1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 /* 54 * One thing we have to be careful of with a per-sb shrinker is that we don't 55 * drop the last active reference to the superblock from within the shrinker. 56 * If that happens we could trigger unregistering the shrinker from within the 57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 58 * take a passive reference to the superblock to avoid this from occurring. 59 */ 60 static unsigned long super_cache_scan(struct shrinker *shrink, 61 struct shrink_control *sc) 62 { 63 struct super_block *sb; 64 long fs_objects = 0; 65 long total_objects; 66 long freed = 0; 67 long dentries; 68 long inodes; 69 70 sb = container_of(shrink, struct super_block, s_shrink); 71 72 /* 73 * Deadlock avoidance. We may hold various FS locks, and we don't want 74 * to recurse into the FS that called us in clear_inode() and friends.. 75 */ 76 if (!(sc->gfp_mask & __GFP_FS)) 77 return SHRINK_STOP; 78 79 if (!trylock_super(sb)) 80 return SHRINK_STOP; 81 82 if (sb->s_op->nr_cached_objects) 83 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 84 85 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 86 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 87 total_objects = dentries + inodes + fs_objects + 1; 88 if (!total_objects) 89 total_objects = 1; 90 91 /* proportion the scan between the caches */ 92 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 93 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 94 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 95 96 /* 97 * prune the dcache first as the icache is pinned by it, then 98 * prune the icache, followed by the filesystem specific caches 99 * 100 * Ensure that we always scan at least one object - memcg kmem 101 * accounting uses this to fully empty the caches. 102 */ 103 sc->nr_to_scan = dentries + 1; 104 freed = prune_dcache_sb(sb, sc); 105 sc->nr_to_scan = inodes + 1; 106 freed += prune_icache_sb(sb, sc); 107 108 if (fs_objects) { 109 sc->nr_to_scan = fs_objects + 1; 110 freed += sb->s_op->free_cached_objects(sb, sc); 111 } 112 113 up_read(&sb->s_umount); 114 return freed; 115 } 116 117 static unsigned long super_cache_count(struct shrinker *shrink, 118 struct shrink_control *sc) 119 { 120 struct super_block *sb; 121 long total_objects = 0; 122 123 sb = container_of(shrink, struct super_block, s_shrink); 124 125 /* 126 * We don't call trylock_super() here as it is a scalability bottleneck, 127 * so we're exposed to partial setup state. The shrinker rwsem does not 128 * protect filesystem operations backing list_lru_shrink_count() or 129 * s_op->nr_cached_objects(). Counts can change between 130 * super_cache_count and super_cache_scan, so we really don't need locks 131 * here. 132 * 133 * However, if we are currently mounting the superblock, the underlying 134 * filesystem might be in a state of partial construction and hence it 135 * is dangerous to access it. trylock_super() uses a SB_BORN check to 136 * avoid this situation, so do the same here. The memory barrier is 137 * matched with the one in mount_fs() as we don't hold locks here. 138 */ 139 if (!(sb->s_flags & SB_BORN)) 140 return 0; 141 smp_rmb(); 142 143 if (sb->s_op && sb->s_op->nr_cached_objects) 144 total_objects = sb->s_op->nr_cached_objects(sb, sc); 145 146 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 147 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 148 149 if (!total_objects) 150 return SHRINK_EMPTY; 151 152 total_objects = vfs_pressure_ratio(total_objects); 153 return total_objects; 154 } 155 156 static void destroy_super_work(struct work_struct *work) 157 { 158 struct super_block *s = container_of(work, struct super_block, 159 destroy_work); 160 int i; 161 162 for (i = 0; i < SB_FREEZE_LEVELS; i++) 163 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 164 kfree(s); 165 } 166 167 static void destroy_super_rcu(struct rcu_head *head) 168 { 169 struct super_block *s = container_of(head, struct super_block, rcu); 170 INIT_WORK(&s->destroy_work, destroy_super_work); 171 schedule_work(&s->destroy_work); 172 } 173 174 /* Free a superblock that has never been seen by anyone */ 175 static void destroy_unused_super(struct super_block *s) 176 { 177 if (!s) 178 return; 179 up_write(&s->s_umount); 180 list_lru_destroy(&s->s_dentry_lru); 181 list_lru_destroy(&s->s_inode_lru); 182 security_sb_free(s); 183 put_user_ns(s->s_user_ns); 184 kfree(s->s_subtype); 185 free_prealloced_shrinker(&s->s_shrink); 186 /* no delays needed */ 187 destroy_super_work(&s->destroy_work); 188 } 189 190 /** 191 * alloc_super - create new superblock 192 * @type: filesystem type superblock should belong to 193 * @flags: the mount flags 194 * @user_ns: User namespace for the super_block 195 * 196 * Allocates and initializes a new &struct super_block. alloc_super() 197 * returns a pointer new superblock or %NULL if allocation had failed. 198 */ 199 static struct super_block *alloc_super(struct file_system_type *type, int flags, 200 struct user_namespace *user_ns) 201 { 202 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 203 static const struct super_operations default_op; 204 int i; 205 206 if (!s) 207 return NULL; 208 209 INIT_LIST_HEAD(&s->s_mounts); 210 s->s_user_ns = get_user_ns(user_ns); 211 init_rwsem(&s->s_umount); 212 lockdep_set_class(&s->s_umount, &type->s_umount_key); 213 /* 214 * sget() can have s_umount recursion. 215 * 216 * When it cannot find a suitable sb, it allocates a new 217 * one (this one), and tries again to find a suitable old 218 * one. 219 * 220 * In case that succeeds, it will acquire the s_umount 221 * lock of the old one. Since these are clearly distrinct 222 * locks, and this object isn't exposed yet, there's no 223 * risk of deadlocks. 224 * 225 * Annotate this by putting this lock in a different 226 * subclass. 227 */ 228 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 229 230 if (security_sb_alloc(s)) 231 goto fail; 232 233 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 234 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 235 sb_writers_name[i], 236 &type->s_writers_key[i])) 237 goto fail; 238 } 239 init_waitqueue_head(&s->s_writers.wait_unfrozen); 240 s->s_bdi = &noop_backing_dev_info; 241 s->s_flags = flags; 242 if (s->s_user_ns != &init_user_ns) 243 s->s_iflags |= SB_I_NODEV; 244 INIT_HLIST_NODE(&s->s_instances); 245 INIT_HLIST_BL_HEAD(&s->s_roots); 246 mutex_init(&s->s_sync_lock); 247 INIT_LIST_HEAD(&s->s_inodes); 248 spin_lock_init(&s->s_inode_list_lock); 249 INIT_LIST_HEAD(&s->s_inodes_wb); 250 spin_lock_init(&s->s_inode_wblist_lock); 251 252 s->s_count = 1; 253 atomic_set(&s->s_active, 1); 254 mutex_init(&s->s_vfs_rename_mutex); 255 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 256 init_rwsem(&s->s_dquot.dqio_sem); 257 s->s_maxbytes = MAX_NON_LFS; 258 s->s_op = &default_op; 259 s->s_time_gran = 1000000000; 260 s->s_time_min = TIME64_MIN; 261 s->s_time_max = TIME64_MAX; 262 263 s->s_shrink.seeks = DEFAULT_SEEKS; 264 s->s_shrink.scan_objects = super_cache_scan; 265 s->s_shrink.count_objects = super_cache_count; 266 s->s_shrink.batch = 1024; 267 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 268 if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name)) 269 goto fail; 270 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 271 goto fail; 272 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 273 goto fail; 274 return s; 275 276 fail: 277 destroy_unused_super(s); 278 return NULL; 279 } 280 281 /* Superblock refcounting */ 282 283 /* 284 * Drop a superblock's refcount. The caller must hold sb_lock. 285 */ 286 static void __put_super(struct super_block *s) 287 { 288 if (!--s->s_count) { 289 list_del_init(&s->s_list); 290 WARN_ON(s->s_dentry_lru.node); 291 WARN_ON(s->s_inode_lru.node); 292 WARN_ON(!list_empty(&s->s_mounts)); 293 security_sb_free(s); 294 put_user_ns(s->s_user_ns); 295 kfree(s->s_subtype); 296 call_rcu(&s->rcu, destroy_super_rcu); 297 } 298 } 299 300 /** 301 * put_super - drop a temporary reference to superblock 302 * @sb: superblock in question 303 * 304 * Drops a temporary reference, frees superblock if there's no 305 * references left. 306 */ 307 void put_super(struct super_block *sb) 308 { 309 spin_lock(&sb_lock); 310 __put_super(sb); 311 spin_unlock(&sb_lock); 312 } 313 314 315 /** 316 * deactivate_locked_super - drop an active reference to superblock 317 * @s: superblock to deactivate 318 * 319 * Drops an active reference to superblock, converting it into a temporary 320 * one if there is no other active references left. In that case we 321 * tell fs driver to shut it down and drop the temporary reference we 322 * had just acquired. 323 * 324 * Caller holds exclusive lock on superblock; that lock is released. 325 */ 326 void deactivate_locked_super(struct super_block *s) 327 { 328 struct file_system_type *fs = s->s_type; 329 if (atomic_dec_and_test(&s->s_active)) { 330 unregister_shrinker(&s->s_shrink); 331 fs->kill_sb(s); 332 333 /* 334 * Since list_lru_destroy() may sleep, we cannot call it from 335 * put_super(), where we hold the sb_lock. Therefore we destroy 336 * the lru lists right now. 337 */ 338 list_lru_destroy(&s->s_dentry_lru); 339 list_lru_destroy(&s->s_inode_lru); 340 341 put_filesystem(fs); 342 put_super(s); 343 } else { 344 up_write(&s->s_umount); 345 } 346 } 347 348 EXPORT_SYMBOL(deactivate_locked_super); 349 350 /** 351 * deactivate_super - drop an active reference to superblock 352 * @s: superblock to deactivate 353 * 354 * Variant of deactivate_locked_super(), except that superblock is *not* 355 * locked by caller. If we are going to drop the final active reference, 356 * lock will be acquired prior to that. 357 */ 358 void deactivate_super(struct super_block *s) 359 { 360 if (!atomic_add_unless(&s->s_active, -1, 1)) { 361 down_write(&s->s_umount); 362 deactivate_locked_super(s); 363 } 364 } 365 366 EXPORT_SYMBOL(deactivate_super); 367 368 /** 369 * grab_super - acquire an active reference 370 * @s: reference we are trying to make active 371 * 372 * Tries to acquire an active reference. grab_super() is used when we 373 * had just found a superblock in super_blocks or fs_type->fs_supers 374 * and want to turn it into a full-blown active reference. grab_super() 375 * is called with sb_lock held and drops it. Returns 1 in case of 376 * success, 0 if we had failed (superblock contents was already dead or 377 * dying when grab_super() had been called). Note that this is only 378 * called for superblocks not in rundown mode (== ones still on ->fs_supers 379 * of their type), so increment of ->s_count is OK here. 380 */ 381 static int grab_super(struct super_block *s) __releases(sb_lock) 382 { 383 s->s_count++; 384 spin_unlock(&sb_lock); 385 down_write(&s->s_umount); 386 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 387 put_super(s); 388 return 1; 389 } 390 up_write(&s->s_umount); 391 put_super(s); 392 return 0; 393 } 394 395 /* 396 * trylock_super - try to grab ->s_umount shared 397 * @sb: reference we are trying to grab 398 * 399 * Try to prevent fs shutdown. This is used in places where we 400 * cannot take an active reference but we need to ensure that the 401 * filesystem is not shut down while we are working on it. It returns 402 * false if we cannot acquire s_umount or if we lose the race and 403 * filesystem already got into shutdown, and returns true with the s_umount 404 * lock held in read mode in case of success. On successful return, 405 * the caller must drop the s_umount lock when done. 406 * 407 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 408 * The reason why it's safe is that we are OK with doing trylock instead 409 * of down_read(). There's a couple of places that are OK with that, but 410 * it's very much not a general-purpose interface. 411 */ 412 bool trylock_super(struct super_block *sb) 413 { 414 if (down_read_trylock(&sb->s_umount)) { 415 if (!hlist_unhashed(&sb->s_instances) && 416 sb->s_root && (sb->s_flags & SB_BORN)) 417 return true; 418 up_read(&sb->s_umount); 419 } 420 421 return false; 422 } 423 424 /** 425 * retire_super - prevents superblock from being reused 426 * @sb: superblock to retire 427 * 428 * The function marks superblock to be ignored in superblock test, which 429 * prevents it from being reused for any new mounts. If the superblock has 430 * a private bdi, it also unregisters it, but doesn't reduce the refcount 431 * of the superblock to prevent potential races. The refcount is reduced 432 * by generic_shutdown_super(). The function can not be called 433 * concurrently with generic_shutdown_super(). It is safe to call the 434 * function multiple times, subsequent calls have no effect. 435 * 436 * The marker will affect the re-use only for block-device-based 437 * superblocks. Other superblocks will still get marked if this function 438 * is used, but that will not affect their reusability. 439 */ 440 void retire_super(struct super_block *sb) 441 { 442 WARN_ON(!sb->s_bdev); 443 down_write(&sb->s_umount); 444 if (sb->s_iflags & SB_I_PERSB_BDI) { 445 bdi_unregister(sb->s_bdi); 446 sb->s_iflags &= ~SB_I_PERSB_BDI; 447 } 448 sb->s_iflags |= SB_I_RETIRED; 449 up_write(&sb->s_umount); 450 } 451 EXPORT_SYMBOL(retire_super); 452 453 /** 454 * generic_shutdown_super - common helper for ->kill_sb() 455 * @sb: superblock to kill 456 * 457 * generic_shutdown_super() does all fs-independent work on superblock 458 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 459 * that need destruction out of superblock, call generic_shutdown_super() 460 * and release aforementioned objects. Note: dentries and inodes _are_ 461 * taken care of and do not need specific handling. 462 * 463 * Upon calling this function, the filesystem may no longer alter or 464 * rearrange the set of dentries belonging to this super_block, nor may it 465 * change the attachments of dentries to inodes. 466 */ 467 void generic_shutdown_super(struct super_block *sb) 468 { 469 const struct super_operations *sop = sb->s_op; 470 471 if (sb->s_root) { 472 shrink_dcache_for_umount(sb); 473 sync_filesystem(sb); 474 sb->s_flags &= ~SB_ACTIVE; 475 476 cgroup_writeback_umount(); 477 478 /* evict all inodes with zero refcount */ 479 evict_inodes(sb); 480 /* only nonzero refcount inodes can have marks */ 481 fsnotify_sb_delete(sb); 482 fscrypt_destroy_keyring(sb); 483 security_sb_delete(sb); 484 485 if (sb->s_dio_done_wq) { 486 destroy_workqueue(sb->s_dio_done_wq); 487 sb->s_dio_done_wq = NULL; 488 } 489 490 if (sop->put_super) 491 sop->put_super(sb); 492 493 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), 494 "VFS: Busy inodes after unmount of %s (%s)", 495 sb->s_id, sb->s_type->name)) { 496 /* 497 * Adding a proper bailout path here would be hard, but 498 * we can at least make it more likely that a later 499 * iput_final() or such crashes cleanly. 500 */ 501 struct inode *inode; 502 503 spin_lock(&sb->s_inode_list_lock); 504 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 505 inode->i_op = VFS_PTR_POISON; 506 inode->i_sb = VFS_PTR_POISON; 507 inode->i_mapping = VFS_PTR_POISON; 508 } 509 spin_unlock(&sb->s_inode_list_lock); 510 } 511 } 512 spin_lock(&sb_lock); 513 /* should be initialized for __put_super_and_need_restart() */ 514 hlist_del_init(&sb->s_instances); 515 spin_unlock(&sb_lock); 516 up_write(&sb->s_umount); 517 if (sb->s_bdi != &noop_backing_dev_info) { 518 if (sb->s_iflags & SB_I_PERSB_BDI) 519 bdi_unregister(sb->s_bdi); 520 bdi_put(sb->s_bdi); 521 sb->s_bdi = &noop_backing_dev_info; 522 } 523 } 524 525 EXPORT_SYMBOL(generic_shutdown_super); 526 527 bool mount_capable(struct fs_context *fc) 528 { 529 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 530 return capable(CAP_SYS_ADMIN); 531 else 532 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 533 } 534 535 /** 536 * sget_fc - Find or create a superblock 537 * @fc: Filesystem context. 538 * @test: Comparison callback 539 * @set: Setup callback 540 * 541 * Find or create a superblock using the parameters stored in the filesystem 542 * context and the two callback functions. 543 * 544 * If an extant superblock is matched, then that will be returned with an 545 * elevated reference count that the caller must transfer or discard. 546 * 547 * If no match is made, a new superblock will be allocated and basic 548 * initialisation will be performed (s_type, s_fs_info and s_id will be set and 549 * the set() callback will be invoked), the superblock will be published and it 550 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE 551 * as yet unset. 552 */ 553 struct super_block *sget_fc(struct fs_context *fc, 554 int (*test)(struct super_block *, struct fs_context *), 555 int (*set)(struct super_block *, struct fs_context *)) 556 { 557 struct super_block *s = NULL; 558 struct super_block *old; 559 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 560 int err; 561 562 retry: 563 spin_lock(&sb_lock); 564 if (test) { 565 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 566 if (test(old, fc)) 567 goto share_extant_sb; 568 } 569 } 570 if (!s) { 571 spin_unlock(&sb_lock); 572 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 573 if (!s) 574 return ERR_PTR(-ENOMEM); 575 goto retry; 576 } 577 578 s->s_fs_info = fc->s_fs_info; 579 err = set(s, fc); 580 if (err) { 581 s->s_fs_info = NULL; 582 spin_unlock(&sb_lock); 583 destroy_unused_super(s); 584 return ERR_PTR(err); 585 } 586 fc->s_fs_info = NULL; 587 s->s_type = fc->fs_type; 588 s->s_iflags |= fc->s_iflags; 589 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 590 list_add_tail(&s->s_list, &super_blocks); 591 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 592 spin_unlock(&sb_lock); 593 get_filesystem(s->s_type); 594 register_shrinker_prepared(&s->s_shrink); 595 return s; 596 597 share_extant_sb: 598 if (user_ns != old->s_user_ns) { 599 spin_unlock(&sb_lock); 600 destroy_unused_super(s); 601 return ERR_PTR(-EBUSY); 602 } 603 if (!grab_super(old)) 604 goto retry; 605 destroy_unused_super(s); 606 return old; 607 } 608 EXPORT_SYMBOL(sget_fc); 609 610 /** 611 * sget - find or create a superblock 612 * @type: filesystem type superblock should belong to 613 * @test: comparison callback 614 * @set: setup callback 615 * @flags: mount flags 616 * @data: argument to each of them 617 */ 618 struct super_block *sget(struct file_system_type *type, 619 int (*test)(struct super_block *,void *), 620 int (*set)(struct super_block *,void *), 621 int flags, 622 void *data) 623 { 624 struct user_namespace *user_ns = current_user_ns(); 625 struct super_block *s = NULL; 626 struct super_block *old; 627 int err; 628 629 /* We don't yet pass the user namespace of the parent 630 * mount through to here so always use &init_user_ns 631 * until that changes. 632 */ 633 if (flags & SB_SUBMOUNT) 634 user_ns = &init_user_ns; 635 636 retry: 637 spin_lock(&sb_lock); 638 if (test) { 639 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 640 if (!test(old, data)) 641 continue; 642 if (user_ns != old->s_user_ns) { 643 spin_unlock(&sb_lock); 644 destroy_unused_super(s); 645 return ERR_PTR(-EBUSY); 646 } 647 if (!grab_super(old)) 648 goto retry; 649 destroy_unused_super(s); 650 return old; 651 } 652 } 653 if (!s) { 654 spin_unlock(&sb_lock); 655 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 656 if (!s) 657 return ERR_PTR(-ENOMEM); 658 goto retry; 659 } 660 661 err = set(s, data); 662 if (err) { 663 spin_unlock(&sb_lock); 664 destroy_unused_super(s); 665 return ERR_PTR(err); 666 } 667 s->s_type = type; 668 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 669 list_add_tail(&s->s_list, &super_blocks); 670 hlist_add_head(&s->s_instances, &type->fs_supers); 671 spin_unlock(&sb_lock); 672 get_filesystem(type); 673 register_shrinker_prepared(&s->s_shrink); 674 return s; 675 } 676 EXPORT_SYMBOL(sget); 677 678 void drop_super(struct super_block *sb) 679 { 680 up_read(&sb->s_umount); 681 put_super(sb); 682 } 683 684 EXPORT_SYMBOL(drop_super); 685 686 void drop_super_exclusive(struct super_block *sb) 687 { 688 up_write(&sb->s_umount); 689 put_super(sb); 690 } 691 EXPORT_SYMBOL(drop_super_exclusive); 692 693 static void __iterate_supers(void (*f)(struct super_block *)) 694 { 695 struct super_block *sb, *p = NULL; 696 697 spin_lock(&sb_lock); 698 list_for_each_entry(sb, &super_blocks, s_list) { 699 if (hlist_unhashed(&sb->s_instances)) 700 continue; 701 sb->s_count++; 702 spin_unlock(&sb_lock); 703 704 f(sb); 705 706 spin_lock(&sb_lock); 707 if (p) 708 __put_super(p); 709 p = sb; 710 } 711 if (p) 712 __put_super(p); 713 spin_unlock(&sb_lock); 714 } 715 /** 716 * iterate_supers - call function for all active superblocks 717 * @f: function to call 718 * @arg: argument to pass to it 719 * 720 * Scans the superblock list and calls given function, passing it 721 * locked superblock and given argument. 722 */ 723 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 724 { 725 struct super_block *sb, *p = NULL; 726 727 spin_lock(&sb_lock); 728 list_for_each_entry(sb, &super_blocks, s_list) { 729 if (hlist_unhashed(&sb->s_instances)) 730 continue; 731 sb->s_count++; 732 spin_unlock(&sb_lock); 733 734 down_read(&sb->s_umount); 735 if (sb->s_root && (sb->s_flags & SB_BORN)) 736 f(sb, arg); 737 up_read(&sb->s_umount); 738 739 spin_lock(&sb_lock); 740 if (p) 741 __put_super(p); 742 p = sb; 743 } 744 if (p) 745 __put_super(p); 746 spin_unlock(&sb_lock); 747 } 748 749 /** 750 * iterate_supers_type - call function for superblocks of given type 751 * @type: fs type 752 * @f: function to call 753 * @arg: argument to pass to it 754 * 755 * Scans the superblock list and calls given function, passing it 756 * locked superblock and given argument. 757 */ 758 void iterate_supers_type(struct file_system_type *type, 759 void (*f)(struct super_block *, void *), void *arg) 760 { 761 struct super_block *sb, *p = NULL; 762 763 spin_lock(&sb_lock); 764 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 765 sb->s_count++; 766 spin_unlock(&sb_lock); 767 768 down_read(&sb->s_umount); 769 if (sb->s_root && (sb->s_flags & SB_BORN)) 770 f(sb, arg); 771 up_read(&sb->s_umount); 772 773 spin_lock(&sb_lock); 774 if (p) 775 __put_super(p); 776 p = sb; 777 } 778 if (p) 779 __put_super(p); 780 spin_unlock(&sb_lock); 781 } 782 783 EXPORT_SYMBOL(iterate_supers_type); 784 785 /** 786 * get_super - get the superblock of a device 787 * @bdev: device to get the superblock for 788 * 789 * Scans the superblock list and finds the superblock of the file system 790 * mounted on the device given. %NULL is returned if no match is found. 791 */ 792 struct super_block *get_super(struct block_device *bdev) 793 { 794 struct super_block *sb; 795 796 if (!bdev) 797 return NULL; 798 799 spin_lock(&sb_lock); 800 rescan: 801 list_for_each_entry(sb, &super_blocks, s_list) { 802 if (hlist_unhashed(&sb->s_instances)) 803 continue; 804 if (sb->s_bdev == bdev) { 805 sb->s_count++; 806 spin_unlock(&sb_lock); 807 down_read(&sb->s_umount); 808 /* still alive? */ 809 if (sb->s_root && (sb->s_flags & SB_BORN)) 810 return sb; 811 up_read(&sb->s_umount); 812 /* nope, got unmounted */ 813 spin_lock(&sb_lock); 814 __put_super(sb); 815 goto rescan; 816 } 817 } 818 spin_unlock(&sb_lock); 819 return NULL; 820 } 821 822 /** 823 * get_active_super - get an active reference to the superblock of a device 824 * @bdev: device to get the superblock for 825 * 826 * Scans the superblock list and finds the superblock of the file system 827 * mounted on the device given. Returns the superblock with an active 828 * reference or %NULL if none was found. 829 */ 830 struct super_block *get_active_super(struct block_device *bdev) 831 { 832 struct super_block *sb; 833 834 if (!bdev) 835 return NULL; 836 837 restart: 838 spin_lock(&sb_lock); 839 list_for_each_entry(sb, &super_blocks, s_list) { 840 if (hlist_unhashed(&sb->s_instances)) 841 continue; 842 if (sb->s_bdev == bdev) { 843 if (!grab_super(sb)) 844 goto restart; 845 up_write(&sb->s_umount); 846 return sb; 847 } 848 } 849 spin_unlock(&sb_lock); 850 return NULL; 851 } 852 853 struct super_block *user_get_super(dev_t dev, bool excl) 854 { 855 struct super_block *sb; 856 857 spin_lock(&sb_lock); 858 rescan: 859 list_for_each_entry(sb, &super_blocks, s_list) { 860 if (hlist_unhashed(&sb->s_instances)) 861 continue; 862 if (sb->s_dev == dev) { 863 sb->s_count++; 864 spin_unlock(&sb_lock); 865 if (excl) 866 down_write(&sb->s_umount); 867 else 868 down_read(&sb->s_umount); 869 /* still alive? */ 870 if (sb->s_root && (sb->s_flags & SB_BORN)) 871 return sb; 872 if (excl) 873 up_write(&sb->s_umount); 874 else 875 up_read(&sb->s_umount); 876 /* nope, got unmounted */ 877 spin_lock(&sb_lock); 878 __put_super(sb); 879 goto rescan; 880 } 881 } 882 spin_unlock(&sb_lock); 883 return NULL; 884 } 885 886 /** 887 * reconfigure_super - asks filesystem to change superblock parameters 888 * @fc: The superblock and configuration 889 * 890 * Alters the configuration parameters of a live superblock. 891 */ 892 int reconfigure_super(struct fs_context *fc) 893 { 894 struct super_block *sb = fc->root->d_sb; 895 int retval; 896 bool remount_ro = false; 897 bool force = fc->sb_flags & SB_FORCE; 898 899 if (fc->sb_flags_mask & ~MS_RMT_MASK) 900 return -EINVAL; 901 if (sb->s_writers.frozen != SB_UNFROZEN) 902 return -EBUSY; 903 904 retval = security_sb_remount(sb, fc->security); 905 if (retval) 906 return retval; 907 908 if (fc->sb_flags_mask & SB_RDONLY) { 909 #ifdef CONFIG_BLOCK 910 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 911 bdev_read_only(sb->s_bdev)) 912 return -EACCES; 913 #endif 914 915 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 916 } 917 918 if (remount_ro) { 919 if (!hlist_empty(&sb->s_pins)) { 920 up_write(&sb->s_umount); 921 group_pin_kill(&sb->s_pins); 922 down_write(&sb->s_umount); 923 if (!sb->s_root) 924 return 0; 925 if (sb->s_writers.frozen != SB_UNFROZEN) 926 return -EBUSY; 927 remount_ro = !sb_rdonly(sb); 928 } 929 } 930 shrink_dcache_sb(sb); 931 932 /* If we are reconfiguring to RDONLY and current sb is read/write, 933 * make sure there are no files open for writing. 934 */ 935 if (remount_ro) { 936 if (force) { 937 sb->s_readonly_remount = 1; 938 smp_wmb(); 939 } else { 940 retval = sb_prepare_remount_readonly(sb); 941 if (retval) 942 return retval; 943 } 944 } 945 946 if (fc->ops->reconfigure) { 947 retval = fc->ops->reconfigure(fc); 948 if (retval) { 949 if (!force) 950 goto cancel_readonly; 951 /* If forced remount, go ahead despite any errors */ 952 WARN(1, "forced remount of a %s fs returned %i\n", 953 sb->s_type->name, retval); 954 } 955 } 956 957 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 958 (fc->sb_flags & fc->sb_flags_mask))); 959 /* Needs to be ordered wrt mnt_is_readonly() */ 960 smp_wmb(); 961 sb->s_readonly_remount = 0; 962 963 /* 964 * Some filesystems modify their metadata via some other path than the 965 * bdev buffer cache (eg. use a private mapping, or directories in 966 * pagecache, etc). Also file data modifications go via their own 967 * mappings. So If we try to mount readonly then copy the filesystem 968 * from bdev, we could get stale data, so invalidate it to give a best 969 * effort at coherency. 970 */ 971 if (remount_ro && sb->s_bdev) 972 invalidate_bdev(sb->s_bdev); 973 return 0; 974 975 cancel_readonly: 976 sb->s_readonly_remount = 0; 977 return retval; 978 } 979 980 static void do_emergency_remount_callback(struct super_block *sb) 981 { 982 down_write(&sb->s_umount); 983 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 984 !sb_rdonly(sb)) { 985 struct fs_context *fc; 986 987 fc = fs_context_for_reconfigure(sb->s_root, 988 SB_RDONLY | SB_FORCE, SB_RDONLY); 989 if (!IS_ERR(fc)) { 990 if (parse_monolithic_mount_data(fc, NULL) == 0) 991 (void)reconfigure_super(fc); 992 put_fs_context(fc); 993 } 994 } 995 up_write(&sb->s_umount); 996 } 997 998 static void do_emergency_remount(struct work_struct *work) 999 { 1000 __iterate_supers(do_emergency_remount_callback); 1001 kfree(work); 1002 printk("Emergency Remount complete\n"); 1003 } 1004 1005 void emergency_remount(void) 1006 { 1007 struct work_struct *work; 1008 1009 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1010 if (work) { 1011 INIT_WORK(work, do_emergency_remount); 1012 schedule_work(work); 1013 } 1014 } 1015 1016 static void do_thaw_all_callback(struct super_block *sb) 1017 { 1018 down_write(&sb->s_umount); 1019 if (sb->s_root && sb->s_flags & SB_BORN) { 1020 emergency_thaw_bdev(sb); 1021 thaw_super_locked(sb); 1022 } else { 1023 up_write(&sb->s_umount); 1024 } 1025 } 1026 1027 static void do_thaw_all(struct work_struct *work) 1028 { 1029 __iterate_supers(do_thaw_all_callback); 1030 kfree(work); 1031 printk(KERN_WARNING "Emergency Thaw complete\n"); 1032 } 1033 1034 /** 1035 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1036 * 1037 * Used for emergency unfreeze of all filesystems via SysRq 1038 */ 1039 void emergency_thaw_all(void) 1040 { 1041 struct work_struct *work; 1042 1043 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1044 if (work) { 1045 INIT_WORK(work, do_thaw_all); 1046 schedule_work(work); 1047 } 1048 } 1049 1050 static DEFINE_IDA(unnamed_dev_ida); 1051 1052 /** 1053 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1054 * @p: Pointer to a dev_t. 1055 * 1056 * Filesystems which don't use real block devices can call this function 1057 * to allocate a virtual block device. 1058 * 1059 * Context: Any context. Frequently called while holding sb_lock. 1060 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1061 * or -ENOMEM if memory allocation failed. 1062 */ 1063 int get_anon_bdev(dev_t *p) 1064 { 1065 int dev; 1066 1067 /* 1068 * Many userspace utilities consider an FSID of 0 invalid. 1069 * Always return at least 1 from get_anon_bdev. 1070 */ 1071 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1072 GFP_ATOMIC); 1073 if (dev == -ENOSPC) 1074 dev = -EMFILE; 1075 if (dev < 0) 1076 return dev; 1077 1078 *p = MKDEV(0, dev); 1079 return 0; 1080 } 1081 EXPORT_SYMBOL(get_anon_bdev); 1082 1083 void free_anon_bdev(dev_t dev) 1084 { 1085 ida_free(&unnamed_dev_ida, MINOR(dev)); 1086 } 1087 EXPORT_SYMBOL(free_anon_bdev); 1088 1089 int set_anon_super(struct super_block *s, void *data) 1090 { 1091 return get_anon_bdev(&s->s_dev); 1092 } 1093 EXPORT_SYMBOL(set_anon_super); 1094 1095 void kill_anon_super(struct super_block *sb) 1096 { 1097 dev_t dev = sb->s_dev; 1098 generic_shutdown_super(sb); 1099 free_anon_bdev(dev); 1100 } 1101 EXPORT_SYMBOL(kill_anon_super); 1102 1103 void kill_litter_super(struct super_block *sb) 1104 { 1105 if (sb->s_root) 1106 d_genocide(sb->s_root); 1107 kill_anon_super(sb); 1108 } 1109 EXPORT_SYMBOL(kill_litter_super); 1110 1111 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1112 { 1113 return set_anon_super(sb, NULL); 1114 } 1115 EXPORT_SYMBOL(set_anon_super_fc); 1116 1117 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1118 { 1119 return sb->s_fs_info == fc->s_fs_info; 1120 } 1121 1122 static int test_single_super(struct super_block *s, struct fs_context *fc) 1123 { 1124 return 1; 1125 } 1126 1127 static int vfs_get_super(struct fs_context *fc, bool reconf, 1128 int (*test)(struct super_block *, struct fs_context *), 1129 int (*fill_super)(struct super_block *sb, 1130 struct fs_context *fc)) 1131 { 1132 struct super_block *sb; 1133 int err; 1134 1135 sb = sget_fc(fc, test, set_anon_super_fc); 1136 if (IS_ERR(sb)) 1137 return PTR_ERR(sb); 1138 1139 if (!sb->s_root) { 1140 err = fill_super(sb, fc); 1141 if (err) 1142 goto error; 1143 1144 sb->s_flags |= SB_ACTIVE; 1145 fc->root = dget(sb->s_root); 1146 } else { 1147 fc->root = dget(sb->s_root); 1148 if (reconf) { 1149 err = reconfigure_super(fc); 1150 if (err < 0) { 1151 dput(fc->root); 1152 fc->root = NULL; 1153 goto error; 1154 } 1155 } 1156 } 1157 1158 return 0; 1159 1160 error: 1161 deactivate_locked_super(sb); 1162 return err; 1163 } 1164 1165 int get_tree_nodev(struct fs_context *fc, 1166 int (*fill_super)(struct super_block *sb, 1167 struct fs_context *fc)) 1168 { 1169 return vfs_get_super(fc, false, NULL, fill_super); 1170 } 1171 EXPORT_SYMBOL(get_tree_nodev); 1172 1173 int get_tree_single(struct fs_context *fc, 1174 int (*fill_super)(struct super_block *sb, 1175 struct fs_context *fc)) 1176 { 1177 return vfs_get_super(fc, false, test_single_super, fill_super); 1178 } 1179 EXPORT_SYMBOL(get_tree_single); 1180 1181 int get_tree_single_reconf(struct fs_context *fc, 1182 int (*fill_super)(struct super_block *sb, 1183 struct fs_context *fc)) 1184 { 1185 return vfs_get_super(fc, true, test_single_super, fill_super); 1186 } 1187 EXPORT_SYMBOL(get_tree_single_reconf); 1188 1189 int get_tree_keyed(struct fs_context *fc, 1190 int (*fill_super)(struct super_block *sb, 1191 struct fs_context *fc), 1192 void *key) 1193 { 1194 fc->s_fs_info = key; 1195 return vfs_get_super(fc, false, test_keyed_super, fill_super); 1196 } 1197 EXPORT_SYMBOL(get_tree_keyed); 1198 1199 #ifdef CONFIG_BLOCK 1200 1201 static int set_bdev_super(struct super_block *s, void *data) 1202 { 1203 s->s_bdev = data; 1204 s->s_dev = s->s_bdev->bd_dev; 1205 s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi); 1206 1207 if (bdev_stable_writes(s->s_bdev)) 1208 s->s_iflags |= SB_I_STABLE_WRITES; 1209 return 0; 1210 } 1211 1212 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1213 { 1214 return set_bdev_super(s, fc->sget_key); 1215 } 1216 1217 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1218 { 1219 return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key; 1220 } 1221 1222 /** 1223 * get_tree_bdev - Get a superblock based on a single block device 1224 * @fc: The filesystem context holding the parameters 1225 * @fill_super: Helper to initialise a new superblock 1226 */ 1227 int get_tree_bdev(struct fs_context *fc, 1228 int (*fill_super)(struct super_block *, 1229 struct fs_context *)) 1230 { 1231 struct block_device *bdev; 1232 struct super_block *s; 1233 fmode_t mode = FMODE_READ | FMODE_EXCL; 1234 int error = 0; 1235 1236 if (!(fc->sb_flags & SB_RDONLY)) 1237 mode |= FMODE_WRITE; 1238 1239 if (!fc->source) 1240 return invalf(fc, "No source specified"); 1241 1242 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type); 1243 if (IS_ERR(bdev)) { 1244 errorf(fc, "%s: Can't open blockdev", fc->source); 1245 return PTR_ERR(bdev); 1246 } 1247 1248 /* Once the superblock is inserted into the list by sget_fc(), s_umount 1249 * will protect the lockfs code from trying to start a snapshot while 1250 * we are mounting 1251 */ 1252 mutex_lock(&bdev->bd_fsfreeze_mutex); 1253 if (bdev->bd_fsfreeze_count > 0) { 1254 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1255 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1256 blkdev_put(bdev, mode); 1257 return -EBUSY; 1258 } 1259 1260 fc->sb_flags |= SB_NOSEC; 1261 fc->sget_key = bdev; 1262 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc); 1263 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1264 if (IS_ERR(s)) { 1265 blkdev_put(bdev, mode); 1266 return PTR_ERR(s); 1267 } 1268 1269 if (s->s_root) { 1270 /* Don't summarily change the RO/RW state. */ 1271 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1272 warnf(fc, "%pg: Can't mount, would change RO state", bdev); 1273 deactivate_locked_super(s); 1274 blkdev_put(bdev, mode); 1275 return -EBUSY; 1276 } 1277 1278 /* 1279 * s_umount nests inside open_mutex during 1280 * __invalidate_device(). blkdev_put() acquires 1281 * open_mutex and can't be called under s_umount. Drop 1282 * s_umount temporarily. This is safe as we're 1283 * holding an active reference. 1284 */ 1285 up_write(&s->s_umount); 1286 blkdev_put(bdev, mode); 1287 down_write(&s->s_umount); 1288 } else { 1289 s->s_mode = mode; 1290 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1291 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", 1292 fc->fs_type->name, s->s_id); 1293 sb_set_blocksize(s, block_size(bdev)); 1294 error = fill_super(s, fc); 1295 if (error) { 1296 deactivate_locked_super(s); 1297 return error; 1298 } 1299 1300 s->s_flags |= SB_ACTIVE; 1301 bdev->bd_super = s; 1302 } 1303 1304 BUG_ON(fc->root); 1305 fc->root = dget(s->s_root); 1306 return 0; 1307 } 1308 EXPORT_SYMBOL(get_tree_bdev); 1309 1310 static int test_bdev_super(struct super_block *s, void *data) 1311 { 1312 return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data; 1313 } 1314 1315 struct dentry *mount_bdev(struct file_system_type *fs_type, 1316 int flags, const char *dev_name, void *data, 1317 int (*fill_super)(struct super_block *, void *, int)) 1318 { 1319 struct block_device *bdev; 1320 struct super_block *s; 1321 fmode_t mode = FMODE_READ | FMODE_EXCL; 1322 int error = 0; 1323 1324 if (!(flags & SB_RDONLY)) 1325 mode |= FMODE_WRITE; 1326 1327 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1328 if (IS_ERR(bdev)) 1329 return ERR_CAST(bdev); 1330 1331 /* 1332 * once the super is inserted into the list by sget, s_umount 1333 * will protect the lockfs code from trying to start a snapshot 1334 * while we are mounting 1335 */ 1336 mutex_lock(&bdev->bd_fsfreeze_mutex); 1337 if (bdev->bd_fsfreeze_count > 0) { 1338 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1339 error = -EBUSY; 1340 goto error_bdev; 1341 } 1342 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1343 bdev); 1344 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1345 if (IS_ERR(s)) 1346 goto error_s; 1347 1348 if (s->s_root) { 1349 if ((flags ^ s->s_flags) & SB_RDONLY) { 1350 deactivate_locked_super(s); 1351 error = -EBUSY; 1352 goto error_bdev; 1353 } 1354 1355 /* 1356 * s_umount nests inside open_mutex during 1357 * __invalidate_device(). blkdev_put() acquires 1358 * open_mutex and can't be called under s_umount. Drop 1359 * s_umount temporarily. This is safe as we're 1360 * holding an active reference. 1361 */ 1362 up_write(&s->s_umount); 1363 blkdev_put(bdev, mode); 1364 down_write(&s->s_umount); 1365 } else { 1366 s->s_mode = mode; 1367 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1368 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", 1369 fs_type->name, s->s_id); 1370 sb_set_blocksize(s, block_size(bdev)); 1371 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1372 if (error) { 1373 deactivate_locked_super(s); 1374 goto error; 1375 } 1376 1377 s->s_flags |= SB_ACTIVE; 1378 bdev->bd_super = s; 1379 } 1380 1381 return dget(s->s_root); 1382 1383 error_s: 1384 error = PTR_ERR(s); 1385 error_bdev: 1386 blkdev_put(bdev, mode); 1387 error: 1388 return ERR_PTR(error); 1389 } 1390 EXPORT_SYMBOL(mount_bdev); 1391 1392 void kill_block_super(struct super_block *sb) 1393 { 1394 struct block_device *bdev = sb->s_bdev; 1395 fmode_t mode = sb->s_mode; 1396 1397 bdev->bd_super = NULL; 1398 generic_shutdown_super(sb); 1399 sync_blockdev(bdev); 1400 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1401 blkdev_put(bdev, mode | FMODE_EXCL); 1402 } 1403 1404 EXPORT_SYMBOL(kill_block_super); 1405 #endif 1406 1407 struct dentry *mount_nodev(struct file_system_type *fs_type, 1408 int flags, void *data, 1409 int (*fill_super)(struct super_block *, void *, int)) 1410 { 1411 int error; 1412 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1413 1414 if (IS_ERR(s)) 1415 return ERR_CAST(s); 1416 1417 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1418 if (error) { 1419 deactivate_locked_super(s); 1420 return ERR_PTR(error); 1421 } 1422 s->s_flags |= SB_ACTIVE; 1423 return dget(s->s_root); 1424 } 1425 EXPORT_SYMBOL(mount_nodev); 1426 1427 int reconfigure_single(struct super_block *s, 1428 int flags, void *data) 1429 { 1430 struct fs_context *fc; 1431 int ret; 1432 1433 /* The caller really need to be passing fc down into mount_single(), 1434 * then a chunk of this can be removed. [Bollocks -- AV] 1435 * Better yet, reconfiguration shouldn't happen, but rather the second 1436 * mount should be rejected if the parameters are not compatible. 1437 */ 1438 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1439 if (IS_ERR(fc)) 1440 return PTR_ERR(fc); 1441 1442 ret = parse_monolithic_mount_data(fc, data); 1443 if (ret < 0) 1444 goto out; 1445 1446 ret = reconfigure_super(fc); 1447 out: 1448 put_fs_context(fc); 1449 return ret; 1450 } 1451 1452 static int compare_single(struct super_block *s, void *p) 1453 { 1454 return 1; 1455 } 1456 1457 struct dentry *mount_single(struct file_system_type *fs_type, 1458 int flags, void *data, 1459 int (*fill_super)(struct super_block *, void *, int)) 1460 { 1461 struct super_block *s; 1462 int error; 1463 1464 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1465 if (IS_ERR(s)) 1466 return ERR_CAST(s); 1467 if (!s->s_root) { 1468 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1469 if (!error) 1470 s->s_flags |= SB_ACTIVE; 1471 } else { 1472 error = reconfigure_single(s, flags, data); 1473 } 1474 if (unlikely(error)) { 1475 deactivate_locked_super(s); 1476 return ERR_PTR(error); 1477 } 1478 return dget(s->s_root); 1479 } 1480 EXPORT_SYMBOL(mount_single); 1481 1482 /** 1483 * vfs_get_tree - Get the mountable root 1484 * @fc: The superblock configuration context. 1485 * 1486 * The filesystem is invoked to get or create a superblock which can then later 1487 * be used for mounting. The filesystem places a pointer to the root to be 1488 * used for mounting in @fc->root. 1489 */ 1490 int vfs_get_tree(struct fs_context *fc) 1491 { 1492 struct super_block *sb; 1493 int error; 1494 1495 if (fc->root) 1496 return -EBUSY; 1497 1498 /* Get the mountable root in fc->root, with a ref on the root and a ref 1499 * on the superblock. 1500 */ 1501 error = fc->ops->get_tree(fc); 1502 if (error < 0) 1503 return error; 1504 1505 if (!fc->root) { 1506 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1507 fc->fs_type->name); 1508 /* We don't know what the locking state of the superblock is - 1509 * if there is a superblock. 1510 */ 1511 BUG(); 1512 } 1513 1514 sb = fc->root->d_sb; 1515 WARN_ON(!sb->s_bdi); 1516 1517 /* 1518 * Write barrier is for super_cache_count(). We place it before setting 1519 * SB_BORN as the data dependency between the two functions is the 1520 * superblock structure contents that we just set up, not the SB_BORN 1521 * flag. 1522 */ 1523 smp_wmb(); 1524 sb->s_flags |= SB_BORN; 1525 1526 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1527 if (unlikely(error)) { 1528 fc_drop_locked(fc); 1529 return error; 1530 } 1531 1532 /* 1533 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1534 * but s_maxbytes was an unsigned long long for many releases. Throw 1535 * this warning for a little while to try and catch filesystems that 1536 * violate this rule. 1537 */ 1538 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1539 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1540 1541 return 0; 1542 } 1543 EXPORT_SYMBOL(vfs_get_tree); 1544 1545 /* 1546 * Setup private BDI for given superblock. It gets automatically cleaned up 1547 * in generic_shutdown_super(). 1548 */ 1549 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1550 { 1551 struct backing_dev_info *bdi; 1552 int err; 1553 va_list args; 1554 1555 bdi = bdi_alloc(NUMA_NO_NODE); 1556 if (!bdi) 1557 return -ENOMEM; 1558 1559 va_start(args, fmt); 1560 err = bdi_register_va(bdi, fmt, args); 1561 va_end(args); 1562 if (err) { 1563 bdi_put(bdi); 1564 return err; 1565 } 1566 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1567 sb->s_bdi = bdi; 1568 sb->s_iflags |= SB_I_PERSB_BDI; 1569 1570 return 0; 1571 } 1572 EXPORT_SYMBOL(super_setup_bdi_name); 1573 1574 /* 1575 * Setup private BDI for given superblock. I gets automatically cleaned up 1576 * in generic_shutdown_super(). 1577 */ 1578 int super_setup_bdi(struct super_block *sb) 1579 { 1580 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1581 1582 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1583 atomic_long_inc_return(&bdi_seq)); 1584 } 1585 EXPORT_SYMBOL(super_setup_bdi); 1586 1587 /** 1588 * sb_wait_write - wait until all writers to given file system finish 1589 * @sb: the super for which we wait 1590 * @level: type of writers we wait for (normal vs page fault) 1591 * 1592 * This function waits until there are no writers of given type to given file 1593 * system. 1594 */ 1595 static void sb_wait_write(struct super_block *sb, int level) 1596 { 1597 percpu_down_write(sb->s_writers.rw_sem + level-1); 1598 } 1599 1600 /* 1601 * We are going to return to userspace and forget about these locks, the 1602 * ownership goes to the caller of thaw_super() which does unlock(). 1603 */ 1604 static void lockdep_sb_freeze_release(struct super_block *sb) 1605 { 1606 int level; 1607 1608 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1609 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1610 } 1611 1612 /* 1613 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1614 */ 1615 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1616 { 1617 int level; 1618 1619 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1620 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1621 } 1622 1623 static void sb_freeze_unlock(struct super_block *sb, int level) 1624 { 1625 for (level--; level >= 0; level--) 1626 percpu_up_write(sb->s_writers.rw_sem + level); 1627 } 1628 1629 /** 1630 * freeze_super - lock the filesystem and force it into a consistent state 1631 * @sb: the super to lock 1632 * 1633 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1634 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1635 * -EBUSY. 1636 * 1637 * During this function, sb->s_writers.frozen goes through these values: 1638 * 1639 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1640 * 1641 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1642 * writes should be blocked, though page faults are still allowed. We wait for 1643 * all writes to complete and then proceed to the next stage. 1644 * 1645 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1646 * but internal fs threads can still modify the filesystem (although they 1647 * should not dirty new pages or inodes), writeback can run etc. After waiting 1648 * for all running page faults we sync the filesystem which will clean all 1649 * dirty pages and inodes (no new dirty pages or inodes can be created when 1650 * sync is running). 1651 * 1652 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1653 * modification are blocked (e.g. XFS preallocation truncation on inode 1654 * reclaim). This is usually implemented by blocking new transactions for 1655 * filesystems that have them and need this additional guard. After all 1656 * internal writers are finished we call ->freeze_fs() to finish filesystem 1657 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1658 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1659 * 1660 * sb->s_writers.frozen is protected by sb->s_umount. 1661 */ 1662 int freeze_super(struct super_block *sb) 1663 { 1664 int ret; 1665 1666 atomic_inc(&sb->s_active); 1667 down_write(&sb->s_umount); 1668 if (sb->s_writers.frozen != SB_UNFROZEN) { 1669 deactivate_locked_super(sb); 1670 return -EBUSY; 1671 } 1672 1673 if (!(sb->s_flags & SB_BORN)) { 1674 up_write(&sb->s_umount); 1675 return 0; /* sic - it's "nothing to do" */ 1676 } 1677 1678 if (sb_rdonly(sb)) { 1679 /* Nothing to do really... */ 1680 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1681 up_write(&sb->s_umount); 1682 return 0; 1683 } 1684 1685 sb->s_writers.frozen = SB_FREEZE_WRITE; 1686 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1687 up_write(&sb->s_umount); 1688 sb_wait_write(sb, SB_FREEZE_WRITE); 1689 down_write(&sb->s_umount); 1690 1691 /* Now we go and block page faults... */ 1692 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1693 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1694 1695 /* All writers are done so after syncing there won't be dirty data */ 1696 ret = sync_filesystem(sb); 1697 if (ret) { 1698 sb->s_writers.frozen = SB_UNFROZEN; 1699 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 1700 wake_up(&sb->s_writers.wait_unfrozen); 1701 deactivate_locked_super(sb); 1702 return ret; 1703 } 1704 1705 /* Now wait for internal filesystem counter */ 1706 sb->s_writers.frozen = SB_FREEZE_FS; 1707 sb_wait_write(sb, SB_FREEZE_FS); 1708 1709 if (sb->s_op->freeze_fs) { 1710 ret = sb->s_op->freeze_fs(sb); 1711 if (ret) { 1712 printk(KERN_ERR 1713 "VFS:Filesystem freeze failed\n"); 1714 sb->s_writers.frozen = SB_UNFROZEN; 1715 sb_freeze_unlock(sb, SB_FREEZE_FS); 1716 wake_up(&sb->s_writers.wait_unfrozen); 1717 deactivate_locked_super(sb); 1718 return ret; 1719 } 1720 } 1721 /* 1722 * For debugging purposes so that fs can warn if it sees write activity 1723 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1724 */ 1725 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1726 lockdep_sb_freeze_release(sb); 1727 up_write(&sb->s_umount); 1728 return 0; 1729 } 1730 EXPORT_SYMBOL(freeze_super); 1731 1732 static int thaw_super_locked(struct super_block *sb) 1733 { 1734 int error; 1735 1736 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1737 up_write(&sb->s_umount); 1738 return -EINVAL; 1739 } 1740 1741 if (sb_rdonly(sb)) { 1742 sb->s_writers.frozen = SB_UNFROZEN; 1743 goto out; 1744 } 1745 1746 lockdep_sb_freeze_acquire(sb); 1747 1748 if (sb->s_op->unfreeze_fs) { 1749 error = sb->s_op->unfreeze_fs(sb); 1750 if (error) { 1751 printk(KERN_ERR 1752 "VFS:Filesystem thaw failed\n"); 1753 lockdep_sb_freeze_release(sb); 1754 up_write(&sb->s_umount); 1755 return error; 1756 } 1757 } 1758 1759 sb->s_writers.frozen = SB_UNFROZEN; 1760 sb_freeze_unlock(sb, SB_FREEZE_FS); 1761 out: 1762 wake_up(&sb->s_writers.wait_unfrozen); 1763 deactivate_locked_super(sb); 1764 return 0; 1765 } 1766 1767 /** 1768 * thaw_super -- unlock filesystem 1769 * @sb: the super to thaw 1770 * 1771 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1772 */ 1773 int thaw_super(struct super_block *sb) 1774 { 1775 down_write(&sb->s_umount); 1776 return thaw_super_locked(sb); 1777 } 1778 EXPORT_SYMBOL(thaw_super); 1779 1780 /* 1781 * Create workqueue for deferred direct IO completions. We allocate the 1782 * workqueue when it's first needed. This avoids creating workqueue for 1783 * filesystems that don't need it and also allows us to create the workqueue 1784 * late enough so the we can include s_id in the name of the workqueue. 1785 */ 1786 int sb_init_dio_done_wq(struct super_block *sb) 1787 { 1788 struct workqueue_struct *old; 1789 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 1790 WQ_MEM_RECLAIM, 0, 1791 sb->s_id); 1792 if (!wq) 1793 return -ENOMEM; 1794 /* 1795 * This has to be atomic as more DIOs can race to create the workqueue 1796 */ 1797 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 1798 /* Someone created workqueue before us? Free ours... */ 1799 if (old) 1800 destroy_workqueue(wq); 1801 return 0; 1802 } 1803