1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include "internal.h" 35 36 37 LIST_HEAD(super_blocks); 38 DEFINE_SPINLOCK(sb_lock); 39 40 /** 41 * alloc_super - create new superblock 42 * @type: filesystem type superblock should belong to 43 * 44 * Allocates and initializes a new &struct super_block. alloc_super() 45 * returns a pointer new superblock or %NULL if allocation had failed. 46 */ 47 static struct super_block *alloc_super(struct file_system_type *type) 48 { 49 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 50 static const struct super_operations default_op; 51 52 if (s) { 53 if (security_sb_alloc(s)) { 54 kfree(s); 55 s = NULL; 56 goto out; 57 } 58 #ifdef CONFIG_SMP 59 s->s_files = alloc_percpu(struct list_head); 60 if (!s->s_files) { 61 security_sb_free(s); 62 kfree(s); 63 s = NULL; 64 goto out; 65 } else { 66 int i; 67 68 for_each_possible_cpu(i) 69 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i)); 70 } 71 #else 72 INIT_LIST_HEAD(&s->s_files); 73 #endif 74 s->s_bdi = &default_backing_dev_info; 75 INIT_LIST_HEAD(&s->s_instances); 76 INIT_HLIST_BL_HEAD(&s->s_anon); 77 INIT_LIST_HEAD(&s->s_inodes); 78 INIT_LIST_HEAD(&s->s_dentry_lru); 79 init_rwsem(&s->s_umount); 80 mutex_init(&s->s_lock); 81 lockdep_set_class(&s->s_umount, &type->s_umount_key); 82 /* 83 * The locking rules for s_lock are up to the 84 * filesystem. For example ext3fs has different 85 * lock ordering than usbfs: 86 */ 87 lockdep_set_class(&s->s_lock, &type->s_lock_key); 88 /* 89 * sget() can have s_umount recursion. 90 * 91 * When it cannot find a suitable sb, it allocates a new 92 * one (this one), and tries again to find a suitable old 93 * one. 94 * 95 * In case that succeeds, it will acquire the s_umount 96 * lock of the old one. Since these are clearly distrinct 97 * locks, and this object isn't exposed yet, there's no 98 * risk of deadlocks. 99 * 100 * Annotate this by putting this lock in a different 101 * subclass. 102 */ 103 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 104 s->s_count = 1; 105 atomic_set(&s->s_active, 1); 106 mutex_init(&s->s_vfs_rename_mutex); 107 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 108 mutex_init(&s->s_dquot.dqio_mutex); 109 mutex_init(&s->s_dquot.dqonoff_mutex); 110 init_rwsem(&s->s_dquot.dqptr_sem); 111 init_waitqueue_head(&s->s_wait_unfrozen); 112 s->s_maxbytes = MAX_NON_LFS; 113 s->s_op = &default_op; 114 s->s_time_gran = 1000000000; 115 } 116 out: 117 return s; 118 } 119 120 /** 121 * destroy_super - frees a superblock 122 * @s: superblock to free 123 * 124 * Frees a superblock. 125 */ 126 static inline void destroy_super(struct super_block *s) 127 { 128 #ifdef CONFIG_SMP 129 free_percpu(s->s_files); 130 #endif 131 security_sb_free(s); 132 kfree(s->s_subtype); 133 kfree(s->s_options); 134 kfree(s); 135 } 136 137 /* Superblock refcounting */ 138 139 /* 140 * Drop a superblock's refcount. The caller must hold sb_lock. 141 */ 142 void __put_super(struct super_block *sb) 143 { 144 if (!--sb->s_count) { 145 list_del_init(&sb->s_list); 146 destroy_super(sb); 147 } 148 } 149 150 /** 151 * put_super - drop a temporary reference to superblock 152 * @sb: superblock in question 153 * 154 * Drops a temporary reference, frees superblock if there's no 155 * references left. 156 */ 157 void put_super(struct super_block *sb) 158 { 159 spin_lock(&sb_lock); 160 __put_super(sb); 161 spin_unlock(&sb_lock); 162 } 163 164 165 /** 166 * deactivate_locked_super - drop an active reference to superblock 167 * @s: superblock to deactivate 168 * 169 * Drops an active reference to superblock, converting it into a temprory 170 * one if there is no other active references left. In that case we 171 * tell fs driver to shut it down and drop the temporary reference we 172 * had just acquired. 173 * 174 * Caller holds exclusive lock on superblock; that lock is released. 175 */ 176 void deactivate_locked_super(struct super_block *s) 177 { 178 struct file_system_type *fs = s->s_type; 179 if (atomic_dec_and_test(&s->s_active)) { 180 fs->kill_sb(s); 181 /* 182 * We need to call rcu_barrier so all the delayed rcu free 183 * inodes are flushed before we release the fs module. 184 */ 185 rcu_barrier(); 186 put_filesystem(fs); 187 put_super(s); 188 } else { 189 up_write(&s->s_umount); 190 } 191 } 192 193 EXPORT_SYMBOL(deactivate_locked_super); 194 195 /** 196 * deactivate_super - drop an active reference to superblock 197 * @s: superblock to deactivate 198 * 199 * Variant of deactivate_locked_super(), except that superblock is *not* 200 * locked by caller. If we are going to drop the final active reference, 201 * lock will be acquired prior to that. 202 */ 203 void deactivate_super(struct super_block *s) 204 { 205 if (!atomic_add_unless(&s->s_active, -1, 1)) { 206 down_write(&s->s_umount); 207 deactivate_locked_super(s); 208 } 209 } 210 211 EXPORT_SYMBOL(deactivate_super); 212 213 /** 214 * grab_super - acquire an active reference 215 * @s: reference we are trying to make active 216 * 217 * Tries to acquire an active reference. grab_super() is used when we 218 * had just found a superblock in super_blocks or fs_type->fs_supers 219 * and want to turn it into a full-blown active reference. grab_super() 220 * is called with sb_lock held and drops it. Returns 1 in case of 221 * success, 0 if we had failed (superblock contents was already dead or 222 * dying when grab_super() had been called). 223 */ 224 static int grab_super(struct super_block *s) __releases(sb_lock) 225 { 226 if (atomic_inc_not_zero(&s->s_active)) { 227 spin_unlock(&sb_lock); 228 return 1; 229 } 230 /* it's going away */ 231 s->s_count++; 232 spin_unlock(&sb_lock); 233 /* wait for it to die */ 234 down_write(&s->s_umount); 235 up_write(&s->s_umount); 236 put_super(s); 237 return 0; 238 } 239 240 /* 241 * Superblock locking. We really ought to get rid of these two. 242 */ 243 void lock_super(struct super_block * sb) 244 { 245 get_fs_excl(); 246 mutex_lock(&sb->s_lock); 247 } 248 249 void unlock_super(struct super_block * sb) 250 { 251 put_fs_excl(); 252 mutex_unlock(&sb->s_lock); 253 } 254 255 EXPORT_SYMBOL(lock_super); 256 EXPORT_SYMBOL(unlock_super); 257 258 /** 259 * generic_shutdown_super - common helper for ->kill_sb() 260 * @sb: superblock to kill 261 * 262 * generic_shutdown_super() does all fs-independent work on superblock 263 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 264 * that need destruction out of superblock, call generic_shutdown_super() 265 * and release aforementioned objects. Note: dentries and inodes _are_ 266 * taken care of and do not need specific handling. 267 * 268 * Upon calling this function, the filesystem may no longer alter or 269 * rearrange the set of dentries belonging to this super_block, nor may it 270 * change the attachments of dentries to inodes. 271 */ 272 void generic_shutdown_super(struct super_block *sb) 273 { 274 const struct super_operations *sop = sb->s_op; 275 276 277 if (sb->s_root) { 278 shrink_dcache_for_umount(sb); 279 sync_filesystem(sb); 280 get_fs_excl(); 281 sb->s_flags &= ~MS_ACTIVE; 282 283 fsnotify_unmount_inodes(&sb->s_inodes); 284 285 evict_inodes(sb); 286 287 if (sop->put_super) 288 sop->put_super(sb); 289 290 if (!list_empty(&sb->s_inodes)) { 291 printk("VFS: Busy inodes after unmount of %s. " 292 "Self-destruct in 5 seconds. Have a nice day...\n", 293 sb->s_id); 294 } 295 put_fs_excl(); 296 } 297 spin_lock(&sb_lock); 298 /* should be initialized for __put_super_and_need_restart() */ 299 list_del_init(&sb->s_instances); 300 spin_unlock(&sb_lock); 301 up_write(&sb->s_umount); 302 } 303 304 EXPORT_SYMBOL(generic_shutdown_super); 305 306 /** 307 * sget - find or create a superblock 308 * @type: filesystem type superblock should belong to 309 * @test: comparison callback 310 * @set: setup callback 311 * @data: argument to each of them 312 */ 313 struct super_block *sget(struct file_system_type *type, 314 int (*test)(struct super_block *,void *), 315 int (*set)(struct super_block *,void *), 316 void *data) 317 { 318 struct super_block *s = NULL; 319 struct super_block *old; 320 int err; 321 322 retry: 323 spin_lock(&sb_lock); 324 if (test) { 325 list_for_each_entry(old, &type->fs_supers, s_instances) { 326 if (!test(old, data)) 327 continue; 328 if (!grab_super(old)) 329 goto retry; 330 if (s) { 331 up_write(&s->s_umount); 332 destroy_super(s); 333 s = NULL; 334 } 335 down_write(&old->s_umount); 336 if (unlikely(!(old->s_flags & MS_BORN))) { 337 deactivate_locked_super(old); 338 goto retry; 339 } 340 return old; 341 } 342 } 343 if (!s) { 344 spin_unlock(&sb_lock); 345 s = alloc_super(type); 346 if (!s) 347 return ERR_PTR(-ENOMEM); 348 goto retry; 349 } 350 351 err = set(s, data); 352 if (err) { 353 spin_unlock(&sb_lock); 354 up_write(&s->s_umount); 355 destroy_super(s); 356 return ERR_PTR(err); 357 } 358 s->s_type = type; 359 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 360 list_add_tail(&s->s_list, &super_blocks); 361 list_add(&s->s_instances, &type->fs_supers); 362 spin_unlock(&sb_lock); 363 get_filesystem(type); 364 return s; 365 } 366 367 EXPORT_SYMBOL(sget); 368 369 void drop_super(struct super_block *sb) 370 { 371 up_read(&sb->s_umount); 372 put_super(sb); 373 } 374 375 EXPORT_SYMBOL(drop_super); 376 377 /** 378 * sync_supers - helper for periodic superblock writeback 379 * 380 * Call the write_super method if present on all dirty superblocks in 381 * the system. This is for the periodic writeback used by most older 382 * filesystems. For data integrity superblock writeback use 383 * sync_filesystems() instead. 384 * 385 * Note: check the dirty flag before waiting, so we don't 386 * hold up the sync while mounting a device. (The newly 387 * mounted device won't need syncing.) 388 */ 389 void sync_supers(void) 390 { 391 struct super_block *sb, *p = NULL; 392 393 spin_lock(&sb_lock); 394 list_for_each_entry(sb, &super_blocks, s_list) { 395 if (list_empty(&sb->s_instances)) 396 continue; 397 if (sb->s_op->write_super && sb->s_dirt) { 398 sb->s_count++; 399 spin_unlock(&sb_lock); 400 401 down_read(&sb->s_umount); 402 if (sb->s_root && sb->s_dirt) 403 sb->s_op->write_super(sb); 404 up_read(&sb->s_umount); 405 406 spin_lock(&sb_lock); 407 if (p) 408 __put_super(p); 409 p = sb; 410 } 411 } 412 if (p) 413 __put_super(p); 414 spin_unlock(&sb_lock); 415 } 416 417 /** 418 * iterate_supers - call function for all active superblocks 419 * @f: function to call 420 * @arg: argument to pass to it 421 * 422 * Scans the superblock list and calls given function, passing it 423 * locked superblock and given argument. 424 */ 425 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 426 { 427 struct super_block *sb, *p = NULL; 428 429 spin_lock(&sb_lock); 430 list_for_each_entry(sb, &super_blocks, s_list) { 431 if (list_empty(&sb->s_instances)) 432 continue; 433 sb->s_count++; 434 spin_unlock(&sb_lock); 435 436 down_read(&sb->s_umount); 437 if (sb->s_root) 438 f(sb, arg); 439 up_read(&sb->s_umount); 440 441 spin_lock(&sb_lock); 442 if (p) 443 __put_super(p); 444 p = sb; 445 } 446 if (p) 447 __put_super(p); 448 spin_unlock(&sb_lock); 449 } 450 451 /** 452 * get_super - get the superblock of a device 453 * @bdev: device to get the superblock for 454 * 455 * Scans the superblock list and finds the superblock of the file system 456 * mounted on the device given. %NULL is returned if no match is found. 457 */ 458 459 struct super_block *get_super(struct block_device *bdev) 460 { 461 struct super_block *sb; 462 463 if (!bdev) 464 return NULL; 465 466 spin_lock(&sb_lock); 467 rescan: 468 list_for_each_entry(sb, &super_blocks, s_list) { 469 if (list_empty(&sb->s_instances)) 470 continue; 471 if (sb->s_bdev == bdev) { 472 sb->s_count++; 473 spin_unlock(&sb_lock); 474 down_read(&sb->s_umount); 475 /* still alive? */ 476 if (sb->s_root) 477 return sb; 478 up_read(&sb->s_umount); 479 /* nope, got unmounted */ 480 spin_lock(&sb_lock); 481 __put_super(sb); 482 goto rescan; 483 } 484 } 485 spin_unlock(&sb_lock); 486 return NULL; 487 } 488 489 EXPORT_SYMBOL(get_super); 490 491 /** 492 * get_active_super - get an active reference to the superblock of a device 493 * @bdev: device to get the superblock for 494 * 495 * Scans the superblock list and finds the superblock of the file system 496 * mounted on the device given. Returns the superblock with an active 497 * reference or %NULL if none was found. 498 */ 499 struct super_block *get_active_super(struct block_device *bdev) 500 { 501 struct super_block *sb; 502 503 if (!bdev) 504 return NULL; 505 506 restart: 507 spin_lock(&sb_lock); 508 list_for_each_entry(sb, &super_blocks, s_list) { 509 if (list_empty(&sb->s_instances)) 510 continue; 511 if (sb->s_bdev == bdev) { 512 if (grab_super(sb)) /* drops sb_lock */ 513 return sb; 514 else 515 goto restart; 516 } 517 } 518 spin_unlock(&sb_lock); 519 return NULL; 520 } 521 522 struct super_block *user_get_super(dev_t dev) 523 { 524 struct super_block *sb; 525 526 spin_lock(&sb_lock); 527 rescan: 528 list_for_each_entry(sb, &super_blocks, s_list) { 529 if (list_empty(&sb->s_instances)) 530 continue; 531 if (sb->s_dev == dev) { 532 sb->s_count++; 533 spin_unlock(&sb_lock); 534 down_read(&sb->s_umount); 535 /* still alive? */ 536 if (sb->s_root) 537 return sb; 538 up_read(&sb->s_umount); 539 /* nope, got unmounted */ 540 spin_lock(&sb_lock); 541 __put_super(sb); 542 goto rescan; 543 } 544 } 545 spin_unlock(&sb_lock); 546 return NULL; 547 } 548 549 /** 550 * do_remount_sb - asks filesystem to change mount options. 551 * @sb: superblock in question 552 * @flags: numeric part of options 553 * @data: the rest of options 554 * @force: whether or not to force the change 555 * 556 * Alters the mount options of a mounted file system. 557 */ 558 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 559 { 560 int retval; 561 int remount_ro; 562 563 if (sb->s_frozen != SB_UNFROZEN) 564 return -EBUSY; 565 566 #ifdef CONFIG_BLOCK 567 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 568 return -EACCES; 569 #endif 570 571 if (flags & MS_RDONLY) 572 acct_auto_close(sb); 573 shrink_dcache_sb(sb); 574 sync_filesystem(sb); 575 576 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 577 578 /* If we are remounting RDONLY and current sb is read/write, 579 make sure there are no rw files opened */ 580 if (remount_ro) { 581 if (force) 582 mark_files_ro(sb); 583 else if (!fs_may_remount_ro(sb)) 584 return -EBUSY; 585 } 586 587 if (sb->s_op->remount_fs) { 588 retval = sb->s_op->remount_fs(sb, &flags, data); 589 if (retval) 590 return retval; 591 } 592 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 593 594 /* 595 * Some filesystems modify their metadata via some other path than the 596 * bdev buffer cache (eg. use a private mapping, or directories in 597 * pagecache, etc). Also file data modifications go via their own 598 * mappings. So If we try to mount readonly then copy the filesystem 599 * from bdev, we could get stale data, so invalidate it to give a best 600 * effort at coherency. 601 */ 602 if (remount_ro && sb->s_bdev) 603 invalidate_bdev(sb->s_bdev); 604 return 0; 605 } 606 607 static void do_emergency_remount(struct work_struct *work) 608 { 609 struct super_block *sb, *p = NULL; 610 611 spin_lock(&sb_lock); 612 list_for_each_entry(sb, &super_blocks, s_list) { 613 if (list_empty(&sb->s_instances)) 614 continue; 615 sb->s_count++; 616 spin_unlock(&sb_lock); 617 down_write(&sb->s_umount); 618 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) { 619 /* 620 * What lock protects sb->s_flags?? 621 */ 622 do_remount_sb(sb, MS_RDONLY, NULL, 1); 623 } 624 up_write(&sb->s_umount); 625 spin_lock(&sb_lock); 626 if (p) 627 __put_super(p); 628 p = sb; 629 } 630 if (p) 631 __put_super(p); 632 spin_unlock(&sb_lock); 633 kfree(work); 634 printk("Emergency Remount complete\n"); 635 } 636 637 void emergency_remount(void) 638 { 639 struct work_struct *work; 640 641 work = kmalloc(sizeof(*work), GFP_ATOMIC); 642 if (work) { 643 INIT_WORK(work, do_emergency_remount); 644 schedule_work(work); 645 } 646 } 647 648 /* 649 * Unnamed block devices are dummy devices used by virtual 650 * filesystems which don't use real block-devices. -- jrs 651 */ 652 653 static DEFINE_IDA(unnamed_dev_ida); 654 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 655 static int unnamed_dev_start = 0; /* don't bother trying below it */ 656 657 int set_anon_super(struct super_block *s, void *data) 658 { 659 int dev; 660 int error; 661 662 retry: 663 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 664 return -ENOMEM; 665 spin_lock(&unnamed_dev_lock); 666 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 667 if (!error) 668 unnamed_dev_start = dev + 1; 669 spin_unlock(&unnamed_dev_lock); 670 if (error == -EAGAIN) 671 /* We raced and lost with another CPU. */ 672 goto retry; 673 else if (error) 674 return -EAGAIN; 675 676 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) { 677 spin_lock(&unnamed_dev_lock); 678 ida_remove(&unnamed_dev_ida, dev); 679 if (unnamed_dev_start > dev) 680 unnamed_dev_start = dev; 681 spin_unlock(&unnamed_dev_lock); 682 return -EMFILE; 683 } 684 s->s_dev = MKDEV(0, dev & MINORMASK); 685 s->s_bdi = &noop_backing_dev_info; 686 return 0; 687 } 688 689 EXPORT_SYMBOL(set_anon_super); 690 691 void kill_anon_super(struct super_block *sb) 692 { 693 int slot = MINOR(sb->s_dev); 694 695 generic_shutdown_super(sb); 696 spin_lock(&unnamed_dev_lock); 697 ida_remove(&unnamed_dev_ida, slot); 698 if (slot < unnamed_dev_start) 699 unnamed_dev_start = slot; 700 spin_unlock(&unnamed_dev_lock); 701 } 702 703 EXPORT_SYMBOL(kill_anon_super); 704 705 void kill_litter_super(struct super_block *sb) 706 { 707 if (sb->s_root) 708 d_genocide(sb->s_root); 709 kill_anon_super(sb); 710 } 711 712 EXPORT_SYMBOL(kill_litter_super); 713 714 static int ns_test_super(struct super_block *sb, void *data) 715 { 716 return sb->s_fs_info == data; 717 } 718 719 static int ns_set_super(struct super_block *sb, void *data) 720 { 721 sb->s_fs_info = data; 722 return set_anon_super(sb, NULL); 723 } 724 725 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 726 void *data, int (*fill_super)(struct super_block *, void *, int)) 727 { 728 struct super_block *sb; 729 730 sb = sget(fs_type, ns_test_super, ns_set_super, data); 731 if (IS_ERR(sb)) 732 return ERR_CAST(sb); 733 734 if (!sb->s_root) { 735 int err; 736 sb->s_flags = flags; 737 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 738 if (err) { 739 deactivate_locked_super(sb); 740 return ERR_PTR(err); 741 } 742 743 sb->s_flags |= MS_ACTIVE; 744 } 745 746 return dget(sb->s_root); 747 } 748 749 EXPORT_SYMBOL(mount_ns); 750 751 #ifdef CONFIG_BLOCK 752 static int set_bdev_super(struct super_block *s, void *data) 753 { 754 s->s_bdev = data; 755 s->s_dev = s->s_bdev->bd_dev; 756 757 /* 758 * We set the bdi here to the queue backing, file systems can 759 * overwrite this in ->fill_super() 760 */ 761 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 762 return 0; 763 } 764 765 static int test_bdev_super(struct super_block *s, void *data) 766 { 767 return (void *)s->s_bdev == data; 768 } 769 770 struct dentry *mount_bdev(struct file_system_type *fs_type, 771 int flags, const char *dev_name, void *data, 772 int (*fill_super)(struct super_block *, void *, int)) 773 { 774 struct block_device *bdev; 775 struct super_block *s; 776 fmode_t mode = FMODE_READ | FMODE_EXCL; 777 int error = 0; 778 779 if (!(flags & MS_RDONLY)) 780 mode |= FMODE_WRITE; 781 782 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 783 if (IS_ERR(bdev)) 784 return ERR_CAST(bdev); 785 786 /* 787 * once the super is inserted into the list by sget, s_umount 788 * will protect the lockfs code from trying to start a snapshot 789 * while we are mounting 790 */ 791 mutex_lock(&bdev->bd_fsfreeze_mutex); 792 if (bdev->bd_fsfreeze_count > 0) { 793 mutex_unlock(&bdev->bd_fsfreeze_mutex); 794 error = -EBUSY; 795 goto error_bdev; 796 } 797 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev); 798 mutex_unlock(&bdev->bd_fsfreeze_mutex); 799 if (IS_ERR(s)) 800 goto error_s; 801 802 if (s->s_root) { 803 if ((flags ^ s->s_flags) & MS_RDONLY) { 804 deactivate_locked_super(s); 805 error = -EBUSY; 806 goto error_bdev; 807 } 808 809 /* 810 * s_umount nests inside bd_mutex during 811 * __invalidate_device(). blkdev_put() acquires 812 * bd_mutex and can't be called under s_umount. Drop 813 * s_umount temporarily. This is safe as we're 814 * holding an active reference. 815 */ 816 up_write(&s->s_umount); 817 blkdev_put(bdev, mode); 818 down_write(&s->s_umount); 819 } else { 820 char b[BDEVNAME_SIZE]; 821 822 s->s_flags = flags; 823 s->s_mode = mode; 824 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 825 sb_set_blocksize(s, block_size(bdev)); 826 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 827 if (error) { 828 deactivate_locked_super(s); 829 goto error; 830 } 831 832 s->s_flags |= MS_ACTIVE; 833 bdev->bd_super = s; 834 } 835 836 return dget(s->s_root); 837 838 error_s: 839 error = PTR_ERR(s); 840 error_bdev: 841 blkdev_put(bdev, mode); 842 error: 843 return ERR_PTR(error); 844 } 845 EXPORT_SYMBOL(mount_bdev); 846 847 void kill_block_super(struct super_block *sb) 848 { 849 struct block_device *bdev = sb->s_bdev; 850 fmode_t mode = sb->s_mode; 851 852 bdev->bd_super = NULL; 853 generic_shutdown_super(sb); 854 sync_blockdev(bdev); 855 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 856 blkdev_put(bdev, mode | FMODE_EXCL); 857 } 858 859 EXPORT_SYMBOL(kill_block_super); 860 #endif 861 862 struct dentry *mount_nodev(struct file_system_type *fs_type, 863 int flags, void *data, 864 int (*fill_super)(struct super_block *, void *, int)) 865 { 866 int error; 867 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 868 869 if (IS_ERR(s)) 870 return ERR_CAST(s); 871 872 s->s_flags = flags; 873 874 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 875 if (error) { 876 deactivate_locked_super(s); 877 return ERR_PTR(error); 878 } 879 s->s_flags |= MS_ACTIVE; 880 return dget(s->s_root); 881 } 882 EXPORT_SYMBOL(mount_nodev); 883 884 static int compare_single(struct super_block *s, void *p) 885 { 886 return 1; 887 } 888 889 struct dentry *mount_single(struct file_system_type *fs_type, 890 int flags, void *data, 891 int (*fill_super)(struct super_block *, void *, int)) 892 { 893 struct super_block *s; 894 int error; 895 896 s = sget(fs_type, compare_single, set_anon_super, NULL); 897 if (IS_ERR(s)) 898 return ERR_CAST(s); 899 if (!s->s_root) { 900 s->s_flags = flags; 901 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 902 if (error) { 903 deactivate_locked_super(s); 904 return ERR_PTR(error); 905 } 906 s->s_flags |= MS_ACTIVE; 907 } else { 908 do_remount_sb(s, flags, data, 0); 909 } 910 return dget(s->s_root); 911 } 912 EXPORT_SYMBOL(mount_single); 913 914 struct dentry * 915 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 916 { 917 struct dentry *root; 918 struct super_block *sb; 919 char *secdata = NULL; 920 int error = -ENOMEM; 921 922 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 923 secdata = alloc_secdata(); 924 if (!secdata) 925 goto out; 926 927 error = security_sb_copy_data(data, secdata); 928 if (error) 929 goto out_free_secdata; 930 } 931 932 root = type->mount(type, flags, name, data); 933 if (IS_ERR(root)) { 934 error = PTR_ERR(root); 935 goto out_free_secdata; 936 } 937 sb = root->d_sb; 938 BUG_ON(!sb); 939 WARN_ON(!sb->s_bdi); 940 WARN_ON(sb->s_bdi == &default_backing_dev_info); 941 sb->s_flags |= MS_BORN; 942 943 error = security_sb_kern_mount(sb, flags, secdata); 944 if (error) 945 goto out_sb; 946 947 /* 948 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 949 * but s_maxbytes was an unsigned long long for many releases. Throw 950 * this warning for a little while to try and catch filesystems that 951 * violate this rule. This warning should be either removed or 952 * converted to a BUG() in 2.6.34. 953 */ 954 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 955 "negative value (%lld)\n", type->name, sb->s_maxbytes); 956 957 up_write(&sb->s_umount); 958 free_secdata(secdata); 959 return root; 960 out_sb: 961 dput(root); 962 deactivate_locked_super(sb); 963 out_free_secdata: 964 free_secdata(secdata); 965 out: 966 return ERR_PTR(error); 967 } 968 969 /** 970 * freeze_super - lock the filesystem and force it into a consistent state 971 * @sb: the super to lock 972 * 973 * Syncs the super to make sure the filesystem is consistent and calls the fs's 974 * freeze_fs. Subsequent calls to this without first thawing the fs will return 975 * -EBUSY. 976 */ 977 int freeze_super(struct super_block *sb) 978 { 979 int ret; 980 981 atomic_inc(&sb->s_active); 982 down_write(&sb->s_umount); 983 if (sb->s_frozen) { 984 deactivate_locked_super(sb); 985 return -EBUSY; 986 } 987 988 if (sb->s_flags & MS_RDONLY) { 989 sb->s_frozen = SB_FREEZE_TRANS; 990 smp_wmb(); 991 up_write(&sb->s_umount); 992 return 0; 993 } 994 995 sb->s_frozen = SB_FREEZE_WRITE; 996 smp_wmb(); 997 998 sync_filesystem(sb); 999 1000 sb->s_frozen = SB_FREEZE_TRANS; 1001 smp_wmb(); 1002 1003 sync_blockdev(sb->s_bdev); 1004 if (sb->s_op->freeze_fs) { 1005 ret = sb->s_op->freeze_fs(sb); 1006 if (ret) { 1007 printk(KERN_ERR 1008 "VFS:Filesystem freeze failed\n"); 1009 sb->s_frozen = SB_UNFROZEN; 1010 deactivate_locked_super(sb); 1011 return ret; 1012 } 1013 } 1014 up_write(&sb->s_umount); 1015 return 0; 1016 } 1017 EXPORT_SYMBOL(freeze_super); 1018 1019 /** 1020 * thaw_super -- unlock filesystem 1021 * @sb: the super to thaw 1022 * 1023 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1024 */ 1025 int thaw_super(struct super_block *sb) 1026 { 1027 int error; 1028 1029 down_write(&sb->s_umount); 1030 if (sb->s_frozen == SB_UNFROZEN) { 1031 up_write(&sb->s_umount); 1032 return -EINVAL; 1033 } 1034 1035 if (sb->s_flags & MS_RDONLY) 1036 goto out; 1037 1038 if (sb->s_op->unfreeze_fs) { 1039 error = sb->s_op->unfreeze_fs(sb); 1040 if (error) { 1041 printk(KERN_ERR 1042 "VFS:Filesystem thaw failed\n"); 1043 sb->s_frozen = SB_FREEZE_TRANS; 1044 up_write(&sb->s_umount); 1045 return error; 1046 } 1047 } 1048 1049 out: 1050 sb->s_frozen = SB_UNFROZEN; 1051 smp_wmb(); 1052 wake_up(&sb->s_wait_unfrozen); 1053 deactivate_locked_super(sb); 1054 1055 return 0; 1056 } 1057 EXPORT_SYMBOL(thaw_super); 1058