xref: /linux/fs/super.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h>		/* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37 
38 
39 static LIST_HEAD(super_blocks);
40 static DEFINE_SPINLOCK(sb_lock);
41 
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 	"sb_writers",
44 	"sb_pagefaults",
45 	"sb_internal",
46 };
47 
48 /*
49  * One thing we have to be careful of with a per-sb shrinker is that we don't
50  * drop the last active reference to the superblock from within the shrinker.
51  * If that happens we could trigger unregistering the shrinker from within the
52  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53  * take a passive reference to the superblock to avoid this from occurring.
54  */
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 				      struct shrink_control *sc)
57 {
58 	struct super_block *sb;
59 	long	fs_objects = 0;
60 	long	total_objects;
61 	long	freed = 0;
62 	long	dentries;
63 	long	inodes;
64 
65 	sb = container_of(shrink, struct super_block, s_shrink);
66 
67 	/*
68 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
69 	 * to recurse into the FS that called us in clear_inode() and friends..
70 	 */
71 	if (!(sc->gfp_mask & __GFP_FS))
72 		return SHRINK_STOP;
73 
74 	if (!trylock_super(sb))
75 		return SHRINK_STOP;
76 
77 	if (sb->s_op->nr_cached_objects)
78 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
79 
80 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
81 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
82 	total_objects = dentries + inodes + fs_objects + 1;
83 	if (!total_objects)
84 		total_objects = 1;
85 
86 	/* proportion the scan between the caches */
87 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
90 
91 	/*
92 	 * prune the dcache first as the icache is pinned by it, then
93 	 * prune the icache, followed by the filesystem specific caches
94 	 *
95 	 * Ensure that we always scan at least one object - memcg kmem
96 	 * accounting uses this to fully empty the caches.
97 	 */
98 	sc->nr_to_scan = dentries + 1;
99 	freed = prune_dcache_sb(sb, sc);
100 	sc->nr_to_scan = inodes + 1;
101 	freed += prune_icache_sb(sb, sc);
102 
103 	if (fs_objects) {
104 		sc->nr_to_scan = fs_objects + 1;
105 		freed += sb->s_op->free_cached_objects(sb, sc);
106 	}
107 
108 	up_read(&sb->s_umount);
109 	return freed;
110 }
111 
112 static unsigned long super_cache_count(struct shrinker *shrink,
113 				       struct shrink_control *sc)
114 {
115 	struct super_block *sb;
116 	long	total_objects = 0;
117 
118 	sb = container_of(shrink, struct super_block, s_shrink);
119 
120 	/*
121 	 * Don't call trylock_super as it is a potential
122 	 * scalability bottleneck. The counts could get updated
123 	 * between super_cache_count and super_cache_scan anyway.
124 	 * Call to super_cache_count with shrinker_rwsem held
125 	 * ensures the safety of call to list_lru_shrink_count() and
126 	 * s_op->nr_cached_objects().
127 	 */
128 	if (sb->s_op && sb->s_op->nr_cached_objects)
129 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
130 
131 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
132 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
133 
134 	total_objects = vfs_pressure_ratio(total_objects);
135 	return total_objects;
136 }
137 
138 /**
139  *	destroy_super	-	frees a superblock
140  *	@s: superblock to free
141  *
142  *	Frees a superblock.
143  */
144 static void destroy_super(struct super_block *s)
145 {
146 	int i;
147 	list_lru_destroy(&s->s_dentry_lru);
148 	list_lru_destroy(&s->s_inode_lru);
149 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
150 		percpu_counter_destroy(&s->s_writers.counter[i]);
151 	security_sb_free(s);
152 	WARN_ON(!list_empty(&s->s_mounts));
153 	kfree(s->s_subtype);
154 	kfree(s->s_options);
155 	kfree_rcu(s, rcu);
156 }
157 
158 /**
159  *	alloc_super	-	create new superblock
160  *	@type:	filesystem type superblock should belong to
161  *	@flags: the mount flags
162  *
163  *	Allocates and initializes a new &struct super_block.  alloc_super()
164  *	returns a pointer new superblock or %NULL if allocation had failed.
165  */
166 static struct super_block *alloc_super(struct file_system_type *type, int flags)
167 {
168 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
169 	static const struct super_operations default_op;
170 	int i;
171 
172 	if (!s)
173 		return NULL;
174 
175 	INIT_LIST_HEAD(&s->s_mounts);
176 
177 	if (security_sb_alloc(s))
178 		goto fail;
179 
180 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
181 		if (percpu_counter_init(&s->s_writers.counter[i], 0,
182 					GFP_KERNEL) < 0)
183 			goto fail;
184 		lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
185 				 &type->s_writers_key[i], 0);
186 	}
187 	init_waitqueue_head(&s->s_writers.wait);
188 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
189 	s->s_bdi = &noop_backing_dev_info;
190 	s->s_flags = flags;
191 	INIT_HLIST_NODE(&s->s_instances);
192 	INIT_HLIST_BL_HEAD(&s->s_anon);
193 	INIT_LIST_HEAD(&s->s_inodes);
194 
195 	if (list_lru_init_memcg(&s->s_dentry_lru))
196 		goto fail;
197 	if (list_lru_init_memcg(&s->s_inode_lru))
198 		goto fail;
199 
200 	init_rwsem(&s->s_umount);
201 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
202 	/*
203 	 * sget() can have s_umount recursion.
204 	 *
205 	 * When it cannot find a suitable sb, it allocates a new
206 	 * one (this one), and tries again to find a suitable old
207 	 * one.
208 	 *
209 	 * In case that succeeds, it will acquire the s_umount
210 	 * lock of the old one. Since these are clearly distrinct
211 	 * locks, and this object isn't exposed yet, there's no
212 	 * risk of deadlocks.
213 	 *
214 	 * Annotate this by putting this lock in a different
215 	 * subclass.
216 	 */
217 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
218 	s->s_count = 1;
219 	atomic_set(&s->s_active, 1);
220 	mutex_init(&s->s_vfs_rename_mutex);
221 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
222 	mutex_init(&s->s_dquot.dqio_mutex);
223 	mutex_init(&s->s_dquot.dqonoff_mutex);
224 	s->s_maxbytes = MAX_NON_LFS;
225 	s->s_op = &default_op;
226 	s->s_time_gran = 1000000000;
227 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
228 
229 	s->s_shrink.seeks = DEFAULT_SEEKS;
230 	s->s_shrink.scan_objects = super_cache_scan;
231 	s->s_shrink.count_objects = super_cache_count;
232 	s->s_shrink.batch = 1024;
233 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
234 	return s;
235 
236 fail:
237 	destroy_super(s);
238 	return NULL;
239 }
240 
241 /* Superblock refcounting  */
242 
243 /*
244  * Drop a superblock's refcount.  The caller must hold sb_lock.
245  */
246 static void __put_super(struct super_block *sb)
247 {
248 	if (!--sb->s_count) {
249 		list_del_init(&sb->s_list);
250 		destroy_super(sb);
251 	}
252 }
253 
254 /**
255  *	put_super	-	drop a temporary reference to superblock
256  *	@sb: superblock in question
257  *
258  *	Drops a temporary reference, frees superblock if there's no
259  *	references left.
260  */
261 static void put_super(struct super_block *sb)
262 {
263 	spin_lock(&sb_lock);
264 	__put_super(sb);
265 	spin_unlock(&sb_lock);
266 }
267 
268 
269 /**
270  *	deactivate_locked_super	-	drop an active reference to superblock
271  *	@s: superblock to deactivate
272  *
273  *	Drops an active reference to superblock, converting it into a temprory
274  *	one if there is no other active references left.  In that case we
275  *	tell fs driver to shut it down and drop the temporary reference we
276  *	had just acquired.
277  *
278  *	Caller holds exclusive lock on superblock; that lock is released.
279  */
280 void deactivate_locked_super(struct super_block *s)
281 {
282 	struct file_system_type *fs = s->s_type;
283 	if (atomic_dec_and_test(&s->s_active)) {
284 		cleancache_invalidate_fs(s);
285 		unregister_shrinker(&s->s_shrink);
286 		fs->kill_sb(s);
287 
288 		/*
289 		 * Since list_lru_destroy() may sleep, we cannot call it from
290 		 * put_super(), where we hold the sb_lock. Therefore we destroy
291 		 * the lru lists right now.
292 		 */
293 		list_lru_destroy(&s->s_dentry_lru);
294 		list_lru_destroy(&s->s_inode_lru);
295 
296 		put_filesystem(fs);
297 		put_super(s);
298 	} else {
299 		up_write(&s->s_umount);
300 	}
301 }
302 
303 EXPORT_SYMBOL(deactivate_locked_super);
304 
305 /**
306  *	deactivate_super	-	drop an active reference to superblock
307  *	@s: superblock to deactivate
308  *
309  *	Variant of deactivate_locked_super(), except that superblock is *not*
310  *	locked by caller.  If we are going to drop the final active reference,
311  *	lock will be acquired prior to that.
312  */
313 void deactivate_super(struct super_block *s)
314 {
315         if (!atomic_add_unless(&s->s_active, -1, 1)) {
316 		down_write(&s->s_umount);
317 		deactivate_locked_super(s);
318 	}
319 }
320 
321 EXPORT_SYMBOL(deactivate_super);
322 
323 /**
324  *	grab_super - acquire an active reference
325  *	@s: reference we are trying to make active
326  *
327  *	Tries to acquire an active reference.  grab_super() is used when we
328  * 	had just found a superblock in super_blocks or fs_type->fs_supers
329  *	and want to turn it into a full-blown active reference.  grab_super()
330  *	is called with sb_lock held and drops it.  Returns 1 in case of
331  *	success, 0 if we had failed (superblock contents was already dead or
332  *	dying when grab_super() had been called).  Note that this is only
333  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
334  *	of their type), so increment of ->s_count is OK here.
335  */
336 static int grab_super(struct super_block *s) __releases(sb_lock)
337 {
338 	s->s_count++;
339 	spin_unlock(&sb_lock);
340 	down_write(&s->s_umount);
341 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
342 		put_super(s);
343 		return 1;
344 	}
345 	up_write(&s->s_umount);
346 	put_super(s);
347 	return 0;
348 }
349 
350 /*
351  *	trylock_super - try to grab ->s_umount shared
352  *	@sb: reference we are trying to grab
353  *
354  *	Try to prevent fs shutdown.  This is used in places where we
355  *	cannot take an active reference but we need to ensure that the
356  *	filesystem is not shut down while we are working on it. It returns
357  *	false if we cannot acquire s_umount or if we lose the race and
358  *	filesystem already got into shutdown, and returns true with the s_umount
359  *	lock held in read mode in case of success. On successful return,
360  *	the caller must drop the s_umount lock when done.
361  *
362  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
363  *	The reason why it's safe is that we are OK with doing trylock instead
364  *	of down_read().  There's a couple of places that are OK with that, but
365  *	it's very much not a general-purpose interface.
366  */
367 bool trylock_super(struct super_block *sb)
368 {
369 	if (down_read_trylock(&sb->s_umount)) {
370 		if (!hlist_unhashed(&sb->s_instances) &&
371 		    sb->s_root && (sb->s_flags & MS_BORN))
372 			return true;
373 		up_read(&sb->s_umount);
374 	}
375 
376 	return false;
377 }
378 
379 /**
380  *	generic_shutdown_super	-	common helper for ->kill_sb()
381  *	@sb: superblock to kill
382  *
383  *	generic_shutdown_super() does all fs-independent work on superblock
384  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
385  *	that need destruction out of superblock, call generic_shutdown_super()
386  *	and release aforementioned objects.  Note: dentries and inodes _are_
387  *	taken care of and do not need specific handling.
388  *
389  *	Upon calling this function, the filesystem may no longer alter or
390  *	rearrange the set of dentries belonging to this super_block, nor may it
391  *	change the attachments of dentries to inodes.
392  */
393 void generic_shutdown_super(struct super_block *sb)
394 {
395 	const struct super_operations *sop = sb->s_op;
396 
397 	if (sb->s_root) {
398 		shrink_dcache_for_umount(sb);
399 		sync_filesystem(sb);
400 		sb->s_flags &= ~MS_ACTIVE;
401 
402 		fsnotify_unmount_inodes(&sb->s_inodes);
403 
404 		evict_inodes(sb);
405 
406 		if (sb->s_dio_done_wq) {
407 			destroy_workqueue(sb->s_dio_done_wq);
408 			sb->s_dio_done_wq = NULL;
409 		}
410 
411 		if (sop->put_super)
412 			sop->put_super(sb);
413 
414 		if (!list_empty(&sb->s_inodes)) {
415 			printk("VFS: Busy inodes after unmount of %s. "
416 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
417 			   sb->s_id);
418 		}
419 	}
420 	spin_lock(&sb_lock);
421 	/* should be initialized for __put_super_and_need_restart() */
422 	hlist_del_init(&sb->s_instances);
423 	spin_unlock(&sb_lock);
424 	up_write(&sb->s_umount);
425 }
426 
427 EXPORT_SYMBOL(generic_shutdown_super);
428 
429 /**
430  *	sget	-	find or create a superblock
431  *	@type:	filesystem type superblock should belong to
432  *	@test:	comparison callback
433  *	@set:	setup callback
434  *	@flags:	mount flags
435  *	@data:	argument to each of them
436  */
437 struct super_block *sget(struct file_system_type *type,
438 			int (*test)(struct super_block *,void *),
439 			int (*set)(struct super_block *,void *),
440 			int flags,
441 			void *data)
442 {
443 	struct super_block *s = NULL;
444 	struct super_block *old;
445 	int err;
446 
447 retry:
448 	spin_lock(&sb_lock);
449 	if (test) {
450 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
451 			if (!test(old, data))
452 				continue;
453 			if (!grab_super(old))
454 				goto retry;
455 			if (s) {
456 				up_write(&s->s_umount);
457 				destroy_super(s);
458 				s = NULL;
459 			}
460 			return old;
461 		}
462 	}
463 	if (!s) {
464 		spin_unlock(&sb_lock);
465 		s = alloc_super(type, flags);
466 		if (!s)
467 			return ERR_PTR(-ENOMEM);
468 		goto retry;
469 	}
470 
471 	err = set(s, data);
472 	if (err) {
473 		spin_unlock(&sb_lock);
474 		up_write(&s->s_umount);
475 		destroy_super(s);
476 		return ERR_PTR(err);
477 	}
478 	s->s_type = type;
479 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
480 	list_add_tail(&s->s_list, &super_blocks);
481 	hlist_add_head(&s->s_instances, &type->fs_supers);
482 	spin_unlock(&sb_lock);
483 	get_filesystem(type);
484 	register_shrinker(&s->s_shrink);
485 	return s;
486 }
487 
488 EXPORT_SYMBOL(sget);
489 
490 void drop_super(struct super_block *sb)
491 {
492 	up_read(&sb->s_umount);
493 	put_super(sb);
494 }
495 
496 EXPORT_SYMBOL(drop_super);
497 
498 /**
499  *	iterate_supers - call function for all active superblocks
500  *	@f: function to call
501  *	@arg: argument to pass to it
502  *
503  *	Scans the superblock list and calls given function, passing it
504  *	locked superblock and given argument.
505  */
506 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
507 {
508 	struct super_block *sb, *p = NULL;
509 
510 	spin_lock(&sb_lock);
511 	list_for_each_entry(sb, &super_blocks, s_list) {
512 		if (hlist_unhashed(&sb->s_instances))
513 			continue;
514 		sb->s_count++;
515 		spin_unlock(&sb_lock);
516 
517 		down_read(&sb->s_umount);
518 		if (sb->s_root && (sb->s_flags & MS_BORN))
519 			f(sb, arg);
520 		up_read(&sb->s_umount);
521 
522 		spin_lock(&sb_lock);
523 		if (p)
524 			__put_super(p);
525 		p = sb;
526 	}
527 	if (p)
528 		__put_super(p);
529 	spin_unlock(&sb_lock);
530 }
531 
532 /**
533  *	iterate_supers_type - call function for superblocks of given type
534  *	@type: fs type
535  *	@f: function to call
536  *	@arg: argument to pass to it
537  *
538  *	Scans the superblock list and calls given function, passing it
539  *	locked superblock and given argument.
540  */
541 void iterate_supers_type(struct file_system_type *type,
542 	void (*f)(struct super_block *, void *), void *arg)
543 {
544 	struct super_block *sb, *p = NULL;
545 
546 	spin_lock(&sb_lock);
547 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
548 		sb->s_count++;
549 		spin_unlock(&sb_lock);
550 
551 		down_read(&sb->s_umount);
552 		if (sb->s_root && (sb->s_flags & MS_BORN))
553 			f(sb, arg);
554 		up_read(&sb->s_umount);
555 
556 		spin_lock(&sb_lock);
557 		if (p)
558 			__put_super(p);
559 		p = sb;
560 	}
561 	if (p)
562 		__put_super(p);
563 	spin_unlock(&sb_lock);
564 }
565 
566 EXPORT_SYMBOL(iterate_supers_type);
567 
568 /**
569  *	get_super - get the superblock of a device
570  *	@bdev: device to get the superblock for
571  *
572  *	Scans the superblock list and finds the superblock of the file system
573  *	mounted on the device given. %NULL is returned if no match is found.
574  */
575 
576 struct super_block *get_super(struct block_device *bdev)
577 {
578 	struct super_block *sb;
579 
580 	if (!bdev)
581 		return NULL;
582 
583 	spin_lock(&sb_lock);
584 rescan:
585 	list_for_each_entry(sb, &super_blocks, s_list) {
586 		if (hlist_unhashed(&sb->s_instances))
587 			continue;
588 		if (sb->s_bdev == bdev) {
589 			sb->s_count++;
590 			spin_unlock(&sb_lock);
591 			down_read(&sb->s_umount);
592 			/* still alive? */
593 			if (sb->s_root && (sb->s_flags & MS_BORN))
594 				return sb;
595 			up_read(&sb->s_umount);
596 			/* nope, got unmounted */
597 			spin_lock(&sb_lock);
598 			__put_super(sb);
599 			goto rescan;
600 		}
601 	}
602 	spin_unlock(&sb_lock);
603 	return NULL;
604 }
605 
606 EXPORT_SYMBOL(get_super);
607 
608 /**
609  *	get_super_thawed - get thawed superblock of a device
610  *	@bdev: device to get the superblock for
611  *
612  *	Scans the superblock list and finds the superblock of the file system
613  *	mounted on the device. The superblock is returned once it is thawed
614  *	(or immediately if it was not frozen). %NULL is returned if no match
615  *	is found.
616  */
617 struct super_block *get_super_thawed(struct block_device *bdev)
618 {
619 	while (1) {
620 		struct super_block *s = get_super(bdev);
621 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
622 			return s;
623 		up_read(&s->s_umount);
624 		wait_event(s->s_writers.wait_unfrozen,
625 			   s->s_writers.frozen == SB_UNFROZEN);
626 		put_super(s);
627 	}
628 }
629 EXPORT_SYMBOL(get_super_thawed);
630 
631 /**
632  * get_active_super - get an active reference to the superblock of a device
633  * @bdev: device to get the superblock for
634  *
635  * Scans the superblock list and finds the superblock of the file system
636  * mounted on the device given.  Returns the superblock with an active
637  * reference or %NULL if none was found.
638  */
639 struct super_block *get_active_super(struct block_device *bdev)
640 {
641 	struct super_block *sb;
642 
643 	if (!bdev)
644 		return NULL;
645 
646 restart:
647 	spin_lock(&sb_lock);
648 	list_for_each_entry(sb, &super_blocks, s_list) {
649 		if (hlist_unhashed(&sb->s_instances))
650 			continue;
651 		if (sb->s_bdev == bdev) {
652 			if (!grab_super(sb))
653 				goto restart;
654 			up_write(&sb->s_umount);
655 			return sb;
656 		}
657 	}
658 	spin_unlock(&sb_lock);
659 	return NULL;
660 }
661 
662 struct super_block *user_get_super(dev_t dev)
663 {
664 	struct super_block *sb;
665 
666 	spin_lock(&sb_lock);
667 rescan:
668 	list_for_each_entry(sb, &super_blocks, s_list) {
669 		if (hlist_unhashed(&sb->s_instances))
670 			continue;
671 		if (sb->s_dev ==  dev) {
672 			sb->s_count++;
673 			spin_unlock(&sb_lock);
674 			down_read(&sb->s_umount);
675 			/* still alive? */
676 			if (sb->s_root && (sb->s_flags & MS_BORN))
677 				return sb;
678 			up_read(&sb->s_umount);
679 			/* nope, got unmounted */
680 			spin_lock(&sb_lock);
681 			__put_super(sb);
682 			goto rescan;
683 		}
684 	}
685 	spin_unlock(&sb_lock);
686 	return NULL;
687 }
688 
689 /**
690  *	do_remount_sb - asks filesystem to change mount options.
691  *	@sb:	superblock in question
692  *	@flags:	numeric part of options
693  *	@data:	the rest of options
694  *      @force: whether or not to force the change
695  *
696  *	Alters the mount options of a mounted file system.
697  */
698 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
699 {
700 	int retval;
701 	int remount_ro;
702 
703 	if (sb->s_writers.frozen != SB_UNFROZEN)
704 		return -EBUSY;
705 
706 #ifdef CONFIG_BLOCK
707 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
708 		return -EACCES;
709 #endif
710 
711 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
712 
713 	if (remount_ro) {
714 		if (!hlist_empty(&sb->s_pins)) {
715 			up_write(&sb->s_umount);
716 			group_pin_kill(&sb->s_pins);
717 			down_write(&sb->s_umount);
718 			if (!sb->s_root)
719 				return 0;
720 			if (sb->s_writers.frozen != SB_UNFROZEN)
721 				return -EBUSY;
722 			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
723 		}
724 	}
725 	shrink_dcache_sb(sb);
726 
727 	/* If we are remounting RDONLY and current sb is read/write,
728 	   make sure there are no rw files opened */
729 	if (remount_ro) {
730 		if (force) {
731 			sb->s_readonly_remount = 1;
732 			smp_wmb();
733 		} else {
734 			retval = sb_prepare_remount_readonly(sb);
735 			if (retval)
736 				return retval;
737 		}
738 	}
739 
740 	if (sb->s_op->remount_fs) {
741 		retval = sb->s_op->remount_fs(sb, &flags, data);
742 		if (retval) {
743 			if (!force)
744 				goto cancel_readonly;
745 			/* If forced remount, go ahead despite any errors */
746 			WARN(1, "forced remount of a %s fs returned %i\n",
747 			     sb->s_type->name, retval);
748 		}
749 	}
750 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
751 	/* Needs to be ordered wrt mnt_is_readonly() */
752 	smp_wmb();
753 	sb->s_readonly_remount = 0;
754 
755 	/*
756 	 * Some filesystems modify their metadata via some other path than the
757 	 * bdev buffer cache (eg. use a private mapping, or directories in
758 	 * pagecache, etc). Also file data modifications go via their own
759 	 * mappings. So If we try to mount readonly then copy the filesystem
760 	 * from bdev, we could get stale data, so invalidate it to give a best
761 	 * effort at coherency.
762 	 */
763 	if (remount_ro && sb->s_bdev)
764 		invalidate_bdev(sb->s_bdev);
765 	return 0;
766 
767 cancel_readonly:
768 	sb->s_readonly_remount = 0;
769 	return retval;
770 }
771 
772 static void do_emergency_remount(struct work_struct *work)
773 {
774 	struct super_block *sb, *p = NULL;
775 
776 	spin_lock(&sb_lock);
777 	list_for_each_entry(sb, &super_blocks, s_list) {
778 		if (hlist_unhashed(&sb->s_instances))
779 			continue;
780 		sb->s_count++;
781 		spin_unlock(&sb_lock);
782 		down_write(&sb->s_umount);
783 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
784 		    !(sb->s_flags & MS_RDONLY)) {
785 			/*
786 			 * What lock protects sb->s_flags??
787 			 */
788 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
789 		}
790 		up_write(&sb->s_umount);
791 		spin_lock(&sb_lock);
792 		if (p)
793 			__put_super(p);
794 		p = sb;
795 	}
796 	if (p)
797 		__put_super(p);
798 	spin_unlock(&sb_lock);
799 	kfree(work);
800 	printk("Emergency Remount complete\n");
801 }
802 
803 void emergency_remount(void)
804 {
805 	struct work_struct *work;
806 
807 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
808 	if (work) {
809 		INIT_WORK(work, do_emergency_remount);
810 		schedule_work(work);
811 	}
812 }
813 
814 /*
815  * Unnamed block devices are dummy devices used by virtual
816  * filesystems which don't use real block-devices.  -- jrs
817  */
818 
819 static DEFINE_IDA(unnamed_dev_ida);
820 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
821 /* Many userspace utilities consider an FSID of 0 invalid.
822  * Always return at least 1 from get_anon_bdev.
823  */
824 static int unnamed_dev_start = 1;
825 
826 int get_anon_bdev(dev_t *p)
827 {
828 	int dev;
829 	int error;
830 
831  retry:
832 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
833 		return -ENOMEM;
834 	spin_lock(&unnamed_dev_lock);
835 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
836 	if (!error)
837 		unnamed_dev_start = dev + 1;
838 	spin_unlock(&unnamed_dev_lock);
839 	if (error == -EAGAIN)
840 		/* We raced and lost with another CPU. */
841 		goto retry;
842 	else if (error)
843 		return -EAGAIN;
844 
845 	if (dev == (1 << MINORBITS)) {
846 		spin_lock(&unnamed_dev_lock);
847 		ida_remove(&unnamed_dev_ida, dev);
848 		if (unnamed_dev_start > dev)
849 			unnamed_dev_start = dev;
850 		spin_unlock(&unnamed_dev_lock);
851 		return -EMFILE;
852 	}
853 	*p = MKDEV(0, dev & MINORMASK);
854 	return 0;
855 }
856 EXPORT_SYMBOL(get_anon_bdev);
857 
858 void free_anon_bdev(dev_t dev)
859 {
860 	int slot = MINOR(dev);
861 	spin_lock(&unnamed_dev_lock);
862 	ida_remove(&unnamed_dev_ida, slot);
863 	if (slot < unnamed_dev_start)
864 		unnamed_dev_start = slot;
865 	spin_unlock(&unnamed_dev_lock);
866 }
867 EXPORT_SYMBOL(free_anon_bdev);
868 
869 int set_anon_super(struct super_block *s, void *data)
870 {
871 	return get_anon_bdev(&s->s_dev);
872 }
873 
874 EXPORT_SYMBOL(set_anon_super);
875 
876 void kill_anon_super(struct super_block *sb)
877 {
878 	dev_t dev = sb->s_dev;
879 	generic_shutdown_super(sb);
880 	free_anon_bdev(dev);
881 }
882 
883 EXPORT_SYMBOL(kill_anon_super);
884 
885 void kill_litter_super(struct super_block *sb)
886 {
887 	if (sb->s_root)
888 		d_genocide(sb->s_root);
889 	kill_anon_super(sb);
890 }
891 
892 EXPORT_SYMBOL(kill_litter_super);
893 
894 static int ns_test_super(struct super_block *sb, void *data)
895 {
896 	return sb->s_fs_info == data;
897 }
898 
899 static int ns_set_super(struct super_block *sb, void *data)
900 {
901 	sb->s_fs_info = data;
902 	return set_anon_super(sb, NULL);
903 }
904 
905 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
906 	void *data, int (*fill_super)(struct super_block *, void *, int))
907 {
908 	struct super_block *sb;
909 
910 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
911 	if (IS_ERR(sb))
912 		return ERR_CAST(sb);
913 
914 	if (!sb->s_root) {
915 		int err;
916 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
917 		if (err) {
918 			deactivate_locked_super(sb);
919 			return ERR_PTR(err);
920 		}
921 
922 		sb->s_flags |= MS_ACTIVE;
923 	}
924 
925 	return dget(sb->s_root);
926 }
927 
928 EXPORT_SYMBOL(mount_ns);
929 
930 #ifdef CONFIG_BLOCK
931 static int set_bdev_super(struct super_block *s, void *data)
932 {
933 	s->s_bdev = data;
934 	s->s_dev = s->s_bdev->bd_dev;
935 
936 	/*
937 	 * We set the bdi here to the queue backing, file systems can
938 	 * overwrite this in ->fill_super()
939 	 */
940 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
941 	return 0;
942 }
943 
944 static int test_bdev_super(struct super_block *s, void *data)
945 {
946 	return (void *)s->s_bdev == data;
947 }
948 
949 struct dentry *mount_bdev(struct file_system_type *fs_type,
950 	int flags, const char *dev_name, void *data,
951 	int (*fill_super)(struct super_block *, void *, int))
952 {
953 	struct block_device *bdev;
954 	struct super_block *s;
955 	fmode_t mode = FMODE_READ | FMODE_EXCL;
956 	int error = 0;
957 
958 	if (!(flags & MS_RDONLY))
959 		mode |= FMODE_WRITE;
960 
961 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
962 	if (IS_ERR(bdev))
963 		return ERR_CAST(bdev);
964 
965 	/*
966 	 * once the super is inserted into the list by sget, s_umount
967 	 * will protect the lockfs code from trying to start a snapshot
968 	 * while we are mounting
969 	 */
970 	mutex_lock(&bdev->bd_fsfreeze_mutex);
971 	if (bdev->bd_fsfreeze_count > 0) {
972 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
973 		error = -EBUSY;
974 		goto error_bdev;
975 	}
976 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
977 		 bdev);
978 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
979 	if (IS_ERR(s))
980 		goto error_s;
981 
982 	if (s->s_root) {
983 		if ((flags ^ s->s_flags) & MS_RDONLY) {
984 			deactivate_locked_super(s);
985 			error = -EBUSY;
986 			goto error_bdev;
987 		}
988 
989 		/*
990 		 * s_umount nests inside bd_mutex during
991 		 * __invalidate_device().  blkdev_put() acquires
992 		 * bd_mutex and can't be called under s_umount.  Drop
993 		 * s_umount temporarily.  This is safe as we're
994 		 * holding an active reference.
995 		 */
996 		up_write(&s->s_umount);
997 		blkdev_put(bdev, mode);
998 		down_write(&s->s_umount);
999 	} else {
1000 		char b[BDEVNAME_SIZE];
1001 
1002 		s->s_mode = mode;
1003 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1004 		sb_set_blocksize(s, block_size(bdev));
1005 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1006 		if (error) {
1007 			deactivate_locked_super(s);
1008 			goto error;
1009 		}
1010 
1011 		s->s_flags |= MS_ACTIVE;
1012 		bdev->bd_super = s;
1013 	}
1014 
1015 	return dget(s->s_root);
1016 
1017 error_s:
1018 	error = PTR_ERR(s);
1019 error_bdev:
1020 	blkdev_put(bdev, mode);
1021 error:
1022 	return ERR_PTR(error);
1023 }
1024 EXPORT_SYMBOL(mount_bdev);
1025 
1026 void kill_block_super(struct super_block *sb)
1027 {
1028 	struct block_device *bdev = sb->s_bdev;
1029 	fmode_t mode = sb->s_mode;
1030 
1031 	bdev->bd_super = NULL;
1032 	generic_shutdown_super(sb);
1033 	sync_blockdev(bdev);
1034 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1035 	blkdev_put(bdev, mode | FMODE_EXCL);
1036 }
1037 
1038 EXPORT_SYMBOL(kill_block_super);
1039 #endif
1040 
1041 struct dentry *mount_nodev(struct file_system_type *fs_type,
1042 	int flags, void *data,
1043 	int (*fill_super)(struct super_block *, void *, int))
1044 {
1045 	int error;
1046 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1047 
1048 	if (IS_ERR(s))
1049 		return ERR_CAST(s);
1050 
1051 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1052 	if (error) {
1053 		deactivate_locked_super(s);
1054 		return ERR_PTR(error);
1055 	}
1056 	s->s_flags |= MS_ACTIVE;
1057 	return dget(s->s_root);
1058 }
1059 EXPORT_SYMBOL(mount_nodev);
1060 
1061 static int compare_single(struct super_block *s, void *p)
1062 {
1063 	return 1;
1064 }
1065 
1066 struct dentry *mount_single(struct file_system_type *fs_type,
1067 	int flags, void *data,
1068 	int (*fill_super)(struct super_block *, void *, int))
1069 {
1070 	struct super_block *s;
1071 	int error;
1072 
1073 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1074 	if (IS_ERR(s))
1075 		return ERR_CAST(s);
1076 	if (!s->s_root) {
1077 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1078 		if (error) {
1079 			deactivate_locked_super(s);
1080 			return ERR_PTR(error);
1081 		}
1082 		s->s_flags |= MS_ACTIVE;
1083 	} else {
1084 		do_remount_sb(s, flags, data, 0);
1085 	}
1086 	return dget(s->s_root);
1087 }
1088 EXPORT_SYMBOL(mount_single);
1089 
1090 struct dentry *
1091 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1092 {
1093 	struct dentry *root;
1094 	struct super_block *sb;
1095 	char *secdata = NULL;
1096 	int error = -ENOMEM;
1097 
1098 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1099 		secdata = alloc_secdata();
1100 		if (!secdata)
1101 			goto out;
1102 
1103 		error = security_sb_copy_data(data, secdata);
1104 		if (error)
1105 			goto out_free_secdata;
1106 	}
1107 
1108 	root = type->mount(type, flags, name, data);
1109 	if (IS_ERR(root)) {
1110 		error = PTR_ERR(root);
1111 		goto out_free_secdata;
1112 	}
1113 	sb = root->d_sb;
1114 	BUG_ON(!sb);
1115 	WARN_ON(!sb->s_bdi);
1116 	sb->s_flags |= MS_BORN;
1117 
1118 	error = security_sb_kern_mount(sb, flags, secdata);
1119 	if (error)
1120 		goto out_sb;
1121 
1122 	/*
1123 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1124 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1125 	 * this warning for a little while to try and catch filesystems that
1126 	 * violate this rule.
1127 	 */
1128 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1129 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1130 
1131 	up_write(&sb->s_umount);
1132 	free_secdata(secdata);
1133 	return root;
1134 out_sb:
1135 	dput(root);
1136 	deactivate_locked_super(sb);
1137 out_free_secdata:
1138 	free_secdata(secdata);
1139 out:
1140 	return ERR_PTR(error);
1141 }
1142 
1143 /*
1144  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1145  * instead.
1146  */
1147 void __sb_end_write(struct super_block *sb, int level)
1148 {
1149 	percpu_counter_dec(&sb->s_writers.counter[level-1]);
1150 	/*
1151 	 * Make sure s_writers are updated before we wake up waiters in
1152 	 * freeze_super().
1153 	 */
1154 	smp_mb();
1155 	if (waitqueue_active(&sb->s_writers.wait))
1156 		wake_up(&sb->s_writers.wait);
1157 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1158 }
1159 EXPORT_SYMBOL(__sb_end_write);
1160 
1161 #ifdef CONFIG_LOCKDEP
1162 /*
1163  * We want lockdep to tell us about possible deadlocks with freezing but
1164  * it's it bit tricky to properly instrument it. Getting a freeze protection
1165  * works as getting a read lock but there are subtle problems. XFS for example
1166  * gets freeze protection on internal level twice in some cases, which is OK
1167  * only because we already hold a freeze protection also on higher level. Due
1168  * to these cases we have to tell lockdep we are doing trylock when we
1169  * already hold a freeze protection for a higher freeze level.
1170  */
1171 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1172 				unsigned long ip)
1173 {
1174 	int i;
1175 
1176 	if (!trylock) {
1177 		for (i = 0; i < level - 1; i++)
1178 			if (lock_is_held(&sb->s_writers.lock_map[i])) {
1179 				trylock = true;
1180 				break;
1181 			}
1182 	}
1183 	rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1184 }
1185 #endif
1186 
1187 /*
1188  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1189  * instead.
1190  */
1191 int __sb_start_write(struct super_block *sb, int level, bool wait)
1192 {
1193 retry:
1194 	if (unlikely(sb->s_writers.frozen >= level)) {
1195 		if (!wait)
1196 			return 0;
1197 		wait_event(sb->s_writers.wait_unfrozen,
1198 			   sb->s_writers.frozen < level);
1199 	}
1200 
1201 #ifdef CONFIG_LOCKDEP
1202 	acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1203 #endif
1204 	percpu_counter_inc(&sb->s_writers.counter[level-1]);
1205 	/*
1206 	 * Make sure counter is updated before we check for frozen.
1207 	 * freeze_super() first sets frozen and then checks the counter.
1208 	 */
1209 	smp_mb();
1210 	if (unlikely(sb->s_writers.frozen >= level)) {
1211 		__sb_end_write(sb, level);
1212 		goto retry;
1213 	}
1214 	return 1;
1215 }
1216 EXPORT_SYMBOL(__sb_start_write);
1217 
1218 /**
1219  * sb_wait_write - wait until all writers to given file system finish
1220  * @sb: the super for which we wait
1221  * @level: type of writers we wait for (normal vs page fault)
1222  *
1223  * This function waits until there are no writers of given type to given file
1224  * system. Caller of this function should make sure there can be no new writers
1225  * of type @level before calling this function. Otherwise this function can
1226  * livelock.
1227  */
1228 static void sb_wait_write(struct super_block *sb, int level)
1229 {
1230 	s64 writers;
1231 
1232 	/*
1233 	 * We just cycle-through lockdep here so that it does not complain
1234 	 * about returning with lock to userspace
1235 	 */
1236 	rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1237 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1238 
1239 	do {
1240 		DEFINE_WAIT(wait);
1241 
1242 		/*
1243 		 * We use a barrier in prepare_to_wait() to separate setting
1244 		 * of frozen and checking of the counter
1245 		 */
1246 		prepare_to_wait(&sb->s_writers.wait, &wait,
1247 				TASK_UNINTERRUPTIBLE);
1248 
1249 		writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1250 		if (writers)
1251 			schedule();
1252 
1253 		finish_wait(&sb->s_writers.wait, &wait);
1254 	} while (writers);
1255 }
1256 
1257 /**
1258  * freeze_super - lock the filesystem and force it into a consistent state
1259  * @sb: the super to lock
1260  *
1261  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1262  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1263  * -EBUSY.
1264  *
1265  * During this function, sb->s_writers.frozen goes through these values:
1266  *
1267  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1268  *
1269  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1270  * writes should be blocked, though page faults are still allowed. We wait for
1271  * all writes to complete and then proceed to the next stage.
1272  *
1273  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1274  * but internal fs threads can still modify the filesystem (although they
1275  * should not dirty new pages or inodes), writeback can run etc. After waiting
1276  * for all running page faults we sync the filesystem which will clean all
1277  * dirty pages and inodes (no new dirty pages or inodes can be created when
1278  * sync is running).
1279  *
1280  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1281  * modification are blocked (e.g. XFS preallocation truncation on inode
1282  * reclaim). This is usually implemented by blocking new transactions for
1283  * filesystems that have them and need this additional guard. After all
1284  * internal writers are finished we call ->freeze_fs() to finish filesystem
1285  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1286  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1287  *
1288  * sb->s_writers.frozen is protected by sb->s_umount.
1289  */
1290 int freeze_super(struct super_block *sb)
1291 {
1292 	int ret;
1293 
1294 	atomic_inc(&sb->s_active);
1295 	down_write(&sb->s_umount);
1296 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1297 		deactivate_locked_super(sb);
1298 		return -EBUSY;
1299 	}
1300 
1301 	if (!(sb->s_flags & MS_BORN)) {
1302 		up_write(&sb->s_umount);
1303 		return 0;	/* sic - it's "nothing to do" */
1304 	}
1305 
1306 	if (sb->s_flags & MS_RDONLY) {
1307 		/* Nothing to do really... */
1308 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1309 		up_write(&sb->s_umount);
1310 		return 0;
1311 	}
1312 
1313 	/* From now on, no new normal writers can start */
1314 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1315 	smp_wmb();
1316 
1317 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1318 	up_write(&sb->s_umount);
1319 
1320 	sb_wait_write(sb, SB_FREEZE_WRITE);
1321 
1322 	/* Now we go and block page faults... */
1323 	down_write(&sb->s_umount);
1324 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1325 	smp_wmb();
1326 
1327 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1328 
1329 	/* All writers are done so after syncing there won't be dirty data */
1330 	sync_filesystem(sb);
1331 
1332 	/* Now wait for internal filesystem counter */
1333 	sb->s_writers.frozen = SB_FREEZE_FS;
1334 	smp_wmb();
1335 	sb_wait_write(sb, SB_FREEZE_FS);
1336 
1337 	if (sb->s_op->freeze_fs) {
1338 		ret = sb->s_op->freeze_fs(sb);
1339 		if (ret) {
1340 			printk(KERN_ERR
1341 				"VFS:Filesystem freeze failed\n");
1342 			sb->s_writers.frozen = SB_UNFROZEN;
1343 			smp_wmb();
1344 			wake_up(&sb->s_writers.wait_unfrozen);
1345 			deactivate_locked_super(sb);
1346 			return ret;
1347 		}
1348 	}
1349 	/*
1350 	 * This is just for debugging purposes so that fs can warn if it
1351 	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1352 	 */
1353 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1354 	up_write(&sb->s_umount);
1355 	return 0;
1356 }
1357 EXPORT_SYMBOL(freeze_super);
1358 
1359 /**
1360  * thaw_super -- unlock filesystem
1361  * @sb: the super to thaw
1362  *
1363  * Unlocks the filesystem and marks it writeable again after freeze_super().
1364  */
1365 int thaw_super(struct super_block *sb)
1366 {
1367 	int error;
1368 
1369 	down_write(&sb->s_umount);
1370 	if (sb->s_writers.frozen == SB_UNFROZEN) {
1371 		up_write(&sb->s_umount);
1372 		return -EINVAL;
1373 	}
1374 
1375 	if (sb->s_flags & MS_RDONLY)
1376 		goto out;
1377 
1378 	if (sb->s_op->unfreeze_fs) {
1379 		error = sb->s_op->unfreeze_fs(sb);
1380 		if (error) {
1381 			printk(KERN_ERR
1382 				"VFS:Filesystem thaw failed\n");
1383 			up_write(&sb->s_umount);
1384 			return error;
1385 		}
1386 	}
1387 
1388 out:
1389 	sb->s_writers.frozen = SB_UNFROZEN;
1390 	smp_wmb();
1391 	wake_up(&sb->s_writers.wait_unfrozen);
1392 	deactivate_locked_super(sb);
1393 
1394 	return 0;
1395 }
1396 EXPORT_SYMBOL(thaw_super);
1397