xref: /linux/fs/super.c (revision 9112fc0109fc0037ac3b8b633a169e78b4e23ca1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
43 
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46 
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 	"sb_writers",
49 	"sb_pagefaults",
50 	"sb_internal",
51 };
52 
53 static inline void __super_lock(struct super_block *sb, bool excl)
54 {
55 	if (excl)
56 		down_write(&sb->s_umount);
57 	else
58 		down_read(&sb->s_umount);
59 }
60 
61 static inline void super_unlock(struct super_block *sb, bool excl)
62 {
63 	if (excl)
64 		up_write(&sb->s_umount);
65 	else
66 		up_read(&sb->s_umount);
67 }
68 
69 static inline void __super_lock_excl(struct super_block *sb)
70 {
71 	__super_lock(sb, true);
72 }
73 
74 static inline void super_unlock_excl(struct super_block *sb)
75 {
76 	super_unlock(sb, true);
77 }
78 
79 static inline void super_unlock_shared(struct super_block *sb)
80 {
81 	super_unlock(sb, false);
82 }
83 
84 static bool super_flags(const struct super_block *sb, unsigned int flags)
85 {
86 	/*
87 	 * Pairs with smp_store_release() in super_wake() and ensures
88 	 * that we see @flags after we're woken.
89 	 */
90 	return smp_load_acquire(&sb->s_flags) & flags;
91 }
92 
93 /**
94  * super_lock - wait for superblock to become ready and lock it
95  * @sb: superblock to wait for
96  * @excl: whether exclusive access is required
97  *
98  * If the superblock has neither passed through vfs_get_tree() or
99  * generic_shutdown_super() yet wait for it to happen. Either superblock
100  * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
101  * woken and we'll see SB_DYING.
102  *
103  * The caller must have acquired a temporary reference on @sb->s_count.
104  *
105  * Return: The function returns true if SB_BORN was set and with
106  *         s_umount held. The function returns false if SB_DYING was
107  *         set and without s_umount held.
108  */
109 static __must_check bool super_lock(struct super_block *sb, bool excl)
110 {
111 	lockdep_assert_not_held(&sb->s_umount);
112 
113 	/* wait until the superblock is ready or dying */
114 	wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING));
115 
116 	/* Don't pointlessly acquire s_umount. */
117 	if (super_flags(sb, SB_DYING))
118 		return false;
119 
120 	__super_lock(sb, excl);
121 
122 	/*
123 	 * Has gone through generic_shutdown_super() in the meantime.
124 	 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
125 	 * grab a reference to this. Tell them so.
126 	 */
127 	if (sb->s_flags & SB_DYING) {
128 		super_unlock(sb, excl);
129 		return false;
130 	}
131 
132 	WARN_ON_ONCE(!(sb->s_flags & SB_BORN));
133 	return true;
134 }
135 
136 /* wait and try to acquire read-side of @sb->s_umount */
137 static inline bool super_lock_shared(struct super_block *sb)
138 {
139 	return super_lock(sb, false);
140 }
141 
142 /* wait and try to acquire write-side of @sb->s_umount */
143 static inline bool super_lock_excl(struct super_block *sb)
144 {
145 	return super_lock(sb, true);
146 }
147 
148 /* wake waiters */
149 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
150 static void super_wake(struct super_block *sb, unsigned int flag)
151 {
152 	WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
153 	WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
154 
155 	/*
156 	 * Pairs with smp_load_acquire() in super_lock() to make sure
157 	 * all initializations in the superblock are seen by the user
158 	 * seeing SB_BORN sent.
159 	 */
160 	smp_store_release(&sb->s_flags, sb->s_flags | flag);
161 	/*
162 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
163 	 * ___wait_var_event() either sees SB_BORN set or
164 	 * waitqueue_active() check in wake_up_var() sees the waiter.
165 	 */
166 	smp_mb();
167 	wake_up_var(&sb->s_flags);
168 }
169 
170 /*
171  * One thing we have to be careful of with a per-sb shrinker is that we don't
172  * drop the last active reference to the superblock from within the shrinker.
173  * If that happens we could trigger unregistering the shrinker from within the
174  * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
175  * take a passive reference to the superblock to avoid this from occurring.
176  */
177 static unsigned long super_cache_scan(struct shrinker *shrink,
178 				      struct shrink_control *sc)
179 {
180 	struct super_block *sb;
181 	long	fs_objects = 0;
182 	long	total_objects;
183 	long	freed = 0;
184 	long	dentries;
185 	long	inodes;
186 
187 	sb = shrink->private_data;
188 
189 	/*
190 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
191 	 * to recurse into the FS that called us in clear_inode() and friends..
192 	 */
193 	if (!(sc->gfp_mask & __GFP_FS))
194 		return SHRINK_STOP;
195 
196 	if (!super_trylock_shared(sb))
197 		return SHRINK_STOP;
198 
199 	if (sb->s_op->nr_cached_objects)
200 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
201 
202 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
203 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
204 	total_objects = dentries + inodes + fs_objects + 1;
205 	if (!total_objects)
206 		total_objects = 1;
207 
208 	/* proportion the scan between the caches */
209 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
210 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
211 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
212 
213 	/*
214 	 * prune the dcache first as the icache is pinned by it, then
215 	 * prune the icache, followed by the filesystem specific caches
216 	 *
217 	 * Ensure that we always scan at least one object - memcg kmem
218 	 * accounting uses this to fully empty the caches.
219 	 */
220 	sc->nr_to_scan = dentries + 1;
221 	freed = prune_dcache_sb(sb, sc);
222 	sc->nr_to_scan = inodes + 1;
223 	freed += prune_icache_sb(sb, sc);
224 
225 	if (fs_objects) {
226 		sc->nr_to_scan = fs_objects + 1;
227 		freed += sb->s_op->free_cached_objects(sb, sc);
228 	}
229 
230 	super_unlock_shared(sb);
231 	return freed;
232 }
233 
234 static unsigned long super_cache_count(struct shrinker *shrink,
235 				       struct shrink_control *sc)
236 {
237 	struct super_block *sb;
238 	long	total_objects = 0;
239 
240 	sb = shrink->private_data;
241 
242 	/*
243 	 * We don't call super_trylock_shared() here as it is a scalability
244 	 * bottleneck, so we're exposed to partial setup state. The shrinker
245 	 * rwsem does not protect filesystem operations backing
246 	 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
247 	 * change between super_cache_count and super_cache_scan, so we really
248 	 * don't need locks here.
249 	 *
250 	 * However, if we are currently mounting the superblock, the underlying
251 	 * filesystem might be in a state of partial construction and hence it
252 	 * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
253 	 * to avoid this situation, so do the same here. The memory barrier is
254 	 * matched with the one in mount_fs() as we don't hold locks here.
255 	 */
256 	if (!(sb->s_flags & SB_BORN))
257 		return 0;
258 	smp_rmb();
259 
260 	if (sb->s_op && sb->s_op->nr_cached_objects)
261 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
262 
263 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
264 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
265 
266 	if (!total_objects)
267 		return SHRINK_EMPTY;
268 
269 	total_objects = vfs_pressure_ratio(total_objects);
270 	return total_objects;
271 }
272 
273 static void destroy_super_work(struct work_struct *work)
274 {
275 	struct super_block *s = container_of(work, struct super_block,
276 							destroy_work);
277 	security_sb_free(s);
278 	put_user_ns(s->s_user_ns);
279 	kfree(s->s_subtype);
280 	for (int i = 0; i < SB_FREEZE_LEVELS; i++)
281 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
282 	kfree(s);
283 }
284 
285 static void destroy_super_rcu(struct rcu_head *head)
286 {
287 	struct super_block *s = container_of(head, struct super_block, rcu);
288 	INIT_WORK(&s->destroy_work, destroy_super_work);
289 	schedule_work(&s->destroy_work);
290 }
291 
292 /* Free a superblock that has never been seen by anyone */
293 static void destroy_unused_super(struct super_block *s)
294 {
295 	if (!s)
296 		return;
297 	super_unlock_excl(s);
298 	list_lru_destroy(&s->s_dentry_lru);
299 	list_lru_destroy(&s->s_inode_lru);
300 	shrinker_free(s->s_shrink);
301 	/* no delays needed */
302 	destroy_super_work(&s->destroy_work);
303 }
304 
305 /**
306  *	alloc_super	-	create new superblock
307  *	@type:	filesystem type superblock should belong to
308  *	@flags: the mount flags
309  *	@user_ns: User namespace for the super_block
310  *
311  *	Allocates and initializes a new &struct super_block.  alloc_super()
312  *	returns a pointer new superblock or %NULL if allocation had failed.
313  */
314 static struct super_block *alloc_super(struct file_system_type *type, int flags,
315 				       struct user_namespace *user_ns)
316 {
317 	struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL);
318 	static const struct super_operations default_op;
319 	int i;
320 
321 	if (!s)
322 		return NULL;
323 
324 	INIT_LIST_HEAD(&s->s_mounts);
325 	s->s_user_ns = get_user_ns(user_ns);
326 	init_rwsem(&s->s_umount);
327 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
328 	/*
329 	 * sget() can have s_umount recursion.
330 	 *
331 	 * When it cannot find a suitable sb, it allocates a new
332 	 * one (this one), and tries again to find a suitable old
333 	 * one.
334 	 *
335 	 * In case that succeeds, it will acquire the s_umount
336 	 * lock of the old one. Since these are clearly distrinct
337 	 * locks, and this object isn't exposed yet, there's no
338 	 * risk of deadlocks.
339 	 *
340 	 * Annotate this by putting this lock in a different
341 	 * subclass.
342 	 */
343 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
344 
345 	if (security_sb_alloc(s))
346 		goto fail;
347 
348 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
349 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
350 					sb_writers_name[i],
351 					&type->s_writers_key[i]))
352 			goto fail;
353 	}
354 	s->s_bdi = &noop_backing_dev_info;
355 	s->s_flags = flags;
356 	if (s->s_user_ns != &init_user_ns)
357 		s->s_iflags |= SB_I_NODEV;
358 	INIT_HLIST_NODE(&s->s_instances);
359 	INIT_HLIST_BL_HEAD(&s->s_roots);
360 	mutex_init(&s->s_sync_lock);
361 	INIT_LIST_HEAD(&s->s_inodes);
362 	spin_lock_init(&s->s_inode_list_lock);
363 	INIT_LIST_HEAD(&s->s_inodes_wb);
364 	spin_lock_init(&s->s_inode_wblist_lock);
365 
366 	s->s_count = 1;
367 	atomic_set(&s->s_active, 1);
368 	mutex_init(&s->s_vfs_rename_mutex);
369 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
370 	init_rwsem(&s->s_dquot.dqio_sem);
371 	s->s_maxbytes = MAX_NON_LFS;
372 	s->s_op = &default_op;
373 	s->s_time_gran = 1000000000;
374 	s->s_time_min = TIME64_MIN;
375 	s->s_time_max = TIME64_MAX;
376 
377 	s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
378 				     "sb-%s", type->name);
379 	if (!s->s_shrink)
380 		goto fail;
381 
382 	s->s_shrink->scan_objects = super_cache_scan;
383 	s->s_shrink->count_objects = super_cache_count;
384 	s->s_shrink->batch = 1024;
385 	s->s_shrink->private_data = s;
386 
387 	if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
388 		goto fail;
389 	if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
390 		goto fail;
391 	return s;
392 
393 fail:
394 	destroy_unused_super(s);
395 	return NULL;
396 }
397 
398 /* Superblock refcounting  */
399 
400 /*
401  * Drop a superblock's refcount.  The caller must hold sb_lock.
402  */
403 static void __put_super(struct super_block *s)
404 {
405 	if (!--s->s_count) {
406 		list_del_init(&s->s_list);
407 		WARN_ON(s->s_dentry_lru.node);
408 		WARN_ON(s->s_inode_lru.node);
409 		WARN_ON(!list_empty(&s->s_mounts));
410 		call_rcu(&s->rcu, destroy_super_rcu);
411 	}
412 }
413 
414 /**
415  *	put_super	-	drop a temporary reference to superblock
416  *	@sb: superblock in question
417  *
418  *	Drops a temporary reference, frees superblock if there's no
419  *	references left.
420  */
421 void put_super(struct super_block *sb)
422 {
423 	spin_lock(&sb_lock);
424 	__put_super(sb);
425 	spin_unlock(&sb_lock);
426 }
427 
428 static void kill_super_notify(struct super_block *sb)
429 {
430 	lockdep_assert_not_held(&sb->s_umount);
431 
432 	/* already notified earlier */
433 	if (sb->s_flags & SB_DEAD)
434 		return;
435 
436 	/*
437 	 * Remove it from @fs_supers so it isn't found by new
438 	 * sget{_fc}() walkers anymore. Any concurrent mounter still
439 	 * managing to grab a temporary reference is guaranteed to
440 	 * already see SB_DYING and will wait until we notify them about
441 	 * SB_DEAD.
442 	 */
443 	spin_lock(&sb_lock);
444 	hlist_del_init(&sb->s_instances);
445 	spin_unlock(&sb_lock);
446 
447 	/*
448 	 * Let concurrent mounts know that this thing is really dead.
449 	 * We don't need @sb->s_umount here as every concurrent caller
450 	 * will see SB_DYING and either discard the superblock or wait
451 	 * for SB_DEAD.
452 	 */
453 	super_wake(sb, SB_DEAD);
454 }
455 
456 /**
457  *	deactivate_locked_super	-	drop an active reference to superblock
458  *	@s: superblock to deactivate
459  *
460  *	Drops an active reference to superblock, converting it into a temporary
461  *	one if there is no other active references left.  In that case we
462  *	tell fs driver to shut it down and drop the temporary reference we
463  *	had just acquired.
464  *
465  *	Caller holds exclusive lock on superblock; that lock is released.
466  */
467 void deactivate_locked_super(struct super_block *s)
468 {
469 	struct file_system_type *fs = s->s_type;
470 	if (atomic_dec_and_test(&s->s_active)) {
471 		shrinker_free(s->s_shrink);
472 		fs->kill_sb(s);
473 
474 		kill_super_notify(s);
475 
476 		/*
477 		 * Since list_lru_destroy() may sleep, we cannot call it from
478 		 * put_super(), where we hold the sb_lock. Therefore we destroy
479 		 * the lru lists right now.
480 		 */
481 		list_lru_destroy(&s->s_dentry_lru);
482 		list_lru_destroy(&s->s_inode_lru);
483 
484 		put_filesystem(fs);
485 		put_super(s);
486 	} else {
487 		super_unlock_excl(s);
488 	}
489 }
490 
491 EXPORT_SYMBOL(deactivate_locked_super);
492 
493 /**
494  *	deactivate_super	-	drop an active reference to superblock
495  *	@s: superblock to deactivate
496  *
497  *	Variant of deactivate_locked_super(), except that superblock is *not*
498  *	locked by caller.  If we are going to drop the final active reference,
499  *	lock will be acquired prior to that.
500  */
501 void deactivate_super(struct super_block *s)
502 {
503 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
504 		__super_lock_excl(s);
505 		deactivate_locked_super(s);
506 	}
507 }
508 
509 EXPORT_SYMBOL(deactivate_super);
510 
511 /**
512  * grab_super - acquire an active reference to a superblock
513  * @sb: superblock to acquire
514  *
515  * Acquire a temporary reference on a superblock and try to trade it for
516  * an active reference. This is used in sget{_fc}() to wait for a
517  * superblock to either become SB_BORN or for it to pass through
518  * sb->kill() and be marked as SB_DEAD.
519  *
520  * Return: This returns true if an active reference could be acquired,
521  *         false if not.
522  */
523 static bool grab_super(struct super_block *sb)
524 {
525 	bool locked;
526 
527 	sb->s_count++;
528 	spin_unlock(&sb_lock);
529 	locked = super_lock_excl(sb);
530 	if (locked) {
531 		if (atomic_inc_not_zero(&sb->s_active)) {
532 			put_super(sb);
533 			return true;
534 		}
535 		super_unlock_excl(sb);
536 	}
537 	wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD));
538 	put_super(sb);
539 	return false;
540 }
541 
542 /*
543  *	super_trylock_shared - try to grab ->s_umount shared
544  *	@sb: reference we are trying to grab
545  *
546  *	Try to prevent fs shutdown.  This is used in places where we
547  *	cannot take an active reference but we need to ensure that the
548  *	filesystem is not shut down while we are working on it. It returns
549  *	false if we cannot acquire s_umount or if we lose the race and
550  *	filesystem already got into shutdown, and returns true with the s_umount
551  *	lock held in read mode in case of success. On successful return,
552  *	the caller must drop the s_umount lock when done.
553  *
554  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
555  *	The reason why it's safe is that we are OK with doing trylock instead
556  *	of down_read().  There's a couple of places that are OK with that, but
557  *	it's very much not a general-purpose interface.
558  */
559 bool super_trylock_shared(struct super_block *sb)
560 {
561 	if (down_read_trylock(&sb->s_umount)) {
562 		if (!(sb->s_flags & SB_DYING) && sb->s_root &&
563 		    (sb->s_flags & SB_BORN))
564 			return true;
565 		super_unlock_shared(sb);
566 	}
567 
568 	return false;
569 }
570 
571 /**
572  *	retire_super	-	prevents superblock from being reused
573  *	@sb: superblock to retire
574  *
575  *	The function marks superblock to be ignored in superblock test, which
576  *	prevents it from being reused for any new mounts.  If the superblock has
577  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
578  *	of the superblock to prevent potential races.  The refcount is reduced
579  *	by generic_shutdown_super().  The function can not be called
580  *	concurrently with generic_shutdown_super().  It is safe to call the
581  *	function multiple times, subsequent calls have no effect.
582  *
583  *	The marker will affect the re-use only for block-device-based
584  *	superblocks.  Other superblocks will still get marked if this function
585  *	is used, but that will not affect their reusability.
586  */
587 void retire_super(struct super_block *sb)
588 {
589 	WARN_ON(!sb->s_bdev);
590 	__super_lock_excl(sb);
591 	if (sb->s_iflags & SB_I_PERSB_BDI) {
592 		bdi_unregister(sb->s_bdi);
593 		sb->s_iflags &= ~SB_I_PERSB_BDI;
594 	}
595 	sb->s_iflags |= SB_I_RETIRED;
596 	super_unlock_excl(sb);
597 }
598 EXPORT_SYMBOL(retire_super);
599 
600 /**
601  *	generic_shutdown_super	-	common helper for ->kill_sb()
602  *	@sb: superblock to kill
603  *
604  *	generic_shutdown_super() does all fs-independent work on superblock
605  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
606  *	that need destruction out of superblock, call generic_shutdown_super()
607  *	and release aforementioned objects.  Note: dentries and inodes _are_
608  *	taken care of and do not need specific handling.
609  *
610  *	Upon calling this function, the filesystem may no longer alter or
611  *	rearrange the set of dentries belonging to this super_block, nor may it
612  *	change the attachments of dentries to inodes.
613  */
614 void generic_shutdown_super(struct super_block *sb)
615 {
616 	const struct super_operations *sop = sb->s_op;
617 
618 	if (sb->s_root) {
619 		shrink_dcache_for_umount(sb);
620 		sync_filesystem(sb);
621 		sb->s_flags &= ~SB_ACTIVE;
622 
623 		cgroup_writeback_umount();
624 
625 		/* Evict all inodes with zero refcount. */
626 		evict_inodes(sb);
627 
628 		/*
629 		 * Clean up and evict any inodes that still have references due
630 		 * to fsnotify or the security policy.
631 		 */
632 		fsnotify_sb_delete(sb);
633 		security_sb_delete(sb);
634 
635 		if (sb->s_dio_done_wq) {
636 			destroy_workqueue(sb->s_dio_done_wq);
637 			sb->s_dio_done_wq = NULL;
638 		}
639 
640 		if (sop->put_super)
641 			sop->put_super(sb);
642 
643 		/*
644 		 * Now that all potentially-encrypted inodes have been evicted,
645 		 * the fscrypt keyring can be destroyed.
646 		 */
647 		fscrypt_destroy_keyring(sb);
648 
649 		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
650 				"VFS: Busy inodes after unmount of %s (%s)",
651 				sb->s_id, sb->s_type->name)) {
652 			/*
653 			 * Adding a proper bailout path here would be hard, but
654 			 * we can at least make it more likely that a later
655 			 * iput_final() or such crashes cleanly.
656 			 */
657 			struct inode *inode;
658 
659 			spin_lock(&sb->s_inode_list_lock);
660 			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
661 				inode->i_op = VFS_PTR_POISON;
662 				inode->i_sb = VFS_PTR_POISON;
663 				inode->i_mapping = VFS_PTR_POISON;
664 			}
665 			spin_unlock(&sb->s_inode_list_lock);
666 		}
667 	}
668 	/*
669 	 * Broadcast to everyone that grabbed a temporary reference to this
670 	 * superblock before we removed it from @fs_supers that the superblock
671 	 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
672 	 * discard this superblock and treat it as dead.
673 	 *
674 	 * We leave the superblock on @fs_supers so it can be found by
675 	 * sget{_fc}() until we passed sb->kill_sb().
676 	 */
677 	super_wake(sb, SB_DYING);
678 	super_unlock_excl(sb);
679 	if (sb->s_bdi != &noop_backing_dev_info) {
680 		if (sb->s_iflags & SB_I_PERSB_BDI)
681 			bdi_unregister(sb->s_bdi);
682 		bdi_put(sb->s_bdi);
683 		sb->s_bdi = &noop_backing_dev_info;
684 	}
685 }
686 
687 EXPORT_SYMBOL(generic_shutdown_super);
688 
689 bool mount_capable(struct fs_context *fc)
690 {
691 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
692 		return capable(CAP_SYS_ADMIN);
693 	else
694 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
695 }
696 
697 /**
698  * sget_fc - Find or create a superblock
699  * @fc:	Filesystem context.
700  * @test: Comparison callback
701  * @set: Setup callback
702  *
703  * Create a new superblock or find an existing one.
704  *
705  * The @test callback is used to find a matching existing superblock.
706  * Whether or not the requested parameters in @fc are taken into account
707  * is specific to the @test callback that is used. They may even be
708  * completely ignored.
709  *
710  * If an extant superblock is matched, it will be returned unless:
711  *
712  * (1) the namespace the filesystem context @fc and the extant
713  *     superblock's namespace differ
714  *
715  * (2) the filesystem context @fc has requested that reusing an extant
716  *     superblock is not allowed
717  *
718  * In both cases EBUSY will be returned.
719  *
720  * If no match is made, a new superblock will be allocated and basic
721  * initialisation will be performed (s_type, s_fs_info and s_id will be
722  * set and the @set callback will be invoked), the superblock will be
723  * published and it will be returned in a partially constructed state
724  * with SB_BORN and SB_ACTIVE as yet unset.
725  *
726  * Return: On success, an extant or newly created superblock is
727  *         returned. On failure an error pointer is returned.
728  */
729 struct super_block *sget_fc(struct fs_context *fc,
730 			    int (*test)(struct super_block *, struct fs_context *),
731 			    int (*set)(struct super_block *, struct fs_context *))
732 {
733 	struct super_block *s = NULL;
734 	struct super_block *old;
735 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
736 	int err;
737 
738 retry:
739 	spin_lock(&sb_lock);
740 	if (test) {
741 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
742 			if (test(old, fc))
743 				goto share_extant_sb;
744 		}
745 	}
746 	if (!s) {
747 		spin_unlock(&sb_lock);
748 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
749 		if (!s)
750 			return ERR_PTR(-ENOMEM);
751 		goto retry;
752 	}
753 
754 	s->s_fs_info = fc->s_fs_info;
755 	err = set(s, fc);
756 	if (err) {
757 		s->s_fs_info = NULL;
758 		spin_unlock(&sb_lock);
759 		destroy_unused_super(s);
760 		return ERR_PTR(err);
761 	}
762 	fc->s_fs_info = NULL;
763 	s->s_type = fc->fs_type;
764 	s->s_iflags |= fc->s_iflags;
765 	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
766 	/*
767 	 * Make the superblock visible on @super_blocks and @fs_supers.
768 	 * It's in a nascent state and users should wait on SB_BORN or
769 	 * SB_DYING to be set.
770 	 */
771 	list_add_tail(&s->s_list, &super_blocks);
772 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
773 	spin_unlock(&sb_lock);
774 	get_filesystem(s->s_type);
775 	shrinker_register(s->s_shrink);
776 	return s;
777 
778 share_extant_sb:
779 	if (user_ns != old->s_user_ns || fc->exclusive) {
780 		spin_unlock(&sb_lock);
781 		destroy_unused_super(s);
782 		if (fc->exclusive)
783 			warnfc(fc, "reusing existing filesystem not allowed");
784 		else
785 			warnfc(fc, "reusing existing filesystem in another namespace not allowed");
786 		return ERR_PTR(-EBUSY);
787 	}
788 	if (!grab_super(old))
789 		goto retry;
790 	destroy_unused_super(s);
791 	return old;
792 }
793 EXPORT_SYMBOL(sget_fc);
794 
795 /**
796  *	sget	-	find or create a superblock
797  *	@type:	  filesystem type superblock should belong to
798  *	@test:	  comparison callback
799  *	@set:	  setup callback
800  *	@flags:	  mount flags
801  *	@data:	  argument to each of them
802  */
803 struct super_block *sget(struct file_system_type *type,
804 			int (*test)(struct super_block *,void *),
805 			int (*set)(struct super_block *,void *),
806 			int flags,
807 			void *data)
808 {
809 	struct user_namespace *user_ns = current_user_ns();
810 	struct super_block *s = NULL;
811 	struct super_block *old;
812 	int err;
813 
814 	/* We don't yet pass the user namespace of the parent
815 	 * mount through to here so always use &init_user_ns
816 	 * until that changes.
817 	 */
818 	if (flags & SB_SUBMOUNT)
819 		user_ns = &init_user_ns;
820 
821 retry:
822 	spin_lock(&sb_lock);
823 	if (test) {
824 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
825 			if (!test(old, data))
826 				continue;
827 			if (user_ns != old->s_user_ns) {
828 				spin_unlock(&sb_lock);
829 				destroy_unused_super(s);
830 				return ERR_PTR(-EBUSY);
831 			}
832 			if (!grab_super(old))
833 				goto retry;
834 			destroy_unused_super(s);
835 			return old;
836 		}
837 	}
838 	if (!s) {
839 		spin_unlock(&sb_lock);
840 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
841 		if (!s)
842 			return ERR_PTR(-ENOMEM);
843 		goto retry;
844 	}
845 
846 	err = set(s, data);
847 	if (err) {
848 		spin_unlock(&sb_lock);
849 		destroy_unused_super(s);
850 		return ERR_PTR(err);
851 	}
852 	s->s_type = type;
853 	strscpy(s->s_id, type->name, sizeof(s->s_id));
854 	list_add_tail(&s->s_list, &super_blocks);
855 	hlist_add_head(&s->s_instances, &type->fs_supers);
856 	spin_unlock(&sb_lock);
857 	get_filesystem(type);
858 	shrinker_register(s->s_shrink);
859 	return s;
860 }
861 EXPORT_SYMBOL(sget);
862 
863 void drop_super(struct super_block *sb)
864 {
865 	super_unlock_shared(sb);
866 	put_super(sb);
867 }
868 
869 EXPORT_SYMBOL(drop_super);
870 
871 void drop_super_exclusive(struct super_block *sb)
872 {
873 	super_unlock_excl(sb);
874 	put_super(sb);
875 }
876 EXPORT_SYMBOL(drop_super_exclusive);
877 
878 static void __iterate_supers(void (*f)(struct super_block *))
879 {
880 	struct super_block *sb, *p = NULL;
881 
882 	spin_lock(&sb_lock);
883 	list_for_each_entry(sb, &super_blocks, s_list) {
884 		if (super_flags(sb, SB_DYING))
885 			continue;
886 		sb->s_count++;
887 		spin_unlock(&sb_lock);
888 
889 		f(sb);
890 
891 		spin_lock(&sb_lock);
892 		if (p)
893 			__put_super(p);
894 		p = sb;
895 	}
896 	if (p)
897 		__put_super(p);
898 	spin_unlock(&sb_lock);
899 }
900 /**
901  *	iterate_supers - call function for all active superblocks
902  *	@f: function to call
903  *	@arg: argument to pass to it
904  *
905  *	Scans the superblock list and calls given function, passing it
906  *	locked superblock and given argument.
907  */
908 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
909 {
910 	struct super_block *sb, *p = NULL;
911 
912 	spin_lock(&sb_lock);
913 	list_for_each_entry(sb, &super_blocks, s_list) {
914 		bool locked;
915 
916 		sb->s_count++;
917 		spin_unlock(&sb_lock);
918 
919 		locked = super_lock_shared(sb);
920 		if (locked) {
921 			if (sb->s_root)
922 				f(sb, arg);
923 			super_unlock_shared(sb);
924 		}
925 
926 		spin_lock(&sb_lock);
927 		if (p)
928 			__put_super(p);
929 		p = sb;
930 	}
931 	if (p)
932 		__put_super(p);
933 	spin_unlock(&sb_lock);
934 }
935 
936 /**
937  *	iterate_supers_type - call function for superblocks of given type
938  *	@type: fs type
939  *	@f: function to call
940  *	@arg: argument to pass to it
941  *
942  *	Scans the superblock list and calls given function, passing it
943  *	locked superblock and given argument.
944  */
945 void iterate_supers_type(struct file_system_type *type,
946 	void (*f)(struct super_block *, void *), void *arg)
947 {
948 	struct super_block *sb, *p = NULL;
949 
950 	spin_lock(&sb_lock);
951 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
952 		bool locked;
953 
954 		sb->s_count++;
955 		spin_unlock(&sb_lock);
956 
957 		locked = super_lock_shared(sb);
958 		if (locked) {
959 			if (sb->s_root)
960 				f(sb, arg);
961 			super_unlock_shared(sb);
962 		}
963 
964 		spin_lock(&sb_lock);
965 		if (p)
966 			__put_super(p);
967 		p = sb;
968 	}
969 	if (p)
970 		__put_super(p);
971 	spin_unlock(&sb_lock);
972 }
973 
974 EXPORT_SYMBOL(iterate_supers_type);
975 
976 struct super_block *user_get_super(dev_t dev, bool excl)
977 {
978 	struct super_block *sb;
979 
980 	spin_lock(&sb_lock);
981 	list_for_each_entry(sb, &super_blocks, s_list) {
982 		if (sb->s_dev ==  dev) {
983 			bool locked;
984 
985 			sb->s_count++;
986 			spin_unlock(&sb_lock);
987 			/* still alive? */
988 			locked = super_lock(sb, excl);
989 			if (locked) {
990 				if (sb->s_root)
991 					return sb;
992 				super_unlock(sb, excl);
993 			}
994 			/* nope, got unmounted */
995 			spin_lock(&sb_lock);
996 			__put_super(sb);
997 			break;
998 		}
999 	}
1000 	spin_unlock(&sb_lock);
1001 	return NULL;
1002 }
1003 
1004 /**
1005  * reconfigure_super - asks filesystem to change superblock parameters
1006  * @fc: The superblock and configuration
1007  *
1008  * Alters the configuration parameters of a live superblock.
1009  */
1010 int reconfigure_super(struct fs_context *fc)
1011 {
1012 	struct super_block *sb = fc->root->d_sb;
1013 	int retval;
1014 	bool remount_ro = false;
1015 	bool remount_rw = false;
1016 	bool force = fc->sb_flags & SB_FORCE;
1017 
1018 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
1019 		return -EINVAL;
1020 	if (sb->s_writers.frozen != SB_UNFROZEN)
1021 		return -EBUSY;
1022 
1023 	retval = security_sb_remount(sb, fc->security);
1024 	if (retval)
1025 		return retval;
1026 
1027 	if (fc->sb_flags_mask & SB_RDONLY) {
1028 #ifdef CONFIG_BLOCK
1029 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1030 		    bdev_read_only(sb->s_bdev))
1031 			return -EACCES;
1032 #endif
1033 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1034 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1035 	}
1036 
1037 	if (remount_ro) {
1038 		if (!hlist_empty(&sb->s_pins)) {
1039 			super_unlock_excl(sb);
1040 			group_pin_kill(&sb->s_pins);
1041 			__super_lock_excl(sb);
1042 			if (!sb->s_root)
1043 				return 0;
1044 			if (sb->s_writers.frozen != SB_UNFROZEN)
1045 				return -EBUSY;
1046 			remount_ro = !sb_rdonly(sb);
1047 		}
1048 	}
1049 	shrink_dcache_sb(sb);
1050 
1051 	/* If we are reconfiguring to RDONLY and current sb is read/write,
1052 	 * make sure there are no files open for writing.
1053 	 */
1054 	if (remount_ro) {
1055 		if (force) {
1056 			sb_start_ro_state_change(sb);
1057 		} else {
1058 			retval = sb_prepare_remount_readonly(sb);
1059 			if (retval)
1060 				return retval;
1061 		}
1062 	} else if (remount_rw) {
1063 		/*
1064 		 * Protect filesystem's reconfigure code from writes from
1065 		 * userspace until reconfigure finishes.
1066 		 */
1067 		sb_start_ro_state_change(sb);
1068 	}
1069 
1070 	if (fc->ops->reconfigure) {
1071 		retval = fc->ops->reconfigure(fc);
1072 		if (retval) {
1073 			if (!force)
1074 				goto cancel_readonly;
1075 			/* If forced remount, go ahead despite any errors */
1076 			WARN(1, "forced remount of a %s fs returned %i\n",
1077 			     sb->s_type->name, retval);
1078 		}
1079 	}
1080 
1081 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1082 				 (fc->sb_flags & fc->sb_flags_mask)));
1083 	sb_end_ro_state_change(sb);
1084 
1085 	/*
1086 	 * Some filesystems modify their metadata via some other path than the
1087 	 * bdev buffer cache (eg. use a private mapping, or directories in
1088 	 * pagecache, etc). Also file data modifications go via their own
1089 	 * mappings. So If we try to mount readonly then copy the filesystem
1090 	 * from bdev, we could get stale data, so invalidate it to give a best
1091 	 * effort at coherency.
1092 	 */
1093 	if (remount_ro && sb->s_bdev)
1094 		invalidate_bdev(sb->s_bdev);
1095 	return 0;
1096 
1097 cancel_readonly:
1098 	sb_end_ro_state_change(sb);
1099 	return retval;
1100 }
1101 
1102 static void do_emergency_remount_callback(struct super_block *sb)
1103 {
1104 	bool locked = super_lock_excl(sb);
1105 
1106 	if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
1107 		struct fs_context *fc;
1108 
1109 		fc = fs_context_for_reconfigure(sb->s_root,
1110 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1111 		if (!IS_ERR(fc)) {
1112 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1113 				(void)reconfigure_super(fc);
1114 			put_fs_context(fc);
1115 		}
1116 	}
1117 	if (locked)
1118 		super_unlock_excl(sb);
1119 }
1120 
1121 static void do_emergency_remount(struct work_struct *work)
1122 {
1123 	__iterate_supers(do_emergency_remount_callback);
1124 	kfree(work);
1125 	printk("Emergency Remount complete\n");
1126 }
1127 
1128 void emergency_remount(void)
1129 {
1130 	struct work_struct *work;
1131 
1132 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1133 	if (work) {
1134 		INIT_WORK(work, do_emergency_remount);
1135 		schedule_work(work);
1136 	}
1137 }
1138 
1139 static void do_thaw_all_callback(struct super_block *sb)
1140 {
1141 	bool locked = super_lock_excl(sb);
1142 
1143 	if (locked && sb->s_root) {
1144 		if (IS_ENABLED(CONFIG_BLOCK))
1145 			while (sb->s_bdev && !bdev_thaw(sb->s_bdev))
1146 				pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1147 		thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
1148 		return;
1149 	}
1150 	if (locked)
1151 		super_unlock_excl(sb);
1152 }
1153 
1154 static void do_thaw_all(struct work_struct *work)
1155 {
1156 	__iterate_supers(do_thaw_all_callback);
1157 	kfree(work);
1158 	printk(KERN_WARNING "Emergency Thaw complete\n");
1159 }
1160 
1161 /**
1162  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1163  *
1164  * Used for emergency unfreeze of all filesystems via SysRq
1165  */
1166 void emergency_thaw_all(void)
1167 {
1168 	struct work_struct *work;
1169 
1170 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1171 	if (work) {
1172 		INIT_WORK(work, do_thaw_all);
1173 		schedule_work(work);
1174 	}
1175 }
1176 
1177 static DEFINE_IDA(unnamed_dev_ida);
1178 
1179 /**
1180  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1181  * @p: Pointer to a dev_t.
1182  *
1183  * Filesystems which don't use real block devices can call this function
1184  * to allocate a virtual block device.
1185  *
1186  * Context: Any context.  Frequently called while holding sb_lock.
1187  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1188  * or -ENOMEM if memory allocation failed.
1189  */
1190 int get_anon_bdev(dev_t *p)
1191 {
1192 	int dev;
1193 
1194 	/*
1195 	 * Many userspace utilities consider an FSID of 0 invalid.
1196 	 * Always return at least 1 from get_anon_bdev.
1197 	 */
1198 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1199 			GFP_ATOMIC);
1200 	if (dev == -ENOSPC)
1201 		dev = -EMFILE;
1202 	if (dev < 0)
1203 		return dev;
1204 
1205 	*p = MKDEV(0, dev);
1206 	return 0;
1207 }
1208 EXPORT_SYMBOL(get_anon_bdev);
1209 
1210 void free_anon_bdev(dev_t dev)
1211 {
1212 	ida_free(&unnamed_dev_ida, MINOR(dev));
1213 }
1214 EXPORT_SYMBOL(free_anon_bdev);
1215 
1216 int set_anon_super(struct super_block *s, void *data)
1217 {
1218 	return get_anon_bdev(&s->s_dev);
1219 }
1220 EXPORT_SYMBOL(set_anon_super);
1221 
1222 void kill_anon_super(struct super_block *sb)
1223 {
1224 	dev_t dev = sb->s_dev;
1225 	generic_shutdown_super(sb);
1226 	kill_super_notify(sb);
1227 	free_anon_bdev(dev);
1228 }
1229 EXPORT_SYMBOL(kill_anon_super);
1230 
1231 void kill_litter_super(struct super_block *sb)
1232 {
1233 	if (sb->s_root)
1234 		d_genocide(sb->s_root);
1235 	kill_anon_super(sb);
1236 }
1237 EXPORT_SYMBOL(kill_litter_super);
1238 
1239 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1240 {
1241 	return set_anon_super(sb, NULL);
1242 }
1243 EXPORT_SYMBOL(set_anon_super_fc);
1244 
1245 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1246 {
1247 	return sb->s_fs_info == fc->s_fs_info;
1248 }
1249 
1250 static int test_single_super(struct super_block *s, struct fs_context *fc)
1251 {
1252 	return 1;
1253 }
1254 
1255 static int vfs_get_super(struct fs_context *fc,
1256 		int (*test)(struct super_block *, struct fs_context *),
1257 		int (*fill_super)(struct super_block *sb,
1258 				  struct fs_context *fc))
1259 {
1260 	struct super_block *sb;
1261 	int err;
1262 
1263 	sb = sget_fc(fc, test, set_anon_super_fc);
1264 	if (IS_ERR(sb))
1265 		return PTR_ERR(sb);
1266 
1267 	if (!sb->s_root) {
1268 		err = fill_super(sb, fc);
1269 		if (err)
1270 			goto error;
1271 
1272 		sb->s_flags |= SB_ACTIVE;
1273 	}
1274 
1275 	fc->root = dget(sb->s_root);
1276 	return 0;
1277 
1278 error:
1279 	deactivate_locked_super(sb);
1280 	return err;
1281 }
1282 
1283 int get_tree_nodev(struct fs_context *fc,
1284 		  int (*fill_super)(struct super_block *sb,
1285 				    struct fs_context *fc))
1286 {
1287 	return vfs_get_super(fc, NULL, fill_super);
1288 }
1289 EXPORT_SYMBOL(get_tree_nodev);
1290 
1291 int get_tree_single(struct fs_context *fc,
1292 		  int (*fill_super)(struct super_block *sb,
1293 				    struct fs_context *fc))
1294 {
1295 	return vfs_get_super(fc, test_single_super, fill_super);
1296 }
1297 EXPORT_SYMBOL(get_tree_single);
1298 
1299 int get_tree_keyed(struct fs_context *fc,
1300 		  int (*fill_super)(struct super_block *sb,
1301 				    struct fs_context *fc),
1302 		void *key)
1303 {
1304 	fc->s_fs_info = key;
1305 	return vfs_get_super(fc, test_keyed_super, fill_super);
1306 }
1307 EXPORT_SYMBOL(get_tree_keyed);
1308 
1309 static int set_bdev_super(struct super_block *s, void *data)
1310 {
1311 	s->s_dev = *(dev_t *)data;
1312 	return 0;
1313 }
1314 
1315 static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1316 {
1317 	return set_bdev_super(s, fc->sget_key);
1318 }
1319 
1320 static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1321 {
1322 	return !(s->s_iflags & SB_I_RETIRED) &&
1323 		s->s_dev == *(dev_t *)fc->sget_key;
1324 }
1325 
1326 /**
1327  * sget_dev - Find or create a superblock by device number
1328  * @fc: Filesystem context.
1329  * @dev: device number
1330  *
1331  * Find or create a superblock using the provided device number that
1332  * will be stored in fc->sget_key.
1333  *
1334  * If an extant superblock is matched, then that will be returned with
1335  * an elevated reference count that the caller must transfer or discard.
1336  *
1337  * If no match is made, a new superblock will be allocated and basic
1338  * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1339  * be set). The superblock will be published and it will be returned in
1340  * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1341  * unset.
1342  *
1343  * Return: an existing or newly created superblock on success, an error
1344  *         pointer on failure.
1345  */
1346 struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1347 {
1348 	fc->sget_key = &dev;
1349 	return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1350 }
1351 EXPORT_SYMBOL(sget_dev);
1352 
1353 #ifdef CONFIG_BLOCK
1354 /*
1355  * Lock the superblock that is holder of the bdev. Returns the superblock
1356  * pointer if we successfully locked the superblock and it is alive. Otherwise
1357  * we return NULL and just unlock bdev->bd_holder_lock.
1358  *
1359  * The function must be called with bdev->bd_holder_lock and releases it.
1360  */
1361 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl)
1362 	__releases(&bdev->bd_holder_lock)
1363 {
1364 	struct super_block *sb = bdev->bd_holder;
1365 	bool locked;
1366 
1367 	lockdep_assert_held(&bdev->bd_holder_lock);
1368 	lockdep_assert_not_held(&sb->s_umount);
1369 	lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
1370 
1371 	/* Make sure sb doesn't go away from under us */
1372 	spin_lock(&sb_lock);
1373 	sb->s_count++;
1374 	spin_unlock(&sb_lock);
1375 
1376 	mutex_unlock(&bdev->bd_holder_lock);
1377 
1378 	locked = super_lock(sb, excl);
1379 
1380 	/*
1381 	 * If the superblock wasn't already SB_DYING then we hold
1382 	 * s_umount and can safely drop our temporary reference.
1383          */
1384 	put_super(sb);
1385 
1386 	if (!locked)
1387 		return NULL;
1388 
1389 	if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1390 		super_unlock(sb, excl);
1391 		return NULL;
1392 	}
1393 
1394 	return sb;
1395 }
1396 
1397 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1398 {
1399 	struct super_block *sb;
1400 
1401 	sb = bdev_super_lock(bdev, false);
1402 	if (!sb)
1403 		return;
1404 
1405 	if (!surprise)
1406 		sync_filesystem(sb);
1407 	shrink_dcache_sb(sb);
1408 	invalidate_inodes(sb);
1409 	if (sb->s_op->shutdown)
1410 		sb->s_op->shutdown(sb);
1411 
1412 	super_unlock_shared(sb);
1413 }
1414 
1415 static void fs_bdev_sync(struct block_device *bdev)
1416 {
1417 	struct super_block *sb;
1418 
1419 	sb = bdev_super_lock(bdev, false);
1420 	if (!sb)
1421 		return;
1422 
1423 	sync_filesystem(sb);
1424 	super_unlock_shared(sb);
1425 }
1426 
1427 static struct super_block *get_bdev_super(struct block_device *bdev)
1428 {
1429 	bool active = false;
1430 	struct super_block *sb;
1431 
1432 	sb = bdev_super_lock(bdev, true);
1433 	if (sb) {
1434 		active = atomic_inc_not_zero(&sb->s_active);
1435 		super_unlock_excl(sb);
1436 	}
1437 	if (!active)
1438 		return NULL;
1439 	return sb;
1440 }
1441 
1442 /**
1443  * fs_bdev_freeze - freeze owning filesystem of block device
1444  * @bdev: block device
1445  *
1446  * Freeze the filesystem that owns this block device if it is still
1447  * active.
1448  *
1449  * A filesystem that owns multiple block devices may be frozen from each
1450  * block device and won't be unfrozen until all block devices are
1451  * unfrozen. Each block device can only freeze the filesystem once as we
1452  * nest freezes for block devices in the block layer.
1453  *
1454  * Return: If the freeze was successful zero is returned. If the freeze
1455  *         failed a negative error code is returned.
1456  */
1457 static int fs_bdev_freeze(struct block_device *bdev)
1458 {
1459 	struct super_block *sb;
1460 	int error = 0;
1461 
1462 	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1463 
1464 	sb = get_bdev_super(bdev);
1465 	if (!sb)
1466 		return -EINVAL;
1467 
1468 	if (sb->s_op->freeze_super)
1469 		error = sb->s_op->freeze_super(sb,
1470 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1471 	else
1472 		error = freeze_super(sb,
1473 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1474 	if (!error)
1475 		error = sync_blockdev(bdev);
1476 	deactivate_super(sb);
1477 	return error;
1478 }
1479 
1480 /**
1481  * fs_bdev_thaw - thaw owning filesystem of block device
1482  * @bdev: block device
1483  *
1484  * Thaw the filesystem that owns this block device.
1485  *
1486  * A filesystem that owns multiple block devices may be frozen from each
1487  * block device and won't be unfrozen until all block devices are
1488  * unfrozen. Each block device can only freeze the filesystem once as we
1489  * nest freezes for block devices in the block layer.
1490  *
1491  * Return: If the thaw was successful zero is returned. If the thaw
1492  *         failed a negative error code is returned. If this function
1493  *         returns zero it doesn't mean that the filesystem is unfrozen
1494  *         as it may have been frozen multiple times (kernel may hold a
1495  *         freeze or might be frozen from other block devices).
1496  */
1497 static int fs_bdev_thaw(struct block_device *bdev)
1498 {
1499 	struct super_block *sb;
1500 	int error;
1501 
1502 	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1503 
1504 	sb = get_bdev_super(bdev);
1505 	if (WARN_ON_ONCE(!sb))
1506 		return -EINVAL;
1507 
1508 	if (sb->s_op->thaw_super)
1509 		error = sb->s_op->thaw_super(sb,
1510 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1511 	else
1512 		error = thaw_super(sb,
1513 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1514 	deactivate_super(sb);
1515 	return error;
1516 }
1517 
1518 const struct blk_holder_ops fs_holder_ops = {
1519 	.mark_dead		= fs_bdev_mark_dead,
1520 	.sync			= fs_bdev_sync,
1521 	.freeze			= fs_bdev_freeze,
1522 	.thaw			= fs_bdev_thaw,
1523 };
1524 EXPORT_SYMBOL_GPL(fs_holder_ops);
1525 
1526 int setup_bdev_super(struct super_block *sb, int sb_flags,
1527 		struct fs_context *fc)
1528 {
1529 	blk_mode_t mode = sb_open_mode(sb_flags);
1530 	struct bdev_handle *bdev_handle;
1531 	struct block_device *bdev;
1532 
1533 	bdev_handle = bdev_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1534 	if (IS_ERR(bdev_handle)) {
1535 		if (fc)
1536 			errorf(fc, "%s: Can't open blockdev", fc->source);
1537 		return PTR_ERR(bdev_handle);
1538 	}
1539 	bdev = bdev_handle->bdev;
1540 
1541 	/*
1542 	 * This really should be in blkdev_get_by_dev, but right now can't due
1543 	 * to legacy issues that require us to allow opening a block device node
1544 	 * writable from userspace even for a read-only block device.
1545 	 */
1546 	if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1547 		bdev_release(bdev_handle);
1548 		return -EACCES;
1549 	}
1550 
1551 	/*
1552 	 * It is enough to check bdev was not frozen before we set
1553 	 * s_bdev as freezing will wait until SB_BORN is set.
1554 	 */
1555 	if (atomic_read(&bdev->bd_fsfreeze_count) > 0) {
1556 		if (fc)
1557 			warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1558 		bdev_release(bdev_handle);
1559 		return -EBUSY;
1560 	}
1561 	spin_lock(&sb_lock);
1562 	sb->s_bdev_handle = bdev_handle;
1563 	sb->s_bdev = bdev;
1564 	sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1565 	if (bdev_stable_writes(bdev))
1566 		sb->s_iflags |= SB_I_STABLE_WRITES;
1567 	spin_unlock(&sb_lock);
1568 
1569 	snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1570 	shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1571 				sb->s_id);
1572 	sb_set_blocksize(sb, block_size(bdev));
1573 	return 0;
1574 }
1575 EXPORT_SYMBOL_GPL(setup_bdev_super);
1576 
1577 /**
1578  * get_tree_bdev - Get a superblock based on a single block device
1579  * @fc: The filesystem context holding the parameters
1580  * @fill_super: Helper to initialise a new superblock
1581  */
1582 int get_tree_bdev(struct fs_context *fc,
1583 		int (*fill_super)(struct super_block *,
1584 				  struct fs_context *))
1585 {
1586 	struct super_block *s;
1587 	int error = 0;
1588 	dev_t dev;
1589 
1590 	if (!fc->source)
1591 		return invalf(fc, "No source specified");
1592 
1593 	error = lookup_bdev(fc->source, &dev);
1594 	if (error) {
1595 		errorf(fc, "%s: Can't lookup blockdev", fc->source);
1596 		return error;
1597 	}
1598 
1599 	fc->sb_flags |= SB_NOSEC;
1600 	s = sget_dev(fc, dev);
1601 	if (IS_ERR(s))
1602 		return PTR_ERR(s);
1603 
1604 	if (s->s_root) {
1605 		/* Don't summarily change the RO/RW state. */
1606 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1607 			warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1608 			deactivate_locked_super(s);
1609 			return -EBUSY;
1610 		}
1611 	} else {
1612 		error = setup_bdev_super(s, fc->sb_flags, fc);
1613 		if (!error)
1614 			error = fill_super(s, fc);
1615 		if (error) {
1616 			deactivate_locked_super(s);
1617 			return error;
1618 		}
1619 		s->s_flags |= SB_ACTIVE;
1620 	}
1621 
1622 	BUG_ON(fc->root);
1623 	fc->root = dget(s->s_root);
1624 	return 0;
1625 }
1626 EXPORT_SYMBOL(get_tree_bdev);
1627 
1628 static int test_bdev_super(struct super_block *s, void *data)
1629 {
1630 	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1631 }
1632 
1633 struct dentry *mount_bdev(struct file_system_type *fs_type,
1634 	int flags, const char *dev_name, void *data,
1635 	int (*fill_super)(struct super_block *, void *, int))
1636 {
1637 	struct super_block *s;
1638 	int error;
1639 	dev_t dev;
1640 
1641 	error = lookup_bdev(dev_name, &dev);
1642 	if (error)
1643 		return ERR_PTR(error);
1644 
1645 	flags |= SB_NOSEC;
1646 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
1647 	if (IS_ERR(s))
1648 		return ERR_CAST(s);
1649 
1650 	if (s->s_root) {
1651 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1652 			deactivate_locked_super(s);
1653 			return ERR_PTR(-EBUSY);
1654 		}
1655 	} else {
1656 		error = setup_bdev_super(s, flags, NULL);
1657 		if (!error)
1658 			error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1659 		if (error) {
1660 			deactivate_locked_super(s);
1661 			return ERR_PTR(error);
1662 		}
1663 
1664 		s->s_flags |= SB_ACTIVE;
1665 	}
1666 
1667 	return dget(s->s_root);
1668 }
1669 EXPORT_SYMBOL(mount_bdev);
1670 
1671 void kill_block_super(struct super_block *sb)
1672 {
1673 	struct block_device *bdev = sb->s_bdev;
1674 
1675 	generic_shutdown_super(sb);
1676 	if (bdev) {
1677 		sync_blockdev(bdev);
1678 		bdev_release(sb->s_bdev_handle);
1679 	}
1680 }
1681 
1682 EXPORT_SYMBOL(kill_block_super);
1683 #endif
1684 
1685 struct dentry *mount_nodev(struct file_system_type *fs_type,
1686 	int flags, void *data,
1687 	int (*fill_super)(struct super_block *, void *, int))
1688 {
1689 	int error;
1690 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1691 
1692 	if (IS_ERR(s))
1693 		return ERR_CAST(s);
1694 
1695 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1696 	if (error) {
1697 		deactivate_locked_super(s);
1698 		return ERR_PTR(error);
1699 	}
1700 	s->s_flags |= SB_ACTIVE;
1701 	return dget(s->s_root);
1702 }
1703 EXPORT_SYMBOL(mount_nodev);
1704 
1705 int reconfigure_single(struct super_block *s,
1706 		       int flags, void *data)
1707 {
1708 	struct fs_context *fc;
1709 	int ret;
1710 
1711 	/* The caller really need to be passing fc down into mount_single(),
1712 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1713 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1714 	 * mount should be rejected if the parameters are not compatible.
1715 	 */
1716 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1717 	if (IS_ERR(fc))
1718 		return PTR_ERR(fc);
1719 
1720 	ret = parse_monolithic_mount_data(fc, data);
1721 	if (ret < 0)
1722 		goto out;
1723 
1724 	ret = reconfigure_super(fc);
1725 out:
1726 	put_fs_context(fc);
1727 	return ret;
1728 }
1729 
1730 static int compare_single(struct super_block *s, void *p)
1731 {
1732 	return 1;
1733 }
1734 
1735 struct dentry *mount_single(struct file_system_type *fs_type,
1736 	int flags, void *data,
1737 	int (*fill_super)(struct super_block *, void *, int))
1738 {
1739 	struct super_block *s;
1740 	int error;
1741 
1742 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1743 	if (IS_ERR(s))
1744 		return ERR_CAST(s);
1745 	if (!s->s_root) {
1746 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1747 		if (!error)
1748 			s->s_flags |= SB_ACTIVE;
1749 	} else {
1750 		error = reconfigure_single(s, flags, data);
1751 	}
1752 	if (unlikely(error)) {
1753 		deactivate_locked_super(s);
1754 		return ERR_PTR(error);
1755 	}
1756 	return dget(s->s_root);
1757 }
1758 EXPORT_SYMBOL(mount_single);
1759 
1760 /**
1761  * vfs_get_tree - Get the mountable root
1762  * @fc: The superblock configuration context.
1763  *
1764  * The filesystem is invoked to get or create a superblock which can then later
1765  * be used for mounting.  The filesystem places a pointer to the root to be
1766  * used for mounting in @fc->root.
1767  */
1768 int vfs_get_tree(struct fs_context *fc)
1769 {
1770 	struct super_block *sb;
1771 	int error;
1772 
1773 	if (fc->root)
1774 		return -EBUSY;
1775 
1776 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1777 	 * on the superblock.
1778 	 */
1779 	error = fc->ops->get_tree(fc);
1780 	if (error < 0)
1781 		return error;
1782 
1783 	if (!fc->root) {
1784 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1785 		       fc->fs_type->name);
1786 		/* We don't know what the locking state of the superblock is -
1787 		 * if there is a superblock.
1788 		 */
1789 		BUG();
1790 	}
1791 
1792 	sb = fc->root->d_sb;
1793 	WARN_ON(!sb->s_bdi);
1794 
1795 	/*
1796 	 * super_wake() contains a memory barrier which also care of
1797 	 * ordering for super_cache_count(). We place it before setting
1798 	 * SB_BORN as the data dependency between the two functions is
1799 	 * the superblock structure contents that we just set up, not
1800 	 * the SB_BORN flag.
1801 	 */
1802 	super_wake(sb, SB_BORN);
1803 
1804 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1805 	if (unlikely(error)) {
1806 		fc_drop_locked(fc);
1807 		return error;
1808 	}
1809 
1810 	/*
1811 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1812 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1813 	 * this warning for a little while to try and catch filesystems that
1814 	 * violate this rule.
1815 	 */
1816 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1817 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1818 
1819 	return 0;
1820 }
1821 EXPORT_SYMBOL(vfs_get_tree);
1822 
1823 /*
1824  * Setup private BDI for given superblock. It gets automatically cleaned up
1825  * in generic_shutdown_super().
1826  */
1827 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1828 {
1829 	struct backing_dev_info *bdi;
1830 	int err;
1831 	va_list args;
1832 
1833 	bdi = bdi_alloc(NUMA_NO_NODE);
1834 	if (!bdi)
1835 		return -ENOMEM;
1836 
1837 	va_start(args, fmt);
1838 	err = bdi_register_va(bdi, fmt, args);
1839 	va_end(args);
1840 	if (err) {
1841 		bdi_put(bdi);
1842 		return err;
1843 	}
1844 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1845 	sb->s_bdi = bdi;
1846 	sb->s_iflags |= SB_I_PERSB_BDI;
1847 
1848 	return 0;
1849 }
1850 EXPORT_SYMBOL(super_setup_bdi_name);
1851 
1852 /*
1853  * Setup private BDI for given superblock. I gets automatically cleaned up
1854  * in generic_shutdown_super().
1855  */
1856 int super_setup_bdi(struct super_block *sb)
1857 {
1858 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1859 
1860 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1861 				    atomic_long_inc_return(&bdi_seq));
1862 }
1863 EXPORT_SYMBOL(super_setup_bdi);
1864 
1865 /**
1866  * sb_wait_write - wait until all writers to given file system finish
1867  * @sb: the super for which we wait
1868  * @level: type of writers we wait for (normal vs page fault)
1869  *
1870  * This function waits until there are no writers of given type to given file
1871  * system.
1872  */
1873 static void sb_wait_write(struct super_block *sb, int level)
1874 {
1875 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1876 }
1877 
1878 /*
1879  * We are going to return to userspace and forget about these locks, the
1880  * ownership goes to the caller of thaw_super() which does unlock().
1881  */
1882 static void lockdep_sb_freeze_release(struct super_block *sb)
1883 {
1884 	int level;
1885 
1886 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1887 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1888 }
1889 
1890 /*
1891  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1892  */
1893 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1894 {
1895 	int level;
1896 
1897 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1898 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1899 }
1900 
1901 static void sb_freeze_unlock(struct super_block *sb, int level)
1902 {
1903 	for (level--; level >= 0; level--)
1904 		percpu_up_write(sb->s_writers.rw_sem + level);
1905 }
1906 
1907 static int wait_for_partially_frozen(struct super_block *sb)
1908 {
1909 	int ret = 0;
1910 
1911 	do {
1912 		unsigned short old = sb->s_writers.frozen;
1913 
1914 		up_write(&sb->s_umount);
1915 		ret = wait_var_event_killable(&sb->s_writers.frozen,
1916 					       sb->s_writers.frozen != old);
1917 		down_write(&sb->s_umount);
1918 	} while (ret == 0 &&
1919 		 sb->s_writers.frozen != SB_UNFROZEN &&
1920 		 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1921 
1922 	return ret;
1923 }
1924 
1925 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE)
1926 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST)
1927 
1928 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who)
1929 {
1930 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1931 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1932 
1933 	if (who & FREEZE_HOLDER_KERNEL)
1934 		++sb->s_writers.freeze_kcount;
1935 	if (who & FREEZE_HOLDER_USERSPACE)
1936 		++sb->s_writers.freeze_ucount;
1937 	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1938 }
1939 
1940 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who)
1941 {
1942 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1943 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1944 
1945 	if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount)
1946 		--sb->s_writers.freeze_kcount;
1947 	if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount)
1948 		--sb->s_writers.freeze_ucount;
1949 	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1950 }
1951 
1952 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who)
1953 {
1954 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1955 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1956 
1957 	if (who & FREEZE_HOLDER_KERNEL)
1958 		return (who & FREEZE_MAY_NEST) ||
1959 		       sb->s_writers.freeze_kcount == 0;
1960 	if (who & FREEZE_HOLDER_USERSPACE)
1961 		return (who & FREEZE_MAY_NEST) ||
1962 		       sb->s_writers.freeze_ucount == 0;
1963 	return false;
1964 }
1965 
1966 /**
1967  * freeze_super - lock the filesystem and force it into a consistent state
1968  * @sb: the super to lock
1969  * @who: context that wants to freeze
1970  *
1971  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1972  * freeze_fs.  Subsequent calls to this without first thawing the fs may return
1973  * -EBUSY.
1974  *
1975  * @who should be:
1976  * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
1977  * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
1978  * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed.
1979  *
1980  * The @who argument distinguishes between the kernel and userspace trying to
1981  * freeze the filesystem.  Although there cannot be multiple kernel freezes or
1982  * multiple userspace freezes in effect at any given time, the kernel and
1983  * userspace can both hold a filesystem frozen.  The filesystem remains frozen
1984  * until there are no kernel or userspace freezes in effect.
1985  *
1986  * A filesystem may hold multiple devices and thus a filesystems may be
1987  * frozen through the block layer via multiple block devices. In this
1988  * case the request is marked as being allowed to nest by passing
1989  * FREEZE_MAY_NEST. The filesystem remains frozen until all block
1990  * devices are unfrozen. If multiple freezes are attempted without
1991  * FREEZE_MAY_NEST -EBUSY will be returned.
1992  *
1993  * During this function, sb->s_writers.frozen goes through these values:
1994  *
1995  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1996  *
1997  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1998  * writes should be blocked, though page faults are still allowed. We wait for
1999  * all writes to complete and then proceed to the next stage.
2000  *
2001  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
2002  * but internal fs threads can still modify the filesystem (although they
2003  * should not dirty new pages or inodes), writeback can run etc. After waiting
2004  * for all running page faults we sync the filesystem which will clean all
2005  * dirty pages and inodes (no new dirty pages or inodes can be created when
2006  * sync is running).
2007  *
2008  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
2009  * modification are blocked (e.g. XFS preallocation truncation on inode
2010  * reclaim). This is usually implemented by blocking new transactions for
2011  * filesystems that have them and need this additional guard. After all
2012  * internal writers are finished we call ->freeze_fs() to finish filesystem
2013  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
2014  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
2015  *
2016  * sb->s_writers.frozen is protected by sb->s_umount.
2017  *
2018  * Return: If the freeze was successful zero is returned. If the freeze
2019  *         failed a negative error code is returned.
2020  */
2021 int freeze_super(struct super_block *sb, enum freeze_holder who)
2022 {
2023 	int ret;
2024 
2025 	if (!super_lock_excl(sb)) {
2026 		WARN_ON_ONCE("Dying superblock while freezing!");
2027 		return -EINVAL;
2028 	}
2029 	atomic_inc(&sb->s_active);
2030 
2031 retry:
2032 	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2033 		if (may_freeze(sb, who))
2034 			ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1);
2035 		else
2036 			ret = -EBUSY;
2037 		/* All freezers share a single active reference. */
2038 		deactivate_locked_super(sb);
2039 		return ret;
2040 	}
2041 
2042 	if (sb->s_writers.frozen != SB_UNFROZEN) {
2043 		ret = wait_for_partially_frozen(sb);
2044 		if (ret) {
2045 			deactivate_locked_super(sb);
2046 			return ret;
2047 		}
2048 
2049 		goto retry;
2050 	}
2051 
2052 	if (sb_rdonly(sb)) {
2053 		/* Nothing to do really... */
2054 		WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2055 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2056 		wake_up_var(&sb->s_writers.frozen);
2057 		super_unlock_excl(sb);
2058 		return 0;
2059 	}
2060 
2061 	sb->s_writers.frozen = SB_FREEZE_WRITE;
2062 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
2063 	super_unlock_excl(sb);
2064 	sb_wait_write(sb, SB_FREEZE_WRITE);
2065 	__super_lock_excl(sb);
2066 
2067 	/* Now we go and block page faults... */
2068 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2069 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2070 
2071 	/* All writers are done so after syncing there won't be dirty data */
2072 	ret = sync_filesystem(sb);
2073 	if (ret) {
2074 		sb->s_writers.frozen = SB_UNFROZEN;
2075 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2076 		wake_up_var(&sb->s_writers.frozen);
2077 		deactivate_locked_super(sb);
2078 		return ret;
2079 	}
2080 
2081 	/* Now wait for internal filesystem counter */
2082 	sb->s_writers.frozen = SB_FREEZE_FS;
2083 	sb_wait_write(sb, SB_FREEZE_FS);
2084 
2085 	if (sb->s_op->freeze_fs) {
2086 		ret = sb->s_op->freeze_fs(sb);
2087 		if (ret) {
2088 			printk(KERN_ERR
2089 				"VFS:Filesystem freeze failed\n");
2090 			sb->s_writers.frozen = SB_UNFROZEN;
2091 			sb_freeze_unlock(sb, SB_FREEZE_FS);
2092 			wake_up_var(&sb->s_writers.frozen);
2093 			deactivate_locked_super(sb);
2094 			return ret;
2095 		}
2096 	}
2097 	/*
2098 	 * For debugging purposes so that fs can warn if it sees write activity
2099 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2100 	 */
2101 	WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2102 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2103 	wake_up_var(&sb->s_writers.frozen);
2104 	lockdep_sb_freeze_release(sb);
2105 	super_unlock_excl(sb);
2106 	return 0;
2107 }
2108 EXPORT_SYMBOL(freeze_super);
2109 
2110 /*
2111  * Undoes the effect of a freeze_super_locked call.  If the filesystem is
2112  * frozen both by userspace and the kernel, a thaw call from either source
2113  * removes that state without releasing the other state or unlocking the
2114  * filesystem.
2115  */
2116 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
2117 {
2118 	int error = -EINVAL;
2119 
2120 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE)
2121 		goto out_unlock;
2122 
2123 	/*
2124 	 * All freezers share a single active reference.
2125 	 * So just unlock in case there are any left.
2126 	 */
2127 	if (freeze_dec(sb, who))
2128 		goto out_unlock;
2129 
2130 	if (sb_rdonly(sb)) {
2131 		sb->s_writers.frozen = SB_UNFROZEN;
2132 		wake_up_var(&sb->s_writers.frozen);
2133 		goto out_deactivate;
2134 	}
2135 
2136 	lockdep_sb_freeze_acquire(sb);
2137 
2138 	if (sb->s_op->unfreeze_fs) {
2139 		error = sb->s_op->unfreeze_fs(sb);
2140 		if (error) {
2141 			pr_err("VFS: Filesystem thaw failed\n");
2142 			freeze_inc(sb, who);
2143 			lockdep_sb_freeze_release(sb);
2144 			goto out_unlock;
2145 		}
2146 	}
2147 
2148 	sb->s_writers.frozen = SB_UNFROZEN;
2149 	wake_up_var(&sb->s_writers.frozen);
2150 	sb_freeze_unlock(sb, SB_FREEZE_FS);
2151 out_deactivate:
2152 	deactivate_locked_super(sb);
2153 	return 0;
2154 
2155 out_unlock:
2156 	super_unlock_excl(sb);
2157 	return error;
2158 }
2159 
2160 /**
2161  * thaw_super -- unlock filesystem
2162  * @sb: the super to thaw
2163  * @who: context that wants to freeze
2164  *
2165  * Unlocks the filesystem and marks it writeable again after freeze_super()
2166  * if there are no remaining freezes on the filesystem.
2167  *
2168  * @who should be:
2169  * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2170  * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2171  * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed
2172  *
2173  * A filesystem may hold multiple devices and thus a filesystems may
2174  * have been frozen through the block layer via multiple block devices.
2175  * The filesystem remains frozen until all block devices are unfrozen.
2176  */
2177 int thaw_super(struct super_block *sb, enum freeze_holder who)
2178 {
2179 	if (!super_lock_excl(sb)) {
2180 		WARN_ON_ONCE("Dying superblock while thawing!");
2181 		return -EINVAL;
2182 	}
2183 	return thaw_super_locked(sb, who);
2184 }
2185 EXPORT_SYMBOL(thaw_super);
2186 
2187 /*
2188  * Create workqueue for deferred direct IO completions. We allocate the
2189  * workqueue when it's first needed. This avoids creating workqueue for
2190  * filesystems that don't need it and also allows us to create the workqueue
2191  * late enough so the we can include s_id in the name of the workqueue.
2192  */
2193 int sb_init_dio_done_wq(struct super_block *sb)
2194 {
2195 	struct workqueue_struct *old;
2196 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2197 						      WQ_MEM_RECLAIM, 0,
2198 						      sb->s_id);
2199 	if (!wq)
2200 		return -ENOMEM;
2201 	/*
2202 	 * This has to be atomic as more DIOs can race to create the workqueue
2203 	 */
2204 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2205 	/* Someone created workqueue before us? Free ours... */
2206 	if (old)
2207 		destroy_workqueue(wq);
2208 	return 0;
2209 }
2210 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);
2211