xref: /linux/fs/super.c (revision a64917bc2e9b1e0aa716b783c4ec879fdd280300)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42 
43 static int thaw_super_locked(struct super_block *sb);
44 
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47 
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 	"sb_writers",
50 	"sb_pagefaults",
51 	"sb_internal",
52 };
53 
54 /*
55  * One thing we have to be careful of with a per-sb shrinker is that we don't
56  * drop the last active reference to the superblock from within the shrinker.
57  * If that happens we could trigger unregistering the shrinker from within the
58  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59  * take a passive reference to the superblock to avoid this from occurring.
60  */
61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 				      struct shrink_control *sc)
63 {
64 	struct super_block *sb;
65 	long	fs_objects = 0;
66 	long	total_objects;
67 	long	freed = 0;
68 	long	dentries;
69 	long	inodes;
70 
71 	sb = container_of(shrink, struct super_block, s_shrink);
72 
73 	/*
74 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
75 	 * to recurse into the FS that called us in clear_inode() and friends..
76 	 */
77 	if (!(sc->gfp_mask & __GFP_FS))
78 		return SHRINK_STOP;
79 
80 	if (!trylock_super(sb))
81 		return SHRINK_STOP;
82 
83 	if (sb->s_op->nr_cached_objects)
84 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85 
86 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 	total_objects = dentries + inodes + fs_objects + 1;
89 	if (!total_objects)
90 		total_objects = 1;
91 
92 	/* proportion the scan between the caches */
93 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96 
97 	/*
98 	 * prune the dcache first as the icache is pinned by it, then
99 	 * prune the icache, followed by the filesystem specific caches
100 	 *
101 	 * Ensure that we always scan at least one object - memcg kmem
102 	 * accounting uses this to fully empty the caches.
103 	 */
104 	sc->nr_to_scan = dentries + 1;
105 	freed = prune_dcache_sb(sb, sc);
106 	sc->nr_to_scan = inodes + 1;
107 	freed += prune_icache_sb(sb, sc);
108 
109 	if (fs_objects) {
110 		sc->nr_to_scan = fs_objects + 1;
111 		freed += sb->s_op->free_cached_objects(sb, sc);
112 	}
113 
114 	up_read(&sb->s_umount);
115 	return freed;
116 }
117 
118 static unsigned long super_cache_count(struct shrinker *shrink,
119 				       struct shrink_control *sc)
120 {
121 	struct super_block *sb;
122 	long	total_objects = 0;
123 
124 	sb = container_of(shrink, struct super_block, s_shrink);
125 
126 	/*
127 	 * We don't call trylock_super() here as it is a scalability bottleneck,
128 	 * so we're exposed to partial setup state. The shrinker rwsem does not
129 	 * protect filesystem operations backing list_lru_shrink_count() or
130 	 * s_op->nr_cached_objects(). Counts can change between
131 	 * super_cache_count and super_cache_scan, so we really don't need locks
132 	 * here.
133 	 *
134 	 * However, if we are currently mounting the superblock, the underlying
135 	 * filesystem might be in a state of partial construction and hence it
136 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
137 	 * avoid this situation, so do the same here. The memory barrier is
138 	 * matched with the one in mount_fs() as we don't hold locks here.
139 	 */
140 	if (!(sb->s_flags & SB_BORN))
141 		return 0;
142 	smp_rmb();
143 
144 	if (sb->s_op && sb->s_op->nr_cached_objects)
145 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
146 
147 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149 
150 	if (!total_objects)
151 		return SHRINK_EMPTY;
152 
153 	total_objects = vfs_pressure_ratio(total_objects);
154 	return total_objects;
155 }
156 
157 static void destroy_super_work(struct work_struct *work)
158 {
159 	struct super_block *s = container_of(work, struct super_block,
160 							destroy_work);
161 	int i;
162 
163 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 	kfree(s);
166 }
167 
168 static void destroy_super_rcu(struct rcu_head *head)
169 {
170 	struct super_block *s = container_of(head, struct super_block, rcu);
171 	INIT_WORK(&s->destroy_work, destroy_super_work);
172 	schedule_work(&s->destroy_work);
173 }
174 
175 /* Free a superblock that has never been seen by anyone */
176 static void destroy_unused_super(struct super_block *s)
177 {
178 	if (!s)
179 		return;
180 	up_write(&s->s_umount);
181 	list_lru_destroy(&s->s_dentry_lru);
182 	list_lru_destroy(&s->s_inode_lru);
183 	security_sb_free(s);
184 	put_user_ns(s->s_user_ns);
185 	kfree(s->s_subtype);
186 	free_prealloced_shrinker(&s->s_shrink);
187 	/* no delays needed */
188 	destroy_super_work(&s->destroy_work);
189 }
190 
191 /**
192  *	alloc_super	-	create new superblock
193  *	@type:	filesystem type superblock should belong to
194  *	@flags: the mount flags
195  *	@user_ns: User namespace for the super_block
196  *
197  *	Allocates and initializes a new &struct super_block.  alloc_super()
198  *	returns a pointer new superblock or %NULL if allocation had failed.
199  */
200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 				       struct user_namespace *user_ns)
202 {
203 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
204 	static const struct super_operations default_op;
205 	int i;
206 
207 	if (!s)
208 		return NULL;
209 
210 	INIT_LIST_HEAD(&s->s_mounts);
211 	s->s_user_ns = get_user_ns(user_ns);
212 	init_rwsem(&s->s_umount);
213 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 	/*
215 	 * sget() can have s_umount recursion.
216 	 *
217 	 * When it cannot find a suitable sb, it allocates a new
218 	 * one (this one), and tries again to find a suitable old
219 	 * one.
220 	 *
221 	 * In case that succeeds, it will acquire the s_umount
222 	 * lock of the old one. Since these are clearly distrinct
223 	 * locks, and this object isn't exposed yet, there's no
224 	 * risk of deadlocks.
225 	 *
226 	 * Annotate this by putting this lock in a different
227 	 * subclass.
228 	 */
229 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230 
231 	if (security_sb_alloc(s))
232 		goto fail;
233 
234 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 					sb_writers_name[i],
237 					&type->s_writers_key[i]))
238 			goto fail;
239 	}
240 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 	s->s_bdi = &noop_backing_dev_info;
242 	s->s_flags = flags;
243 	if (s->s_user_ns != &init_user_ns)
244 		s->s_iflags |= SB_I_NODEV;
245 	INIT_HLIST_NODE(&s->s_instances);
246 	INIT_HLIST_BL_HEAD(&s->s_roots);
247 	mutex_init(&s->s_sync_lock);
248 	INIT_LIST_HEAD(&s->s_inodes);
249 	spin_lock_init(&s->s_inode_list_lock);
250 	INIT_LIST_HEAD(&s->s_inodes_wb);
251 	spin_lock_init(&s->s_inode_wblist_lock);
252 
253 	s->s_count = 1;
254 	atomic_set(&s->s_active, 1);
255 	mutex_init(&s->s_vfs_rename_mutex);
256 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 	init_rwsem(&s->s_dquot.dqio_sem);
258 	s->s_maxbytes = MAX_NON_LFS;
259 	s->s_op = &default_op;
260 	s->s_time_gran = 1000000000;
261 	s->s_time_min = TIME64_MIN;
262 	s->s_time_max = TIME64_MAX;
263 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
264 
265 	s->s_shrink.seeks = DEFAULT_SEEKS;
266 	s->s_shrink.scan_objects = super_cache_scan;
267 	s->s_shrink.count_objects = super_cache_count;
268 	s->s_shrink.batch = 1024;
269 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 	if (prealloc_shrinker(&s->s_shrink))
271 		goto fail;
272 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 		goto fail;
274 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 		goto fail;
276 	return s;
277 
278 fail:
279 	destroy_unused_super(s);
280 	return NULL;
281 }
282 
283 /* Superblock refcounting  */
284 
285 /*
286  * Drop a superblock's refcount.  The caller must hold sb_lock.
287  */
288 static void __put_super(struct super_block *s)
289 {
290 	if (!--s->s_count) {
291 		list_del_init(&s->s_list);
292 		WARN_ON(s->s_dentry_lru.node);
293 		WARN_ON(s->s_inode_lru.node);
294 		WARN_ON(!list_empty(&s->s_mounts));
295 		security_sb_free(s);
296 		fscrypt_sb_free(s);
297 		put_user_ns(s->s_user_ns);
298 		kfree(s->s_subtype);
299 		call_rcu(&s->rcu, destroy_super_rcu);
300 	}
301 }
302 
303 /**
304  *	put_super	-	drop a temporary reference to superblock
305  *	@sb: superblock in question
306  *
307  *	Drops a temporary reference, frees superblock if there's no
308  *	references left.
309  */
310 void put_super(struct super_block *sb)
311 {
312 	spin_lock(&sb_lock);
313 	__put_super(sb);
314 	spin_unlock(&sb_lock);
315 }
316 
317 
318 /**
319  *	deactivate_locked_super	-	drop an active reference to superblock
320  *	@s: superblock to deactivate
321  *
322  *	Drops an active reference to superblock, converting it into a temporary
323  *	one if there is no other active references left.  In that case we
324  *	tell fs driver to shut it down and drop the temporary reference we
325  *	had just acquired.
326  *
327  *	Caller holds exclusive lock on superblock; that lock is released.
328  */
329 void deactivate_locked_super(struct super_block *s)
330 {
331 	struct file_system_type *fs = s->s_type;
332 	if (atomic_dec_and_test(&s->s_active)) {
333 		cleancache_invalidate_fs(s);
334 		unregister_shrinker(&s->s_shrink);
335 		fs->kill_sb(s);
336 
337 		/*
338 		 * Since list_lru_destroy() may sleep, we cannot call it from
339 		 * put_super(), where we hold the sb_lock. Therefore we destroy
340 		 * the lru lists right now.
341 		 */
342 		list_lru_destroy(&s->s_dentry_lru);
343 		list_lru_destroy(&s->s_inode_lru);
344 
345 		put_filesystem(fs);
346 		put_super(s);
347 	} else {
348 		up_write(&s->s_umount);
349 	}
350 }
351 
352 EXPORT_SYMBOL(deactivate_locked_super);
353 
354 /**
355  *	deactivate_super	-	drop an active reference to superblock
356  *	@s: superblock to deactivate
357  *
358  *	Variant of deactivate_locked_super(), except that superblock is *not*
359  *	locked by caller.  If we are going to drop the final active reference,
360  *	lock will be acquired prior to that.
361  */
362 void deactivate_super(struct super_block *s)
363 {
364 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
365 		down_write(&s->s_umount);
366 		deactivate_locked_super(s);
367 	}
368 }
369 
370 EXPORT_SYMBOL(deactivate_super);
371 
372 /**
373  *	grab_super - acquire an active reference
374  *	@s: reference we are trying to make active
375  *
376  *	Tries to acquire an active reference.  grab_super() is used when we
377  * 	had just found a superblock in super_blocks or fs_type->fs_supers
378  *	and want to turn it into a full-blown active reference.  grab_super()
379  *	is called with sb_lock held and drops it.  Returns 1 in case of
380  *	success, 0 if we had failed (superblock contents was already dead or
381  *	dying when grab_super() had been called).  Note that this is only
382  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
383  *	of their type), so increment of ->s_count is OK here.
384  */
385 static int grab_super(struct super_block *s) __releases(sb_lock)
386 {
387 	s->s_count++;
388 	spin_unlock(&sb_lock);
389 	down_write(&s->s_umount);
390 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
391 		put_super(s);
392 		return 1;
393 	}
394 	up_write(&s->s_umount);
395 	put_super(s);
396 	return 0;
397 }
398 
399 /*
400  *	trylock_super - try to grab ->s_umount shared
401  *	@sb: reference we are trying to grab
402  *
403  *	Try to prevent fs shutdown.  This is used in places where we
404  *	cannot take an active reference but we need to ensure that the
405  *	filesystem is not shut down while we are working on it. It returns
406  *	false if we cannot acquire s_umount or if we lose the race and
407  *	filesystem already got into shutdown, and returns true with the s_umount
408  *	lock held in read mode in case of success. On successful return,
409  *	the caller must drop the s_umount lock when done.
410  *
411  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
412  *	The reason why it's safe is that we are OK with doing trylock instead
413  *	of down_read().  There's a couple of places that are OK with that, but
414  *	it's very much not a general-purpose interface.
415  */
416 bool trylock_super(struct super_block *sb)
417 {
418 	if (down_read_trylock(&sb->s_umount)) {
419 		if (!hlist_unhashed(&sb->s_instances) &&
420 		    sb->s_root && (sb->s_flags & SB_BORN))
421 			return true;
422 		up_read(&sb->s_umount);
423 	}
424 
425 	return false;
426 }
427 
428 /**
429  *	generic_shutdown_super	-	common helper for ->kill_sb()
430  *	@sb: superblock to kill
431  *
432  *	generic_shutdown_super() does all fs-independent work on superblock
433  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
434  *	that need destruction out of superblock, call generic_shutdown_super()
435  *	and release aforementioned objects.  Note: dentries and inodes _are_
436  *	taken care of and do not need specific handling.
437  *
438  *	Upon calling this function, the filesystem may no longer alter or
439  *	rearrange the set of dentries belonging to this super_block, nor may it
440  *	change the attachments of dentries to inodes.
441  */
442 void generic_shutdown_super(struct super_block *sb)
443 {
444 	const struct super_operations *sop = sb->s_op;
445 
446 	if (sb->s_root) {
447 		shrink_dcache_for_umount(sb);
448 		sync_filesystem(sb);
449 		sb->s_flags &= ~SB_ACTIVE;
450 
451 		cgroup_writeback_umount();
452 
453 		/* evict all inodes with zero refcount */
454 		evict_inodes(sb);
455 		/* only nonzero refcount inodes can have marks */
456 		fsnotify_sb_delete(sb);
457 		security_sb_delete(sb);
458 
459 		if (sb->s_dio_done_wq) {
460 			destroy_workqueue(sb->s_dio_done_wq);
461 			sb->s_dio_done_wq = NULL;
462 		}
463 
464 		if (sop->put_super)
465 			sop->put_super(sb);
466 
467 		if (!list_empty(&sb->s_inodes)) {
468 			printk("VFS: Busy inodes after unmount of %s. "
469 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
470 			   sb->s_id);
471 		}
472 	}
473 	spin_lock(&sb_lock);
474 	/* should be initialized for __put_super_and_need_restart() */
475 	hlist_del_init(&sb->s_instances);
476 	spin_unlock(&sb_lock);
477 	up_write(&sb->s_umount);
478 	if (sb->s_bdi != &noop_backing_dev_info) {
479 		if (sb->s_iflags & SB_I_PERSB_BDI)
480 			bdi_unregister(sb->s_bdi);
481 		bdi_put(sb->s_bdi);
482 		sb->s_bdi = &noop_backing_dev_info;
483 	}
484 }
485 
486 EXPORT_SYMBOL(generic_shutdown_super);
487 
488 bool mount_capable(struct fs_context *fc)
489 {
490 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
491 		return capable(CAP_SYS_ADMIN);
492 	else
493 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
494 }
495 
496 /**
497  * sget_fc - Find or create a superblock
498  * @fc:	Filesystem context.
499  * @test: Comparison callback
500  * @set: Setup callback
501  *
502  * Find or create a superblock using the parameters stored in the filesystem
503  * context and the two callback functions.
504  *
505  * If an extant superblock is matched, then that will be returned with an
506  * elevated reference count that the caller must transfer or discard.
507  *
508  * If no match is made, a new superblock will be allocated and basic
509  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
510  * the set() callback will be invoked), the superblock will be published and it
511  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
512  * as yet unset.
513  */
514 struct super_block *sget_fc(struct fs_context *fc,
515 			    int (*test)(struct super_block *, struct fs_context *),
516 			    int (*set)(struct super_block *, struct fs_context *))
517 {
518 	struct super_block *s = NULL;
519 	struct super_block *old;
520 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
521 	int err;
522 
523 retry:
524 	spin_lock(&sb_lock);
525 	if (test) {
526 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
527 			if (test(old, fc))
528 				goto share_extant_sb;
529 		}
530 	}
531 	if (!s) {
532 		spin_unlock(&sb_lock);
533 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
534 		if (!s)
535 			return ERR_PTR(-ENOMEM);
536 		goto retry;
537 	}
538 
539 	s->s_fs_info = fc->s_fs_info;
540 	err = set(s, fc);
541 	if (err) {
542 		s->s_fs_info = NULL;
543 		spin_unlock(&sb_lock);
544 		destroy_unused_super(s);
545 		return ERR_PTR(err);
546 	}
547 	fc->s_fs_info = NULL;
548 	s->s_type = fc->fs_type;
549 	s->s_iflags |= fc->s_iflags;
550 	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
551 	list_add_tail(&s->s_list, &super_blocks);
552 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
553 	spin_unlock(&sb_lock);
554 	get_filesystem(s->s_type);
555 	register_shrinker_prepared(&s->s_shrink);
556 	return s;
557 
558 share_extant_sb:
559 	if (user_ns != old->s_user_ns) {
560 		spin_unlock(&sb_lock);
561 		destroy_unused_super(s);
562 		return ERR_PTR(-EBUSY);
563 	}
564 	if (!grab_super(old))
565 		goto retry;
566 	destroy_unused_super(s);
567 	return old;
568 }
569 EXPORT_SYMBOL(sget_fc);
570 
571 /**
572  *	sget	-	find or create a superblock
573  *	@type:	  filesystem type superblock should belong to
574  *	@test:	  comparison callback
575  *	@set:	  setup callback
576  *	@flags:	  mount flags
577  *	@data:	  argument to each of them
578  */
579 struct super_block *sget(struct file_system_type *type,
580 			int (*test)(struct super_block *,void *),
581 			int (*set)(struct super_block *,void *),
582 			int flags,
583 			void *data)
584 {
585 	struct user_namespace *user_ns = current_user_ns();
586 	struct super_block *s = NULL;
587 	struct super_block *old;
588 	int err;
589 
590 	/* We don't yet pass the user namespace of the parent
591 	 * mount through to here so always use &init_user_ns
592 	 * until that changes.
593 	 */
594 	if (flags & SB_SUBMOUNT)
595 		user_ns = &init_user_ns;
596 
597 retry:
598 	spin_lock(&sb_lock);
599 	if (test) {
600 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
601 			if (!test(old, data))
602 				continue;
603 			if (user_ns != old->s_user_ns) {
604 				spin_unlock(&sb_lock);
605 				destroy_unused_super(s);
606 				return ERR_PTR(-EBUSY);
607 			}
608 			if (!grab_super(old))
609 				goto retry;
610 			destroy_unused_super(s);
611 			return old;
612 		}
613 	}
614 	if (!s) {
615 		spin_unlock(&sb_lock);
616 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
617 		if (!s)
618 			return ERR_PTR(-ENOMEM);
619 		goto retry;
620 	}
621 
622 	err = set(s, data);
623 	if (err) {
624 		spin_unlock(&sb_lock);
625 		destroy_unused_super(s);
626 		return ERR_PTR(err);
627 	}
628 	s->s_type = type;
629 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
630 	list_add_tail(&s->s_list, &super_blocks);
631 	hlist_add_head(&s->s_instances, &type->fs_supers);
632 	spin_unlock(&sb_lock);
633 	get_filesystem(type);
634 	register_shrinker_prepared(&s->s_shrink);
635 	return s;
636 }
637 EXPORT_SYMBOL(sget);
638 
639 void drop_super(struct super_block *sb)
640 {
641 	up_read(&sb->s_umount);
642 	put_super(sb);
643 }
644 
645 EXPORT_SYMBOL(drop_super);
646 
647 void drop_super_exclusive(struct super_block *sb)
648 {
649 	up_write(&sb->s_umount);
650 	put_super(sb);
651 }
652 EXPORT_SYMBOL(drop_super_exclusive);
653 
654 static void __iterate_supers(void (*f)(struct super_block *))
655 {
656 	struct super_block *sb, *p = NULL;
657 
658 	spin_lock(&sb_lock);
659 	list_for_each_entry(sb, &super_blocks, s_list) {
660 		if (hlist_unhashed(&sb->s_instances))
661 			continue;
662 		sb->s_count++;
663 		spin_unlock(&sb_lock);
664 
665 		f(sb);
666 
667 		spin_lock(&sb_lock);
668 		if (p)
669 			__put_super(p);
670 		p = sb;
671 	}
672 	if (p)
673 		__put_super(p);
674 	spin_unlock(&sb_lock);
675 }
676 /**
677  *	iterate_supers - call function for all active superblocks
678  *	@f: function to call
679  *	@arg: argument to pass to it
680  *
681  *	Scans the superblock list and calls given function, passing it
682  *	locked superblock and given argument.
683  */
684 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
685 {
686 	struct super_block *sb, *p = NULL;
687 
688 	spin_lock(&sb_lock);
689 	list_for_each_entry(sb, &super_blocks, s_list) {
690 		if (hlist_unhashed(&sb->s_instances))
691 			continue;
692 		sb->s_count++;
693 		spin_unlock(&sb_lock);
694 
695 		down_read(&sb->s_umount);
696 		if (sb->s_root && (sb->s_flags & SB_BORN))
697 			f(sb, arg);
698 		up_read(&sb->s_umount);
699 
700 		spin_lock(&sb_lock);
701 		if (p)
702 			__put_super(p);
703 		p = sb;
704 	}
705 	if (p)
706 		__put_super(p);
707 	spin_unlock(&sb_lock);
708 }
709 
710 /**
711  *	iterate_supers_type - call function for superblocks of given type
712  *	@type: fs type
713  *	@f: function to call
714  *	@arg: argument to pass to it
715  *
716  *	Scans the superblock list and calls given function, passing it
717  *	locked superblock and given argument.
718  */
719 void iterate_supers_type(struct file_system_type *type,
720 	void (*f)(struct super_block *, void *), void *arg)
721 {
722 	struct super_block *sb, *p = NULL;
723 
724 	spin_lock(&sb_lock);
725 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
726 		sb->s_count++;
727 		spin_unlock(&sb_lock);
728 
729 		down_read(&sb->s_umount);
730 		if (sb->s_root && (sb->s_flags & SB_BORN))
731 			f(sb, arg);
732 		up_read(&sb->s_umount);
733 
734 		spin_lock(&sb_lock);
735 		if (p)
736 			__put_super(p);
737 		p = sb;
738 	}
739 	if (p)
740 		__put_super(p);
741 	spin_unlock(&sb_lock);
742 }
743 
744 EXPORT_SYMBOL(iterate_supers_type);
745 
746 /**
747  * get_super - get the superblock of a device
748  * @bdev: device to get the superblock for
749  *
750  * Scans the superblock list and finds the superblock of the file system
751  * mounted on the device given. %NULL is returned if no match is found.
752  */
753 struct super_block *get_super(struct block_device *bdev)
754 {
755 	struct super_block *sb;
756 
757 	if (!bdev)
758 		return NULL;
759 
760 	spin_lock(&sb_lock);
761 rescan:
762 	list_for_each_entry(sb, &super_blocks, s_list) {
763 		if (hlist_unhashed(&sb->s_instances))
764 			continue;
765 		if (sb->s_bdev == bdev) {
766 			sb->s_count++;
767 			spin_unlock(&sb_lock);
768 			down_read(&sb->s_umount);
769 			/* still alive? */
770 			if (sb->s_root && (sb->s_flags & SB_BORN))
771 				return sb;
772 			up_read(&sb->s_umount);
773 			/* nope, got unmounted */
774 			spin_lock(&sb_lock);
775 			__put_super(sb);
776 			goto rescan;
777 		}
778 	}
779 	spin_unlock(&sb_lock);
780 	return NULL;
781 }
782 
783 /**
784  * get_active_super - get an active reference to the superblock of a device
785  * @bdev: device to get the superblock for
786  *
787  * Scans the superblock list and finds the superblock of the file system
788  * mounted on the device given.  Returns the superblock with an active
789  * reference or %NULL if none was found.
790  */
791 struct super_block *get_active_super(struct block_device *bdev)
792 {
793 	struct super_block *sb;
794 
795 	if (!bdev)
796 		return NULL;
797 
798 restart:
799 	spin_lock(&sb_lock);
800 	list_for_each_entry(sb, &super_blocks, s_list) {
801 		if (hlist_unhashed(&sb->s_instances))
802 			continue;
803 		if (sb->s_bdev == bdev) {
804 			if (!grab_super(sb))
805 				goto restart;
806 			up_write(&sb->s_umount);
807 			return sb;
808 		}
809 	}
810 	spin_unlock(&sb_lock);
811 	return NULL;
812 }
813 
814 struct super_block *user_get_super(dev_t dev, bool excl)
815 {
816 	struct super_block *sb;
817 
818 	spin_lock(&sb_lock);
819 rescan:
820 	list_for_each_entry(sb, &super_blocks, s_list) {
821 		if (hlist_unhashed(&sb->s_instances))
822 			continue;
823 		if (sb->s_dev ==  dev) {
824 			sb->s_count++;
825 			spin_unlock(&sb_lock);
826 			if (excl)
827 				down_write(&sb->s_umount);
828 			else
829 				down_read(&sb->s_umount);
830 			/* still alive? */
831 			if (sb->s_root && (sb->s_flags & SB_BORN))
832 				return sb;
833 			if (excl)
834 				up_write(&sb->s_umount);
835 			else
836 				up_read(&sb->s_umount);
837 			/* nope, got unmounted */
838 			spin_lock(&sb_lock);
839 			__put_super(sb);
840 			goto rescan;
841 		}
842 	}
843 	spin_unlock(&sb_lock);
844 	return NULL;
845 }
846 
847 /**
848  * reconfigure_super - asks filesystem to change superblock parameters
849  * @fc: The superblock and configuration
850  *
851  * Alters the configuration parameters of a live superblock.
852  */
853 int reconfigure_super(struct fs_context *fc)
854 {
855 	struct super_block *sb = fc->root->d_sb;
856 	int retval;
857 	bool remount_ro = false;
858 	bool force = fc->sb_flags & SB_FORCE;
859 
860 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
861 		return -EINVAL;
862 	if (sb->s_writers.frozen != SB_UNFROZEN)
863 		return -EBUSY;
864 
865 	retval = security_sb_remount(sb, fc->security);
866 	if (retval)
867 		return retval;
868 
869 	if (fc->sb_flags_mask & SB_RDONLY) {
870 #ifdef CONFIG_BLOCK
871 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
872 		    bdev_read_only(sb->s_bdev))
873 			return -EACCES;
874 #endif
875 
876 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
877 	}
878 
879 	if (remount_ro) {
880 		if (!hlist_empty(&sb->s_pins)) {
881 			up_write(&sb->s_umount);
882 			group_pin_kill(&sb->s_pins);
883 			down_write(&sb->s_umount);
884 			if (!sb->s_root)
885 				return 0;
886 			if (sb->s_writers.frozen != SB_UNFROZEN)
887 				return -EBUSY;
888 			remount_ro = !sb_rdonly(sb);
889 		}
890 	}
891 	shrink_dcache_sb(sb);
892 
893 	/* If we are reconfiguring to RDONLY and current sb is read/write,
894 	 * make sure there are no files open for writing.
895 	 */
896 	if (remount_ro) {
897 		if (force) {
898 			sb->s_readonly_remount = 1;
899 			smp_wmb();
900 		} else {
901 			retval = sb_prepare_remount_readonly(sb);
902 			if (retval)
903 				return retval;
904 		}
905 	}
906 
907 	if (fc->ops->reconfigure) {
908 		retval = fc->ops->reconfigure(fc);
909 		if (retval) {
910 			if (!force)
911 				goto cancel_readonly;
912 			/* If forced remount, go ahead despite any errors */
913 			WARN(1, "forced remount of a %s fs returned %i\n",
914 			     sb->s_type->name, retval);
915 		}
916 	}
917 
918 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
919 				 (fc->sb_flags & fc->sb_flags_mask)));
920 	/* Needs to be ordered wrt mnt_is_readonly() */
921 	smp_wmb();
922 	sb->s_readonly_remount = 0;
923 
924 	/*
925 	 * Some filesystems modify their metadata via some other path than the
926 	 * bdev buffer cache (eg. use a private mapping, or directories in
927 	 * pagecache, etc). Also file data modifications go via their own
928 	 * mappings. So If we try to mount readonly then copy the filesystem
929 	 * from bdev, we could get stale data, so invalidate it to give a best
930 	 * effort at coherency.
931 	 */
932 	if (remount_ro && sb->s_bdev)
933 		invalidate_bdev(sb->s_bdev);
934 	return 0;
935 
936 cancel_readonly:
937 	sb->s_readonly_remount = 0;
938 	return retval;
939 }
940 
941 static void do_emergency_remount_callback(struct super_block *sb)
942 {
943 	down_write(&sb->s_umount);
944 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
945 	    !sb_rdonly(sb)) {
946 		struct fs_context *fc;
947 
948 		fc = fs_context_for_reconfigure(sb->s_root,
949 					SB_RDONLY | SB_FORCE, SB_RDONLY);
950 		if (!IS_ERR(fc)) {
951 			if (parse_monolithic_mount_data(fc, NULL) == 0)
952 				(void)reconfigure_super(fc);
953 			put_fs_context(fc);
954 		}
955 	}
956 	up_write(&sb->s_umount);
957 }
958 
959 static void do_emergency_remount(struct work_struct *work)
960 {
961 	__iterate_supers(do_emergency_remount_callback);
962 	kfree(work);
963 	printk("Emergency Remount complete\n");
964 }
965 
966 void emergency_remount(void)
967 {
968 	struct work_struct *work;
969 
970 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
971 	if (work) {
972 		INIT_WORK(work, do_emergency_remount);
973 		schedule_work(work);
974 	}
975 }
976 
977 static void do_thaw_all_callback(struct super_block *sb)
978 {
979 	down_write(&sb->s_umount);
980 	if (sb->s_root && sb->s_flags & SB_BORN) {
981 		emergency_thaw_bdev(sb);
982 		thaw_super_locked(sb);
983 	} else {
984 		up_write(&sb->s_umount);
985 	}
986 }
987 
988 static void do_thaw_all(struct work_struct *work)
989 {
990 	__iterate_supers(do_thaw_all_callback);
991 	kfree(work);
992 	printk(KERN_WARNING "Emergency Thaw complete\n");
993 }
994 
995 /**
996  * emergency_thaw_all -- forcibly thaw every frozen filesystem
997  *
998  * Used for emergency unfreeze of all filesystems via SysRq
999  */
1000 void emergency_thaw_all(void)
1001 {
1002 	struct work_struct *work;
1003 
1004 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1005 	if (work) {
1006 		INIT_WORK(work, do_thaw_all);
1007 		schedule_work(work);
1008 	}
1009 }
1010 
1011 static DEFINE_IDA(unnamed_dev_ida);
1012 
1013 /**
1014  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1015  * @p: Pointer to a dev_t.
1016  *
1017  * Filesystems which don't use real block devices can call this function
1018  * to allocate a virtual block device.
1019  *
1020  * Context: Any context.  Frequently called while holding sb_lock.
1021  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1022  * or -ENOMEM if memory allocation failed.
1023  */
1024 int get_anon_bdev(dev_t *p)
1025 {
1026 	int dev;
1027 
1028 	/*
1029 	 * Many userspace utilities consider an FSID of 0 invalid.
1030 	 * Always return at least 1 from get_anon_bdev.
1031 	 */
1032 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1033 			GFP_ATOMIC);
1034 	if (dev == -ENOSPC)
1035 		dev = -EMFILE;
1036 	if (dev < 0)
1037 		return dev;
1038 
1039 	*p = MKDEV(0, dev);
1040 	return 0;
1041 }
1042 EXPORT_SYMBOL(get_anon_bdev);
1043 
1044 void free_anon_bdev(dev_t dev)
1045 {
1046 	ida_free(&unnamed_dev_ida, MINOR(dev));
1047 }
1048 EXPORT_SYMBOL(free_anon_bdev);
1049 
1050 int set_anon_super(struct super_block *s, void *data)
1051 {
1052 	return get_anon_bdev(&s->s_dev);
1053 }
1054 EXPORT_SYMBOL(set_anon_super);
1055 
1056 void kill_anon_super(struct super_block *sb)
1057 {
1058 	dev_t dev = sb->s_dev;
1059 	generic_shutdown_super(sb);
1060 	free_anon_bdev(dev);
1061 }
1062 EXPORT_SYMBOL(kill_anon_super);
1063 
1064 void kill_litter_super(struct super_block *sb)
1065 {
1066 	if (sb->s_root)
1067 		d_genocide(sb->s_root);
1068 	kill_anon_super(sb);
1069 }
1070 EXPORT_SYMBOL(kill_litter_super);
1071 
1072 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1073 {
1074 	return set_anon_super(sb, NULL);
1075 }
1076 EXPORT_SYMBOL(set_anon_super_fc);
1077 
1078 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1079 {
1080 	return sb->s_fs_info == fc->s_fs_info;
1081 }
1082 
1083 static int test_single_super(struct super_block *s, struct fs_context *fc)
1084 {
1085 	return 1;
1086 }
1087 
1088 /**
1089  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1090  * @fc: The filesystem context holding the parameters
1091  * @keying: How to distinguish superblocks
1092  * @fill_super: Helper to initialise a new superblock
1093  *
1094  * Search for a superblock and create a new one if not found.  The search
1095  * criterion is controlled by @keying.  If the search fails, a new superblock
1096  * is created and @fill_super() is called to initialise it.
1097  *
1098  * @keying can take one of a number of values:
1099  *
1100  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1101  *     system.  This is typically used for special system filesystems.
1102  *
1103  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1104  *     distinct keys (where the key is in s_fs_info).  Searching for the same
1105  *     key again will turn up the superblock for that key.
1106  *
1107  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1108  *     unkeyed.  Each call will get a new superblock.
1109  *
1110  * A permissions check is made by sget_fc() unless we're getting a superblock
1111  * for a kernel-internal mount or a submount.
1112  */
1113 int vfs_get_super(struct fs_context *fc,
1114 		  enum vfs_get_super_keying keying,
1115 		  int (*fill_super)(struct super_block *sb,
1116 				    struct fs_context *fc))
1117 {
1118 	int (*test)(struct super_block *, struct fs_context *);
1119 	struct super_block *sb;
1120 	int err;
1121 
1122 	switch (keying) {
1123 	case vfs_get_single_super:
1124 	case vfs_get_single_reconf_super:
1125 		test = test_single_super;
1126 		break;
1127 	case vfs_get_keyed_super:
1128 		test = test_keyed_super;
1129 		break;
1130 	case vfs_get_independent_super:
1131 		test = NULL;
1132 		break;
1133 	default:
1134 		BUG();
1135 	}
1136 
1137 	sb = sget_fc(fc, test, set_anon_super_fc);
1138 	if (IS_ERR(sb))
1139 		return PTR_ERR(sb);
1140 
1141 	if (!sb->s_root) {
1142 		err = fill_super(sb, fc);
1143 		if (err)
1144 			goto error;
1145 
1146 		sb->s_flags |= SB_ACTIVE;
1147 		fc->root = dget(sb->s_root);
1148 	} else {
1149 		fc->root = dget(sb->s_root);
1150 		if (keying == vfs_get_single_reconf_super) {
1151 			err = reconfigure_super(fc);
1152 			if (err < 0) {
1153 				dput(fc->root);
1154 				fc->root = NULL;
1155 				goto error;
1156 			}
1157 		}
1158 	}
1159 
1160 	return 0;
1161 
1162 error:
1163 	deactivate_locked_super(sb);
1164 	return err;
1165 }
1166 EXPORT_SYMBOL(vfs_get_super);
1167 
1168 int get_tree_nodev(struct fs_context *fc,
1169 		  int (*fill_super)(struct super_block *sb,
1170 				    struct fs_context *fc))
1171 {
1172 	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1173 }
1174 EXPORT_SYMBOL(get_tree_nodev);
1175 
1176 int get_tree_single(struct fs_context *fc,
1177 		  int (*fill_super)(struct super_block *sb,
1178 				    struct fs_context *fc))
1179 {
1180 	return vfs_get_super(fc, vfs_get_single_super, fill_super);
1181 }
1182 EXPORT_SYMBOL(get_tree_single);
1183 
1184 int get_tree_single_reconf(struct fs_context *fc,
1185 		  int (*fill_super)(struct super_block *sb,
1186 				    struct fs_context *fc))
1187 {
1188 	return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1189 }
1190 EXPORT_SYMBOL(get_tree_single_reconf);
1191 
1192 int get_tree_keyed(struct fs_context *fc,
1193 		  int (*fill_super)(struct super_block *sb,
1194 				    struct fs_context *fc),
1195 		void *key)
1196 {
1197 	fc->s_fs_info = key;
1198 	return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1199 }
1200 EXPORT_SYMBOL(get_tree_keyed);
1201 
1202 #ifdef CONFIG_BLOCK
1203 
1204 static int set_bdev_super(struct super_block *s, void *data)
1205 {
1206 	s->s_bdev = data;
1207 	s->s_dev = s->s_bdev->bd_dev;
1208 	s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1209 
1210 	if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
1211 		s->s_iflags |= SB_I_STABLE_WRITES;
1212 	return 0;
1213 }
1214 
1215 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1216 {
1217 	return set_bdev_super(s, fc->sget_key);
1218 }
1219 
1220 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1221 {
1222 	return s->s_bdev == fc->sget_key;
1223 }
1224 
1225 /**
1226  * get_tree_bdev - Get a superblock based on a single block device
1227  * @fc: The filesystem context holding the parameters
1228  * @fill_super: Helper to initialise a new superblock
1229  */
1230 int get_tree_bdev(struct fs_context *fc,
1231 		int (*fill_super)(struct super_block *,
1232 				  struct fs_context *))
1233 {
1234 	struct block_device *bdev;
1235 	struct super_block *s;
1236 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1237 	int error = 0;
1238 
1239 	if (!(fc->sb_flags & SB_RDONLY))
1240 		mode |= FMODE_WRITE;
1241 
1242 	if (!fc->source)
1243 		return invalf(fc, "No source specified");
1244 
1245 	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1246 	if (IS_ERR(bdev)) {
1247 		errorf(fc, "%s: Can't open blockdev", fc->source);
1248 		return PTR_ERR(bdev);
1249 	}
1250 
1251 	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1252 	 * will protect the lockfs code from trying to start a snapshot while
1253 	 * we are mounting
1254 	 */
1255 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1256 	if (bdev->bd_fsfreeze_count > 0) {
1257 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1258 		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1259 		blkdev_put(bdev, mode);
1260 		return -EBUSY;
1261 	}
1262 
1263 	fc->sb_flags |= SB_NOSEC;
1264 	fc->sget_key = bdev;
1265 	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1266 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1267 	if (IS_ERR(s)) {
1268 		blkdev_put(bdev, mode);
1269 		return PTR_ERR(s);
1270 	}
1271 
1272 	if (s->s_root) {
1273 		/* Don't summarily change the RO/RW state. */
1274 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1275 			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1276 			deactivate_locked_super(s);
1277 			blkdev_put(bdev, mode);
1278 			return -EBUSY;
1279 		}
1280 
1281 		/*
1282 		 * s_umount nests inside open_mutex during
1283 		 * __invalidate_device().  blkdev_put() acquires
1284 		 * open_mutex and can't be called under s_umount.  Drop
1285 		 * s_umount temporarily.  This is safe as we're
1286 		 * holding an active reference.
1287 		 */
1288 		up_write(&s->s_umount);
1289 		blkdev_put(bdev, mode);
1290 		down_write(&s->s_umount);
1291 	} else {
1292 		s->s_mode = mode;
1293 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1294 		sb_set_blocksize(s, block_size(bdev));
1295 		error = fill_super(s, fc);
1296 		if (error) {
1297 			deactivate_locked_super(s);
1298 			return error;
1299 		}
1300 
1301 		s->s_flags |= SB_ACTIVE;
1302 		bdev->bd_super = s;
1303 	}
1304 
1305 	BUG_ON(fc->root);
1306 	fc->root = dget(s->s_root);
1307 	return 0;
1308 }
1309 EXPORT_SYMBOL(get_tree_bdev);
1310 
1311 static int test_bdev_super(struct super_block *s, void *data)
1312 {
1313 	return (void *)s->s_bdev == data;
1314 }
1315 
1316 struct dentry *mount_bdev(struct file_system_type *fs_type,
1317 	int flags, const char *dev_name, void *data,
1318 	int (*fill_super)(struct super_block *, void *, int))
1319 {
1320 	struct block_device *bdev;
1321 	struct super_block *s;
1322 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1323 	int error = 0;
1324 
1325 	if (!(flags & SB_RDONLY))
1326 		mode |= FMODE_WRITE;
1327 
1328 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1329 	if (IS_ERR(bdev))
1330 		return ERR_CAST(bdev);
1331 
1332 	/*
1333 	 * once the super is inserted into the list by sget, s_umount
1334 	 * will protect the lockfs code from trying to start a snapshot
1335 	 * while we are mounting
1336 	 */
1337 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1338 	if (bdev->bd_fsfreeze_count > 0) {
1339 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1340 		error = -EBUSY;
1341 		goto error_bdev;
1342 	}
1343 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1344 		 bdev);
1345 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1346 	if (IS_ERR(s))
1347 		goto error_s;
1348 
1349 	if (s->s_root) {
1350 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1351 			deactivate_locked_super(s);
1352 			error = -EBUSY;
1353 			goto error_bdev;
1354 		}
1355 
1356 		/*
1357 		 * s_umount nests inside open_mutex during
1358 		 * __invalidate_device().  blkdev_put() acquires
1359 		 * open_mutex and can't be called under s_umount.  Drop
1360 		 * s_umount temporarily.  This is safe as we're
1361 		 * holding an active reference.
1362 		 */
1363 		up_write(&s->s_umount);
1364 		blkdev_put(bdev, mode);
1365 		down_write(&s->s_umount);
1366 	} else {
1367 		s->s_mode = mode;
1368 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1369 		sb_set_blocksize(s, block_size(bdev));
1370 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1371 		if (error) {
1372 			deactivate_locked_super(s);
1373 			goto error;
1374 		}
1375 
1376 		s->s_flags |= SB_ACTIVE;
1377 		bdev->bd_super = s;
1378 	}
1379 
1380 	return dget(s->s_root);
1381 
1382 error_s:
1383 	error = PTR_ERR(s);
1384 error_bdev:
1385 	blkdev_put(bdev, mode);
1386 error:
1387 	return ERR_PTR(error);
1388 }
1389 EXPORT_SYMBOL(mount_bdev);
1390 
1391 void kill_block_super(struct super_block *sb)
1392 {
1393 	struct block_device *bdev = sb->s_bdev;
1394 	fmode_t mode = sb->s_mode;
1395 
1396 	bdev->bd_super = NULL;
1397 	generic_shutdown_super(sb);
1398 	sync_blockdev(bdev);
1399 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1400 	blkdev_put(bdev, mode | FMODE_EXCL);
1401 }
1402 
1403 EXPORT_SYMBOL(kill_block_super);
1404 #endif
1405 
1406 struct dentry *mount_nodev(struct file_system_type *fs_type,
1407 	int flags, void *data,
1408 	int (*fill_super)(struct super_block *, void *, int))
1409 {
1410 	int error;
1411 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1412 
1413 	if (IS_ERR(s))
1414 		return ERR_CAST(s);
1415 
1416 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1417 	if (error) {
1418 		deactivate_locked_super(s);
1419 		return ERR_PTR(error);
1420 	}
1421 	s->s_flags |= SB_ACTIVE;
1422 	return dget(s->s_root);
1423 }
1424 EXPORT_SYMBOL(mount_nodev);
1425 
1426 static int reconfigure_single(struct super_block *s,
1427 			      int flags, void *data)
1428 {
1429 	struct fs_context *fc;
1430 	int ret;
1431 
1432 	/* The caller really need to be passing fc down into mount_single(),
1433 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1434 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1435 	 * mount should be rejected if the parameters are not compatible.
1436 	 */
1437 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1438 	if (IS_ERR(fc))
1439 		return PTR_ERR(fc);
1440 
1441 	ret = parse_monolithic_mount_data(fc, data);
1442 	if (ret < 0)
1443 		goto out;
1444 
1445 	ret = reconfigure_super(fc);
1446 out:
1447 	put_fs_context(fc);
1448 	return ret;
1449 }
1450 
1451 static int compare_single(struct super_block *s, void *p)
1452 {
1453 	return 1;
1454 }
1455 
1456 struct dentry *mount_single(struct file_system_type *fs_type,
1457 	int flags, void *data,
1458 	int (*fill_super)(struct super_block *, void *, int))
1459 {
1460 	struct super_block *s;
1461 	int error;
1462 
1463 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1464 	if (IS_ERR(s))
1465 		return ERR_CAST(s);
1466 	if (!s->s_root) {
1467 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1468 		if (!error)
1469 			s->s_flags |= SB_ACTIVE;
1470 	} else {
1471 		error = reconfigure_single(s, flags, data);
1472 	}
1473 	if (unlikely(error)) {
1474 		deactivate_locked_super(s);
1475 		return ERR_PTR(error);
1476 	}
1477 	return dget(s->s_root);
1478 }
1479 EXPORT_SYMBOL(mount_single);
1480 
1481 /**
1482  * vfs_get_tree - Get the mountable root
1483  * @fc: The superblock configuration context.
1484  *
1485  * The filesystem is invoked to get or create a superblock which can then later
1486  * be used for mounting.  The filesystem places a pointer to the root to be
1487  * used for mounting in @fc->root.
1488  */
1489 int vfs_get_tree(struct fs_context *fc)
1490 {
1491 	struct super_block *sb;
1492 	int error;
1493 
1494 	if (fc->root)
1495 		return -EBUSY;
1496 
1497 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1498 	 * on the superblock.
1499 	 */
1500 	error = fc->ops->get_tree(fc);
1501 	if (error < 0)
1502 		return error;
1503 
1504 	if (!fc->root) {
1505 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1506 		       fc->fs_type->name);
1507 		/* We don't know what the locking state of the superblock is -
1508 		 * if there is a superblock.
1509 		 */
1510 		BUG();
1511 	}
1512 
1513 	sb = fc->root->d_sb;
1514 	WARN_ON(!sb->s_bdi);
1515 
1516 	/*
1517 	 * Write barrier is for super_cache_count(). We place it before setting
1518 	 * SB_BORN as the data dependency between the two functions is the
1519 	 * superblock structure contents that we just set up, not the SB_BORN
1520 	 * flag.
1521 	 */
1522 	smp_wmb();
1523 	sb->s_flags |= SB_BORN;
1524 
1525 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1526 	if (unlikely(error)) {
1527 		fc_drop_locked(fc);
1528 		return error;
1529 	}
1530 
1531 	/*
1532 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1533 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1534 	 * this warning for a little while to try and catch filesystems that
1535 	 * violate this rule.
1536 	 */
1537 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1538 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1539 
1540 	return 0;
1541 }
1542 EXPORT_SYMBOL(vfs_get_tree);
1543 
1544 /*
1545  * Setup private BDI for given superblock. It gets automatically cleaned up
1546  * in generic_shutdown_super().
1547  */
1548 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1549 {
1550 	struct backing_dev_info *bdi;
1551 	int err;
1552 	va_list args;
1553 
1554 	bdi = bdi_alloc(NUMA_NO_NODE);
1555 	if (!bdi)
1556 		return -ENOMEM;
1557 
1558 	va_start(args, fmt);
1559 	err = bdi_register_va(bdi, fmt, args);
1560 	va_end(args);
1561 	if (err) {
1562 		bdi_put(bdi);
1563 		return err;
1564 	}
1565 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1566 	sb->s_bdi = bdi;
1567 	sb->s_iflags |= SB_I_PERSB_BDI;
1568 
1569 	return 0;
1570 }
1571 EXPORT_SYMBOL(super_setup_bdi_name);
1572 
1573 /*
1574  * Setup private BDI for given superblock. I gets automatically cleaned up
1575  * in generic_shutdown_super().
1576  */
1577 int super_setup_bdi(struct super_block *sb)
1578 {
1579 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1580 
1581 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1582 				    atomic_long_inc_return(&bdi_seq));
1583 }
1584 EXPORT_SYMBOL(super_setup_bdi);
1585 
1586 /**
1587  * sb_wait_write - wait until all writers to given file system finish
1588  * @sb: the super for which we wait
1589  * @level: type of writers we wait for (normal vs page fault)
1590  *
1591  * This function waits until there are no writers of given type to given file
1592  * system.
1593  */
1594 static void sb_wait_write(struct super_block *sb, int level)
1595 {
1596 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1597 }
1598 
1599 /*
1600  * We are going to return to userspace and forget about these locks, the
1601  * ownership goes to the caller of thaw_super() which does unlock().
1602  */
1603 static void lockdep_sb_freeze_release(struct super_block *sb)
1604 {
1605 	int level;
1606 
1607 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1608 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1609 }
1610 
1611 /*
1612  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1613  */
1614 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1615 {
1616 	int level;
1617 
1618 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1619 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1620 }
1621 
1622 static void sb_freeze_unlock(struct super_block *sb)
1623 {
1624 	int level;
1625 
1626 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1627 		percpu_up_write(sb->s_writers.rw_sem + level);
1628 }
1629 
1630 /**
1631  * freeze_super - lock the filesystem and force it into a consistent state
1632  * @sb: the super to lock
1633  *
1634  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1635  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1636  * -EBUSY.
1637  *
1638  * During this function, sb->s_writers.frozen goes through these values:
1639  *
1640  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1641  *
1642  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1643  * writes should be blocked, though page faults are still allowed. We wait for
1644  * all writes to complete and then proceed to the next stage.
1645  *
1646  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1647  * but internal fs threads can still modify the filesystem (although they
1648  * should not dirty new pages or inodes), writeback can run etc. After waiting
1649  * for all running page faults we sync the filesystem which will clean all
1650  * dirty pages and inodes (no new dirty pages or inodes can be created when
1651  * sync is running).
1652  *
1653  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1654  * modification are blocked (e.g. XFS preallocation truncation on inode
1655  * reclaim). This is usually implemented by blocking new transactions for
1656  * filesystems that have them and need this additional guard. After all
1657  * internal writers are finished we call ->freeze_fs() to finish filesystem
1658  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1659  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1660  *
1661  * sb->s_writers.frozen is protected by sb->s_umount.
1662  */
1663 int freeze_super(struct super_block *sb)
1664 {
1665 	int ret;
1666 
1667 	atomic_inc(&sb->s_active);
1668 	down_write(&sb->s_umount);
1669 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1670 		deactivate_locked_super(sb);
1671 		return -EBUSY;
1672 	}
1673 
1674 	if (!(sb->s_flags & SB_BORN)) {
1675 		up_write(&sb->s_umount);
1676 		return 0;	/* sic - it's "nothing to do" */
1677 	}
1678 
1679 	if (sb_rdonly(sb)) {
1680 		/* Nothing to do really... */
1681 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1682 		up_write(&sb->s_umount);
1683 		return 0;
1684 	}
1685 
1686 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1687 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1688 	up_write(&sb->s_umount);
1689 	sb_wait_write(sb, SB_FREEZE_WRITE);
1690 	down_write(&sb->s_umount);
1691 
1692 	/* Now we go and block page faults... */
1693 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1694 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1695 
1696 	/* All writers are done so after syncing there won't be dirty data */
1697 	sync_filesystem(sb);
1698 
1699 	/* Now wait for internal filesystem counter */
1700 	sb->s_writers.frozen = SB_FREEZE_FS;
1701 	sb_wait_write(sb, SB_FREEZE_FS);
1702 
1703 	if (sb->s_op->freeze_fs) {
1704 		ret = sb->s_op->freeze_fs(sb);
1705 		if (ret) {
1706 			printk(KERN_ERR
1707 				"VFS:Filesystem freeze failed\n");
1708 			sb->s_writers.frozen = SB_UNFROZEN;
1709 			sb_freeze_unlock(sb);
1710 			wake_up(&sb->s_writers.wait_unfrozen);
1711 			deactivate_locked_super(sb);
1712 			return ret;
1713 		}
1714 	}
1715 	/*
1716 	 * For debugging purposes so that fs can warn if it sees write activity
1717 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1718 	 */
1719 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1720 	lockdep_sb_freeze_release(sb);
1721 	up_write(&sb->s_umount);
1722 	return 0;
1723 }
1724 EXPORT_SYMBOL(freeze_super);
1725 
1726 static int thaw_super_locked(struct super_block *sb)
1727 {
1728 	int error;
1729 
1730 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1731 		up_write(&sb->s_umount);
1732 		return -EINVAL;
1733 	}
1734 
1735 	if (sb_rdonly(sb)) {
1736 		sb->s_writers.frozen = SB_UNFROZEN;
1737 		goto out;
1738 	}
1739 
1740 	lockdep_sb_freeze_acquire(sb);
1741 
1742 	if (sb->s_op->unfreeze_fs) {
1743 		error = sb->s_op->unfreeze_fs(sb);
1744 		if (error) {
1745 			printk(KERN_ERR
1746 				"VFS:Filesystem thaw failed\n");
1747 			lockdep_sb_freeze_release(sb);
1748 			up_write(&sb->s_umount);
1749 			return error;
1750 		}
1751 	}
1752 
1753 	sb->s_writers.frozen = SB_UNFROZEN;
1754 	sb_freeze_unlock(sb);
1755 out:
1756 	wake_up(&sb->s_writers.wait_unfrozen);
1757 	deactivate_locked_super(sb);
1758 	return 0;
1759 }
1760 
1761 /**
1762  * thaw_super -- unlock filesystem
1763  * @sb: the super to thaw
1764  *
1765  * Unlocks the filesystem and marks it writeable again after freeze_super().
1766  */
1767 int thaw_super(struct super_block *sb)
1768 {
1769 	down_write(&sb->s_umount);
1770 	return thaw_super_locked(sb);
1771 }
1772 EXPORT_SYMBOL(thaw_super);
1773