
700 	spin_unlock(&sb_lock);
701 }
702 
703 /**
704  *	iterate_supers_type - call function for superblocks of given type
705  *	@type: fs type
706  *	@f: function to call
707  *	@arg: argument to pass to it
708  *
709  *	Scans the superblock list and calls given function, passing it
710  *	locked superblock and given argument.
711  */
712 void iterate_supers_type(struct file_system_type *type,
713 	void (*f)(struct super_block *, void *), void *arg)
714 {
715 	struct super_block *sb, *p = NULL;
716 
717 	spin_lock(&sb_lock);
718 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
719 		sb->s_count++;
720 		spin_unlock(&sb_lock);
721 
722 		down_read(&sb->s_umount);
723 		if (sb->s_root && (sb->s_flags & SB_BORN))
724 			f(sb, arg);
725 		up_read(&sb->s_umount);
726 
727 		spin_lock(&sb_lock);
728 		if (p)
729 			__put_super(p);
730 		p = sb;
731 	}
732 	if (p)
733 		__put_super(p);
734 	spin_unlock(&sb_lock);
735 }
736 
737 EXPORT_SYMBOL(iterate_supers_type);
738 
739 static struct super_block *__get_super(struct block_device *bdev, bool excl)
740 {
741 	struct super_block *sb;
742 
743 	if (!bdev)
744 		return NULL;
745 
746 	spin_lock(&sb_lock);
747 rescan:
748 	list_for_each_entry(sb, &super_blocks, s_list) {
749 		if (hlist_unhashed(&sb->s_instances))
750 			continue;
751 		if (sb->s_bdev == bdev) {
752 			sb->s_count++;
753 			spin_unlock(&sb_lock);
754 			if (!excl)
755 				down_read(&sb->s_umount);
756 			else
757 				down_write(&sb->s_umount);
758 			/* still alive? */
759 			if (sb->s_root && (sb->s_flags & SB_BORN))
760 				return sb;
761 			if (!excl)
762 				up_read(&sb->s_umount);
763 			else
764 				up_write(&sb->s_umount);
765 			/* nope, got unmounted */
766 			spin_lock(&sb_lock);
767 			__put_super(sb);
768 			goto rescan;
769 		}
770 	}
771 	spin_unlock(&sb_lock);
772 	return NULL;
773 }
774 
775 /**
776  *	get_super - get the superblock of a device
777  *	@bdev: device to get the superblock for
778  *
779  *	Scans the superblock list and finds the superblock of the file system
780  *	mounted on the device given. %NULL is returned if no match is found.
781  */
782 struct super_block *get_super(struct block_device *bdev)
783 {
784 	return __get_super(bdev, false);
785 }
786 EXPORT_SYMBOL(get_super);
787 
788 static struct super_block *__get_super_thawed(struct block_device *bdev,
789 					      bool excl)
790 {
791 	while (1) {
792 		struct super_block *s = __get_super(bdev, excl);
793 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
794 			return s;
795 		if (!excl)
796 			up_read(&s->s_umount);
797 		else
798 			up_write(&s->s_umount);
799 		wait_event(s->s_writers.wait_unfrozen,
800 			   s->s_writers.frozen == SB_UNFROZEN);
801 		put_super(s);
802 	}
803 }
804 
805 /**
806  *	get_super_thawed - get thawed superblock of a device
807  *	@bdev: device to get the superblock for
808  *
809  *	Scans the superblock list and finds the superblock of the file system
810  *	mounted on the device. The superblock is returned once it is thawed
811  *	(or immediately if it was not frozen). %NULL is returned if no match
812  *	is found.
813  */
814 struct super_block *get_super_thawed(struct block_device *bdev)
815 {
816 	return __get_super_thawed(bdev, false);
817 }
818 EXPORT_SYMBOL(get_super_thawed);
819 
820 /**
821  *	get_super_exclusive_thawed - get thawed superblock of a device
822  *	@bdev: device to get the superblock for
823  *
824  *	Scans the superblock list and finds the superblock of the file system
825  *	mounted on the device. The superblock is returned once it is thawed
826  *	(or immediately if it was not frozen) and s_umount semaphore is held
827  *	in exclusive mode. %NULL is returned if no match is found.
828  */
829 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
830 {
831 	return __get_super_thawed(bdev, true);
832 }
833 EXPORT_SYMBOL(get_super_exclusive_thawed);
834 
835 /**
836  * get_active_super - get an active reference to the superblock of a device
837  * @bdev: device to get the superblock for
838  *
839  * Scans the superblock list and finds the superblock of the file system
840  * mounted on the device given.  Returns the superblock with an active
841  * reference or %NULL if none was found.
842  */
843 struct super_block *get_active_super(struct block_device *bdev)
844 {
845 	struct super_block *sb;
846 
847 	if (!bdev)
848 		return NULL;
849 
850 restart:
851 	spin_lock(&sb_lock);
852 	list_for_each_entry(sb, &super_blocks, s_list) {
853 		if (hlist_unhashed(&sb->s_instances))
854 			continue;
855 		if (sb->s_bdev == bdev) {
856 			if (!grab_super(sb))
857 				goto restart;
858 			up_write(&sb->s_umount);
859 			return sb;
860 		}
861 	}
862 	spin_unlock(&sb_lock);
863 	return NULL;
864 }
865 
866 struct super_block *user_get_super(dev_t dev)
867 {
868 	struct super_block *sb;
869 
870 	spin_lock(&sb_lock);
871 rescan:
872 	list_for_each_entry(sb, &super_blocks, s_list) {
873 		if (hlist_unhashed(&sb->s_instances))
874 			continue;
875 		if (sb->s_dev ==  dev) {
876 			sb->s_count++;
877 			spin_unlock(&sb_lock);
878 			down_read(&sb->s_umount);
879 			/* still alive? */
880 			if (sb->s_root && (sb->s_flags & SB_BORN))
881 				return sb;
882 			up_read(&sb->s_umount);
883 			/* nope, got unmounted */
884 			spin_lock(&sb_lock);
885 			__put_super(sb);
886 			goto rescan;
887 		}
888 	}
889 	spin_unlock(&sb_lock);
890 	return NULL;
891 }
892 
893 /**
894  * reconfigure_super - asks filesystem to change superblock parameters
895  * @fc: The superblock and configuration
896  *
897  * Alters the configuration parameters of a live superblock.
898  */
899 int reconfigure_super(struct fs_context *fc)
900 {
901 	struct super_block *sb = fc->root->d_sb;
902 	int retval;
903 	bool remount_ro = false;
904 	bool force = fc->sb_flags & SB_FORCE;
905 
906 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
907 		return -EINVAL;
908 	if (sb->s_writers.frozen != SB_UNFROZEN)
909 		return -EBUSY;
910 
911 	retval = security_sb_remount(sb, fc->security);
912 	if (retval)
913 		return retval;
914 
915 	if (fc->sb_flags_mask & SB_RDONLY) {
916 #ifdef CONFIG_BLOCK
917 		if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
918 			return -EACCES;
919 #endif
920 
921 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
922 	}
923 
924 	if (remount_ro) {
925 		if (!hlist_empty(&sb->s_pins)) {
926 			up_write(&sb->s_umount);
927 			group_pin_kill(&sb->s_pins);
928 			down_write(&sb->s_umount);
929 			if (!sb->s_root)
930 				return 0;
931 			if (sb->s_writers.frozen != SB_UNFROZEN)
932 				return -EBUSY;
933 			remount_ro = !sb_rdonly(sb);
934 		}
935 	}
936 	shrink_dcache_sb(sb);
937 
938 	/* If we are reconfiguring to RDONLY and current sb is read/write,
939 	 * make sure there are no files open for writing.
940 	 */
941 	if (remount_ro) {
942 		if (force) {
943 			sb->s_readonly_remount = 1;
944 			smp_wmb();
945 		} else {
946 			retval = sb_prepare_remount_readonly(sb);
947 			if (retval)
948 				return retval;
949 		}
950 	}
951 
952 	if (fc->ops->reconfigure) {
953 		retval = fc->ops->reconfigure(fc);
954 		if (retval) {
955 			if (!force)
956 				goto cancel_readonly;
957 			/* If forced remount, go ahead despite any errors */
958 			WARN(1, "forced remount of a %s fs returned %i\n",
959 			     sb->s_type->name, retval);
960 		}
961 	}
962 
963 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
964 				 (fc->sb_flags & fc->sb_flags_mask)));
965 	/* Needs to be ordered wrt mnt_is_readonly() */
966 	smp_wmb();
967 	sb->s_readonly_remount = 0;
968 
969 	/*
970 	 * Some filesystems modify their metadata via some other path than the
971 	 * bdev buffer cache (eg. use a private mapping, or directories in
972 	 * pagecache, etc). Also file data modifications go via their own
973 	 * mappings. So If we try to mount readonly then copy the filesystem
974 	 * from bdev, we could get stale data, so invalidate it to give a best
975 	 * effort at coherency.
976 	 */
977 	if (remount_ro && sb->s_bdev)
978 		invalidate_bdev(sb->s_bdev);
979 	return 0;
980 
981 cancel_readonly:
982 	sb->s_readonly_remount = 0;
983 	return retval;
984 }
985 
986 static void do_emergency_remount_callback(struct super_block *sb)
987 {
988 	down_write(&sb->s_umount);
989 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
990 	    !sb_rdonly(sb)) {
991 		struct fs_context *fc;
992 
993 		fc = fs_context_for_reconfigure(sb->s_root,
994 					SB_RDONLY | SB_FORCE, SB_RDONLY);
995 		if (!IS_ERR(fc)) {
996 			if (parse_monolithic_mount_data(fc, NULL) == 0)
997 				(void)reconfigure_super(fc);
998 			put_fs_context(fc);
999 		}
1000 	}
1001 	up_write(&sb->s_umount);
1002 }
1003 
1004 static void do_emergency_remount(struct work_struct *work)
1005 {
1006 	__iterate_supers(do_emergency_remount_callback);
1007 	kfree(work);
1008 	printk("Emergency Remount complete\n");
1009 }
1010 
1011 void emergency_remount(void)
1012 {
1013 	struct work_struct *work;
1014 
1015 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1016 	if (work) {
1017 		INIT_WORK(work, do_emergency_remount);
1018 		schedule_work(work);
1019 	}
1020 }
1021 
1022 static void do_thaw_all_callback(struct super_block *sb)
1023 {
1024 	down_write(&sb->s_umount);
1025 	if (sb->s_root && sb->s_flags & SB_BORN) {
1026 		emergency_thaw_bdev(sb);
1027 		thaw_super_locked(sb);
1028 	} else {
1029 		up_write(&sb->s_umount);
1030 	}
1031 }
1032 
1033 static void do_thaw_all(struct work_struct *work)
1034 {
1035 	__iterate_supers(do_thaw_all_callback);
1036 	kfree(work);
1037 	printk(KERN_WARNING "Emergency Thaw complete\n");
1038 }
1039 
1040 /**
1041  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1042  *
1043  * Used for emergency unfreeze of all filesystems via SysRq
1044  */
1045 void emergency_thaw_all(void)
1046 {
1047 	struct work_struct *work;
1048 
1049 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1050 	if (work) {
1051 		INIT_WORK(work, do_thaw_all);
1052 		schedule_work(work);
1053 	}
1054 }
1055 
1056 static DEFINE_IDA(unnamed_dev_ida);
1057 
1058 /**
1059  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1060  * @p: Pointer to a dev_t.
1061  *
1062  * Filesystems which don't use real block devices can call this function
1063  * to allocate a virtual block device.
1064  *
1065  * Context: Any context.  Frequently called while holding sb_lock.
1066  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1067  * or -ENOMEM if memory allocation failed.
1068  */
1069 int get_anon_bdev(dev_t *p)
1070 {
1071 	int dev;
1072 
1073 	/*
1074 	 * Many userspace utilities consider an FSID of 0 invalid.
1075 	 * Always return at least 1 from get_anon_bdev.
1076 	 */
1077 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1078 			GFP_ATOMIC);
1079 	if (dev == -ENOSPC)
1080 		dev = -EMFILE;
1081 	if (dev < 0)
1082 		return dev;
1083 
1084 	*p = MKDEV(0, dev);
1085 	return 0;
1086 }
1087 EXPORT_SYMBOL(get_anon_bdev);
1088 
1089 void free_anon_bdev(dev_t dev)
1090 {
1091 	ida_free(&unnamed_dev_ida, MINOR(dev));
1092 }
1093 EXPORT_SYMBOL(free_anon_bdev);
1094 
1095 int set_anon_super(struct super_block *s, void *data)
1096 {
1097 	return get_anon_bdev(&s->s_dev);
1098 }
1099 EXPORT_SYMBOL(set_anon_super);
1100 
1101 void kill_anon_super(struct super_block *sb)
1102 {
1103 	dev_t dev = sb->s_dev;
1104 	generic_shutdown_super(sb);
1105 	free_anon_bdev(dev);
1106 }
1107 EXPORT_SYMBOL(kill_anon_super);
1108 
1109 void kill_litter_super(struct super_block *sb)
1110 {
1111 	if (sb->s_root)
1112 		d_genocide(sb->s_root);
1113 	kill_anon_super(sb);
1114 }
1115 EXPORT_SYMBOL(kill_litter_super);
1116 
1117 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1118 {
1119 	return set_anon_super(sb, NULL);
1120 }
1121 EXPORT_SYMBOL(set_anon_super_fc);
1122 
1123 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1124 {
1125 	return sb->s_fs_info == fc->s_fs_info;
1126 }
1127 
1128 static int test_single_super(struct super_block *s, struct fs_context *fc)
1129 {
1130 	return 1;
1131 }
1132 
1133 /**
1134  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1135  * @fc: The filesystem context holding the parameters
1136  * @keying: How to distinguish superblocks
1137  * @fill_super: Helper to initialise a new superblock
1138  *
1139  * Search for a superblock and create a new one if not found.  The search
1140  * criterion is controlled by @keying.  If the search fails, a new superblock
1141  * is created and @fill_super() is called to initialise it.
1142  *
1143  * @keying can take one of a number of values:
1144  *
1145  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1146  *     system.  This is typically used for special system filesystems.
1147  *
1148  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1149  *     distinct keys (where the key is in s_fs_info).  Searching for the same
1150  *     key again will turn up the superblock for that key.
1151  *
1152  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1153  *     unkeyed.  Each call will get a new superblock.
1154  *
1155  * A permissions check is made by sget_fc() unless we're getting a superblock
1156  * for a kernel-internal mount or a submount.
1157  */
1158 int vfs_get_super(struct fs_context *fc,
1159 		  enum vfs_get_super_keying keying,
1160 		  int (*fill_super)(struct super_block *sb,
1161 				    struct fs_context *fc))
1162 {
1163 	int (*test)(struct super_block *, struct fs_context *);
1164 	struct super_block *sb;
1165 
1166 	switch (keying) {
1167 	case vfs_get_single_super:
1168 		test = test_single_super;
1169 		break;
1170 	case vfs_get_keyed_super:
1171 		test = test_keyed_super;
1172 		break;
1173 	case vfs_get_independent_super:
1174 		test = NULL;
1175 		break;
1176 	default:
1177 		BUG();
1178 	}
1179 
1180 	sb = sget_fc(fc, test, set_anon_super_fc);
1181 	if (IS_ERR(sb))
1182 		return PTR_ERR(sb);
1183 
1184 	if (!sb->s_root) {
1185 		int err = fill_super(sb, fc);
1186 		if (err) {
1187 			deactivate_locked_super(sb);
1188 			return err;
1189 		}
1190 
1191 		sb->s_flags |= SB_ACTIVE;
1192 	}
1193 
1194 	BUG_ON(fc->root);
1195 	fc->root = dget(sb->s_root);
1196 	return 0;
1197 }
1198 EXPORT_SYMBOL(vfs_get_super);
1199 
1200 int get_tree_nodev(struct fs_context *fc,
1201 		  int (*fill_super)(struct super_block *sb,
1202 				    struct fs_context *fc))
1203 {
1204 	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1205 }
1206 EXPORT_SYMBOL(get_tree_nodev);
1207 
1208 int get_tree_single(struct fs_context *fc,
1209 		  int (*fill_super)(struct super_block *sb,
1210 				    struct fs_context *fc))
1211 {
1212 	return vfs_get_super(fc, vfs_get_single_super, fill_super);
1213 }
1214 EXPORT_SYMBOL(get_tree_single);
1215 
1216 int get_tree_keyed(struct fs_context *fc,
1217 		  int (*fill_super)(struct super_block *sb,
1218 				    struct fs_context *fc),
1219 		void *key)
1220 {
1221 	fc->s_fs_info = key;
1222 	return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1223 }
1224 EXPORT_SYMBOL(get_tree_keyed);
1225 
1226 #ifdef CONFIG_BLOCK
1227 
1228 static int set_bdev_super(struct super_block *s, void *data)
1229 {
1230 	s->s_bdev = data;
1231 	s->s_dev = s->s_bdev->bd_dev;
1232 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1233 
1234 	return 0;
1235 }
1236 
1237 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1238 {
1239 	return set_bdev_super(s, fc->sget_key);
1240 }
1241 
1242 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1243 {
1244 	return s->s_bdev == fc->sget_key;
1245 }
1246 
1247 /**
1248  * get_tree_bdev - Get a superblock based on a single block device
1249  * @fc: The filesystem context holding the parameters
1250  * @fill_super: Helper to initialise a new superblock
1251  */
1252 int get_tree_bdev(struct fs_context *fc,
1253 		int (*fill_super)(struct super_block *,
1254 				  struct fs_context *))
1255 {
1256 	struct block_device *bdev;
1257 	struct super_block *s;
1258 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1259 	int error = 0;
1260 
1261 	if (!(fc->sb_flags & SB_RDONLY))
1262 		mode |= FMODE_WRITE;
1263 
1264 	if (!fc->source)
1265 		return invalf(fc, "No source specified");
1266 
1267 	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1268 	if (IS_ERR(bdev)) {
1269 		errorf(fc, "%s: Can't open blockdev", fc->source);
1270 		return PTR_ERR(bdev);
1271 	}
1272 
1273 	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1274 	 * will protect the lockfs code from trying to start a snapshot while
1275 	 * we are mounting
1276 	 */
1277 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1278 	if (bdev->bd_fsfreeze_count > 0) {
1279 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1280 		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1281 		return -EBUSY;
1282 	}
1283 
1284 	fc->sb_flags |= SB_NOSEC;
1285 	fc->sget_key = bdev;
1286 	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1287 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1288 	if (IS_ERR(s))
1289 		return PTR_ERR(s);
1290 
1291 	if (s->s_root) {
1292 		/* Don't summarily change the RO/RW state. */
1293 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1294 			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1295 			deactivate_locked_super(s);
1296 			blkdev_put(bdev, mode);
1297 			return -EBUSY;
1298 		}
1299 
1300 		/*
1301 		 * s_umount nests inside bd_mutex during
1302 		 * __invalidate_device().  blkdev_put() acquires
1303 		 * bd_mutex and can't be called under s_umount.  Drop
1304 		 * s_umount temporarily.  This is safe as we're
1305 		 * holding an active reference.
1306 		 */
1307 		up_write(&s->s_umount);
1308 		blkdev_put(bdev, mode);
1309 		down_write(&s->s_umount);
1310 	} else {
1311 		s->s_mode = mode;
1312 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1313 		sb_set_blocksize(s, block_size(bdev));
1314 		error = fill_super(s, fc);
1315 		if (error) {
1316 			deactivate_locked_super(s);
1317 			return error;
1318 		}
1319 
1320 		s->s_flags |= SB_ACTIVE;
1321 		bdev->bd_super = s;
1322 	}
1323 
1324 	BUG_ON(fc->root);
1325 	fc->root = dget(s->s_root);
1326 	return 0;
1327 }
1328 EXPORT_SYMBOL(get_tree_bdev);
1329 
1330 static int test_bdev_super(struct super_block *s, void *data)
1331 {
1332 	return (void *)s->s_bdev == data;
1333 }
1334 
1335 struct dentry *mount_bdev(struct file_system_type *fs_type,
1336 	int flags, const char *dev_name, void *data,
1337 	int (*fill_super)(struct super_block *, void *, int))
1338 {
1339 	struct block_device *bdev;
1340 	struct super_block *s;
1341 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1342 	int error = 0;
1343 
1344 	if (!(flags & SB_RDONLY))
1345 		mode |= FMODE_WRITE;
1346 
1347 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1348 	if (IS_ERR(bdev))
1349 		return ERR_CAST(bdev);
1350 
1351 	/*
1352 	 * once the super is inserted into the list by sget, s_umount
1353 	 * will protect the lockfs code from trying to start a snapshot
1354 	 * while we are mounting
1355 	 */
1356 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1357 	if (bdev->bd_fsfreeze_count > 0) {
1358 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1359 		error = -EBUSY;
1360 		goto error_bdev;
1361 	}
1362 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1363 		 bdev);
1364 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1365 	if (IS_ERR(s))
1366 		goto error_s;
1367 
1368 	if (s->s_root) {
1369 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1370 			deactivate_locked_super(s);
1371 			error = -EBUSY;
1372 			goto error_bdev;
1373 		}
1374 
1375 		/*
1376 		 * s_umount nests inside bd_mutex during
1377 		 * __invalidate_device().  blkdev_put() acquires
1378 		 * bd_mutex and can't be called under s_umount.  Drop
1379 		 * s_umount temporarily.  This is safe as we're
1380 		 * holding an active reference.
1381 		 */
1382 		up_write(&s->s_umount);
1383 		blkdev_put(bdev, mode);
1384 		down_write(&s->s_umount);
1385 	} else {
1386 		s->s_mode = mode;
1387 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1388 		sb_set_blocksize(s, block_size(bdev));
1389 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1390 		if (error) {
1391 			deactivate_locked_super(s);
1392 			goto error;
1393 		}
1394 
1395 		s->s_flags |= SB_ACTIVE;
1396 		bdev->bd_super = s;
1397 	}
1398 
1399 	return dget(s->s_root);
1400 
1401 error_s:
1402 	error = PTR_ERR(s);
1403 error_bdev:
1404 	blkdev_put(bdev, mode);
1405 error:
1406 	return ERR_PTR(error);
1407 }
1408 EXPORT_SYMBOL(mount_bdev);
1409 
1410 void kill_block_super(struct super_block *sb)
1411 {
1412 	struct block_device *bdev = sb->s_bdev;
1413 	fmode_t mode = sb->s_mode;
1414 
1415 	bdev->bd_super = NULL;
1416 	generic_shutdown_super(sb);
1417 	sync_blockdev(bdev);
1418 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1419 	blkdev_put(bdev, mode | FMODE_EXCL);
1420 }
1421 
1422 EXPORT_SYMBOL(kill_block_super);
1423 #endif
1424 
1425 struct dentry *mount_nodev(struct file_system_type *fs_type,
1426 	int flags, void *data,
1427 	int (*fill_super)(struct super_block *, void *, int))
1428 {
1429 	int error;
1430 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1431 
1432 	if (IS_ERR(s))
1433 		return ERR_CAST(s);
1434 
1435 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1436 	if (error) {
1437 		deactivate_locked_super(s);
1438 		return ERR_PTR(error);
1439 	}
1440 	s->s_flags |= SB_ACTIVE;
1441 	return dget(s->s_root);
1442 }
1443 EXPORT_SYMBOL(mount_nodev);
1444 
1445 static int reconfigure_single(struct super_block *s,
1446 			      int flags, void *data)
1447 {
1448 	struct fs_context *fc;
1449 	int ret;
1450 
1451 	/* The caller really need to be passing fc down into mount_single(),
1452 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1453 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1454 	 * mount should be rejected if the parameters are not compatible.
1455 	 */
1456 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1457 	if (IS_ERR(fc))
1458 		return PTR_ERR(fc);
1459 
1460 	ret = parse_monolithic_mount_data(fc, data);
1461 	if (ret < 0)
1462 		goto out;
1463 
1464 	ret = reconfigure_super(fc);
1465 out:
1466 	put_fs_context(fc);
1467 	return ret;
1468 }
1469 
1470 static int compare_single(struct super_block *s, void *p)
1471 {
1472 	return 1;
1473 }
1474 
1475 struct dentry *mount_single(struct file_system_type *fs_type,
1476 	int flags, void *data,
1477 	int (*fill_super)(struct super_block *, void *, int))
1478 {
1479 	struct super_block *s;
1480 	int error;
1481 
1482 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1483 	if (IS_ERR(s))
1484 		return ERR_CAST(s);
1485 	if (!s->s_root) {
1486 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1487 		if (!error)
1488 			s->s_flags |= SB_ACTIVE;
1489 	} else {
1490 		error = reconfigure_single(s, flags, data);
1491 	}
1492 	if (unlikely(error)) {
1493 		deactivate_locked_super(s);
1494 		return ERR_PTR(error);
1495 	}
1496 	return dget(s->s_root);
1497 }
1498 EXPORT_SYMBOL(mount_single);
1499 
1500 /**
1501  * vfs_get_tree - Get the mountable root
1502  * @fc: The superblock configuration context.
1503  *
1504  * The filesystem is invoked to get or create a superblock which can then later
1505  * be used for mounting.  The filesystem places a pointer to the root to be
1506  * used for mounting in @fc->root.
1507  */
1508 int vfs_get_tree(struct fs_context *fc)
1509 {
1510 	struct super_block *sb;
1511 	int error;
1512 
1513 	if (fc->root)
1514 		return -EBUSY;
1515 
1516 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1517 	 * on the superblock.
1518 	 */
1519 	error = fc->ops->get_tree(fc);
1520 	if (error < 0)
1521 		return error;
1522 
1523 	if (!fc->root) {
1524 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1525 		       fc->fs_type->name);
1526 		/* We don't know what the locking state of the superblock is -
1527 		 * if there is a superblock.
1528 		 */
1529 		BUG();
1530 	}
1531 
1532 	sb = fc->root->d_sb;
1533 	WARN_ON(!sb->s_bdi);
1534 
1535 	if (fc->subtype && !sb->s_subtype) {
1536 		sb->s_subtype = fc->subtype;
1537 		fc->subtype = NULL;
1538 	}
1539 
1540 	/*
1541 	 * Write barrier is for super_cache_count(). We place it before setting
1542 	 * SB_BORN as the data dependency between the two functions is the
1543 	 * superblock structure contents that we just set up, not the SB_BORN
1544 	 * flag.
1545 	 */
1546 	smp_wmb();
1547 	sb->s_flags |= SB_BORN;
1548 
1549 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1550 	if (unlikely(error)) {
1551 		fc_drop_locked(fc);
1552 		return error;
1553 	}
1554 
1555 	/*
1556 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1557 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1558 	 * this warning for a little while to try and catch filesystems that
1559 	 * violate this rule.
1560 	 */
1561 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1562 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1563 
1564 	return 0;
1565 }
1566 EXPORT_SYMBOL(vfs_get_tree);
1567 
1568 /*
1569  * Setup private BDI for given superblock. It gets automatically cleaned up
1570  * in generic_shutdown_super().
1571  */
1572 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1573 {
1574 	struct backing_dev_info *bdi;
1575 	int err;
1576 	va_list args;
1577 
1578 	bdi = bdi_alloc(GFP_KERNEL);
1579 	if (!bdi)
1580 		return -ENOMEM;
1581 
1582 	bdi->name = sb->s_type->name;
1583 
1584 	va_start(args, fmt);
1585 	err = bdi_register_va(bdi, fmt, args);
1586 	va_end(args);
1587 	if (err) {
1588 		bdi_put(bdi);
1589 		return err;
1590 	}
1591 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1592 	sb->s_bdi = bdi;
1593 
1594 	return 0;
1595 }
1596 EXPORT_SYMBOL(super_setup_bdi_name);
1597 
1598 /*
1599  * Setup private BDI for given superblock. I gets automatically cleaned up
1600  * in generic_shutdown_super().
1601  */
1602 int super_setup_bdi(struct super_block *sb)
1603 {
1604 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1605 
1606 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1607 				    atomic_long_inc_return(&bdi_seq));
1608 }
1609 EXPORT_SYMBOL(super_setup_bdi);
1610 
1611 /*
1612  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1613  * instead.
1614  */
1615 void __sb_end_write(struct super_block *sb, int level)
1616 {
1617 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1618 }
1619 EXPORT_SYMBOL(__sb_end_write);
1620 
1621 /*
1622  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1623  * instead.
1624  */
1625 int __sb_start_write(struct super_block *sb, int level, bool wait)
1626 {
1627 	bool force_trylock = false;
1628 	int ret = 1;
1629 
1630 #ifdef CONFIG_LOCKDEP
1631 	/*
1632 	 * We want lockdep to tell us about possible deadlocks with freezing
1633 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1634 	 * protection works as getting a read lock but there are subtle
1635 	 * problems. XFS for example gets freeze protection on internal level
1636 	 * twice in some cases, which is OK only because we already hold a
1637 	 * freeze protection also on higher level. Due to these cases we have
1638 	 * to use wait == F (trylock mode) which must not fail.
1639 	 */
1640 	if (wait) {
1641 		int i;
1642 
1643 		for (i = 0; i < level - 1; i++)
1644 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1645 				force_trylock = true;
1646 				break;
1647 			}
1648 	}
1649 #endif
1650 	if (wait && !force_trylock)
1651 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1652 	else
1653 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1654 
1655 	WARN_ON(force_trylock && !ret);
1656 	return ret;
1657 }
1658 EXPORT_SYMBOL(__sb_start_write);
1659 
1660 /**
1661  * sb_wait_write - wait until all writers to given file system finish
1662  * @sb: the super for which we wait
1663  * @level: type of writers we wait for (normal vs page fault)
1664  *
1665  * This function waits until there are no writers of given type to given file
1666  * system.
1667  */
1668 static void sb_wait_write(struct super_block *sb, int level)
1669 {
1670 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1671 }
1672 
1673 /*
1674  * We are going to return to userspace and forget about these locks, the
1675  * ownership goes to the caller of thaw_super() which does unlock().
1676  */
1677 static void lockdep_sb_freeze_release(struct super_block *sb)
1678 {
1679 	int level;
1680 
1681 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1682 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1683 }
1684 
1685 /*
1686  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1687  */
1688 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1689 {
1690 	int level;
1691 
1692 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1693 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1694 }
1695 
1696 static void sb_freeze_unlock(struct super_block *sb)
1697 {
1698 	int level;
1699 
1700 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1701 		percpu_up_write(sb->s_writers.rw_sem + level);
1702 }
1703 
1704 /**
1705  * freeze_super - lock the filesystem and force it into a consistent state
1706  * @sb: the super to lock
1707  *
1708  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1709  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1710  * -EBUSY.
1711  *
1712  * During this function, sb->s_writers.frozen goes through these values:
1713  *
1714  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1715  *
1716  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1717  * writes should be blocked, though page faults are still allowed. We wait for
1718  * all writes to complete and then proceed to the next stage.
1719  *
1720  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1721  * but internal fs threads can still modify the filesystem (although they
1722  * should not dirty new pages or inodes), writeback can run etc. After waiting
1723  * for all running page faults we sync the filesystem which will clean all
1724  * dirty pages and inodes (no new dirty pages or inodes can be created when
1725  * sync is running).
1726  *
1727  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1728  * modification are blocked (e.g. XFS preallocation truncation on inode
1729  * reclaim). This is usually implemented by blocking new transactions for
1730  * filesystems that have them and need this additional guard. After all
1731  * internal writers are finished we call ->freeze_fs() to finish filesystem
1732  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1733  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1734  *
1735  * sb->s_writers.frozen is protected by sb->s_umount.
1736  */
1737 int freeze_super(struct super_block *sb)
1738 {
1739 	int ret;
1740 
1741 	atomic_inc(&sb->s_active);
1742 	down_write(&sb->s_umount);
1743 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1744 		deactivate_locked_super(sb);
1745 		return -EBUSY;
1746 	}
1747 
1748 	if (!(sb->s_flags & SB_BORN)) {
1749 		up_write(&sb->s_umount);
1750 		return 0;	/* sic - it's "nothing to do" */
1751 	}
1752 
1753 	if (sb_rdonly(sb)) {
1754 		/* Nothing to do really... */
1755 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1756 		up_write(&sb->s_umount);
1757 		return 0;
1758 	}
1759 
1760 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1761 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1762 	up_write(&sb->s_umount);
1763 	sb_wait_write(sb, SB_FREEZE_WRITE);
1764 	down_write(&sb->s_umount);
1765 
1766 	/* Now we go and block page faults... */
1767 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1768 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1769 
1770 	/* All writers are done so after syncing there won't be dirty data */
1771 	sync_filesystem(sb);
1772 
1773 	/* Now wait for internal filesystem counter */
1774 	sb->s_writers.frozen = SB_FREEZE_FS;
1775 	sb_wait_write(sb, SB_FREEZE_FS);
1776 
1777 	if (sb->s_op->freeze_fs) {
1778 		ret = sb->s_op->freeze_fs(sb);
1779 		if (ret) {
1780 			printk(KERN_ERR
1781 				"VFS:Filesystem freeze failed\n");
1782 			sb->s_writers.frozen = SB_UNFROZEN;
1783 			sb_freeze_unlock(sb);
1784 			wake_up(&sb->s_writers.wait_unfrozen);
1785 			deactivate_locked_super(sb);
1786 			return ret;
1787 		}
1788 	}
1789 	/*
1790 	 * For debugging purposes so that fs can warn if it sees write activity
1791 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1792 	 */
1793 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1794 	lockdep_sb_freeze_release(sb);
1795 	up_write(&sb->s_umount);
1796 	return 0;
1797 }
1798 EXPORT_SYMBOL(freeze_super);
1799 
1800 /**
1801  * thaw_super -- unlock filesystem
1802  * @sb: the super to thaw
1803  *
1804  * Unlocks the filesystem and marks it writeable again after freeze_super().
1805  */
1806 static int thaw_super_locked(struct super_block *sb)
1807 {
1808 	int error;
1809 
1810 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1811 		up_write(&sb->s_umount);
1812 		return -EINVAL;
1813 	}
1814 
1815 	if (sb_rdonly(sb)) {
1816 		sb->s_writers.frozen = SB_UNFROZEN;
1817 		goto out;
1818 	}
1819 
1820 	lockdep_sb_freeze_acquire(sb);
1821 
1822 	if (sb->s_op->unfreeze_fs) {
1823 		error = sb->s_op->unfreeze_fs(sb);
1824 		if (error) {
1825 			printk(KERN_ERR
1826 				"VFS:Filesystem thaw failed\n");
1827 			lockdep_sb_freeze_release(sb);
1828 			up_write(&sb->s_umount);
1829 			return error;
1830 		}
1831 	}
1832 
1833 	sb->s_writers.frozen = SB_UNFROZEN;
1834 	sb_freeze_unlock(sb);
1835 out:
1836 	wake_up(&sb->s_writers.wait_unfrozen);
1837 	deactivate_locked_super(sb);
1838 	return 0;
1839 }
1840 
1841 int thaw_super(struct super_block *sb)
1842 {
1843 	down_write(&sb->s_umount);
1844 	return thaw_super_locked(sb);
1845 }
1846 EXPORT_SYMBOL(thaw_super);
1847