xref: /linux/fs/super.c (revision a67ff6a54095e27093ea501fb143fefe51a536c2)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include "internal.h"
36 
37 
38 LIST_HEAD(super_blocks);
39 DEFINE_SPINLOCK(sb_lock);
40 
41 /*
42  * One thing we have to be careful of with a per-sb shrinker is that we don't
43  * drop the last active reference to the superblock from within the shrinker.
44  * If that happens we could trigger unregistering the shrinker from within the
45  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
46  * take a passive reference to the superblock to avoid this from occurring.
47  */
48 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
49 {
50 	struct super_block *sb;
51 	int	fs_objects = 0;
52 	int	total_objects;
53 
54 	sb = container_of(shrink, struct super_block, s_shrink);
55 
56 	/*
57 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
58 	 * to recurse into the FS that called us in clear_inode() and friends..
59 	 */
60 	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
61 		return -1;
62 
63 	if (!grab_super_passive(sb))
64 		return !sc->nr_to_scan ? 0 : -1;
65 
66 	if (sb->s_op && sb->s_op->nr_cached_objects)
67 		fs_objects = sb->s_op->nr_cached_objects(sb);
68 
69 	total_objects = sb->s_nr_dentry_unused +
70 			sb->s_nr_inodes_unused + fs_objects + 1;
71 
72 	if (sc->nr_to_scan) {
73 		int	dentries;
74 		int	inodes;
75 
76 		/* proportion the scan between the caches */
77 		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
78 							total_objects;
79 		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
80 							total_objects;
81 		if (fs_objects)
82 			fs_objects = (sc->nr_to_scan * fs_objects) /
83 							total_objects;
84 		/*
85 		 * prune the dcache first as the icache is pinned by it, then
86 		 * prune the icache, followed by the filesystem specific caches
87 		 */
88 		prune_dcache_sb(sb, dentries);
89 		prune_icache_sb(sb, inodes);
90 
91 		if (fs_objects && sb->s_op->free_cached_objects) {
92 			sb->s_op->free_cached_objects(sb, fs_objects);
93 			fs_objects = sb->s_op->nr_cached_objects(sb);
94 		}
95 		total_objects = sb->s_nr_dentry_unused +
96 				sb->s_nr_inodes_unused + fs_objects;
97 	}
98 
99 	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
100 	drop_super(sb);
101 	return total_objects;
102 }
103 
104 /**
105  *	alloc_super	-	create new superblock
106  *	@type:	filesystem type superblock should belong to
107  *
108  *	Allocates and initializes a new &struct super_block.  alloc_super()
109  *	returns a pointer new superblock or %NULL if allocation had failed.
110  */
111 static struct super_block *alloc_super(struct file_system_type *type)
112 {
113 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
114 	static const struct super_operations default_op;
115 
116 	if (s) {
117 		if (security_sb_alloc(s)) {
118 			kfree(s);
119 			s = NULL;
120 			goto out;
121 		}
122 #ifdef CONFIG_SMP
123 		s->s_files = alloc_percpu(struct list_head);
124 		if (!s->s_files) {
125 			security_sb_free(s);
126 			kfree(s);
127 			s = NULL;
128 			goto out;
129 		} else {
130 			int i;
131 
132 			for_each_possible_cpu(i)
133 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
134 		}
135 #else
136 		INIT_LIST_HEAD(&s->s_files);
137 #endif
138 		s->s_bdi = &default_backing_dev_info;
139 		INIT_LIST_HEAD(&s->s_instances);
140 		INIT_HLIST_BL_HEAD(&s->s_anon);
141 		INIT_LIST_HEAD(&s->s_inodes);
142 		INIT_LIST_HEAD(&s->s_dentry_lru);
143 		INIT_LIST_HEAD(&s->s_inode_lru);
144 		spin_lock_init(&s->s_inode_lru_lock);
145 		init_rwsem(&s->s_umount);
146 		mutex_init(&s->s_lock);
147 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
148 		/*
149 		 * The locking rules for s_lock are up to the
150 		 * filesystem. For example ext3fs has different
151 		 * lock ordering than usbfs:
152 		 */
153 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
154 		/*
155 		 * sget() can have s_umount recursion.
156 		 *
157 		 * When it cannot find a suitable sb, it allocates a new
158 		 * one (this one), and tries again to find a suitable old
159 		 * one.
160 		 *
161 		 * In case that succeeds, it will acquire the s_umount
162 		 * lock of the old one. Since these are clearly distrinct
163 		 * locks, and this object isn't exposed yet, there's no
164 		 * risk of deadlocks.
165 		 *
166 		 * Annotate this by putting this lock in a different
167 		 * subclass.
168 		 */
169 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
170 		s->s_count = 1;
171 		atomic_set(&s->s_active, 1);
172 		mutex_init(&s->s_vfs_rename_mutex);
173 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
174 		mutex_init(&s->s_dquot.dqio_mutex);
175 		mutex_init(&s->s_dquot.dqonoff_mutex);
176 		init_rwsem(&s->s_dquot.dqptr_sem);
177 		init_waitqueue_head(&s->s_wait_unfrozen);
178 		s->s_maxbytes = MAX_NON_LFS;
179 		s->s_op = &default_op;
180 		s->s_time_gran = 1000000000;
181 		s->cleancache_poolid = -1;
182 
183 		s->s_shrink.seeks = DEFAULT_SEEKS;
184 		s->s_shrink.shrink = prune_super;
185 		s->s_shrink.batch = 1024;
186 	}
187 out:
188 	return s;
189 }
190 
191 /**
192  *	destroy_super	-	frees a superblock
193  *	@s: superblock to free
194  *
195  *	Frees a superblock.
196  */
197 static inline void destroy_super(struct super_block *s)
198 {
199 #ifdef CONFIG_SMP
200 	free_percpu(s->s_files);
201 #endif
202 	security_sb_free(s);
203 	kfree(s->s_subtype);
204 	kfree(s->s_options);
205 	kfree(s);
206 }
207 
208 /* Superblock refcounting  */
209 
210 /*
211  * Drop a superblock's refcount.  The caller must hold sb_lock.
212  */
213 void __put_super(struct super_block *sb)
214 {
215 	if (!--sb->s_count) {
216 		list_del_init(&sb->s_list);
217 		destroy_super(sb);
218 	}
219 }
220 
221 /**
222  *	put_super	-	drop a temporary reference to superblock
223  *	@sb: superblock in question
224  *
225  *	Drops a temporary reference, frees superblock if there's no
226  *	references left.
227  */
228 void put_super(struct super_block *sb)
229 {
230 	spin_lock(&sb_lock);
231 	__put_super(sb);
232 	spin_unlock(&sb_lock);
233 }
234 
235 
236 /**
237  *	deactivate_locked_super	-	drop an active reference to superblock
238  *	@s: superblock to deactivate
239  *
240  *	Drops an active reference to superblock, converting it into a temprory
241  *	one if there is no other active references left.  In that case we
242  *	tell fs driver to shut it down and drop the temporary reference we
243  *	had just acquired.
244  *
245  *	Caller holds exclusive lock on superblock; that lock is released.
246  */
247 void deactivate_locked_super(struct super_block *s)
248 {
249 	struct file_system_type *fs = s->s_type;
250 	if (atomic_dec_and_test(&s->s_active)) {
251 		cleancache_flush_fs(s);
252 		fs->kill_sb(s);
253 
254 		/* caches are now gone, we can safely kill the shrinker now */
255 		unregister_shrinker(&s->s_shrink);
256 
257 		/*
258 		 * We need to call rcu_barrier so all the delayed rcu free
259 		 * inodes are flushed before we release the fs module.
260 		 */
261 		rcu_barrier();
262 		put_filesystem(fs);
263 		put_super(s);
264 	} else {
265 		up_write(&s->s_umount);
266 	}
267 }
268 
269 EXPORT_SYMBOL(deactivate_locked_super);
270 
271 /**
272  *	deactivate_super	-	drop an active reference to superblock
273  *	@s: superblock to deactivate
274  *
275  *	Variant of deactivate_locked_super(), except that superblock is *not*
276  *	locked by caller.  If we are going to drop the final active reference,
277  *	lock will be acquired prior to that.
278  */
279 void deactivate_super(struct super_block *s)
280 {
281         if (!atomic_add_unless(&s->s_active, -1, 1)) {
282 		down_write(&s->s_umount);
283 		deactivate_locked_super(s);
284 	}
285 }
286 
287 EXPORT_SYMBOL(deactivate_super);
288 
289 /**
290  *	grab_super - acquire an active reference
291  *	@s: reference we are trying to make active
292  *
293  *	Tries to acquire an active reference.  grab_super() is used when we
294  * 	had just found a superblock in super_blocks or fs_type->fs_supers
295  *	and want to turn it into a full-blown active reference.  grab_super()
296  *	is called with sb_lock held and drops it.  Returns 1 in case of
297  *	success, 0 if we had failed (superblock contents was already dead or
298  *	dying when grab_super() had been called).
299  */
300 static int grab_super(struct super_block *s) __releases(sb_lock)
301 {
302 	if (atomic_inc_not_zero(&s->s_active)) {
303 		spin_unlock(&sb_lock);
304 		return 1;
305 	}
306 	/* it's going away */
307 	s->s_count++;
308 	spin_unlock(&sb_lock);
309 	/* wait for it to die */
310 	down_write(&s->s_umount);
311 	up_write(&s->s_umount);
312 	put_super(s);
313 	return 0;
314 }
315 
316 /*
317  *	grab_super_passive - acquire a passive reference
318  *	@s: reference we are trying to grab
319  *
320  *	Tries to acquire a passive reference. This is used in places where we
321  *	cannot take an active reference but we need to ensure that the
322  *	superblock does not go away while we are working on it. It returns
323  *	false if a reference was not gained, and returns true with the s_umount
324  *	lock held in read mode if a reference is gained. On successful return,
325  *	the caller must drop the s_umount lock and the passive reference when
326  *	done.
327  */
328 bool grab_super_passive(struct super_block *sb)
329 {
330 	spin_lock(&sb_lock);
331 	if (list_empty(&sb->s_instances)) {
332 		spin_unlock(&sb_lock);
333 		return false;
334 	}
335 
336 	sb->s_count++;
337 	spin_unlock(&sb_lock);
338 
339 	if (down_read_trylock(&sb->s_umount)) {
340 		if (sb->s_root)
341 			return true;
342 		up_read(&sb->s_umount);
343 	}
344 
345 	put_super(sb);
346 	return false;
347 }
348 
349 /*
350  * Superblock locking.  We really ought to get rid of these two.
351  */
352 void lock_super(struct super_block * sb)
353 {
354 	mutex_lock(&sb->s_lock);
355 }
356 
357 void unlock_super(struct super_block * sb)
358 {
359 	mutex_unlock(&sb->s_lock);
360 }
361 
362 EXPORT_SYMBOL(lock_super);
363 EXPORT_SYMBOL(unlock_super);
364 
365 /**
366  *	generic_shutdown_super	-	common helper for ->kill_sb()
367  *	@sb: superblock to kill
368  *
369  *	generic_shutdown_super() does all fs-independent work on superblock
370  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
371  *	that need destruction out of superblock, call generic_shutdown_super()
372  *	and release aforementioned objects.  Note: dentries and inodes _are_
373  *	taken care of and do not need specific handling.
374  *
375  *	Upon calling this function, the filesystem may no longer alter or
376  *	rearrange the set of dentries belonging to this super_block, nor may it
377  *	change the attachments of dentries to inodes.
378  */
379 void generic_shutdown_super(struct super_block *sb)
380 {
381 	const struct super_operations *sop = sb->s_op;
382 
383 	if (sb->s_root) {
384 		shrink_dcache_for_umount(sb);
385 		sync_filesystem(sb);
386 		sb->s_flags &= ~MS_ACTIVE;
387 
388 		fsnotify_unmount_inodes(&sb->s_inodes);
389 
390 		evict_inodes(sb);
391 
392 		if (sop->put_super)
393 			sop->put_super(sb);
394 
395 		if (!list_empty(&sb->s_inodes)) {
396 			printk("VFS: Busy inodes after unmount of %s. "
397 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
398 			   sb->s_id);
399 		}
400 	}
401 	spin_lock(&sb_lock);
402 	/* should be initialized for __put_super_and_need_restart() */
403 	list_del_init(&sb->s_instances);
404 	spin_unlock(&sb_lock);
405 	up_write(&sb->s_umount);
406 }
407 
408 EXPORT_SYMBOL(generic_shutdown_super);
409 
410 /**
411  *	sget	-	find or create a superblock
412  *	@type:	filesystem type superblock should belong to
413  *	@test:	comparison callback
414  *	@set:	setup callback
415  *	@data:	argument to each of them
416  */
417 struct super_block *sget(struct file_system_type *type,
418 			int (*test)(struct super_block *,void *),
419 			int (*set)(struct super_block *,void *),
420 			void *data)
421 {
422 	struct super_block *s = NULL;
423 	struct super_block *old;
424 	int err;
425 
426 retry:
427 	spin_lock(&sb_lock);
428 	if (test) {
429 		list_for_each_entry(old, &type->fs_supers, s_instances) {
430 			if (!test(old, data))
431 				continue;
432 			if (!grab_super(old))
433 				goto retry;
434 			if (s) {
435 				up_write(&s->s_umount);
436 				destroy_super(s);
437 				s = NULL;
438 			}
439 			down_write(&old->s_umount);
440 			if (unlikely(!(old->s_flags & MS_BORN))) {
441 				deactivate_locked_super(old);
442 				goto retry;
443 			}
444 			return old;
445 		}
446 	}
447 	if (!s) {
448 		spin_unlock(&sb_lock);
449 		s = alloc_super(type);
450 		if (!s)
451 			return ERR_PTR(-ENOMEM);
452 		goto retry;
453 	}
454 
455 	err = set(s, data);
456 	if (err) {
457 		spin_unlock(&sb_lock);
458 		up_write(&s->s_umount);
459 		destroy_super(s);
460 		return ERR_PTR(err);
461 	}
462 	s->s_type = type;
463 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
464 	list_add_tail(&s->s_list, &super_blocks);
465 	list_add(&s->s_instances, &type->fs_supers);
466 	spin_unlock(&sb_lock);
467 	get_filesystem(type);
468 	register_shrinker(&s->s_shrink);
469 	return s;
470 }
471 
472 EXPORT_SYMBOL(sget);
473 
474 void drop_super(struct super_block *sb)
475 {
476 	up_read(&sb->s_umount);
477 	put_super(sb);
478 }
479 
480 EXPORT_SYMBOL(drop_super);
481 
482 /**
483  * sync_supers - helper for periodic superblock writeback
484  *
485  * Call the write_super method if present on all dirty superblocks in
486  * the system.  This is for the periodic writeback used by most older
487  * filesystems.  For data integrity superblock writeback use
488  * sync_filesystems() instead.
489  *
490  * Note: check the dirty flag before waiting, so we don't
491  * hold up the sync while mounting a device. (The newly
492  * mounted device won't need syncing.)
493  */
494 void sync_supers(void)
495 {
496 	struct super_block *sb, *p = NULL;
497 
498 	spin_lock(&sb_lock);
499 	list_for_each_entry(sb, &super_blocks, s_list) {
500 		if (list_empty(&sb->s_instances))
501 			continue;
502 		if (sb->s_op->write_super && sb->s_dirt) {
503 			sb->s_count++;
504 			spin_unlock(&sb_lock);
505 
506 			down_read(&sb->s_umount);
507 			if (sb->s_root && sb->s_dirt)
508 				sb->s_op->write_super(sb);
509 			up_read(&sb->s_umount);
510 
511 			spin_lock(&sb_lock);
512 			if (p)
513 				__put_super(p);
514 			p = sb;
515 		}
516 	}
517 	if (p)
518 		__put_super(p);
519 	spin_unlock(&sb_lock);
520 }
521 
522 /**
523  *	iterate_supers - call function for all active superblocks
524  *	@f: function to call
525  *	@arg: argument to pass to it
526  *
527  *	Scans the superblock list and calls given function, passing it
528  *	locked superblock and given argument.
529  */
530 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
531 {
532 	struct super_block *sb, *p = NULL;
533 
534 	spin_lock(&sb_lock);
535 	list_for_each_entry(sb, &super_blocks, s_list) {
536 		if (list_empty(&sb->s_instances))
537 			continue;
538 		sb->s_count++;
539 		spin_unlock(&sb_lock);
540 
541 		down_read(&sb->s_umount);
542 		if (sb->s_root)
543 			f(sb, arg);
544 		up_read(&sb->s_umount);
545 
546 		spin_lock(&sb_lock);
547 		if (p)
548 			__put_super(p);
549 		p = sb;
550 	}
551 	if (p)
552 		__put_super(p);
553 	spin_unlock(&sb_lock);
554 }
555 
556 /**
557  *	iterate_supers_type - call function for superblocks of given type
558  *	@type: fs type
559  *	@f: function to call
560  *	@arg: argument to pass to it
561  *
562  *	Scans the superblock list and calls given function, passing it
563  *	locked superblock and given argument.
564  */
565 void iterate_supers_type(struct file_system_type *type,
566 	void (*f)(struct super_block *, void *), void *arg)
567 {
568 	struct super_block *sb, *p = NULL;
569 
570 	spin_lock(&sb_lock);
571 	list_for_each_entry(sb, &type->fs_supers, s_instances) {
572 		sb->s_count++;
573 		spin_unlock(&sb_lock);
574 
575 		down_read(&sb->s_umount);
576 		if (sb->s_root)
577 			f(sb, arg);
578 		up_read(&sb->s_umount);
579 
580 		spin_lock(&sb_lock);
581 		if (p)
582 			__put_super(p);
583 		p = sb;
584 	}
585 	if (p)
586 		__put_super(p);
587 	spin_unlock(&sb_lock);
588 }
589 
590 EXPORT_SYMBOL(iterate_supers_type);
591 
592 /**
593  *	get_super - get the superblock of a device
594  *	@bdev: device to get the superblock for
595  *
596  *	Scans the superblock list and finds the superblock of the file system
597  *	mounted on the device given. %NULL is returned if no match is found.
598  */
599 
600 struct super_block *get_super(struct block_device *bdev)
601 {
602 	struct super_block *sb;
603 
604 	if (!bdev)
605 		return NULL;
606 
607 	spin_lock(&sb_lock);
608 rescan:
609 	list_for_each_entry(sb, &super_blocks, s_list) {
610 		if (list_empty(&sb->s_instances))
611 			continue;
612 		if (sb->s_bdev == bdev) {
613 			sb->s_count++;
614 			spin_unlock(&sb_lock);
615 			down_read(&sb->s_umount);
616 			/* still alive? */
617 			if (sb->s_root)
618 				return sb;
619 			up_read(&sb->s_umount);
620 			/* nope, got unmounted */
621 			spin_lock(&sb_lock);
622 			__put_super(sb);
623 			goto rescan;
624 		}
625 	}
626 	spin_unlock(&sb_lock);
627 	return NULL;
628 }
629 
630 EXPORT_SYMBOL(get_super);
631 
632 /**
633  * get_active_super - get an active reference to the superblock of a device
634  * @bdev: device to get the superblock for
635  *
636  * Scans the superblock list and finds the superblock of the file system
637  * mounted on the device given.  Returns the superblock with an active
638  * reference or %NULL if none was found.
639  */
640 struct super_block *get_active_super(struct block_device *bdev)
641 {
642 	struct super_block *sb;
643 
644 	if (!bdev)
645 		return NULL;
646 
647 restart:
648 	spin_lock(&sb_lock);
649 	list_for_each_entry(sb, &super_blocks, s_list) {
650 		if (list_empty(&sb->s_instances))
651 			continue;
652 		if (sb->s_bdev == bdev) {
653 			if (grab_super(sb)) /* drops sb_lock */
654 				return sb;
655 			else
656 				goto restart;
657 		}
658 	}
659 	spin_unlock(&sb_lock);
660 	return NULL;
661 }
662 
663 struct super_block *user_get_super(dev_t dev)
664 {
665 	struct super_block *sb;
666 
667 	spin_lock(&sb_lock);
668 rescan:
669 	list_for_each_entry(sb, &super_blocks, s_list) {
670 		if (list_empty(&sb->s_instances))
671 			continue;
672 		if (sb->s_dev ==  dev) {
673 			sb->s_count++;
674 			spin_unlock(&sb_lock);
675 			down_read(&sb->s_umount);
676 			/* still alive? */
677 			if (sb->s_root)
678 				return sb;
679 			up_read(&sb->s_umount);
680 			/* nope, got unmounted */
681 			spin_lock(&sb_lock);
682 			__put_super(sb);
683 			goto rescan;
684 		}
685 	}
686 	spin_unlock(&sb_lock);
687 	return NULL;
688 }
689 
690 /**
691  *	do_remount_sb - asks filesystem to change mount options.
692  *	@sb:	superblock in question
693  *	@flags:	numeric part of options
694  *	@data:	the rest of options
695  *      @force: whether or not to force the change
696  *
697  *	Alters the mount options of a mounted file system.
698  */
699 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
700 {
701 	int retval;
702 	int remount_ro;
703 
704 	if (sb->s_frozen != SB_UNFROZEN)
705 		return -EBUSY;
706 
707 #ifdef CONFIG_BLOCK
708 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
709 		return -EACCES;
710 #endif
711 
712 	if (flags & MS_RDONLY)
713 		acct_auto_close(sb);
714 	shrink_dcache_sb(sb);
715 	sync_filesystem(sb);
716 
717 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
718 
719 	/* If we are remounting RDONLY and current sb is read/write,
720 	   make sure there are no rw files opened */
721 	if (remount_ro) {
722 		if (force)
723 			mark_files_ro(sb);
724 		else if (!fs_may_remount_ro(sb))
725 			return -EBUSY;
726 	}
727 
728 	if (sb->s_op->remount_fs) {
729 		retval = sb->s_op->remount_fs(sb, &flags, data);
730 		if (retval) {
731 			if (!force)
732 				return retval;
733 			/* If forced remount, go ahead despite any errors */
734 			WARN(1, "forced remount of a %s fs returned %i\n",
735 			     sb->s_type->name, retval);
736 		}
737 	}
738 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
739 
740 	/*
741 	 * Some filesystems modify their metadata via some other path than the
742 	 * bdev buffer cache (eg. use a private mapping, or directories in
743 	 * pagecache, etc). Also file data modifications go via their own
744 	 * mappings. So If we try to mount readonly then copy the filesystem
745 	 * from bdev, we could get stale data, so invalidate it to give a best
746 	 * effort at coherency.
747 	 */
748 	if (remount_ro && sb->s_bdev)
749 		invalidate_bdev(sb->s_bdev);
750 	return 0;
751 }
752 
753 static void do_emergency_remount(struct work_struct *work)
754 {
755 	struct super_block *sb, *p = NULL;
756 
757 	spin_lock(&sb_lock);
758 	list_for_each_entry(sb, &super_blocks, s_list) {
759 		if (list_empty(&sb->s_instances))
760 			continue;
761 		sb->s_count++;
762 		spin_unlock(&sb_lock);
763 		down_write(&sb->s_umount);
764 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
765 			/*
766 			 * What lock protects sb->s_flags??
767 			 */
768 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
769 		}
770 		up_write(&sb->s_umount);
771 		spin_lock(&sb_lock);
772 		if (p)
773 			__put_super(p);
774 		p = sb;
775 	}
776 	if (p)
777 		__put_super(p);
778 	spin_unlock(&sb_lock);
779 	kfree(work);
780 	printk("Emergency Remount complete\n");
781 }
782 
783 void emergency_remount(void)
784 {
785 	struct work_struct *work;
786 
787 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
788 	if (work) {
789 		INIT_WORK(work, do_emergency_remount);
790 		schedule_work(work);
791 	}
792 }
793 
794 /*
795  * Unnamed block devices are dummy devices used by virtual
796  * filesystems which don't use real block-devices.  -- jrs
797  */
798 
799 static DEFINE_IDA(unnamed_dev_ida);
800 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
801 static int unnamed_dev_start = 0; /* don't bother trying below it */
802 
803 int get_anon_bdev(dev_t *p)
804 {
805 	int dev;
806 	int error;
807 
808  retry:
809 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
810 		return -ENOMEM;
811 	spin_lock(&unnamed_dev_lock);
812 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
813 	if (!error)
814 		unnamed_dev_start = dev + 1;
815 	spin_unlock(&unnamed_dev_lock);
816 	if (error == -EAGAIN)
817 		/* We raced and lost with another CPU. */
818 		goto retry;
819 	else if (error)
820 		return -EAGAIN;
821 
822 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
823 		spin_lock(&unnamed_dev_lock);
824 		ida_remove(&unnamed_dev_ida, dev);
825 		if (unnamed_dev_start > dev)
826 			unnamed_dev_start = dev;
827 		spin_unlock(&unnamed_dev_lock);
828 		return -EMFILE;
829 	}
830 	*p = MKDEV(0, dev & MINORMASK);
831 	return 0;
832 }
833 EXPORT_SYMBOL(get_anon_bdev);
834 
835 void free_anon_bdev(dev_t dev)
836 {
837 	int slot = MINOR(dev);
838 	spin_lock(&unnamed_dev_lock);
839 	ida_remove(&unnamed_dev_ida, slot);
840 	if (slot < unnamed_dev_start)
841 		unnamed_dev_start = slot;
842 	spin_unlock(&unnamed_dev_lock);
843 }
844 EXPORT_SYMBOL(free_anon_bdev);
845 
846 int set_anon_super(struct super_block *s, void *data)
847 {
848 	int error = get_anon_bdev(&s->s_dev);
849 	if (!error)
850 		s->s_bdi = &noop_backing_dev_info;
851 	return error;
852 }
853 
854 EXPORT_SYMBOL(set_anon_super);
855 
856 void kill_anon_super(struct super_block *sb)
857 {
858 	dev_t dev = sb->s_dev;
859 	generic_shutdown_super(sb);
860 	free_anon_bdev(dev);
861 }
862 
863 EXPORT_SYMBOL(kill_anon_super);
864 
865 void kill_litter_super(struct super_block *sb)
866 {
867 	if (sb->s_root)
868 		d_genocide(sb->s_root);
869 	kill_anon_super(sb);
870 }
871 
872 EXPORT_SYMBOL(kill_litter_super);
873 
874 static int ns_test_super(struct super_block *sb, void *data)
875 {
876 	return sb->s_fs_info == data;
877 }
878 
879 static int ns_set_super(struct super_block *sb, void *data)
880 {
881 	sb->s_fs_info = data;
882 	return set_anon_super(sb, NULL);
883 }
884 
885 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
886 	void *data, int (*fill_super)(struct super_block *, void *, int))
887 {
888 	struct super_block *sb;
889 
890 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
891 	if (IS_ERR(sb))
892 		return ERR_CAST(sb);
893 
894 	if (!sb->s_root) {
895 		int err;
896 		sb->s_flags = flags;
897 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
898 		if (err) {
899 			deactivate_locked_super(sb);
900 			return ERR_PTR(err);
901 		}
902 
903 		sb->s_flags |= MS_ACTIVE;
904 	}
905 
906 	return dget(sb->s_root);
907 }
908 
909 EXPORT_SYMBOL(mount_ns);
910 
911 #ifdef CONFIG_BLOCK
912 static int set_bdev_super(struct super_block *s, void *data)
913 {
914 	s->s_bdev = data;
915 	s->s_dev = s->s_bdev->bd_dev;
916 
917 	/*
918 	 * We set the bdi here to the queue backing, file systems can
919 	 * overwrite this in ->fill_super()
920 	 */
921 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
922 	return 0;
923 }
924 
925 static int test_bdev_super(struct super_block *s, void *data)
926 {
927 	return (void *)s->s_bdev == data;
928 }
929 
930 struct dentry *mount_bdev(struct file_system_type *fs_type,
931 	int flags, const char *dev_name, void *data,
932 	int (*fill_super)(struct super_block *, void *, int))
933 {
934 	struct block_device *bdev;
935 	struct super_block *s;
936 	fmode_t mode = FMODE_READ | FMODE_EXCL;
937 	int error = 0;
938 
939 	if (!(flags & MS_RDONLY))
940 		mode |= FMODE_WRITE;
941 
942 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
943 	if (IS_ERR(bdev))
944 		return ERR_CAST(bdev);
945 
946 	/*
947 	 * once the super is inserted into the list by sget, s_umount
948 	 * will protect the lockfs code from trying to start a snapshot
949 	 * while we are mounting
950 	 */
951 	mutex_lock(&bdev->bd_fsfreeze_mutex);
952 	if (bdev->bd_fsfreeze_count > 0) {
953 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
954 		error = -EBUSY;
955 		goto error_bdev;
956 	}
957 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
958 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
959 	if (IS_ERR(s))
960 		goto error_s;
961 
962 	if (s->s_root) {
963 		if ((flags ^ s->s_flags) & MS_RDONLY) {
964 			deactivate_locked_super(s);
965 			error = -EBUSY;
966 			goto error_bdev;
967 		}
968 
969 		/*
970 		 * s_umount nests inside bd_mutex during
971 		 * __invalidate_device().  blkdev_put() acquires
972 		 * bd_mutex and can't be called under s_umount.  Drop
973 		 * s_umount temporarily.  This is safe as we're
974 		 * holding an active reference.
975 		 */
976 		up_write(&s->s_umount);
977 		blkdev_put(bdev, mode);
978 		down_write(&s->s_umount);
979 	} else {
980 		char b[BDEVNAME_SIZE];
981 
982 		s->s_flags = flags | MS_NOSEC;
983 		s->s_mode = mode;
984 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
985 		sb_set_blocksize(s, block_size(bdev));
986 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
987 		if (error) {
988 			deactivate_locked_super(s);
989 			goto error;
990 		}
991 
992 		s->s_flags |= MS_ACTIVE;
993 		bdev->bd_super = s;
994 	}
995 
996 	return dget(s->s_root);
997 
998 error_s:
999 	error = PTR_ERR(s);
1000 error_bdev:
1001 	blkdev_put(bdev, mode);
1002 error:
1003 	return ERR_PTR(error);
1004 }
1005 EXPORT_SYMBOL(mount_bdev);
1006 
1007 void kill_block_super(struct super_block *sb)
1008 {
1009 	struct block_device *bdev = sb->s_bdev;
1010 	fmode_t mode = sb->s_mode;
1011 
1012 	bdev->bd_super = NULL;
1013 	generic_shutdown_super(sb);
1014 	sync_blockdev(bdev);
1015 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1016 	blkdev_put(bdev, mode | FMODE_EXCL);
1017 }
1018 
1019 EXPORT_SYMBOL(kill_block_super);
1020 #endif
1021 
1022 struct dentry *mount_nodev(struct file_system_type *fs_type,
1023 	int flags, void *data,
1024 	int (*fill_super)(struct super_block *, void *, int))
1025 {
1026 	int error;
1027 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1028 
1029 	if (IS_ERR(s))
1030 		return ERR_CAST(s);
1031 
1032 	s->s_flags = flags;
1033 
1034 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1035 	if (error) {
1036 		deactivate_locked_super(s);
1037 		return ERR_PTR(error);
1038 	}
1039 	s->s_flags |= MS_ACTIVE;
1040 	return dget(s->s_root);
1041 }
1042 EXPORT_SYMBOL(mount_nodev);
1043 
1044 static int compare_single(struct super_block *s, void *p)
1045 {
1046 	return 1;
1047 }
1048 
1049 struct dentry *mount_single(struct file_system_type *fs_type,
1050 	int flags, void *data,
1051 	int (*fill_super)(struct super_block *, void *, int))
1052 {
1053 	struct super_block *s;
1054 	int error;
1055 
1056 	s = sget(fs_type, compare_single, set_anon_super, NULL);
1057 	if (IS_ERR(s))
1058 		return ERR_CAST(s);
1059 	if (!s->s_root) {
1060 		s->s_flags = flags;
1061 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1062 		if (error) {
1063 			deactivate_locked_super(s);
1064 			return ERR_PTR(error);
1065 		}
1066 		s->s_flags |= MS_ACTIVE;
1067 	} else {
1068 		do_remount_sb(s, flags, data, 0);
1069 	}
1070 	return dget(s->s_root);
1071 }
1072 EXPORT_SYMBOL(mount_single);
1073 
1074 struct dentry *
1075 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1076 {
1077 	struct dentry *root;
1078 	struct super_block *sb;
1079 	char *secdata = NULL;
1080 	int error = -ENOMEM;
1081 
1082 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1083 		secdata = alloc_secdata();
1084 		if (!secdata)
1085 			goto out;
1086 
1087 		error = security_sb_copy_data(data, secdata);
1088 		if (error)
1089 			goto out_free_secdata;
1090 	}
1091 
1092 	root = type->mount(type, flags, name, data);
1093 	if (IS_ERR(root)) {
1094 		error = PTR_ERR(root);
1095 		goto out_free_secdata;
1096 	}
1097 	sb = root->d_sb;
1098 	BUG_ON(!sb);
1099 	WARN_ON(!sb->s_bdi);
1100 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1101 	sb->s_flags |= MS_BORN;
1102 
1103 	error = security_sb_kern_mount(sb, flags, secdata);
1104 	if (error)
1105 		goto out_sb;
1106 
1107 	/*
1108 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1109 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1110 	 * this warning for a little while to try and catch filesystems that
1111 	 * violate this rule.
1112 	 */
1113 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1114 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1115 
1116 	up_write(&sb->s_umount);
1117 	free_secdata(secdata);
1118 	return root;
1119 out_sb:
1120 	dput(root);
1121 	deactivate_locked_super(sb);
1122 out_free_secdata:
1123 	free_secdata(secdata);
1124 out:
1125 	return ERR_PTR(error);
1126 }
1127 
1128 /**
1129  * freeze_super - lock the filesystem and force it into a consistent state
1130  * @sb: the super to lock
1131  *
1132  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1133  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1134  * -EBUSY.
1135  */
1136 int freeze_super(struct super_block *sb)
1137 {
1138 	int ret;
1139 
1140 	atomic_inc(&sb->s_active);
1141 	down_write(&sb->s_umount);
1142 	if (sb->s_frozen) {
1143 		deactivate_locked_super(sb);
1144 		return -EBUSY;
1145 	}
1146 
1147 	if (sb->s_flags & MS_RDONLY) {
1148 		sb->s_frozen = SB_FREEZE_TRANS;
1149 		smp_wmb();
1150 		up_write(&sb->s_umount);
1151 		return 0;
1152 	}
1153 
1154 	sb->s_frozen = SB_FREEZE_WRITE;
1155 	smp_wmb();
1156 
1157 	sync_filesystem(sb);
1158 
1159 	sb->s_frozen = SB_FREEZE_TRANS;
1160 	smp_wmb();
1161 
1162 	sync_blockdev(sb->s_bdev);
1163 	if (sb->s_op->freeze_fs) {
1164 		ret = sb->s_op->freeze_fs(sb);
1165 		if (ret) {
1166 			printk(KERN_ERR
1167 				"VFS:Filesystem freeze failed\n");
1168 			sb->s_frozen = SB_UNFROZEN;
1169 			deactivate_locked_super(sb);
1170 			return ret;
1171 		}
1172 	}
1173 	up_write(&sb->s_umount);
1174 	return 0;
1175 }
1176 EXPORT_SYMBOL(freeze_super);
1177 
1178 /**
1179  * thaw_super -- unlock filesystem
1180  * @sb: the super to thaw
1181  *
1182  * Unlocks the filesystem and marks it writeable again after freeze_super().
1183  */
1184 int thaw_super(struct super_block *sb)
1185 {
1186 	int error;
1187 
1188 	down_write(&sb->s_umount);
1189 	if (sb->s_frozen == SB_UNFROZEN) {
1190 		up_write(&sb->s_umount);
1191 		return -EINVAL;
1192 	}
1193 
1194 	if (sb->s_flags & MS_RDONLY)
1195 		goto out;
1196 
1197 	if (sb->s_op->unfreeze_fs) {
1198 		error = sb->s_op->unfreeze_fs(sb);
1199 		if (error) {
1200 			printk(KERN_ERR
1201 				"VFS:Filesystem thaw failed\n");
1202 			sb->s_frozen = SB_FREEZE_TRANS;
1203 			up_write(&sb->s_umount);
1204 			return error;
1205 		}
1206 	}
1207 
1208 out:
1209 	sb->s_frozen = SB_UNFROZEN;
1210 	smp_wmb();
1211 	wake_up(&sb->s_wait_unfrozen);
1212 	deactivate_locked_super(sb);
1213 
1214 	return 0;
1215 }
1216 EXPORT_SYMBOL(thaw_super);
1217