1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fscrypt.h> 36 #include <linux/fsnotify.h> 37 #include <linux/lockdep.h> 38 #include <linux/user_namespace.h> 39 #include <linux/fs_context.h> 40 #include <uapi/linux/mount.h> 41 #include "internal.h" 42 43 static int thaw_super_locked(struct super_block *sb); 44 45 static LIST_HEAD(super_blocks); 46 static DEFINE_SPINLOCK(sb_lock); 47 48 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 49 "sb_writers", 50 "sb_pagefaults", 51 "sb_internal", 52 }; 53 54 /* 55 * One thing we have to be careful of with a per-sb shrinker is that we don't 56 * drop the last active reference to the superblock from within the shrinker. 57 * If that happens we could trigger unregistering the shrinker from within the 58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 59 * take a passive reference to the superblock to avoid this from occurring. 60 */ 61 static unsigned long super_cache_scan(struct shrinker *shrink, 62 struct shrink_control *sc) 63 { 64 struct super_block *sb; 65 long fs_objects = 0; 66 long total_objects; 67 long freed = 0; 68 long dentries; 69 long inodes; 70 71 sb = container_of(shrink, struct super_block, s_shrink); 72 73 /* 74 * Deadlock avoidance. We may hold various FS locks, and we don't want 75 * to recurse into the FS that called us in clear_inode() and friends.. 76 */ 77 if (!(sc->gfp_mask & __GFP_FS)) 78 return SHRINK_STOP; 79 80 if (!trylock_super(sb)) 81 return SHRINK_STOP; 82 83 if (sb->s_op->nr_cached_objects) 84 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 85 86 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 87 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 88 total_objects = dentries + inodes + fs_objects + 1; 89 if (!total_objects) 90 total_objects = 1; 91 92 /* proportion the scan between the caches */ 93 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 94 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 95 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 96 97 /* 98 * prune the dcache first as the icache is pinned by it, then 99 * prune the icache, followed by the filesystem specific caches 100 * 101 * Ensure that we always scan at least one object - memcg kmem 102 * accounting uses this to fully empty the caches. 103 */ 104 sc->nr_to_scan = dentries + 1; 105 freed = prune_dcache_sb(sb, sc); 106 sc->nr_to_scan = inodes + 1; 107 freed += prune_icache_sb(sb, sc); 108 109 if (fs_objects) { 110 sc->nr_to_scan = fs_objects + 1; 111 freed += sb->s_op->free_cached_objects(sb, sc); 112 } 113 114 up_read(&sb->s_umount); 115 return freed; 116 } 117 118 static unsigned long super_cache_count(struct shrinker *shrink, 119 struct shrink_control *sc) 120 { 121 struct super_block *sb; 122 long total_objects = 0; 123 124 sb = container_of(shrink, struct super_block, s_shrink); 125 126 /* 127 * We don't call trylock_super() here as it is a scalability bottleneck, 128 * so we're exposed to partial setup state. The shrinker rwsem does not 129 * protect filesystem operations backing list_lru_shrink_count() or 130 * s_op->nr_cached_objects(). Counts can change between 131 * super_cache_count and super_cache_scan, so we really don't need locks 132 * here. 133 * 134 * However, if we are currently mounting the superblock, the underlying 135 * filesystem might be in a state of partial construction and hence it 136 * is dangerous to access it. trylock_super() uses a SB_BORN check to 137 * avoid this situation, so do the same here. The memory barrier is 138 * matched with the one in mount_fs() as we don't hold locks here. 139 */ 140 if (!(sb->s_flags & SB_BORN)) 141 return 0; 142 smp_rmb(); 143 144 if (sb->s_op && sb->s_op->nr_cached_objects) 145 total_objects = sb->s_op->nr_cached_objects(sb, sc); 146 147 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 148 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 149 150 if (!total_objects) 151 return SHRINK_EMPTY; 152 153 total_objects = vfs_pressure_ratio(total_objects); 154 return total_objects; 155 } 156 157 static void destroy_super_work(struct work_struct *work) 158 { 159 struct super_block *s = container_of(work, struct super_block, 160 destroy_work); 161 int i; 162 163 for (i = 0; i < SB_FREEZE_LEVELS; i++) 164 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 165 kfree(s); 166 } 167 168 static void destroy_super_rcu(struct rcu_head *head) 169 { 170 struct super_block *s = container_of(head, struct super_block, rcu); 171 INIT_WORK(&s->destroy_work, destroy_super_work); 172 schedule_work(&s->destroy_work); 173 } 174 175 /* Free a superblock that has never been seen by anyone */ 176 static void destroy_unused_super(struct super_block *s) 177 { 178 if (!s) 179 return; 180 up_write(&s->s_umount); 181 list_lru_destroy(&s->s_dentry_lru); 182 list_lru_destroy(&s->s_inode_lru); 183 security_sb_free(s); 184 put_user_ns(s->s_user_ns); 185 kfree(s->s_subtype); 186 free_prealloced_shrinker(&s->s_shrink); 187 /* no delays needed */ 188 destroy_super_work(&s->destroy_work); 189 } 190 191 /** 192 * alloc_super - create new superblock 193 * @type: filesystem type superblock should belong to 194 * @flags: the mount flags 195 * @user_ns: User namespace for the super_block 196 * 197 * Allocates and initializes a new &struct super_block. alloc_super() 198 * returns a pointer new superblock or %NULL if allocation had failed. 199 */ 200 static struct super_block *alloc_super(struct file_system_type *type, int flags, 201 struct user_namespace *user_ns) 202 { 203 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 204 static const struct super_operations default_op; 205 int i; 206 207 if (!s) 208 return NULL; 209 210 INIT_LIST_HEAD(&s->s_mounts); 211 s->s_user_ns = get_user_ns(user_ns); 212 init_rwsem(&s->s_umount); 213 lockdep_set_class(&s->s_umount, &type->s_umount_key); 214 /* 215 * sget() can have s_umount recursion. 216 * 217 * When it cannot find a suitable sb, it allocates a new 218 * one (this one), and tries again to find a suitable old 219 * one. 220 * 221 * In case that succeeds, it will acquire the s_umount 222 * lock of the old one. Since these are clearly distrinct 223 * locks, and this object isn't exposed yet, there's no 224 * risk of deadlocks. 225 * 226 * Annotate this by putting this lock in a different 227 * subclass. 228 */ 229 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 230 231 if (security_sb_alloc(s)) 232 goto fail; 233 234 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 235 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 236 sb_writers_name[i], 237 &type->s_writers_key[i])) 238 goto fail; 239 } 240 init_waitqueue_head(&s->s_writers.wait_unfrozen); 241 s->s_bdi = &noop_backing_dev_info; 242 s->s_flags = flags; 243 if (s->s_user_ns != &init_user_ns) 244 s->s_iflags |= SB_I_NODEV; 245 INIT_HLIST_NODE(&s->s_instances); 246 INIT_HLIST_BL_HEAD(&s->s_roots); 247 mutex_init(&s->s_sync_lock); 248 INIT_LIST_HEAD(&s->s_inodes); 249 spin_lock_init(&s->s_inode_list_lock); 250 INIT_LIST_HEAD(&s->s_inodes_wb); 251 spin_lock_init(&s->s_inode_wblist_lock); 252 253 s->s_count = 1; 254 atomic_set(&s->s_active, 1); 255 mutex_init(&s->s_vfs_rename_mutex); 256 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 257 init_rwsem(&s->s_dquot.dqio_sem); 258 s->s_maxbytes = MAX_NON_LFS; 259 s->s_op = &default_op; 260 s->s_time_gran = 1000000000; 261 s->cleancache_poolid = CLEANCACHE_NO_POOL; 262 263 s->s_shrink.seeks = DEFAULT_SEEKS; 264 s->s_shrink.scan_objects = super_cache_scan; 265 s->s_shrink.count_objects = super_cache_count; 266 s->s_shrink.batch = 1024; 267 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 268 if (prealloc_shrinker(&s->s_shrink)) 269 goto fail; 270 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 271 goto fail; 272 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 273 goto fail; 274 return s; 275 276 fail: 277 destroy_unused_super(s); 278 return NULL; 279 } 280 281 /* Superblock refcounting */ 282 283 /* 284 * Drop a superblock's refcount. The caller must hold sb_lock. 285 */ 286 static void __put_super(struct super_block *s) 287 { 288 if (!--s->s_count) { 289 list_del_init(&s->s_list); 290 WARN_ON(s->s_dentry_lru.node); 291 WARN_ON(s->s_inode_lru.node); 292 WARN_ON(!list_empty(&s->s_mounts)); 293 security_sb_free(s); 294 fscrypt_sb_free(s); 295 put_user_ns(s->s_user_ns); 296 kfree(s->s_subtype); 297 call_rcu(&s->rcu, destroy_super_rcu); 298 } 299 } 300 301 /** 302 * put_super - drop a temporary reference to superblock 303 * @sb: superblock in question 304 * 305 * Drops a temporary reference, frees superblock if there's no 306 * references left. 307 */ 308 static void put_super(struct super_block *sb) 309 { 310 spin_lock(&sb_lock); 311 __put_super(sb); 312 spin_unlock(&sb_lock); 313 } 314 315 316 /** 317 * deactivate_locked_super - drop an active reference to superblock 318 * @s: superblock to deactivate 319 * 320 * Drops an active reference to superblock, converting it into a temporary 321 * one if there is no other active references left. In that case we 322 * tell fs driver to shut it down and drop the temporary reference we 323 * had just acquired. 324 * 325 * Caller holds exclusive lock on superblock; that lock is released. 326 */ 327 void deactivate_locked_super(struct super_block *s) 328 { 329 struct file_system_type *fs = s->s_type; 330 if (atomic_dec_and_test(&s->s_active)) { 331 cleancache_invalidate_fs(s); 332 unregister_shrinker(&s->s_shrink); 333 fs->kill_sb(s); 334 335 /* 336 * Since list_lru_destroy() may sleep, we cannot call it from 337 * put_super(), where we hold the sb_lock. Therefore we destroy 338 * the lru lists right now. 339 */ 340 list_lru_destroy(&s->s_dentry_lru); 341 list_lru_destroy(&s->s_inode_lru); 342 343 put_filesystem(fs); 344 put_super(s); 345 } else { 346 up_write(&s->s_umount); 347 } 348 } 349 350 EXPORT_SYMBOL(deactivate_locked_super); 351 352 /** 353 * deactivate_super - drop an active reference to superblock 354 * @s: superblock to deactivate 355 * 356 * Variant of deactivate_locked_super(), except that superblock is *not* 357 * locked by caller. If we are going to drop the final active reference, 358 * lock will be acquired prior to that. 359 */ 360 void deactivate_super(struct super_block *s) 361 { 362 if (!atomic_add_unless(&s->s_active, -1, 1)) { 363 down_write(&s->s_umount); 364 deactivate_locked_super(s); 365 } 366 } 367 368 EXPORT_SYMBOL(deactivate_super); 369 370 /** 371 * grab_super - acquire an active reference 372 * @s: reference we are trying to make active 373 * 374 * Tries to acquire an active reference. grab_super() is used when we 375 * had just found a superblock in super_blocks or fs_type->fs_supers 376 * and want to turn it into a full-blown active reference. grab_super() 377 * is called with sb_lock held and drops it. Returns 1 in case of 378 * success, 0 if we had failed (superblock contents was already dead or 379 * dying when grab_super() had been called). Note that this is only 380 * called for superblocks not in rundown mode (== ones still on ->fs_supers 381 * of their type), so increment of ->s_count is OK here. 382 */ 383 static int grab_super(struct super_block *s) __releases(sb_lock) 384 { 385 s->s_count++; 386 spin_unlock(&sb_lock); 387 down_write(&s->s_umount); 388 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 389 put_super(s); 390 return 1; 391 } 392 up_write(&s->s_umount); 393 put_super(s); 394 return 0; 395 } 396 397 /* 398 * trylock_super - try to grab ->s_umount shared 399 * @sb: reference we are trying to grab 400 * 401 * Try to prevent fs shutdown. This is used in places where we 402 * cannot take an active reference but we need to ensure that the 403 * filesystem is not shut down while we are working on it. It returns 404 * false if we cannot acquire s_umount or if we lose the race and 405 * filesystem already got into shutdown, and returns true with the s_umount 406 * lock held in read mode in case of success. On successful return, 407 * the caller must drop the s_umount lock when done. 408 * 409 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 410 * The reason why it's safe is that we are OK with doing trylock instead 411 * of down_read(). There's a couple of places that are OK with that, but 412 * it's very much not a general-purpose interface. 413 */ 414 bool trylock_super(struct super_block *sb) 415 { 416 if (down_read_trylock(&sb->s_umount)) { 417 if (!hlist_unhashed(&sb->s_instances) && 418 sb->s_root && (sb->s_flags & SB_BORN)) 419 return true; 420 up_read(&sb->s_umount); 421 } 422 423 return false; 424 } 425 426 /** 427 * generic_shutdown_super - common helper for ->kill_sb() 428 * @sb: superblock to kill 429 * 430 * generic_shutdown_super() does all fs-independent work on superblock 431 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 432 * that need destruction out of superblock, call generic_shutdown_super() 433 * and release aforementioned objects. Note: dentries and inodes _are_ 434 * taken care of and do not need specific handling. 435 * 436 * Upon calling this function, the filesystem may no longer alter or 437 * rearrange the set of dentries belonging to this super_block, nor may it 438 * change the attachments of dentries to inodes. 439 */ 440 void generic_shutdown_super(struct super_block *sb) 441 { 442 const struct super_operations *sop = sb->s_op; 443 444 if (sb->s_root) { 445 shrink_dcache_for_umount(sb); 446 sync_filesystem(sb); 447 sb->s_flags &= ~SB_ACTIVE; 448 449 fsnotify_sb_delete(sb); 450 cgroup_writeback_umount(); 451 452 evict_inodes(sb); 453 454 if (sb->s_dio_done_wq) { 455 destroy_workqueue(sb->s_dio_done_wq); 456 sb->s_dio_done_wq = NULL; 457 } 458 459 if (sop->put_super) 460 sop->put_super(sb); 461 462 if (!list_empty(&sb->s_inodes)) { 463 printk("VFS: Busy inodes after unmount of %s. " 464 "Self-destruct in 5 seconds. Have a nice day...\n", 465 sb->s_id); 466 } 467 } 468 spin_lock(&sb_lock); 469 /* should be initialized for __put_super_and_need_restart() */ 470 hlist_del_init(&sb->s_instances); 471 spin_unlock(&sb_lock); 472 up_write(&sb->s_umount); 473 if (sb->s_bdi != &noop_backing_dev_info) { 474 bdi_put(sb->s_bdi); 475 sb->s_bdi = &noop_backing_dev_info; 476 } 477 } 478 479 EXPORT_SYMBOL(generic_shutdown_super); 480 481 bool mount_capable(struct fs_context *fc) 482 { 483 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 484 return capable(CAP_SYS_ADMIN); 485 else 486 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 487 } 488 489 /** 490 * sget_fc - Find or create a superblock 491 * @fc: Filesystem context. 492 * @test: Comparison callback 493 * @set: Setup callback 494 * 495 * Find or create a superblock using the parameters stored in the filesystem 496 * context and the two callback functions. 497 * 498 * If an extant superblock is matched, then that will be returned with an 499 * elevated reference count that the caller must transfer or discard. 500 * 501 * If no match is made, a new superblock will be allocated and basic 502 * initialisation will be performed (s_type, s_fs_info and s_id will be set and 503 * the set() callback will be invoked), the superblock will be published and it 504 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE 505 * as yet unset. 506 */ 507 struct super_block *sget_fc(struct fs_context *fc, 508 int (*test)(struct super_block *, struct fs_context *), 509 int (*set)(struct super_block *, struct fs_context *)) 510 { 511 struct super_block *s = NULL; 512 struct super_block *old; 513 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 514 int err; 515 516 retry: 517 spin_lock(&sb_lock); 518 if (test) { 519 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 520 if (test(old, fc)) 521 goto share_extant_sb; 522 } 523 } 524 if (!s) { 525 spin_unlock(&sb_lock); 526 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 527 if (!s) 528 return ERR_PTR(-ENOMEM); 529 goto retry; 530 } 531 532 s->s_fs_info = fc->s_fs_info; 533 err = set(s, fc); 534 if (err) { 535 s->s_fs_info = NULL; 536 spin_unlock(&sb_lock); 537 destroy_unused_super(s); 538 return ERR_PTR(err); 539 } 540 fc->s_fs_info = NULL; 541 s->s_type = fc->fs_type; 542 s->s_iflags |= fc->s_iflags; 543 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 544 list_add_tail(&s->s_list, &super_blocks); 545 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 546 spin_unlock(&sb_lock); 547 get_filesystem(s->s_type); 548 register_shrinker_prepared(&s->s_shrink); 549 return s; 550 551 share_extant_sb: 552 if (user_ns != old->s_user_ns) { 553 spin_unlock(&sb_lock); 554 destroy_unused_super(s); 555 return ERR_PTR(-EBUSY); 556 } 557 if (!grab_super(old)) 558 goto retry; 559 destroy_unused_super(s); 560 return old; 561 } 562 EXPORT_SYMBOL(sget_fc); 563 564 /** 565 * sget - find or create a superblock 566 * @type: filesystem type superblock should belong to 567 * @test: comparison callback 568 * @set: setup callback 569 * @flags: mount flags 570 * @data: argument to each of them 571 */ 572 struct super_block *sget(struct file_system_type *type, 573 int (*test)(struct super_block *,void *), 574 int (*set)(struct super_block *,void *), 575 int flags, 576 void *data) 577 { 578 struct user_namespace *user_ns = current_user_ns(); 579 struct super_block *s = NULL; 580 struct super_block *old; 581 int err; 582 583 /* We don't yet pass the user namespace of the parent 584 * mount through to here so always use &init_user_ns 585 * until that changes. 586 */ 587 if (flags & SB_SUBMOUNT) 588 user_ns = &init_user_ns; 589 590 retry: 591 spin_lock(&sb_lock); 592 if (test) { 593 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 594 if (!test(old, data)) 595 continue; 596 if (user_ns != old->s_user_ns) { 597 spin_unlock(&sb_lock); 598 destroy_unused_super(s); 599 return ERR_PTR(-EBUSY); 600 } 601 if (!grab_super(old)) 602 goto retry; 603 destroy_unused_super(s); 604 return old; 605 } 606 } 607 if (!s) { 608 spin_unlock(&sb_lock); 609 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 610 if (!s) 611 return ERR_PTR(-ENOMEM); 612 goto retry; 613 } 614 615 err = set(s, data); 616 if (err) { 617 spin_unlock(&sb_lock); 618 destroy_unused_super(s); 619 return ERR_PTR(err); 620 } 621 s->s_type = type; 622 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 623 list_add_tail(&s->s_list, &super_blocks); 624 hlist_add_head(&s->s_instances, &type->fs_supers); 625 spin_unlock(&sb_lock); 626 get_filesystem(type); 627 register_shrinker_prepared(&s->s_shrink); 628 return s; 629 } 630 EXPORT_SYMBOL(sget); 631 632 void drop_super(struct super_block *sb) 633 { 634 up_read(&sb->s_umount); 635 put_super(sb); 636 } 637 638 EXPORT_SYMBOL(drop_super); 639 640 void drop_super_exclusive(struct super_block *sb) 641 { 642 up_write(&sb->s_umount); 643 put_super(sb); 644 } 645 EXPORT_SYMBOL(drop_super_exclusive); 646 647 static void __iterate_supers(void (*f)(struct super_block *)) 648 { 649 struct super_block *sb, *p = NULL; 650 651 spin_lock(&sb_lock); 652 list_for_each_entry(sb, &super_blocks, s_list) { 653 if (hlist_unhashed(&sb->s_instances)) 654 continue; 655 sb->s_count++; 656 spin_unlock(&sb_lock); 657 658 f(sb); 659 660 spin_lock(&sb_lock); 661 if (p) 662 __put_super(p); 663 p = sb; 664 } 665 if (p) 666 __put_super(p); 667 spin_unlock(&sb_lock); 668 } 669 /** 670 * iterate_supers - call function for all active superblocks 671 * @f: function to call 672 * @arg: argument to pass to it 673 * 674 * Scans the superblock list and calls given function, passing it 675 * locked superblock and given argument. 676 */ 677 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 678 { 679 struct super_block *sb, *p = NULL; 680 681 spin_lock(&sb_lock); 682 list_for_each_entry(sb, &super_blocks, s_list) { 683 if (hlist_unhashed(&sb->s_instances)) 684 continue; 685 sb->s_count++; 686 spin_unlock(&sb_lock); 687 688 down_read(&sb->s_umount); 689 if (sb->s_root && (sb->s_flags & SB_BORN)) 690 f(sb, arg); 691 up_read(&sb->s_umount); 692 693 spin_lock(&sb_lock); 694 if (p) 695 __put_super(p); 696 p = sb; 697 } 698 if (p) 699 __put_super(p); 700 spin_unlock(&sb_lock); 701 } 702 703 /** 704 * iterate_supers_type - call function for superblocks of given type 705 * @type: fs type 706 * @f: function to call 707 * @arg: argument to pass to it 708 * 709 * Scans the superblock list and calls given function, passing it 710 * locked superblock and given argument. 711 */ 712 void iterate_supers_type(struct file_system_type *type, 713 void (*f)(struct super_block *, void *), void *arg) 714 { 715 struct super_block *sb, *p = NULL; 716 717 spin_lock(&sb_lock); 718 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 719 sb->s_count++; 720 spin_unlock(&sb_lock); 721 722 down_read(&sb->s_umount); 723 if (sb->s_root && (sb->s_flags & SB_BORN)) 724 f(sb, arg); 725 up_read(&sb->s_umount); 726 727 spin_lock(&sb_lock); 728 if (p) 729 __put_super(p); 730 p = sb; 731 } 732 if (p) 733 __put_super(p); 734 spin_unlock(&sb_lock); 735 } 736 737 EXPORT_SYMBOL(iterate_supers_type); 738 739 static struct super_block *__get_super(struct block_device *bdev, bool excl) 740 { 741 struct super_block *sb; 742 743 if (!bdev) 744 return NULL; 745 746 spin_lock(&sb_lock); 747 rescan: 748 list_for_each_entry(sb, &super_blocks, s_list) { 749 if (hlist_unhashed(&sb->s_instances)) 750 continue; 751 if (sb->s_bdev == bdev) { 752 sb->s_count++; 753 spin_unlock(&sb_lock); 754 if (!excl) 755 down_read(&sb->s_umount); 756 else 757 down_write(&sb->s_umount); 758 /* still alive? */ 759 if (sb->s_root && (sb->s_flags & SB_BORN)) 760 return sb; 761 if (!excl) 762 up_read(&sb->s_umount); 763 else 764 up_write(&sb->s_umount); 765 /* nope, got unmounted */ 766 spin_lock(&sb_lock); 767 __put_super(sb); 768 goto rescan; 769 } 770 } 771 spin_unlock(&sb_lock); 772 return NULL; 773 } 774 775 /** 776 * get_super - get the superblock of a device 777 * @bdev: device to get the superblock for 778 * 779 * Scans the superblock list and finds the superblock of the file system 780 * mounted on the device given. %NULL is returned if no match is found. 781 */ 782 struct super_block *get_super(struct block_device *bdev) 783 { 784 return __get_super(bdev, false); 785 } 786 EXPORT_SYMBOL(get_super); 787 788 static struct super_block *__get_super_thawed(struct block_device *bdev, 789 bool excl) 790 { 791 while (1) { 792 struct super_block *s = __get_super(bdev, excl); 793 if (!s || s->s_writers.frozen == SB_UNFROZEN) 794 return s; 795 if (!excl) 796 up_read(&s->s_umount); 797 else 798 up_write(&s->s_umount); 799 wait_event(s->s_writers.wait_unfrozen, 800 s->s_writers.frozen == SB_UNFROZEN); 801 put_super(s); 802 } 803 } 804 805 /** 806 * get_super_thawed - get thawed superblock of a device 807 * @bdev: device to get the superblock for 808 * 809 * Scans the superblock list and finds the superblock of the file system 810 * mounted on the device. The superblock is returned once it is thawed 811 * (or immediately if it was not frozen). %NULL is returned if no match 812 * is found. 813 */ 814 struct super_block *get_super_thawed(struct block_device *bdev) 815 { 816 return __get_super_thawed(bdev, false); 817 } 818 EXPORT_SYMBOL(get_super_thawed); 819 820 /** 821 * get_super_exclusive_thawed - get thawed superblock of a device 822 * @bdev: device to get the superblock for 823 * 824 * Scans the superblock list and finds the superblock of the file system 825 * mounted on the device. The superblock is returned once it is thawed 826 * (or immediately if it was not frozen) and s_umount semaphore is held 827 * in exclusive mode. %NULL is returned if no match is found. 828 */ 829 struct super_block *get_super_exclusive_thawed(struct block_device *bdev) 830 { 831 return __get_super_thawed(bdev, true); 832 } 833 EXPORT_SYMBOL(get_super_exclusive_thawed); 834 835 /** 836 * get_active_super - get an active reference to the superblock of a device 837 * @bdev: device to get the superblock for 838 * 839 * Scans the superblock list and finds the superblock of the file system 840 * mounted on the device given. Returns the superblock with an active 841 * reference or %NULL if none was found. 842 */ 843 struct super_block *get_active_super(struct block_device *bdev) 844 { 845 struct super_block *sb; 846 847 if (!bdev) 848 return NULL; 849 850 restart: 851 spin_lock(&sb_lock); 852 list_for_each_entry(sb, &super_blocks, s_list) { 853 if (hlist_unhashed(&sb->s_instances)) 854 continue; 855 if (sb->s_bdev == bdev) { 856 if (!grab_super(sb)) 857 goto restart; 858 up_write(&sb->s_umount); 859 return sb; 860 } 861 } 862 spin_unlock(&sb_lock); 863 return NULL; 864 } 865 866 struct super_block *user_get_super(dev_t dev) 867 { 868 struct super_block *sb; 869 870 spin_lock(&sb_lock); 871 rescan: 872 list_for_each_entry(sb, &super_blocks, s_list) { 873 if (hlist_unhashed(&sb->s_instances)) 874 continue; 875 if (sb->s_dev == dev) { 876 sb->s_count++; 877 spin_unlock(&sb_lock); 878 down_read(&sb->s_umount); 879 /* still alive? */ 880 if (sb->s_root && (sb->s_flags & SB_BORN)) 881 return sb; 882 up_read(&sb->s_umount); 883 /* nope, got unmounted */ 884 spin_lock(&sb_lock); 885 __put_super(sb); 886 goto rescan; 887 } 888 } 889 spin_unlock(&sb_lock); 890 return NULL; 891 } 892 893 /** 894 * reconfigure_super - asks filesystem to change superblock parameters 895 * @fc: The superblock and configuration 896 * 897 * Alters the configuration parameters of a live superblock. 898 */ 899 int reconfigure_super(struct fs_context *fc) 900 { 901 struct super_block *sb = fc->root->d_sb; 902 int retval; 903 bool remount_ro = false; 904 bool force = fc->sb_flags & SB_FORCE; 905 906 if (fc->sb_flags_mask & ~MS_RMT_MASK) 907 return -EINVAL; 908 if (sb->s_writers.frozen != SB_UNFROZEN) 909 return -EBUSY; 910 911 retval = security_sb_remount(sb, fc->security); 912 if (retval) 913 return retval; 914 915 if (fc->sb_flags_mask & SB_RDONLY) { 916 #ifdef CONFIG_BLOCK 917 if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev)) 918 return -EACCES; 919 #endif 920 921 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 922 } 923 924 if (remount_ro) { 925 if (!hlist_empty(&sb->s_pins)) { 926 up_write(&sb->s_umount); 927 group_pin_kill(&sb->s_pins); 928 down_write(&sb->s_umount); 929 if (!sb->s_root) 930 return 0; 931 if (sb->s_writers.frozen != SB_UNFROZEN) 932 return -EBUSY; 933 remount_ro = !sb_rdonly(sb); 934 } 935 } 936 shrink_dcache_sb(sb); 937 938 /* If we are reconfiguring to RDONLY and current sb is read/write, 939 * make sure there are no files open for writing. 940 */ 941 if (remount_ro) { 942 if (force) { 943 sb->s_readonly_remount = 1; 944 smp_wmb(); 945 } else { 946 retval = sb_prepare_remount_readonly(sb); 947 if (retval) 948 return retval; 949 } 950 } 951 952 if (fc->ops->reconfigure) { 953 retval = fc->ops->reconfigure(fc); 954 if (retval) { 955 if (!force) 956 goto cancel_readonly; 957 /* If forced remount, go ahead despite any errors */ 958 WARN(1, "forced remount of a %s fs returned %i\n", 959 sb->s_type->name, retval); 960 } 961 } 962 963 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 964 (fc->sb_flags & fc->sb_flags_mask))); 965 /* Needs to be ordered wrt mnt_is_readonly() */ 966 smp_wmb(); 967 sb->s_readonly_remount = 0; 968 969 /* 970 * Some filesystems modify their metadata via some other path than the 971 * bdev buffer cache (eg. use a private mapping, or directories in 972 * pagecache, etc). Also file data modifications go via their own 973 * mappings. So If we try to mount readonly then copy the filesystem 974 * from bdev, we could get stale data, so invalidate it to give a best 975 * effort at coherency. 976 */ 977 if (remount_ro && sb->s_bdev) 978 invalidate_bdev(sb->s_bdev); 979 return 0; 980 981 cancel_readonly: 982 sb->s_readonly_remount = 0; 983 return retval; 984 } 985 986 static void do_emergency_remount_callback(struct super_block *sb) 987 { 988 down_write(&sb->s_umount); 989 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 990 !sb_rdonly(sb)) { 991 struct fs_context *fc; 992 993 fc = fs_context_for_reconfigure(sb->s_root, 994 SB_RDONLY | SB_FORCE, SB_RDONLY); 995 if (!IS_ERR(fc)) { 996 if (parse_monolithic_mount_data(fc, NULL) == 0) 997 (void)reconfigure_super(fc); 998 put_fs_context(fc); 999 } 1000 } 1001 up_write(&sb->s_umount); 1002 } 1003 1004 static void do_emergency_remount(struct work_struct *work) 1005 { 1006 __iterate_supers(do_emergency_remount_callback); 1007 kfree(work); 1008 printk("Emergency Remount complete\n"); 1009 } 1010 1011 void emergency_remount(void) 1012 { 1013 struct work_struct *work; 1014 1015 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1016 if (work) { 1017 INIT_WORK(work, do_emergency_remount); 1018 schedule_work(work); 1019 } 1020 } 1021 1022 static void do_thaw_all_callback(struct super_block *sb) 1023 { 1024 down_write(&sb->s_umount); 1025 if (sb->s_root && sb->s_flags & SB_BORN) { 1026 emergency_thaw_bdev(sb); 1027 thaw_super_locked(sb); 1028 } else { 1029 up_write(&sb->s_umount); 1030 } 1031 } 1032 1033 static void do_thaw_all(struct work_struct *work) 1034 { 1035 __iterate_supers(do_thaw_all_callback); 1036 kfree(work); 1037 printk(KERN_WARNING "Emergency Thaw complete\n"); 1038 } 1039 1040 /** 1041 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1042 * 1043 * Used for emergency unfreeze of all filesystems via SysRq 1044 */ 1045 void emergency_thaw_all(void) 1046 { 1047 struct work_struct *work; 1048 1049 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1050 if (work) { 1051 INIT_WORK(work, do_thaw_all); 1052 schedule_work(work); 1053 } 1054 } 1055 1056 static DEFINE_IDA(unnamed_dev_ida); 1057 1058 /** 1059 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1060 * @p: Pointer to a dev_t. 1061 * 1062 * Filesystems which don't use real block devices can call this function 1063 * to allocate a virtual block device. 1064 * 1065 * Context: Any context. Frequently called while holding sb_lock. 1066 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1067 * or -ENOMEM if memory allocation failed. 1068 */ 1069 int get_anon_bdev(dev_t *p) 1070 { 1071 int dev; 1072 1073 /* 1074 * Many userspace utilities consider an FSID of 0 invalid. 1075 * Always return at least 1 from get_anon_bdev. 1076 */ 1077 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1078 GFP_ATOMIC); 1079 if (dev == -ENOSPC) 1080 dev = -EMFILE; 1081 if (dev < 0) 1082 return dev; 1083 1084 *p = MKDEV(0, dev); 1085 return 0; 1086 } 1087 EXPORT_SYMBOL(get_anon_bdev); 1088 1089 void free_anon_bdev(dev_t dev) 1090 { 1091 ida_free(&unnamed_dev_ida, MINOR(dev)); 1092 } 1093 EXPORT_SYMBOL(free_anon_bdev); 1094 1095 int set_anon_super(struct super_block *s, void *data) 1096 { 1097 return get_anon_bdev(&s->s_dev); 1098 } 1099 EXPORT_SYMBOL(set_anon_super); 1100 1101 void kill_anon_super(struct super_block *sb) 1102 { 1103 dev_t dev = sb->s_dev; 1104 generic_shutdown_super(sb); 1105 free_anon_bdev(dev); 1106 } 1107 EXPORT_SYMBOL(kill_anon_super); 1108 1109 void kill_litter_super(struct super_block *sb) 1110 { 1111 if (sb->s_root) 1112 d_genocide(sb->s_root); 1113 kill_anon_super(sb); 1114 } 1115 EXPORT_SYMBOL(kill_litter_super); 1116 1117 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1118 { 1119 return set_anon_super(sb, NULL); 1120 } 1121 EXPORT_SYMBOL(set_anon_super_fc); 1122 1123 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1124 { 1125 return sb->s_fs_info == fc->s_fs_info; 1126 } 1127 1128 static int test_single_super(struct super_block *s, struct fs_context *fc) 1129 { 1130 return 1; 1131 } 1132 1133 /** 1134 * vfs_get_super - Get a superblock with a search key set in s_fs_info. 1135 * @fc: The filesystem context holding the parameters 1136 * @keying: How to distinguish superblocks 1137 * @fill_super: Helper to initialise a new superblock 1138 * 1139 * Search for a superblock and create a new one if not found. The search 1140 * criterion is controlled by @keying. If the search fails, a new superblock 1141 * is created and @fill_super() is called to initialise it. 1142 * 1143 * @keying can take one of a number of values: 1144 * 1145 * (1) vfs_get_single_super - Only one superblock of this type may exist on the 1146 * system. This is typically used for special system filesystems. 1147 * 1148 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have 1149 * distinct keys (where the key is in s_fs_info). Searching for the same 1150 * key again will turn up the superblock for that key. 1151 * 1152 * (3) vfs_get_independent_super - Multiple superblocks may exist and are 1153 * unkeyed. Each call will get a new superblock. 1154 * 1155 * A permissions check is made by sget_fc() unless we're getting a superblock 1156 * for a kernel-internal mount or a submount. 1157 */ 1158 int vfs_get_super(struct fs_context *fc, 1159 enum vfs_get_super_keying keying, 1160 int (*fill_super)(struct super_block *sb, 1161 struct fs_context *fc)) 1162 { 1163 int (*test)(struct super_block *, struct fs_context *); 1164 struct super_block *sb; 1165 1166 switch (keying) { 1167 case vfs_get_single_super: 1168 test = test_single_super; 1169 break; 1170 case vfs_get_keyed_super: 1171 test = test_keyed_super; 1172 break; 1173 case vfs_get_independent_super: 1174 test = NULL; 1175 break; 1176 default: 1177 BUG(); 1178 } 1179 1180 sb = sget_fc(fc, test, set_anon_super_fc); 1181 if (IS_ERR(sb)) 1182 return PTR_ERR(sb); 1183 1184 if (!sb->s_root) { 1185 int err = fill_super(sb, fc); 1186 if (err) { 1187 deactivate_locked_super(sb); 1188 return err; 1189 } 1190 1191 sb->s_flags |= SB_ACTIVE; 1192 } 1193 1194 BUG_ON(fc->root); 1195 fc->root = dget(sb->s_root); 1196 return 0; 1197 } 1198 EXPORT_SYMBOL(vfs_get_super); 1199 1200 int get_tree_nodev(struct fs_context *fc, 1201 int (*fill_super)(struct super_block *sb, 1202 struct fs_context *fc)) 1203 { 1204 return vfs_get_super(fc, vfs_get_independent_super, fill_super); 1205 } 1206 EXPORT_SYMBOL(get_tree_nodev); 1207 1208 int get_tree_single(struct fs_context *fc, 1209 int (*fill_super)(struct super_block *sb, 1210 struct fs_context *fc)) 1211 { 1212 return vfs_get_super(fc, vfs_get_single_super, fill_super); 1213 } 1214 EXPORT_SYMBOL(get_tree_single); 1215 1216 int get_tree_keyed(struct fs_context *fc, 1217 int (*fill_super)(struct super_block *sb, 1218 struct fs_context *fc), 1219 void *key) 1220 { 1221 fc->s_fs_info = key; 1222 return vfs_get_super(fc, vfs_get_keyed_super, fill_super); 1223 } 1224 EXPORT_SYMBOL(get_tree_keyed); 1225 1226 #ifdef CONFIG_BLOCK 1227 1228 static int set_bdev_super(struct super_block *s, void *data) 1229 { 1230 s->s_bdev = data; 1231 s->s_dev = s->s_bdev->bd_dev; 1232 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1233 1234 return 0; 1235 } 1236 1237 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1238 { 1239 return set_bdev_super(s, fc->sget_key); 1240 } 1241 1242 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1243 { 1244 return s->s_bdev == fc->sget_key; 1245 } 1246 1247 /** 1248 * get_tree_bdev - Get a superblock based on a single block device 1249 * @fc: The filesystem context holding the parameters 1250 * @fill_super: Helper to initialise a new superblock 1251 */ 1252 int get_tree_bdev(struct fs_context *fc, 1253 int (*fill_super)(struct super_block *, 1254 struct fs_context *)) 1255 { 1256 struct block_device *bdev; 1257 struct super_block *s; 1258 fmode_t mode = FMODE_READ | FMODE_EXCL; 1259 int error = 0; 1260 1261 if (!(fc->sb_flags & SB_RDONLY)) 1262 mode |= FMODE_WRITE; 1263 1264 if (!fc->source) 1265 return invalf(fc, "No source specified"); 1266 1267 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type); 1268 if (IS_ERR(bdev)) { 1269 errorf(fc, "%s: Can't open blockdev", fc->source); 1270 return PTR_ERR(bdev); 1271 } 1272 1273 /* Once the superblock is inserted into the list by sget_fc(), s_umount 1274 * will protect the lockfs code from trying to start a snapshot while 1275 * we are mounting 1276 */ 1277 mutex_lock(&bdev->bd_fsfreeze_mutex); 1278 if (bdev->bd_fsfreeze_count > 0) { 1279 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1280 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1281 return -EBUSY; 1282 } 1283 1284 fc->sb_flags |= SB_NOSEC; 1285 fc->sget_key = bdev; 1286 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc); 1287 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1288 if (IS_ERR(s)) 1289 return PTR_ERR(s); 1290 1291 if (s->s_root) { 1292 /* Don't summarily change the RO/RW state. */ 1293 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1294 warnf(fc, "%pg: Can't mount, would change RO state", bdev); 1295 deactivate_locked_super(s); 1296 blkdev_put(bdev, mode); 1297 return -EBUSY; 1298 } 1299 1300 /* 1301 * s_umount nests inside bd_mutex during 1302 * __invalidate_device(). blkdev_put() acquires 1303 * bd_mutex and can't be called under s_umount. Drop 1304 * s_umount temporarily. This is safe as we're 1305 * holding an active reference. 1306 */ 1307 up_write(&s->s_umount); 1308 blkdev_put(bdev, mode); 1309 down_write(&s->s_umount); 1310 } else { 1311 s->s_mode = mode; 1312 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1313 sb_set_blocksize(s, block_size(bdev)); 1314 error = fill_super(s, fc); 1315 if (error) { 1316 deactivate_locked_super(s); 1317 return error; 1318 } 1319 1320 s->s_flags |= SB_ACTIVE; 1321 bdev->bd_super = s; 1322 } 1323 1324 BUG_ON(fc->root); 1325 fc->root = dget(s->s_root); 1326 return 0; 1327 } 1328 EXPORT_SYMBOL(get_tree_bdev); 1329 1330 static int test_bdev_super(struct super_block *s, void *data) 1331 { 1332 return (void *)s->s_bdev == data; 1333 } 1334 1335 struct dentry *mount_bdev(struct file_system_type *fs_type, 1336 int flags, const char *dev_name, void *data, 1337 int (*fill_super)(struct super_block *, void *, int)) 1338 { 1339 struct block_device *bdev; 1340 struct super_block *s; 1341 fmode_t mode = FMODE_READ | FMODE_EXCL; 1342 int error = 0; 1343 1344 if (!(flags & SB_RDONLY)) 1345 mode |= FMODE_WRITE; 1346 1347 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1348 if (IS_ERR(bdev)) 1349 return ERR_CAST(bdev); 1350 1351 /* 1352 * once the super is inserted into the list by sget, s_umount 1353 * will protect the lockfs code from trying to start a snapshot 1354 * while we are mounting 1355 */ 1356 mutex_lock(&bdev->bd_fsfreeze_mutex); 1357 if (bdev->bd_fsfreeze_count > 0) { 1358 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1359 error = -EBUSY; 1360 goto error_bdev; 1361 } 1362 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1363 bdev); 1364 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1365 if (IS_ERR(s)) 1366 goto error_s; 1367 1368 if (s->s_root) { 1369 if ((flags ^ s->s_flags) & SB_RDONLY) { 1370 deactivate_locked_super(s); 1371 error = -EBUSY; 1372 goto error_bdev; 1373 } 1374 1375 /* 1376 * s_umount nests inside bd_mutex during 1377 * __invalidate_device(). blkdev_put() acquires 1378 * bd_mutex and can't be called under s_umount. Drop 1379 * s_umount temporarily. This is safe as we're 1380 * holding an active reference. 1381 */ 1382 up_write(&s->s_umount); 1383 blkdev_put(bdev, mode); 1384 down_write(&s->s_umount); 1385 } else { 1386 s->s_mode = mode; 1387 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1388 sb_set_blocksize(s, block_size(bdev)); 1389 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1390 if (error) { 1391 deactivate_locked_super(s); 1392 goto error; 1393 } 1394 1395 s->s_flags |= SB_ACTIVE; 1396 bdev->bd_super = s; 1397 } 1398 1399 return dget(s->s_root); 1400 1401 error_s: 1402 error = PTR_ERR(s); 1403 error_bdev: 1404 blkdev_put(bdev, mode); 1405 error: 1406 return ERR_PTR(error); 1407 } 1408 EXPORT_SYMBOL(mount_bdev); 1409 1410 void kill_block_super(struct super_block *sb) 1411 { 1412 struct block_device *bdev = sb->s_bdev; 1413 fmode_t mode = sb->s_mode; 1414 1415 bdev->bd_super = NULL; 1416 generic_shutdown_super(sb); 1417 sync_blockdev(bdev); 1418 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1419 blkdev_put(bdev, mode | FMODE_EXCL); 1420 } 1421 1422 EXPORT_SYMBOL(kill_block_super); 1423 #endif 1424 1425 struct dentry *mount_nodev(struct file_system_type *fs_type, 1426 int flags, void *data, 1427 int (*fill_super)(struct super_block *, void *, int)) 1428 { 1429 int error; 1430 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1431 1432 if (IS_ERR(s)) 1433 return ERR_CAST(s); 1434 1435 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1436 if (error) { 1437 deactivate_locked_super(s); 1438 return ERR_PTR(error); 1439 } 1440 s->s_flags |= SB_ACTIVE; 1441 return dget(s->s_root); 1442 } 1443 EXPORT_SYMBOL(mount_nodev); 1444 1445 static int reconfigure_single(struct super_block *s, 1446 int flags, void *data) 1447 { 1448 struct fs_context *fc; 1449 int ret; 1450 1451 /* The caller really need to be passing fc down into mount_single(), 1452 * then a chunk of this can be removed. [Bollocks -- AV] 1453 * Better yet, reconfiguration shouldn't happen, but rather the second 1454 * mount should be rejected if the parameters are not compatible. 1455 */ 1456 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1457 if (IS_ERR(fc)) 1458 return PTR_ERR(fc); 1459 1460 ret = parse_monolithic_mount_data(fc, data); 1461 if (ret < 0) 1462 goto out; 1463 1464 ret = reconfigure_super(fc); 1465 out: 1466 put_fs_context(fc); 1467 return ret; 1468 } 1469 1470 static int compare_single(struct super_block *s, void *p) 1471 { 1472 return 1; 1473 } 1474 1475 struct dentry *mount_single(struct file_system_type *fs_type, 1476 int flags, void *data, 1477 int (*fill_super)(struct super_block *, void *, int)) 1478 { 1479 struct super_block *s; 1480 int error; 1481 1482 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1483 if (IS_ERR(s)) 1484 return ERR_CAST(s); 1485 if (!s->s_root) { 1486 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1487 if (!error) 1488 s->s_flags |= SB_ACTIVE; 1489 } else { 1490 error = reconfigure_single(s, flags, data); 1491 } 1492 if (unlikely(error)) { 1493 deactivate_locked_super(s); 1494 return ERR_PTR(error); 1495 } 1496 return dget(s->s_root); 1497 } 1498 EXPORT_SYMBOL(mount_single); 1499 1500 /** 1501 * vfs_get_tree - Get the mountable root 1502 * @fc: The superblock configuration context. 1503 * 1504 * The filesystem is invoked to get or create a superblock which can then later 1505 * be used for mounting. The filesystem places a pointer to the root to be 1506 * used for mounting in @fc->root. 1507 */ 1508 int vfs_get_tree(struct fs_context *fc) 1509 { 1510 struct super_block *sb; 1511 int error; 1512 1513 if (fc->root) 1514 return -EBUSY; 1515 1516 /* Get the mountable root in fc->root, with a ref on the root and a ref 1517 * on the superblock. 1518 */ 1519 error = fc->ops->get_tree(fc); 1520 if (error < 0) 1521 return error; 1522 1523 if (!fc->root) { 1524 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1525 fc->fs_type->name); 1526 /* We don't know what the locking state of the superblock is - 1527 * if there is a superblock. 1528 */ 1529 BUG(); 1530 } 1531 1532 sb = fc->root->d_sb; 1533 WARN_ON(!sb->s_bdi); 1534 1535 if (fc->subtype && !sb->s_subtype) { 1536 sb->s_subtype = fc->subtype; 1537 fc->subtype = NULL; 1538 } 1539 1540 /* 1541 * Write barrier is for super_cache_count(). We place it before setting 1542 * SB_BORN as the data dependency between the two functions is the 1543 * superblock structure contents that we just set up, not the SB_BORN 1544 * flag. 1545 */ 1546 smp_wmb(); 1547 sb->s_flags |= SB_BORN; 1548 1549 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1550 if (unlikely(error)) { 1551 fc_drop_locked(fc); 1552 return error; 1553 } 1554 1555 /* 1556 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1557 * but s_maxbytes was an unsigned long long for many releases. Throw 1558 * this warning for a little while to try and catch filesystems that 1559 * violate this rule. 1560 */ 1561 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1562 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1563 1564 return 0; 1565 } 1566 EXPORT_SYMBOL(vfs_get_tree); 1567 1568 /* 1569 * Setup private BDI for given superblock. It gets automatically cleaned up 1570 * in generic_shutdown_super(). 1571 */ 1572 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1573 { 1574 struct backing_dev_info *bdi; 1575 int err; 1576 va_list args; 1577 1578 bdi = bdi_alloc(GFP_KERNEL); 1579 if (!bdi) 1580 return -ENOMEM; 1581 1582 bdi->name = sb->s_type->name; 1583 1584 va_start(args, fmt); 1585 err = bdi_register_va(bdi, fmt, args); 1586 va_end(args); 1587 if (err) { 1588 bdi_put(bdi); 1589 return err; 1590 } 1591 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1592 sb->s_bdi = bdi; 1593 1594 return 0; 1595 } 1596 EXPORT_SYMBOL(super_setup_bdi_name); 1597 1598 /* 1599 * Setup private BDI for given superblock. I gets automatically cleaned up 1600 * in generic_shutdown_super(). 1601 */ 1602 int super_setup_bdi(struct super_block *sb) 1603 { 1604 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1605 1606 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1607 atomic_long_inc_return(&bdi_seq)); 1608 } 1609 EXPORT_SYMBOL(super_setup_bdi); 1610 1611 /* 1612 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1613 * instead. 1614 */ 1615 void __sb_end_write(struct super_block *sb, int level) 1616 { 1617 percpu_up_read(sb->s_writers.rw_sem + level-1); 1618 } 1619 EXPORT_SYMBOL(__sb_end_write); 1620 1621 /* 1622 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1623 * instead. 1624 */ 1625 int __sb_start_write(struct super_block *sb, int level, bool wait) 1626 { 1627 bool force_trylock = false; 1628 int ret = 1; 1629 1630 #ifdef CONFIG_LOCKDEP 1631 /* 1632 * We want lockdep to tell us about possible deadlocks with freezing 1633 * but it's it bit tricky to properly instrument it. Getting a freeze 1634 * protection works as getting a read lock but there are subtle 1635 * problems. XFS for example gets freeze protection on internal level 1636 * twice in some cases, which is OK only because we already hold a 1637 * freeze protection also on higher level. Due to these cases we have 1638 * to use wait == F (trylock mode) which must not fail. 1639 */ 1640 if (wait) { 1641 int i; 1642 1643 for (i = 0; i < level - 1; i++) 1644 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1645 force_trylock = true; 1646 break; 1647 } 1648 } 1649 #endif 1650 if (wait && !force_trylock) 1651 percpu_down_read(sb->s_writers.rw_sem + level-1); 1652 else 1653 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1654 1655 WARN_ON(force_trylock && !ret); 1656 return ret; 1657 } 1658 EXPORT_SYMBOL(__sb_start_write); 1659 1660 /** 1661 * sb_wait_write - wait until all writers to given file system finish 1662 * @sb: the super for which we wait 1663 * @level: type of writers we wait for (normal vs page fault) 1664 * 1665 * This function waits until there are no writers of given type to given file 1666 * system. 1667 */ 1668 static void sb_wait_write(struct super_block *sb, int level) 1669 { 1670 percpu_down_write(sb->s_writers.rw_sem + level-1); 1671 } 1672 1673 /* 1674 * We are going to return to userspace and forget about these locks, the 1675 * ownership goes to the caller of thaw_super() which does unlock(). 1676 */ 1677 static void lockdep_sb_freeze_release(struct super_block *sb) 1678 { 1679 int level; 1680 1681 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1682 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1683 } 1684 1685 /* 1686 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1687 */ 1688 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1689 { 1690 int level; 1691 1692 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1693 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1694 } 1695 1696 static void sb_freeze_unlock(struct super_block *sb) 1697 { 1698 int level; 1699 1700 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1701 percpu_up_write(sb->s_writers.rw_sem + level); 1702 } 1703 1704 /** 1705 * freeze_super - lock the filesystem and force it into a consistent state 1706 * @sb: the super to lock 1707 * 1708 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1709 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1710 * -EBUSY. 1711 * 1712 * During this function, sb->s_writers.frozen goes through these values: 1713 * 1714 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1715 * 1716 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1717 * writes should be blocked, though page faults are still allowed. We wait for 1718 * all writes to complete and then proceed to the next stage. 1719 * 1720 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1721 * but internal fs threads can still modify the filesystem (although they 1722 * should not dirty new pages or inodes), writeback can run etc. After waiting 1723 * for all running page faults we sync the filesystem which will clean all 1724 * dirty pages and inodes (no new dirty pages or inodes can be created when 1725 * sync is running). 1726 * 1727 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1728 * modification are blocked (e.g. XFS preallocation truncation on inode 1729 * reclaim). This is usually implemented by blocking new transactions for 1730 * filesystems that have them and need this additional guard. After all 1731 * internal writers are finished we call ->freeze_fs() to finish filesystem 1732 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1733 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1734 * 1735 * sb->s_writers.frozen is protected by sb->s_umount. 1736 */ 1737 int freeze_super(struct super_block *sb) 1738 { 1739 int ret; 1740 1741 atomic_inc(&sb->s_active); 1742 down_write(&sb->s_umount); 1743 if (sb->s_writers.frozen != SB_UNFROZEN) { 1744 deactivate_locked_super(sb); 1745 return -EBUSY; 1746 } 1747 1748 if (!(sb->s_flags & SB_BORN)) { 1749 up_write(&sb->s_umount); 1750 return 0; /* sic - it's "nothing to do" */ 1751 } 1752 1753 if (sb_rdonly(sb)) { 1754 /* Nothing to do really... */ 1755 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1756 up_write(&sb->s_umount); 1757 return 0; 1758 } 1759 1760 sb->s_writers.frozen = SB_FREEZE_WRITE; 1761 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1762 up_write(&sb->s_umount); 1763 sb_wait_write(sb, SB_FREEZE_WRITE); 1764 down_write(&sb->s_umount); 1765 1766 /* Now we go and block page faults... */ 1767 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1768 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1769 1770 /* All writers are done so after syncing there won't be dirty data */ 1771 sync_filesystem(sb); 1772 1773 /* Now wait for internal filesystem counter */ 1774 sb->s_writers.frozen = SB_FREEZE_FS; 1775 sb_wait_write(sb, SB_FREEZE_FS); 1776 1777 if (sb->s_op->freeze_fs) { 1778 ret = sb->s_op->freeze_fs(sb); 1779 if (ret) { 1780 printk(KERN_ERR 1781 "VFS:Filesystem freeze failed\n"); 1782 sb->s_writers.frozen = SB_UNFROZEN; 1783 sb_freeze_unlock(sb); 1784 wake_up(&sb->s_writers.wait_unfrozen); 1785 deactivate_locked_super(sb); 1786 return ret; 1787 } 1788 } 1789 /* 1790 * For debugging purposes so that fs can warn if it sees write activity 1791 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1792 */ 1793 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1794 lockdep_sb_freeze_release(sb); 1795 up_write(&sb->s_umount); 1796 return 0; 1797 } 1798 EXPORT_SYMBOL(freeze_super); 1799 1800 /** 1801 * thaw_super -- unlock filesystem 1802 * @sb: the super to thaw 1803 * 1804 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1805 */ 1806 static int thaw_super_locked(struct super_block *sb) 1807 { 1808 int error; 1809 1810 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1811 up_write(&sb->s_umount); 1812 return -EINVAL; 1813 } 1814 1815 if (sb_rdonly(sb)) { 1816 sb->s_writers.frozen = SB_UNFROZEN; 1817 goto out; 1818 } 1819 1820 lockdep_sb_freeze_acquire(sb); 1821 1822 if (sb->s_op->unfreeze_fs) { 1823 error = sb->s_op->unfreeze_fs(sb); 1824 if (error) { 1825 printk(KERN_ERR 1826 "VFS:Filesystem thaw failed\n"); 1827 lockdep_sb_freeze_release(sb); 1828 up_write(&sb->s_umount); 1829 return error; 1830 } 1831 } 1832 1833 sb->s_writers.frozen = SB_UNFROZEN; 1834 sb_freeze_unlock(sb); 1835 out: 1836 wake_up(&sb->s_writers.wait_unfrozen); 1837 deactivate_locked_super(sb); 1838 return 0; 1839 } 1840 1841 int thaw_super(struct super_block *sb) 1842 { 1843 down_write(&sb->s_umount); 1844 return thaw_super_locked(sb); 1845 } 1846 EXPORT_SYMBOL(thaw_super); 1847