xref: /linux/fs/super.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h>		/* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h>		/* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <asm/uaccess.h>
41 
42 
43 LIST_HEAD(super_blocks);
44 DEFINE_SPINLOCK(sb_lock);
45 
46 /**
47  *	alloc_super	-	create new superblock
48  *	@type:	filesystem type superblock should belong to
49  *
50  *	Allocates and initializes a new &struct super_block.  alloc_super()
51  *	returns a pointer new superblock or %NULL if allocation had failed.
52  */
53 static struct super_block *alloc_super(struct file_system_type *type)
54 {
55 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
56 	static struct super_operations default_op;
57 
58 	if (s) {
59 		if (security_sb_alloc(s)) {
60 			kfree(s);
61 			s = NULL;
62 			goto out;
63 		}
64 		INIT_LIST_HEAD(&s->s_dirty);
65 		INIT_LIST_HEAD(&s->s_io);
66 		INIT_LIST_HEAD(&s->s_more_io);
67 		INIT_LIST_HEAD(&s->s_files);
68 		INIT_LIST_HEAD(&s->s_instances);
69 		INIT_HLIST_HEAD(&s->s_anon);
70 		INIT_LIST_HEAD(&s->s_inodes);
71 		init_rwsem(&s->s_umount);
72 		mutex_init(&s->s_lock);
73 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
74 		/*
75 		 * The locking rules for s_lock are up to the
76 		 * filesystem. For example ext3fs has different
77 		 * lock ordering than usbfs:
78 		 */
79 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
80 		down_write(&s->s_umount);
81 		s->s_count = S_BIAS;
82 		atomic_set(&s->s_active, 1);
83 		mutex_init(&s->s_vfs_rename_mutex);
84 		mutex_init(&s->s_dquot.dqio_mutex);
85 		mutex_init(&s->s_dquot.dqonoff_mutex);
86 		init_rwsem(&s->s_dquot.dqptr_sem);
87 		init_waitqueue_head(&s->s_wait_unfrozen);
88 		s->s_maxbytes = MAX_NON_LFS;
89 		s->dq_op = sb_dquot_ops;
90 		s->s_qcop = sb_quotactl_ops;
91 		s->s_op = &default_op;
92 		s->s_time_gran = 1000000000;
93 	}
94 out:
95 	return s;
96 }
97 
98 /**
99  *	destroy_super	-	frees a superblock
100  *	@s: superblock to free
101  *
102  *	Frees a superblock.
103  */
104 static inline void destroy_super(struct super_block *s)
105 {
106 	security_sb_free(s);
107 	kfree(s->s_subtype);
108 	kfree(s);
109 }
110 
111 /* Superblock refcounting  */
112 
113 /*
114  * Drop a superblock's refcount.  Returns non-zero if the superblock was
115  * destroyed.  The caller must hold sb_lock.
116  */
117 int __put_super(struct super_block *sb)
118 {
119 	int ret = 0;
120 
121 	if (!--sb->s_count) {
122 		destroy_super(sb);
123 		ret = 1;
124 	}
125 	return ret;
126 }
127 
128 /*
129  * Drop a superblock's refcount.
130  * Returns non-zero if the superblock is about to be destroyed and
131  * at least is already removed from super_blocks list, so if we are
132  * making a loop through super blocks then we need to restart.
133  * The caller must hold sb_lock.
134  */
135 int __put_super_and_need_restart(struct super_block *sb)
136 {
137 	/* check for race with generic_shutdown_super() */
138 	if (list_empty(&sb->s_list)) {
139 		/* super block is removed, need to restart... */
140 		__put_super(sb);
141 		return 1;
142 	}
143 	/* can't be the last, since s_list is still in use */
144 	sb->s_count--;
145 	BUG_ON(sb->s_count == 0);
146 	return 0;
147 }
148 
149 /**
150  *	put_super	-	drop a temporary reference to superblock
151  *	@sb: superblock in question
152  *
153  *	Drops a temporary reference, frees superblock if there's no
154  *	references left.
155  */
156 static void put_super(struct super_block *sb)
157 {
158 	spin_lock(&sb_lock);
159 	__put_super(sb);
160 	spin_unlock(&sb_lock);
161 }
162 
163 
164 /**
165  *	deactivate_super	-	drop an active reference to superblock
166  *	@s: superblock to deactivate
167  *
168  *	Drops an active reference to superblock, acquiring a temprory one if
169  *	there is no active references left.  In that case we lock superblock,
170  *	tell fs driver to shut it down and drop the temporary reference we
171  *	had just acquired.
172  */
173 void deactivate_super(struct super_block *s)
174 {
175 	struct file_system_type *fs = s->s_type;
176 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
177 		s->s_count -= S_BIAS-1;
178 		spin_unlock(&sb_lock);
179 		DQUOT_OFF(s);
180 		down_write(&s->s_umount);
181 		fs->kill_sb(s);
182 		put_filesystem(fs);
183 		put_super(s);
184 	}
185 }
186 
187 EXPORT_SYMBOL(deactivate_super);
188 
189 /**
190  *	grab_super - acquire an active reference
191  *	@s: reference we are trying to make active
192  *
193  *	Tries to acquire an active reference.  grab_super() is used when we
194  * 	had just found a superblock in super_blocks or fs_type->fs_supers
195  *	and want to turn it into a full-blown active reference.  grab_super()
196  *	is called with sb_lock held and drops it.  Returns 1 in case of
197  *	success, 0 if we had failed (superblock contents was already dead or
198  *	dying when grab_super() had been called).
199  */
200 static int grab_super(struct super_block *s) __releases(sb_lock)
201 {
202 	s->s_count++;
203 	spin_unlock(&sb_lock);
204 	down_write(&s->s_umount);
205 	if (s->s_root) {
206 		spin_lock(&sb_lock);
207 		if (s->s_count > S_BIAS) {
208 			atomic_inc(&s->s_active);
209 			s->s_count--;
210 			spin_unlock(&sb_lock);
211 			return 1;
212 		}
213 		spin_unlock(&sb_lock);
214 	}
215 	up_write(&s->s_umount);
216 	put_super(s);
217 	yield();
218 	return 0;
219 }
220 
221 /*
222  * Superblock locking.  We really ought to get rid of these two.
223  */
224 void lock_super(struct super_block * sb)
225 {
226 	get_fs_excl();
227 	mutex_lock(&sb->s_lock);
228 }
229 
230 void unlock_super(struct super_block * sb)
231 {
232 	put_fs_excl();
233 	mutex_unlock(&sb->s_lock);
234 }
235 
236 EXPORT_SYMBOL(lock_super);
237 EXPORT_SYMBOL(unlock_super);
238 
239 /*
240  * Write out and wait upon all dirty data associated with this
241  * superblock.  Filesystem data as well as the underlying block
242  * device.  Takes the superblock lock.  Requires a second blkdev
243  * flush by the caller to complete the operation.
244  */
245 void __fsync_super(struct super_block *sb)
246 {
247 	sync_inodes_sb(sb, 0);
248 	DQUOT_SYNC(sb);
249 	lock_super(sb);
250 	if (sb->s_dirt && sb->s_op->write_super)
251 		sb->s_op->write_super(sb);
252 	unlock_super(sb);
253 	if (sb->s_op->sync_fs)
254 		sb->s_op->sync_fs(sb, 1);
255 	sync_blockdev(sb->s_bdev);
256 	sync_inodes_sb(sb, 1);
257 }
258 
259 /*
260  * Write out and wait upon all dirty data associated with this
261  * superblock.  Filesystem data as well as the underlying block
262  * device.  Takes the superblock lock.
263  */
264 int fsync_super(struct super_block *sb)
265 {
266 	__fsync_super(sb);
267 	return sync_blockdev(sb->s_bdev);
268 }
269 
270 /**
271  *	generic_shutdown_super	-	common helper for ->kill_sb()
272  *	@sb: superblock to kill
273  *
274  *	generic_shutdown_super() does all fs-independent work on superblock
275  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
276  *	that need destruction out of superblock, call generic_shutdown_super()
277  *	and release aforementioned objects.  Note: dentries and inodes _are_
278  *	taken care of and do not need specific handling.
279  *
280  *	Upon calling this function, the filesystem may no longer alter or
281  *	rearrange the set of dentries belonging to this super_block, nor may it
282  *	change the attachments of dentries to inodes.
283  */
284 void generic_shutdown_super(struct super_block *sb)
285 {
286 	const struct super_operations *sop = sb->s_op;
287 
288 	if (sb->s_root) {
289 		shrink_dcache_for_umount(sb);
290 		fsync_super(sb);
291 		lock_super(sb);
292 		sb->s_flags &= ~MS_ACTIVE;
293 		/* bad name - it should be evict_inodes() */
294 		invalidate_inodes(sb);
295 		lock_kernel();
296 
297 		if (sop->write_super && sb->s_dirt)
298 			sop->write_super(sb);
299 		if (sop->put_super)
300 			sop->put_super(sb);
301 
302 		/* Forget any remaining inodes */
303 		if (invalidate_inodes(sb)) {
304 			printk("VFS: Busy inodes after unmount of %s. "
305 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
306 			   sb->s_id);
307 		}
308 
309 		unlock_kernel();
310 		unlock_super(sb);
311 	}
312 	spin_lock(&sb_lock);
313 	/* should be initialized for __put_super_and_need_restart() */
314 	list_del_init(&sb->s_list);
315 	list_del(&sb->s_instances);
316 	spin_unlock(&sb_lock);
317 	up_write(&sb->s_umount);
318 }
319 
320 EXPORT_SYMBOL(generic_shutdown_super);
321 
322 /**
323  *	sget	-	find or create a superblock
324  *	@type:	filesystem type superblock should belong to
325  *	@test:	comparison callback
326  *	@set:	setup callback
327  *	@data:	argument to each of them
328  */
329 struct super_block *sget(struct file_system_type *type,
330 			int (*test)(struct super_block *,void *),
331 			int (*set)(struct super_block *,void *),
332 			void *data)
333 {
334 	struct super_block *s = NULL;
335 	struct super_block *old;
336 	int err;
337 
338 retry:
339 	spin_lock(&sb_lock);
340 	if (test) {
341 		list_for_each_entry(old, &type->fs_supers, s_instances) {
342 			if (!test(old, data))
343 				continue;
344 			if (!grab_super(old))
345 				goto retry;
346 			if (s)
347 				destroy_super(s);
348 			return old;
349 		}
350 	}
351 	if (!s) {
352 		spin_unlock(&sb_lock);
353 		s = alloc_super(type);
354 		if (!s)
355 			return ERR_PTR(-ENOMEM);
356 		goto retry;
357 	}
358 
359 	err = set(s, data);
360 	if (err) {
361 		spin_unlock(&sb_lock);
362 		destroy_super(s);
363 		return ERR_PTR(err);
364 	}
365 	s->s_type = type;
366 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
367 	list_add_tail(&s->s_list, &super_blocks);
368 	list_add(&s->s_instances, &type->fs_supers);
369 	spin_unlock(&sb_lock);
370 	get_filesystem(type);
371 	return s;
372 }
373 
374 EXPORT_SYMBOL(sget);
375 
376 void drop_super(struct super_block *sb)
377 {
378 	up_read(&sb->s_umount);
379 	put_super(sb);
380 }
381 
382 EXPORT_SYMBOL(drop_super);
383 
384 static inline void write_super(struct super_block *sb)
385 {
386 	lock_super(sb);
387 	if (sb->s_root && sb->s_dirt)
388 		if (sb->s_op->write_super)
389 			sb->s_op->write_super(sb);
390 	unlock_super(sb);
391 }
392 
393 /*
394  * Note: check the dirty flag before waiting, so we don't
395  * hold up the sync while mounting a device. (The newly
396  * mounted device won't need syncing.)
397  */
398 void sync_supers(void)
399 {
400 	struct super_block *sb;
401 
402 	spin_lock(&sb_lock);
403 restart:
404 	list_for_each_entry(sb, &super_blocks, s_list) {
405 		if (sb->s_dirt) {
406 			sb->s_count++;
407 			spin_unlock(&sb_lock);
408 			down_read(&sb->s_umount);
409 			write_super(sb);
410 			up_read(&sb->s_umount);
411 			spin_lock(&sb_lock);
412 			if (__put_super_and_need_restart(sb))
413 				goto restart;
414 		}
415 	}
416 	spin_unlock(&sb_lock);
417 }
418 
419 /*
420  * Call the ->sync_fs super_op against all filesystems which are r/w and
421  * which implement it.
422  *
423  * This operation is careful to avoid the livelock which could easily happen
424  * if two or more filesystems are being continuously dirtied.  s_need_sync_fs
425  * is used only here.  We set it against all filesystems and then clear it as
426  * we sync them.  So redirtied filesystems are skipped.
427  *
428  * But if process A is currently running sync_filesystems and then process B
429  * calls sync_filesystems as well, process B will set all the s_need_sync_fs
430  * flags again, which will cause process A to resync everything.  Fix that with
431  * a local mutex.
432  *
433  * (Fabian) Avoid sync_fs with clean fs & wait mode 0
434  */
435 void sync_filesystems(int wait)
436 {
437 	struct super_block *sb;
438 	static DEFINE_MUTEX(mutex);
439 
440 	mutex_lock(&mutex);		/* Could be down_interruptible */
441 	spin_lock(&sb_lock);
442 	list_for_each_entry(sb, &super_blocks, s_list) {
443 		if (!sb->s_op->sync_fs)
444 			continue;
445 		if (sb->s_flags & MS_RDONLY)
446 			continue;
447 		sb->s_need_sync_fs = 1;
448 	}
449 
450 restart:
451 	list_for_each_entry(sb, &super_blocks, s_list) {
452 		if (!sb->s_need_sync_fs)
453 			continue;
454 		sb->s_need_sync_fs = 0;
455 		if (sb->s_flags & MS_RDONLY)
456 			continue;	/* hm.  Was remounted r/o meanwhile */
457 		sb->s_count++;
458 		spin_unlock(&sb_lock);
459 		down_read(&sb->s_umount);
460 		if (sb->s_root && (wait || sb->s_dirt))
461 			sb->s_op->sync_fs(sb, wait);
462 		up_read(&sb->s_umount);
463 		/* restart only when sb is no longer on the list */
464 		spin_lock(&sb_lock);
465 		if (__put_super_and_need_restart(sb))
466 			goto restart;
467 	}
468 	spin_unlock(&sb_lock);
469 	mutex_unlock(&mutex);
470 }
471 
472 /**
473  *	get_super - get the superblock of a device
474  *	@bdev: device to get the superblock for
475  *
476  *	Scans the superblock list and finds the superblock of the file system
477  *	mounted on the device given. %NULL is returned if no match is found.
478  */
479 
480 struct super_block * get_super(struct block_device *bdev)
481 {
482 	struct super_block *sb;
483 
484 	if (!bdev)
485 		return NULL;
486 
487 	spin_lock(&sb_lock);
488 rescan:
489 	list_for_each_entry(sb, &super_blocks, s_list) {
490 		if (sb->s_bdev == bdev) {
491 			sb->s_count++;
492 			spin_unlock(&sb_lock);
493 			down_read(&sb->s_umount);
494 			if (sb->s_root)
495 				return sb;
496 			up_read(&sb->s_umount);
497 			/* restart only when sb is no longer on the list */
498 			spin_lock(&sb_lock);
499 			if (__put_super_and_need_restart(sb))
500 				goto rescan;
501 		}
502 	}
503 	spin_unlock(&sb_lock);
504 	return NULL;
505 }
506 
507 EXPORT_SYMBOL(get_super);
508 
509 struct super_block * user_get_super(dev_t dev)
510 {
511 	struct super_block *sb;
512 
513 	spin_lock(&sb_lock);
514 rescan:
515 	list_for_each_entry(sb, &super_blocks, s_list) {
516 		if (sb->s_dev ==  dev) {
517 			sb->s_count++;
518 			spin_unlock(&sb_lock);
519 			down_read(&sb->s_umount);
520 			if (sb->s_root)
521 				return sb;
522 			up_read(&sb->s_umount);
523 			/* restart only when sb is no longer on the list */
524 			spin_lock(&sb_lock);
525 			if (__put_super_and_need_restart(sb))
526 				goto rescan;
527 		}
528 	}
529 	spin_unlock(&sb_lock);
530 	return NULL;
531 }
532 
533 asmlinkage long sys_ustat(unsigned dev, struct ustat __user * ubuf)
534 {
535         struct super_block *s;
536         struct ustat tmp;
537         struct kstatfs sbuf;
538 	int err = -EINVAL;
539 
540         s = user_get_super(new_decode_dev(dev));
541         if (s == NULL)
542                 goto out;
543 	err = vfs_statfs(s->s_root, &sbuf);
544 	drop_super(s);
545 	if (err)
546 		goto out;
547 
548         memset(&tmp,0,sizeof(struct ustat));
549         tmp.f_tfree = sbuf.f_bfree;
550         tmp.f_tinode = sbuf.f_ffree;
551 
552         err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
553 out:
554 	return err;
555 }
556 
557 /**
558  *	mark_files_ro
559  *	@sb: superblock in question
560  *
561  *	All files are marked read/only.  We don't care about pending
562  *	delete files so this should be used in 'force' mode only
563  */
564 
565 static void mark_files_ro(struct super_block *sb)
566 {
567 	struct file *f;
568 
569 	file_list_lock();
570 	list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
571 		if (S_ISREG(f->f_path.dentry->d_inode->i_mode) && file_count(f))
572 			f->f_mode &= ~FMODE_WRITE;
573 	}
574 	file_list_unlock();
575 }
576 
577 /**
578  *	do_remount_sb - asks filesystem to change mount options.
579  *	@sb:	superblock in question
580  *	@flags:	numeric part of options
581  *	@data:	the rest of options
582  *      @force: whether or not to force the change
583  *
584  *	Alters the mount options of a mounted file system.
585  */
586 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
587 {
588 	int retval;
589 
590 #ifdef CONFIG_BLOCK
591 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
592 		return -EACCES;
593 #endif
594 	if (flags & MS_RDONLY)
595 		acct_auto_close(sb);
596 	shrink_dcache_sb(sb);
597 	fsync_super(sb);
598 
599 	/* If we are remounting RDONLY and current sb is read/write,
600 	   make sure there are no rw files opened */
601 	if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
602 		if (force)
603 			mark_files_ro(sb);
604 		else if (!fs_may_remount_ro(sb))
605 			return -EBUSY;
606 	}
607 
608 	if (sb->s_op->remount_fs) {
609 		lock_super(sb);
610 		retval = sb->s_op->remount_fs(sb, &flags, data);
611 		unlock_super(sb);
612 		if (retval)
613 			return retval;
614 	}
615 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
616 	return 0;
617 }
618 
619 static void do_emergency_remount(unsigned long foo)
620 {
621 	struct super_block *sb;
622 
623 	spin_lock(&sb_lock);
624 	list_for_each_entry(sb, &super_blocks, s_list) {
625 		sb->s_count++;
626 		spin_unlock(&sb_lock);
627 		down_read(&sb->s_umount);
628 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
629 			/*
630 			 * ->remount_fs needs lock_kernel().
631 			 *
632 			 * What lock protects sb->s_flags??
633 			 */
634 			lock_kernel();
635 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
636 			unlock_kernel();
637 		}
638 		drop_super(sb);
639 		spin_lock(&sb_lock);
640 	}
641 	spin_unlock(&sb_lock);
642 	printk("Emergency Remount complete\n");
643 }
644 
645 void emergency_remount(void)
646 {
647 	pdflush_operation(do_emergency_remount, 0);
648 }
649 
650 /*
651  * Unnamed block devices are dummy devices used by virtual
652  * filesystems which don't use real block-devices.  -- jrs
653  */
654 
655 static struct idr unnamed_dev_idr;
656 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
657 
658 int set_anon_super(struct super_block *s, void *data)
659 {
660 	int dev;
661 	int error;
662 
663  retry:
664 	if (idr_pre_get(&unnamed_dev_idr, GFP_ATOMIC) == 0)
665 		return -ENOMEM;
666 	spin_lock(&unnamed_dev_lock);
667 	error = idr_get_new(&unnamed_dev_idr, NULL, &dev);
668 	spin_unlock(&unnamed_dev_lock);
669 	if (error == -EAGAIN)
670 		/* We raced and lost with another CPU. */
671 		goto retry;
672 	else if (error)
673 		return -EAGAIN;
674 
675 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
676 		spin_lock(&unnamed_dev_lock);
677 		idr_remove(&unnamed_dev_idr, dev);
678 		spin_unlock(&unnamed_dev_lock);
679 		return -EMFILE;
680 	}
681 	s->s_dev = MKDEV(0, dev & MINORMASK);
682 	return 0;
683 }
684 
685 EXPORT_SYMBOL(set_anon_super);
686 
687 void kill_anon_super(struct super_block *sb)
688 {
689 	int slot = MINOR(sb->s_dev);
690 
691 	generic_shutdown_super(sb);
692 	spin_lock(&unnamed_dev_lock);
693 	idr_remove(&unnamed_dev_idr, slot);
694 	spin_unlock(&unnamed_dev_lock);
695 }
696 
697 EXPORT_SYMBOL(kill_anon_super);
698 
699 void __init unnamed_dev_init(void)
700 {
701 	idr_init(&unnamed_dev_idr);
702 }
703 
704 void kill_litter_super(struct super_block *sb)
705 {
706 	if (sb->s_root)
707 		d_genocide(sb->s_root);
708 	kill_anon_super(sb);
709 }
710 
711 EXPORT_SYMBOL(kill_litter_super);
712 
713 #ifdef CONFIG_BLOCK
714 static int set_bdev_super(struct super_block *s, void *data)
715 {
716 	s->s_bdev = data;
717 	s->s_dev = s->s_bdev->bd_dev;
718 	return 0;
719 }
720 
721 static int test_bdev_super(struct super_block *s, void *data)
722 {
723 	return (void *)s->s_bdev == data;
724 }
725 
726 int get_sb_bdev(struct file_system_type *fs_type,
727 	int flags, const char *dev_name, void *data,
728 	int (*fill_super)(struct super_block *, void *, int),
729 	struct vfsmount *mnt)
730 {
731 	struct block_device *bdev;
732 	struct super_block *s;
733 	int error = 0;
734 
735 	bdev = open_bdev_excl(dev_name, flags, fs_type);
736 	if (IS_ERR(bdev))
737 		return PTR_ERR(bdev);
738 
739 	/*
740 	 * once the super is inserted into the list by sget, s_umount
741 	 * will protect the lockfs code from trying to start a snapshot
742 	 * while we are mounting
743 	 */
744 	down(&bdev->bd_mount_sem);
745 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
746 	up(&bdev->bd_mount_sem);
747 	if (IS_ERR(s))
748 		goto error_s;
749 
750 	if (s->s_root) {
751 		if ((flags ^ s->s_flags) & MS_RDONLY) {
752 			up_write(&s->s_umount);
753 			deactivate_super(s);
754 			error = -EBUSY;
755 			goto error_bdev;
756 		}
757 
758 		close_bdev_excl(bdev);
759 	} else {
760 		char b[BDEVNAME_SIZE];
761 
762 		s->s_flags = flags;
763 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
764 		sb_set_blocksize(s, block_size(bdev));
765 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
766 		if (error) {
767 			up_write(&s->s_umount);
768 			deactivate_super(s);
769 			goto error;
770 		}
771 
772 		s->s_flags |= MS_ACTIVE;
773 	}
774 
775 	return simple_set_mnt(mnt, s);
776 
777 error_s:
778 	error = PTR_ERR(s);
779 error_bdev:
780 	close_bdev_excl(bdev);
781 error:
782 	return error;
783 }
784 
785 EXPORT_SYMBOL(get_sb_bdev);
786 
787 void kill_block_super(struct super_block *sb)
788 {
789 	struct block_device *bdev = sb->s_bdev;
790 
791 	generic_shutdown_super(sb);
792 	sync_blockdev(bdev);
793 	close_bdev_excl(bdev);
794 }
795 
796 EXPORT_SYMBOL(kill_block_super);
797 #endif
798 
799 int get_sb_nodev(struct file_system_type *fs_type,
800 	int flags, void *data,
801 	int (*fill_super)(struct super_block *, void *, int),
802 	struct vfsmount *mnt)
803 {
804 	int error;
805 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
806 
807 	if (IS_ERR(s))
808 		return PTR_ERR(s);
809 
810 	s->s_flags = flags;
811 
812 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
813 	if (error) {
814 		up_write(&s->s_umount);
815 		deactivate_super(s);
816 		return error;
817 	}
818 	s->s_flags |= MS_ACTIVE;
819 	return simple_set_mnt(mnt, s);
820 }
821 
822 EXPORT_SYMBOL(get_sb_nodev);
823 
824 static int compare_single(struct super_block *s, void *p)
825 {
826 	return 1;
827 }
828 
829 int get_sb_single(struct file_system_type *fs_type,
830 	int flags, void *data,
831 	int (*fill_super)(struct super_block *, void *, int),
832 	struct vfsmount *mnt)
833 {
834 	struct super_block *s;
835 	int error;
836 
837 	s = sget(fs_type, compare_single, set_anon_super, NULL);
838 	if (IS_ERR(s))
839 		return PTR_ERR(s);
840 	if (!s->s_root) {
841 		s->s_flags = flags;
842 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
843 		if (error) {
844 			up_write(&s->s_umount);
845 			deactivate_super(s);
846 			return error;
847 		}
848 		s->s_flags |= MS_ACTIVE;
849 	}
850 	do_remount_sb(s, flags, data, 0);
851 	return simple_set_mnt(mnt, s);
852 }
853 
854 EXPORT_SYMBOL(get_sb_single);
855 
856 struct vfsmount *
857 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
858 {
859 	struct vfsmount *mnt;
860 	char *secdata = NULL;
861 	int error;
862 
863 	if (!type)
864 		return ERR_PTR(-ENODEV);
865 
866 	error = -ENOMEM;
867 	mnt = alloc_vfsmnt(name);
868 	if (!mnt)
869 		goto out;
870 
871 	if (data) {
872 		secdata = alloc_secdata();
873 		if (!secdata)
874 			goto out_mnt;
875 
876 		error = security_sb_copy_data(type, data, secdata);
877 		if (error)
878 			goto out_free_secdata;
879 	}
880 
881 	error = type->get_sb(type, flags, name, data, mnt);
882 	if (error < 0)
883 		goto out_free_secdata;
884 	BUG_ON(!mnt->mnt_sb);
885 
886  	error = security_sb_kern_mount(mnt->mnt_sb, secdata);
887  	if (error)
888  		goto out_sb;
889 
890 	mnt->mnt_mountpoint = mnt->mnt_root;
891 	mnt->mnt_parent = mnt;
892 	up_write(&mnt->mnt_sb->s_umount);
893 	free_secdata(secdata);
894 	return mnt;
895 out_sb:
896 	dput(mnt->mnt_root);
897 	up_write(&mnt->mnt_sb->s_umount);
898 	deactivate_super(mnt->mnt_sb);
899 out_free_secdata:
900 	free_secdata(secdata);
901 out_mnt:
902 	free_vfsmnt(mnt);
903 out:
904 	return ERR_PTR(error);
905 }
906 
907 EXPORT_SYMBOL_GPL(vfs_kern_mount);
908 
909 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
910 {
911 	int err;
912 	const char *subtype = strchr(fstype, '.');
913 	if (subtype) {
914 		subtype++;
915 		err = -EINVAL;
916 		if (!subtype[0])
917 			goto err;
918 	} else
919 		subtype = "";
920 
921 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
922 	err = -ENOMEM;
923 	if (!mnt->mnt_sb->s_subtype)
924 		goto err;
925 	return mnt;
926 
927  err:
928 	mntput(mnt);
929 	return ERR_PTR(err);
930 }
931 
932 struct vfsmount *
933 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
934 {
935 	struct file_system_type *type = get_fs_type(fstype);
936 	struct vfsmount *mnt;
937 	if (!type)
938 		return ERR_PTR(-ENODEV);
939 	mnt = vfs_kern_mount(type, flags, name, data);
940 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
941 	    !mnt->mnt_sb->s_subtype)
942 		mnt = fs_set_subtype(mnt, fstype);
943 	put_filesystem(type);
944 	return mnt;
945 }
946 
947 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
948 {
949 	return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
950 }
951 
952 EXPORT_SYMBOL_GPL(kern_mount_data);
953