1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fscrypt.h> 36 #include <linux/fsnotify.h> 37 #include <linux/lockdep.h> 38 #include <linux/user_namespace.h> 39 #include <linux/fs_context.h> 40 #include <uapi/linux/mount.h> 41 #include "internal.h" 42 43 static int thaw_super_locked(struct super_block *sb); 44 45 static LIST_HEAD(super_blocks); 46 static DEFINE_SPINLOCK(sb_lock); 47 48 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 49 "sb_writers", 50 "sb_pagefaults", 51 "sb_internal", 52 }; 53 54 /* 55 * One thing we have to be careful of with a per-sb shrinker is that we don't 56 * drop the last active reference to the superblock from within the shrinker. 57 * If that happens we could trigger unregistering the shrinker from within the 58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 59 * take a passive reference to the superblock to avoid this from occurring. 60 */ 61 static unsigned long super_cache_scan(struct shrinker *shrink, 62 struct shrink_control *sc) 63 { 64 struct super_block *sb; 65 long fs_objects = 0; 66 long total_objects; 67 long freed = 0; 68 long dentries; 69 long inodes; 70 71 sb = container_of(shrink, struct super_block, s_shrink); 72 73 /* 74 * Deadlock avoidance. We may hold various FS locks, and we don't want 75 * to recurse into the FS that called us in clear_inode() and friends.. 76 */ 77 if (!(sc->gfp_mask & __GFP_FS)) 78 return SHRINK_STOP; 79 80 if (!trylock_super(sb)) 81 return SHRINK_STOP; 82 83 if (sb->s_op->nr_cached_objects) 84 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 85 86 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 87 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 88 total_objects = dentries + inodes + fs_objects + 1; 89 if (!total_objects) 90 total_objects = 1; 91 92 /* proportion the scan between the caches */ 93 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 94 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 95 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 96 97 /* 98 * prune the dcache first as the icache is pinned by it, then 99 * prune the icache, followed by the filesystem specific caches 100 * 101 * Ensure that we always scan at least one object - memcg kmem 102 * accounting uses this to fully empty the caches. 103 */ 104 sc->nr_to_scan = dentries + 1; 105 freed = prune_dcache_sb(sb, sc); 106 sc->nr_to_scan = inodes + 1; 107 freed += prune_icache_sb(sb, sc); 108 109 if (fs_objects) { 110 sc->nr_to_scan = fs_objects + 1; 111 freed += sb->s_op->free_cached_objects(sb, sc); 112 } 113 114 up_read(&sb->s_umount); 115 return freed; 116 } 117 118 static unsigned long super_cache_count(struct shrinker *shrink, 119 struct shrink_control *sc) 120 { 121 struct super_block *sb; 122 long total_objects = 0; 123 124 sb = container_of(shrink, struct super_block, s_shrink); 125 126 /* 127 * We don't call trylock_super() here as it is a scalability bottleneck, 128 * so we're exposed to partial setup state. The shrinker rwsem does not 129 * protect filesystem operations backing list_lru_shrink_count() or 130 * s_op->nr_cached_objects(). Counts can change between 131 * super_cache_count and super_cache_scan, so we really don't need locks 132 * here. 133 * 134 * However, if we are currently mounting the superblock, the underlying 135 * filesystem might be in a state of partial construction and hence it 136 * is dangerous to access it. trylock_super() uses a SB_BORN check to 137 * avoid this situation, so do the same here. The memory barrier is 138 * matched with the one in mount_fs() as we don't hold locks here. 139 */ 140 if (!(sb->s_flags & SB_BORN)) 141 return 0; 142 smp_rmb(); 143 144 if (sb->s_op && sb->s_op->nr_cached_objects) 145 total_objects = sb->s_op->nr_cached_objects(sb, sc); 146 147 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 148 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 149 150 if (!total_objects) 151 return SHRINK_EMPTY; 152 153 total_objects = vfs_pressure_ratio(total_objects); 154 return total_objects; 155 } 156 157 static void destroy_super_work(struct work_struct *work) 158 { 159 struct super_block *s = container_of(work, struct super_block, 160 destroy_work); 161 int i; 162 163 for (i = 0; i < SB_FREEZE_LEVELS; i++) 164 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 165 kfree(s); 166 } 167 168 static void destroy_super_rcu(struct rcu_head *head) 169 { 170 struct super_block *s = container_of(head, struct super_block, rcu); 171 INIT_WORK(&s->destroy_work, destroy_super_work); 172 schedule_work(&s->destroy_work); 173 } 174 175 /* Free a superblock that has never been seen by anyone */ 176 static void destroy_unused_super(struct super_block *s) 177 { 178 if (!s) 179 return; 180 up_write(&s->s_umount); 181 list_lru_destroy(&s->s_dentry_lru); 182 list_lru_destroy(&s->s_inode_lru); 183 security_sb_free(s); 184 put_user_ns(s->s_user_ns); 185 kfree(s->s_subtype); 186 free_prealloced_shrinker(&s->s_shrink); 187 /* no delays needed */ 188 destroy_super_work(&s->destroy_work); 189 } 190 191 /** 192 * alloc_super - create new superblock 193 * @type: filesystem type superblock should belong to 194 * @flags: the mount flags 195 * @user_ns: User namespace for the super_block 196 * 197 * Allocates and initializes a new &struct super_block. alloc_super() 198 * returns a pointer new superblock or %NULL if allocation had failed. 199 */ 200 static struct super_block *alloc_super(struct file_system_type *type, int flags, 201 struct user_namespace *user_ns) 202 { 203 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 204 static const struct super_operations default_op; 205 int i; 206 207 if (!s) 208 return NULL; 209 210 INIT_LIST_HEAD(&s->s_mounts); 211 s->s_user_ns = get_user_ns(user_ns); 212 init_rwsem(&s->s_umount); 213 lockdep_set_class(&s->s_umount, &type->s_umount_key); 214 /* 215 * sget() can have s_umount recursion. 216 * 217 * When it cannot find a suitable sb, it allocates a new 218 * one (this one), and tries again to find a suitable old 219 * one. 220 * 221 * In case that succeeds, it will acquire the s_umount 222 * lock of the old one. Since these are clearly distrinct 223 * locks, and this object isn't exposed yet, there's no 224 * risk of deadlocks. 225 * 226 * Annotate this by putting this lock in a different 227 * subclass. 228 */ 229 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 230 231 if (security_sb_alloc(s)) 232 goto fail; 233 234 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 235 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 236 sb_writers_name[i], 237 &type->s_writers_key[i])) 238 goto fail; 239 } 240 init_waitqueue_head(&s->s_writers.wait_unfrozen); 241 s->s_bdi = &noop_backing_dev_info; 242 s->s_flags = flags; 243 if (s->s_user_ns != &init_user_ns) 244 s->s_iflags |= SB_I_NODEV; 245 INIT_HLIST_NODE(&s->s_instances); 246 INIT_HLIST_BL_HEAD(&s->s_roots); 247 mutex_init(&s->s_sync_lock); 248 INIT_LIST_HEAD(&s->s_inodes); 249 spin_lock_init(&s->s_inode_list_lock); 250 INIT_LIST_HEAD(&s->s_inodes_wb); 251 spin_lock_init(&s->s_inode_wblist_lock); 252 253 s->s_count = 1; 254 atomic_set(&s->s_active, 1); 255 mutex_init(&s->s_vfs_rename_mutex); 256 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 257 init_rwsem(&s->s_dquot.dqio_sem); 258 s->s_maxbytes = MAX_NON_LFS; 259 s->s_op = &default_op; 260 s->s_time_gran = 1000000000; 261 s->s_time_min = TIME64_MIN; 262 s->s_time_max = TIME64_MAX; 263 s->cleancache_poolid = CLEANCACHE_NO_POOL; 264 265 s->s_shrink.seeks = DEFAULT_SEEKS; 266 s->s_shrink.scan_objects = super_cache_scan; 267 s->s_shrink.count_objects = super_cache_count; 268 s->s_shrink.batch = 1024; 269 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 270 if (prealloc_shrinker(&s->s_shrink)) 271 goto fail; 272 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 273 goto fail; 274 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 275 goto fail; 276 return s; 277 278 fail: 279 destroy_unused_super(s); 280 return NULL; 281 } 282 283 /* Superblock refcounting */ 284 285 /* 286 * Drop a superblock's refcount. The caller must hold sb_lock. 287 */ 288 static void __put_super(struct super_block *s) 289 { 290 if (!--s->s_count) { 291 list_del_init(&s->s_list); 292 WARN_ON(s->s_dentry_lru.node); 293 WARN_ON(s->s_inode_lru.node); 294 WARN_ON(!list_empty(&s->s_mounts)); 295 security_sb_free(s); 296 fscrypt_sb_free(s); 297 put_user_ns(s->s_user_ns); 298 kfree(s->s_subtype); 299 call_rcu(&s->rcu, destroy_super_rcu); 300 } 301 } 302 303 /** 304 * put_super - drop a temporary reference to superblock 305 * @sb: superblock in question 306 * 307 * Drops a temporary reference, frees superblock if there's no 308 * references left. 309 */ 310 void put_super(struct super_block *sb) 311 { 312 spin_lock(&sb_lock); 313 __put_super(sb); 314 spin_unlock(&sb_lock); 315 } 316 317 318 /** 319 * deactivate_locked_super - drop an active reference to superblock 320 * @s: superblock to deactivate 321 * 322 * Drops an active reference to superblock, converting it into a temporary 323 * one if there is no other active references left. In that case we 324 * tell fs driver to shut it down and drop the temporary reference we 325 * had just acquired. 326 * 327 * Caller holds exclusive lock on superblock; that lock is released. 328 */ 329 void deactivate_locked_super(struct super_block *s) 330 { 331 struct file_system_type *fs = s->s_type; 332 if (atomic_dec_and_test(&s->s_active)) { 333 cleancache_invalidate_fs(s); 334 unregister_shrinker(&s->s_shrink); 335 fs->kill_sb(s); 336 337 /* 338 * Since list_lru_destroy() may sleep, we cannot call it from 339 * put_super(), where we hold the sb_lock. Therefore we destroy 340 * the lru lists right now. 341 */ 342 list_lru_destroy(&s->s_dentry_lru); 343 list_lru_destroy(&s->s_inode_lru); 344 345 put_filesystem(fs); 346 put_super(s); 347 } else { 348 up_write(&s->s_umount); 349 } 350 } 351 352 EXPORT_SYMBOL(deactivate_locked_super); 353 354 /** 355 * deactivate_super - drop an active reference to superblock 356 * @s: superblock to deactivate 357 * 358 * Variant of deactivate_locked_super(), except that superblock is *not* 359 * locked by caller. If we are going to drop the final active reference, 360 * lock will be acquired prior to that. 361 */ 362 void deactivate_super(struct super_block *s) 363 { 364 if (!atomic_add_unless(&s->s_active, -1, 1)) { 365 down_write(&s->s_umount); 366 deactivate_locked_super(s); 367 } 368 } 369 370 EXPORT_SYMBOL(deactivate_super); 371 372 /** 373 * grab_super - acquire an active reference 374 * @s: reference we are trying to make active 375 * 376 * Tries to acquire an active reference. grab_super() is used when we 377 * had just found a superblock in super_blocks or fs_type->fs_supers 378 * and want to turn it into a full-blown active reference. grab_super() 379 * is called with sb_lock held and drops it. Returns 1 in case of 380 * success, 0 if we had failed (superblock contents was already dead or 381 * dying when grab_super() had been called). Note that this is only 382 * called for superblocks not in rundown mode (== ones still on ->fs_supers 383 * of their type), so increment of ->s_count is OK here. 384 */ 385 static int grab_super(struct super_block *s) __releases(sb_lock) 386 { 387 s->s_count++; 388 spin_unlock(&sb_lock); 389 down_write(&s->s_umount); 390 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 391 put_super(s); 392 return 1; 393 } 394 up_write(&s->s_umount); 395 put_super(s); 396 return 0; 397 } 398 399 /* 400 * trylock_super - try to grab ->s_umount shared 401 * @sb: reference we are trying to grab 402 * 403 * Try to prevent fs shutdown. This is used in places where we 404 * cannot take an active reference but we need to ensure that the 405 * filesystem is not shut down while we are working on it. It returns 406 * false if we cannot acquire s_umount or if we lose the race and 407 * filesystem already got into shutdown, and returns true with the s_umount 408 * lock held in read mode in case of success. On successful return, 409 * the caller must drop the s_umount lock when done. 410 * 411 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 412 * The reason why it's safe is that we are OK with doing trylock instead 413 * of down_read(). There's a couple of places that are OK with that, but 414 * it's very much not a general-purpose interface. 415 */ 416 bool trylock_super(struct super_block *sb) 417 { 418 if (down_read_trylock(&sb->s_umount)) { 419 if (!hlist_unhashed(&sb->s_instances) && 420 sb->s_root && (sb->s_flags & SB_BORN)) 421 return true; 422 up_read(&sb->s_umount); 423 } 424 425 return false; 426 } 427 428 /** 429 * generic_shutdown_super - common helper for ->kill_sb() 430 * @sb: superblock to kill 431 * 432 * generic_shutdown_super() does all fs-independent work on superblock 433 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 434 * that need destruction out of superblock, call generic_shutdown_super() 435 * and release aforementioned objects. Note: dentries and inodes _are_ 436 * taken care of and do not need specific handling. 437 * 438 * Upon calling this function, the filesystem may no longer alter or 439 * rearrange the set of dentries belonging to this super_block, nor may it 440 * change the attachments of dentries to inodes. 441 */ 442 void generic_shutdown_super(struct super_block *sb) 443 { 444 const struct super_operations *sop = sb->s_op; 445 446 if (sb->s_root) { 447 shrink_dcache_for_umount(sb); 448 sync_filesystem(sb); 449 sb->s_flags &= ~SB_ACTIVE; 450 451 cgroup_writeback_umount(); 452 453 /* evict all inodes with zero refcount */ 454 evict_inodes(sb); 455 /* only nonzero refcount inodes can have marks */ 456 fsnotify_sb_delete(sb); 457 security_sb_delete(sb); 458 459 if (sb->s_dio_done_wq) { 460 destroy_workqueue(sb->s_dio_done_wq); 461 sb->s_dio_done_wq = NULL; 462 } 463 464 if (sop->put_super) 465 sop->put_super(sb); 466 467 if (!list_empty(&sb->s_inodes)) { 468 printk("VFS: Busy inodes after unmount of %s. " 469 "Self-destruct in 5 seconds. Have a nice day...\n", 470 sb->s_id); 471 } 472 } 473 spin_lock(&sb_lock); 474 /* should be initialized for __put_super_and_need_restart() */ 475 hlist_del_init(&sb->s_instances); 476 spin_unlock(&sb_lock); 477 up_write(&sb->s_umount); 478 if (sb->s_bdi != &noop_backing_dev_info) { 479 bdi_put(sb->s_bdi); 480 sb->s_bdi = &noop_backing_dev_info; 481 } 482 } 483 484 EXPORT_SYMBOL(generic_shutdown_super); 485 486 bool mount_capable(struct fs_context *fc) 487 { 488 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 489 return capable(CAP_SYS_ADMIN); 490 else 491 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 492 } 493 494 /** 495 * sget_fc - Find or create a superblock 496 * @fc: Filesystem context. 497 * @test: Comparison callback 498 * @set: Setup callback 499 * 500 * Find or create a superblock using the parameters stored in the filesystem 501 * context and the two callback functions. 502 * 503 * If an extant superblock is matched, then that will be returned with an 504 * elevated reference count that the caller must transfer or discard. 505 * 506 * If no match is made, a new superblock will be allocated and basic 507 * initialisation will be performed (s_type, s_fs_info and s_id will be set and 508 * the set() callback will be invoked), the superblock will be published and it 509 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE 510 * as yet unset. 511 */ 512 struct super_block *sget_fc(struct fs_context *fc, 513 int (*test)(struct super_block *, struct fs_context *), 514 int (*set)(struct super_block *, struct fs_context *)) 515 { 516 struct super_block *s = NULL; 517 struct super_block *old; 518 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 519 int err; 520 521 retry: 522 spin_lock(&sb_lock); 523 if (test) { 524 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 525 if (test(old, fc)) 526 goto share_extant_sb; 527 } 528 } 529 if (!s) { 530 spin_unlock(&sb_lock); 531 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 532 if (!s) 533 return ERR_PTR(-ENOMEM); 534 goto retry; 535 } 536 537 s->s_fs_info = fc->s_fs_info; 538 err = set(s, fc); 539 if (err) { 540 s->s_fs_info = NULL; 541 spin_unlock(&sb_lock); 542 destroy_unused_super(s); 543 return ERR_PTR(err); 544 } 545 fc->s_fs_info = NULL; 546 s->s_type = fc->fs_type; 547 s->s_iflags |= fc->s_iflags; 548 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 549 list_add_tail(&s->s_list, &super_blocks); 550 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 551 spin_unlock(&sb_lock); 552 get_filesystem(s->s_type); 553 register_shrinker_prepared(&s->s_shrink); 554 return s; 555 556 share_extant_sb: 557 if (user_ns != old->s_user_ns) { 558 spin_unlock(&sb_lock); 559 destroy_unused_super(s); 560 return ERR_PTR(-EBUSY); 561 } 562 if (!grab_super(old)) 563 goto retry; 564 destroy_unused_super(s); 565 return old; 566 } 567 EXPORT_SYMBOL(sget_fc); 568 569 /** 570 * sget - find or create a superblock 571 * @type: filesystem type superblock should belong to 572 * @test: comparison callback 573 * @set: setup callback 574 * @flags: mount flags 575 * @data: argument to each of them 576 */ 577 struct super_block *sget(struct file_system_type *type, 578 int (*test)(struct super_block *,void *), 579 int (*set)(struct super_block *,void *), 580 int flags, 581 void *data) 582 { 583 struct user_namespace *user_ns = current_user_ns(); 584 struct super_block *s = NULL; 585 struct super_block *old; 586 int err; 587 588 /* We don't yet pass the user namespace of the parent 589 * mount through to here so always use &init_user_ns 590 * until that changes. 591 */ 592 if (flags & SB_SUBMOUNT) 593 user_ns = &init_user_ns; 594 595 retry: 596 spin_lock(&sb_lock); 597 if (test) { 598 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 599 if (!test(old, data)) 600 continue; 601 if (user_ns != old->s_user_ns) { 602 spin_unlock(&sb_lock); 603 destroy_unused_super(s); 604 return ERR_PTR(-EBUSY); 605 } 606 if (!grab_super(old)) 607 goto retry; 608 destroy_unused_super(s); 609 return old; 610 } 611 } 612 if (!s) { 613 spin_unlock(&sb_lock); 614 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 615 if (!s) 616 return ERR_PTR(-ENOMEM); 617 goto retry; 618 } 619 620 err = set(s, data); 621 if (err) { 622 spin_unlock(&sb_lock); 623 destroy_unused_super(s); 624 return ERR_PTR(err); 625 } 626 s->s_type = type; 627 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 628 list_add_tail(&s->s_list, &super_blocks); 629 hlist_add_head(&s->s_instances, &type->fs_supers); 630 spin_unlock(&sb_lock); 631 get_filesystem(type); 632 register_shrinker_prepared(&s->s_shrink); 633 return s; 634 } 635 EXPORT_SYMBOL(sget); 636 637 void drop_super(struct super_block *sb) 638 { 639 up_read(&sb->s_umount); 640 put_super(sb); 641 } 642 643 EXPORT_SYMBOL(drop_super); 644 645 void drop_super_exclusive(struct super_block *sb) 646 { 647 up_write(&sb->s_umount); 648 put_super(sb); 649 } 650 EXPORT_SYMBOL(drop_super_exclusive); 651 652 static void __iterate_supers(void (*f)(struct super_block *)) 653 { 654 struct super_block *sb, *p = NULL; 655 656 spin_lock(&sb_lock); 657 list_for_each_entry(sb, &super_blocks, s_list) { 658 if (hlist_unhashed(&sb->s_instances)) 659 continue; 660 sb->s_count++; 661 spin_unlock(&sb_lock); 662 663 f(sb); 664 665 spin_lock(&sb_lock); 666 if (p) 667 __put_super(p); 668 p = sb; 669 } 670 if (p) 671 __put_super(p); 672 spin_unlock(&sb_lock); 673 } 674 /** 675 * iterate_supers - call function for all active superblocks 676 * @f: function to call 677 * @arg: argument to pass to it 678 * 679 * Scans the superblock list and calls given function, passing it 680 * locked superblock and given argument. 681 */ 682 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 683 { 684 struct super_block *sb, *p = NULL; 685 686 spin_lock(&sb_lock); 687 list_for_each_entry(sb, &super_blocks, s_list) { 688 if (hlist_unhashed(&sb->s_instances)) 689 continue; 690 sb->s_count++; 691 spin_unlock(&sb_lock); 692 693 down_read(&sb->s_umount); 694 if (sb->s_root && (sb->s_flags & SB_BORN)) 695 f(sb, arg); 696 up_read(&sb->s_umount); 697 698 spin_lock(&sb_lock); 699 if (p) 700 __put_super(p); 701 p = sb; 702 } 703 if (p) 704 __put_super(p); 705 spin_unlock(&sb_lock); 706 } 707 708 /** 709 * iterate_supers_type - call function for superblocks of given type 710 * @type: fs type 711 * @f: function to call 712 * @arg: argument to pass to it 713 * 714 * Scans the superblock list and calls given function, passing it 715 * locked superblock and given argument. 716 */ 717 void iterate_supers_type(struct file_system_type *type, 718 void (*f)(struct super_block *, void *), void *arg) 719 { 720 struct super_block *sb, *p = NULL; 721 722 spin_lock(&sb_lock); 723 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 724 sb->s_count++; 725 spin_unlock(&sb_lock); 726 727 down_read(&sb->s_umount); 728 if (sb->s_root && (sb->s_flags & SB_BORN)) 729 f(sb, arg); 730 up_read(&sb->s_umount); 731 732 spin_lock(&sb_lock); 733 if (p) 734 __put_super(p); 735 p = sb; 736 } 737 if (p) 738 __put_super(p); 739 spin_unlock(&sb_lock); 740 } 741 742 EXPORT_SYMBOL(iterate_supers_type); 743 744 /** 745 * get_super - get the superblock of a device 746 * @bdev: device to get the superblock for 747 * 748 * Scans the superblock list and finds the superblock of the file system 749 * mounted on the device given. %NULL is returned if no match is found. 750 */ 751 struct super_block *get_super(struct block_device *bdev) 752 { 753 struct super_block *sb; 754 755 if (!bdev) 756 return NULL; 757 758 spin_lock(&sb_lock); 759 rescan: 760 list_for_each_entry(sb, &super_blocks, s_list) { 761 if (hlist_unhashed(&sb->s_instances)) 762 continue; 763 if (sb->s_bdev == bdev) { 764 sb->s_count++; 765 spin_unlock(&sb_lock); 766 down_read(&sb->s_umount); 767 /* still alive? */ 768 if (sb->s_root && (sb->s_flags & SB_BORN)) 769 return sb; 770 up_read(&sb->s_umount); 771 /* nope, got unmounted */ 772 spin_lock(&sb_lock); 773 __put_super(sb); 774 goto rescan; 775 } 776 } 777 spin_unlock(&sb_lock); 778 return NULL; 779 } 780 781 /** 782 * get_active_super - get an active reference to the superblock of a device 783 * @bdev: device to get the superblock for 784 * 785 * Scans the superblock list and finds the superblock of the file system 786 * mounted on the device given. Returns the superblock with an active 787 * reference or %NULL if none was found. 788 */ 789 struct super_block *get_active_super(struct block_device *bdev) 790 { 791 struct super_block *sb; 792 793 if (!bdev) 794 return NULL; 795 796 restart: 797 spin_lock(&sb_lock); 798 list_for_each_entry(sb, &super_blocks, s_list) { 799 if (hlist_unhashed(&sb->s_instances)) 800 continue; 801 if (sb->s_bdev == bdev) { 802 if (!grab_super(sb)) 803 goto restart; 804 up_write(&sb->s_umount); 805 return sb; 806 } 807 } 808 spin_unlock(&sb_lock); 809 return NULL; 810 } 811 812 struct super_block *user_get_super(dev_t dev, bool excl) 813 { 814 struct super_block *sb; 815 816 spin_lock(&sb_lock); 817 rescan: 818 list_for_each_entry(sb, &super_blocks, s_list) { 819 if (hlist_unhashed(&sb->s_instances)) 820 continue; 821 if (sb->s_dev == dev) { 822 sb->s_count++; 823 spin_unlock(&sb_lock); 824 if (excl) 825 down_write(&sb->s_umount); 826 else 827 down_read(&sb->s_umount); 828 /* still alive? */ 829 if (sb->s_root && (sb->s_flags & SB_BORN)) 830 return sb; 831 if (excl) 832 up_write(&sb->s_umount); 833 else 834 up_read(&sb->s_umount); 835 /* nope, got unmounted */ 836 spin_lock(&sb_lock); 837 __put_super(sb); 838 goto rescan; 839 } 840 } 841 spin_unlock(&sb_lock); 842 return NULL; 843 } 844 845 /** 846 * reconfigure_super - asks filesystem to change superblock parameters 847 * @fc: The superblock and configuration 848 * 849 * Alters the configuration parameters of a live superblock. 850 */ 851 int reconfigure_super(struct fs_context *fc) 852 { 853 struct super_block *sb = fc->root->d_sb; 854 int retval; 855 bool remount_ro = false; 856 bool force = fc->sb_flags & SB_FORCE; 857 858 if (fc->sb_flags_mask & ~MS_RMT_MASK) 859 return -EINVAL; 860 if (sb->s_writers.frozen != SB_UNFROZEN) 861 return -EBUSY; 862 863 retval = security_sb_remount(sb, fc->security); 864 if (retval) 865 return retval; 866 867 if (fc->sb_flags_mask & SB_RDONLY) { 868 #ifdef CONFIG_BLOCK 869 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 870 bdev_read_only(sb->s_bdev)) 871 return -EACCES; 872 #endif 873 874 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 875 } 876 877 if (remount_ro) { 878 if (!hlist_empty(&sb->s_pins)) { 879 up_write(&sb->s_umount); 880 group_pin_kill(&sb->s_pins); 881 down_write(&sb->s_umount); 882 if (!sb->s_root) 883 return 0; 884 if (sb->s_writers.frozen != SB_UNFROZEN) 885 return -EBUSY; 886 remount_ro = !sb_rdonly(sb); 887 } 888 } 889 shrink_dcache_sb(sb); 890 891 /* If we are reconfiguring to RDONLY and current sb is read/write, 892 * make sure there are no files open for writing. 893 */ 894 if (remount_ro) { 895 if (force) { 896 sb->s_readonly_remount = 1; 897 smp_wmb(); 898 } else { 899 retval = sb_prepare_remount_readonly(sb); 900 if (retval) 901 return retval; 902 } 903 } 904 905 if (fc->ops->reconfigure) { 906 retval = fc->ops->reconfigure(fc); 907 if (retval) { 908 if (!force) 909 goto cancel_readonly; 910 /* If forced remount, go ahead despite any errors */ 911 WARN(1, "forced remount of a %s fs returned %i\n", 912 sb->s_type->name, retval); 913 } 914 } 915 916 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 917 (fc->sb_flags & fc->sb_flags_mask))); 918 /* Needs to be ordered wrt mnt_is_readonly() */ 919 smp_wmb(); 920 sb->s_readonly_remount = 0; 921 922 /* 923 * Some filesystems modify their metadata via some other path than the 924 * bdev buffer cache (eg. use a private mapping, or directories in 925 * pagecache, etc). Also file data modifications go via their own 926 * mappings. So If we try to mount readonly then copy the filesystem 927 * from bdev, we could get stale data, so invalidate it to give a best 928 * effort at coherency. 929 */ 930 if (remount_ro && sb->s_bdev) 931 invalidate_bdev(sb->s_bdev); 932 return 0; 933 934 cancel_readonly: 935 sb->s_readonly_remount = 0; 936 return retval; 937 } 938 939 static void do_emergency_remount_callback(struct super_block *sb) 940 { 941 down_write(&sb->s_umount); 942 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 943 !sb_rdonly(sb)) { 944 struct fs_context *fc; 945 946 fc = fs_context_for_reconfigure(sb->s_root, 947 SB_RDONLY | SB_FORCE, SB_RDONLY); 948 if (!IS_ERR(fc)) { 949 if (parse_monolithic_mount_data(fc, NULL) == 0) 950 (void)reconfigure_super(fc); 951 put_fs_context(fc); 952 } 953 } 954 up_write(&sb->s_umount); 955 } 956 957 static void do_emergency_remount(struct work_struct *work) 958 { 959 __iterate_supers(do_emergency_remount_callback); 960 kfree(work); 961 printk("Emergency Remount complete\n"); 962 } 963 964 void emergency_remount(void) 965 { 966 struct work_struct *work; 967 968 work = kmalloc(sizeof(*work), GFP_ATOMIC); 969 if (work) { 970 INIT_WORK(work, do_emergency_remount); 971 schedule_work(work); 972 } 973 } 974 975 static void do_thaw_all_callback(struct super_block *sb) 976 { 977 down_write(&sb->s_umount); 978 if (sb->s_root && sb->s_flags & SB_BORN) { 979 emergency_thaw_bdev(sb); 980 thaw_super_locked(sb); 981 } else { 982 up_write(&sb->s_umount); 983 } 984 } 985 986 static void do_thaw_all(struct work_struct *work) 987 { 988 __iterate_supers(do_thaw_all_callback); 989 kfree(work); 990 printk(KERN_WARNING "Emergency Thaw complete\n"); 991 } 992 993 /** 994 * emergency_thaw_all -- forcibly thaw every frozen filesystem 995 * 996 * Used for emergency unfreeze of all filesystems via SysRq 997 */ 998 void emergency_thaw_all(void) 999 { 1000 struct work_struct *work; 1001 1002 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1003 if (work) { 1004 INIT_WORK(work, do_thaw_all); 1005 schedule_work(work); 1006 } 1007 } 1008 1009 static DEFINE_IDA(unnamed_dev_ida); 1010 1011 /** 1012 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1013 * @p: Pointer to a dev_t. 1014 * 1015 * Filesystems which don't use real block devices can call this function 1016 * to allocate a virtual block device. 1017 * 1018 * Context: Any context. Frequently called while holding sb_lock. 1019 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1020 * or -ENOMEM if memory allocation failed. 1021 */ 1022 int get_anon_bdev(dev_t *p) 1023 { 1024 int dev; 1025 1026 /* 1027 * Many userspace utilities consider an FSID of 0 invalid. 1028 * Always return at least 1 from get_anon_bdev. 1029 */ 1030 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1031 GFP_ATOMIC); 1032 if (dev == -ENOSPC) 1033 dev = -EMFILE; 1034 if (dev < 0) 1035 return dev; 1036 1037 *p = MKDEV(0, dev); 1038 return 0; 1039 } 1040 EXPORT_SYMBOL(get_anon_bdev); 1041 1042 void free_anon_bdev(dev_t dev) 1043 { 1044 ida_free(&unnamed_dev_ida, MINOR(dev)); 1045 } 1046 EXPORT_SYMBOL(free_anon_bdev); 1047 1048 int set_anon_super(struct super_block *s, void *data) 1049 { 1050 return get_anon_bdev(&s->s_dev); 1051 } 1052 EXPORT_SYMBOL(set_anon_super); 1053 1054 void kill_anon_super(struct super_block *sb) 1055 { 1056 dev_t dev = sb->s_dev; 1057 generic_shutdown_super(sb); 1058 free_anon_bdev(dev); 1059 } 1060 EXPORT_SYMBOL(kill_anon_super); 1061 1062 void kill_litter_super(struct super_block *sb) 1063 { 1064 if (sb->s_root) 1065 d_genocide(sb->s_root); 1066 kill_anon_super(sb); 1067 } 1068 EXPORT_SYMBOL(kill_litter_super); 1069 1070 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1071 { 1072 return set_anon_super(sb, NULL); 1073 } 1074 EXPORT_SYMBOL(set_anon_super_fc); 1075 1076 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1077 { 1078 return sb->s_fs_info == fc->s_fs_info; 1079 } 1080 1081 static int test_single_super(struct super_block *s, struct fs_context *fc) 1082 { 1083 return 1; 1084 } 1085 1086 /** 1087 * vfs_get_super - Get a superblock with a search key set in s_fs_info. 1088 * @fc: The filesystem context holding the parameters 1089 * @keying: How to distinguish superblocks 1090 * @fill_super: Helper to initialise a new superblock 1091 * 1092 * Search for a superblock and create a new one if not found. The search 1093 * criterion is controlled by @keying. If the search fails, a new superblock 1094 * is created and @fill_super() is called to initialise it. 1095 * 1096 * @keying can take one of a number of values: 1097 * 1098 * (1) vfs_get_single_super - Only one superblock of this type may exist on the 1099 * system. This is typically used for special system filesystems. 1100 * 1101 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have 1102 * distinct keys (where the key is in s_fs_info). Searching for the same 1103 * key again will turn up the superblock for that key. 1104 * 1105 * (3) vfs_get_independent_super - Multiple superblocks may exist and are 1106 * unkeyed. Each call will get a new superblock. 1107 * 1108 * A permissions check is made by sget_fc() unless we're getting a superblock 1109 * for a kernel-internal mount or a submount. 1110 */ 1111 int vfs_get_super(struct fs_context *fc, 1112 enum vfs_get_super_keying keying, 1113 int (*fill_super)(struct super_block *sb, 1114 struct fs_context *fc)) 1115 { 1116 int (*test)(struct super_block *, struct fs_context *); 1117 struct super_block *sb; 1118 int err; 1119 1120 switch (keying) { 1121 case vfs_get_single_super: 1122 case vfs_get_single_reconf_super: 1123 test = test_single_super; 1124 break; 1125 case vfs_get_keyed_super: 1126 test = test_keyed_super; 1127 break; 1128 case vfs_get_independent_super: 1129 test = NULL; 1130 break; 1131 default: 1132 BUG(); 1133 } 1134 1135 sb = sget_fc(fc, test, set_anon_super_fc); 1136 if (IS_ERR(sb)) 1137 return PTR_ERR(sb); 1138 1139 if (!sb->s_root) { 1140 err = fill_super(sb, fc); 1141 if (err) 1142 goto error; 1143 1144 sb->s_flags |= SB_ACTIVE; 1145 fc->root = dget(sb->s_root); 1146 } else { 1147 fc->root = dget(sb->s_root); 1148 if (keying == vfs_get_single_reconf_super) { 1149 err = reconfigure_super(fc); 1150 if (err < 0) { 1151 dput(fc->root); 1152 fc->root = NULL; 1153 goto error; 1154 } 1155 } 1156 } 1157 1158 return 0; 1159 1160 error: 1161 deactivate_locked_super(sb); 1162 return err; 1163 } 1164 EXPORT_SYMBOL(vfs_get_super); 1165 1166 int get_tree_nodev(struct fs_context *fc, 1167 int (*fill_super)(struct super_block *sb, 1168 struct fs_context *fc)) 1169 { 1170 return vfs_get_super(fc, vfs_get_independent_super, fill_super); 1171 } 1172 EXPORT_SYMBOL(get_tree_nodev); 1173 1174 int get_tree_single(struct fs_context *fc, 1175 int (*fill_super)(struct super_block *sb, 1176 struct fs_context *fc)) 1177 { 1178 return vfs_get_super(fc, vfs_get_single_super, fill_super); 1179 } 1180 EXPORT_SYMBOL(get_tree_single); 1181 1182 int get_tree_single_reconf(struct fs_context *fc, 1183 int (*fill_super)(struct super_block *sb, 1184 struct fs_context *fc)) 1185 { 1186 return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super); 1187 } 1188 EXPORT_SYMBOL(get_tree_single_reconf); 1189 1190 int get_tree_keyed(struct fs_context *fc, 1191 int (*fill_super)(struct super_block *sb, 1192 struct fs_context *fc), 1193 void *key) 1194 { 1195 fc->s_fs_info = key; 1196 return vfs_get_super(fc, vfs_get_keyed_super, fill_super); 1197 } 1198 EXPORT_SYMBOL(get_tree_keyed); 1199 1200 #ifdef CONFIG_BLOCK 1201 1202 static int set_bdev_super(struct super_block *s, void *data) 1203 { 1204 s->s_bdev = data; 1205 s->s_dev = s->s_bdev->bd_dev; 1206 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1207 1208 if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue)) 1209 s->s_iflags |= SB_I_STABLE_WRITES; 1210 return 0; 1211 } 1212 1213 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1214 { 1215 return set_bdev_super(s, fc->sget_key); 1216 } 1217 1218 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1219 { 1220 return s->s_bdev == fc->sget_key; 1221 } 1222 1223 /** 1224 * get_tree_bdev - Get a superblock based on a single block device 1225 * @fc: The filesystem context holding the parameters 1226 * @fill_super: Helper to initialise a new superblock 1227 */ 1228 int get_tree_bdev(struct fs_context *fc, 1229 int (*fill_super)(struct super_block *, 1230 struct fs_context *)) 1231 { 1232 struct block_device *bdev; 1233 struct super_block *s; 1234 fmode_t mode = FMODE_READ | FMODE_EXCL; 1235 int error = 0; 1236 1237 if (!(fc->sb_flags & SB_RDONLY)) 1238 mode |= FMODE_WRITE; 1239 1240 if (!fc->source) 1241 return invalf(fc, "No source specified"); 1242 1243 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type); 1244 if (IS_ERR(bdev)) { 1245 errorf(fc, "%s: Can't open blockdev", fc->source); 1246 return PTR_ERR(bdev); 1247 } 1248 1249 /* Once the superblock is inserted into the list by sget_fc(), s_umount 1250 * will protect the lockfs code from trying to start a snapshot while 1251 * we are mounting 1252 */ 1253 mutex_lock(&bdev->bd_fsfreeze_mutex); 1254 if (bdev->bd_fsfreeze_count > 0) { 1255 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1256 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1257 blkdev_put(bdev, mode); 1258 return -EBUSY; 1259 } 1260 1261 fc->sb_flags |= SB_NOSEC; 1262 fc->sget_key = bdev; 1263 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc); 1264 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1265 if (IS_ERR(s)) { 1266 blkdev_put(bdev, mode); 1267 return PTR_ERR(s); 1268 } 1269 1270 if (s->s_root) { 1271 /* Don't summarily change the RO/RW state. */ 1272 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1273 warnf(fc, "%pg: Can't mount, would change RO state", bdev); 1274 deactivate_locked_super(s); 1275 blkdev_put(bdev, mode); 1276 return -EBUSY; 1277 } 1278 1279 /* 1280 * s_umount nests inside open_mutex during 1281 * __invalidate_device(). blkdev_put() acquires 1282 * open_mutex and can't be called under s_umount. Drop 1283 * s_umount temporarily. This is safe as we're 1284 * holding an active reference. 1285 */ 1286 up_write(&s->s_umount); 1287 blkdev_put(bdev, mode); 1288 down_write(&s->s_umount); 1289 } else { 1290 s->s_mode = mode; 1291 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1292 sb_set_blocksize(s, block_size(bdev)); 1293 error = fill_super(s, fc); 1294 if (error) { 1295 deactivate_locked_super(s); 1296 return error; 1297 } 1298 1299 s->s_flags |= SB_ACTIVE; 1300 bdev->bd_super = s; 1301 } 1302 1303 BUG_ON(fc->root); 1304 fc->root = dget(s->s_root); 1305 return 0; 1306 } 1307 EXPORT_SYMBOL(get_tree_bdev); 1308 1309 static int test_bdev_super(struct super_block *s, void *data) 1310 { 1311 return (void *)s->s_bdev == data; 1312 } 1313 1314 struct dentry *mount_bdev(struct file_system_type *fs_type, 1315 int flags, const char *dev_name, void *data, 1316 int (*fill_super)(struct super_block *, void *, int)) 1317 { 1318 struct block_device *bdev; 1319 struct super_block *s; 1320 fmode_t mode = FMODE_READ | FMODE_EXCL; 1321 int error = 0; 1322 1323 if (!(flags & SB_RDONLY)) 1324 mode |= FMODE_WRITE; 1325 1326 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1327 if (IS_ERR(bdev)) 1328 return ERR_CAST(bdev); 1329 1330 /* 1331 * once the super is inserted into the list by sget, s_umount 1332 * will protect the lockfs code from trying to start a snapshot 1333 * while we are mounting 1334 */ 1335 mutex_lock(&bdev->bd_fsfreeze_mutex); 1336 if (bdev->bd_fsfreeze_count > 0) { 1337 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1338 error = -EBUSY; 1339 goto error_bdev; 1340 } 1341 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1342 bdev); 1343 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1344 if (IS_ERR(s)) 1345 goto error_s; 1346 1347 if (s->s_root) { 1348 if ((flags ^ s->s_flags) & SB_RDONLY) { 1349 deactivate_locked_super(s); 1350 error = -EBUSY; 1351 goto error_bdev; 1352 } 1353 1354 /* 1355 * s_umount nests inside open_mutex during 1356 * __invalidate_device(). blkdev_put() acquires 1357 * open_mutex and can't be called under s_umount. Drop 1358 * s_umount temporarily. This is safe as we're 1359 * holding an active reference. 1360 */ 1361 up_write(&s->s_umount); 1362 blkdev_put(bdev, mode); 1363 down_write(&s->s_umount); 1364 } else { 1365 s->s_mode = mode; 1366 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1367 sb_set_blocksize(s, block_size(bdev)); 1368 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1369 if (error) { 1370 deactivate_locked_super(s); 1371 goto error; 1372 } 1373 1374 s->s_flags |= SB_ACTIVE; 1375 bdev->bd_super = s; 1376 } 1377 1378 return dget(s->s_root); 1379 1380 error_s: 1381 error = PTR_ERR(s); 1382 error_bdev: 1383 blkdev_put(bdev, mode); 1384 error: 1385 return ERR_PTR(error); 1386 } 1387 EXPORT_SYMBOL(mount_bdev); 1388 1389 void kill_block_super(struct super_block *sb) 1390 { 1391 struct block_device *bdev = sb->s_bdev; 1392 fmode_t mode = sb->s_mode; 1393 1394 bdev->bd_super = NULL; 1395 generic_shutdown_super(sb); 1396 sync_blockdev(bdev); 1397 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1398 blkdev_put(bdev, mode | FMODE_EXCL); 1399 } 1400 1401 EXPORT_SYMBOL(kill_block_super); 1402 #endif 1403 1404 struct dentry *mount_nodev(struct file_system_type *fs_type, 1405 int flags, void *data, 1406 int (*fill_super)(struct super_block *, void *, int)) 1407 { 1408 int error; 1409 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1410 1411 if (IS_ERR(s)) 1412 return ERR_CAST(s); 1413 1414 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1415 if (error) { 1416 deactivate_locked_super(s); 1417 return ERR_PTR(error); 1418 } 1419 s->s_flags |= SB_ACTIVE; 1420 return dget(s->s_root); 1421 } 1422 EXPORT_SYMBOL(mount_nodev); 1423 1424 static int reconfigure_single(struct super_block *s, 1425 int flags, void *data) 1426 { 1427 struct fs_context *fc; 1428 int ret; 1429 1430 /* The caller really need to be passing fc down into mount_single(), 1431 * then a chunk of this can be removed. [Bollocks -- AV] 1432 * Better yet, reconfiguration shouldn't happen, but rather the second 1433 * mount should be rejected if the parameters are not compatible. 1434 */ 1435 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1436 if (IS_ERR(fc)) 1437 return PTR_ERR(fc); 1438 1439 ret = parse_monolithic_mount_data(fc, data); 1440 if (ret < 0) 1441 goto out; 1442 1443 ret = reconfigure_super(fc); 1444 out: 1445 put_fs_context(fc); 1446 return ret; 1447 } 1448 1449 static int compare_single(struct super_block *s, void *p) 1450 { 1451 return 1; 1452 } 1453 1454 struct dentry *mount_single(struct file_system_type *fs_type, 1455 int flags, void *data, 1456 int (*fill_super)(struct super_block *, void *, int)) 1457 { 1458 struct super_block *s; 1459 int error; 1460 1461 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1462 if (IS_ERR(s)) 1463 return ERR_CAST(s); 1464 if (!s->s_root) { 1465 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1466 if (!error) 1467 s->s_flags |= SB_ACTIVE; 1468 } else { 1469 error = reconfigure_single(s, flags, data); 1470 } 1471 if (unlikely(error)) { 1472 deactivate_locked_super(s); 1473 return ERR_PTR(error); 1474 } 1475 return dget(s->s_root); 1476 } 1477 EXPORT_SYMBOL(mount_single); 1478 1479 /** 1480 * vfs_get_tree - Get the mountable root 1481 * @fc: The superblock configuration context. 1482 * 1483 * The filesystem is invoked to get or create a superblock which can then later 1484 * be used for mounting. The filesystem places a pointer to the root to be 1485 * used for mounting in @fc->root. 1486 */ 1487 int vfs_get_tree(struct fs_context *fc) 1488 { 1489 struct super_block *sb; 1490 int error; 1491 1492 if (fc->root) 1493 return -EBUSY; 1494 1495 /* Get the mountable root in fc->root, with a ref on the root and a ref 1496 * on the superblock. 1497 */ 1498 error = fc->ops->get_tree(fc); 1499 if (error < 0) 1500 return error; 1501 1502 if (!fc->root) { 1503 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1504 fc->fs_type->name); 1505 /* We don't know what the locking state of the superblock is - 1506 * if there is a superblock. 1507 */ 1508 BUG(); 1509 } 1510 1511 sb = fc->root->d_sb; 1512 WARN_ON(!sb->s_bdi); 1513 1514 /* 1515 * Write barrier is for super_cache_count(). We place it before setting 1516 * SB_BORN as the data dependency between the two functions is the 1517 * superblock structure contents that we just set up, not the SB_BORN 1518 * flag. 1519 */ 1520 smp_wmb(); 1521 sb->s_flags |= SB_BORN; 1522 1523 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1524 if (unlikely(error)) { 1525 fc_drop_locked(fc); 1526 return error; 1527 } 1528 1529 /* 1530 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1531 * but s_maxbytes was an unsigned long long for many releases. Throw 1532 * this warning for a little while to try and catch filesystems that 1533 * violate this rule. 1534 */ 1535 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1536 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1537 1538 return 0; 1539 } 1540 EXPORT_SYMBOL(vfs_get_tree); 1541 1542 /* 1543 * Setup private BDI for given superblock. It gets automatically cleaned up 1544 * in generic_shutdown_super(). 1545 */ 1546 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1547 { 1548 struct backing_dev_info *bdi; 1549 int err; 1550 va_list args; 1551 1552 bdi = bdi_alloc(NUMA_NO_NODE); 1553 if (!bdi) 1554 return -ENOMEM; 1555 1556 va_start(args, fmt); 1557 err = bdi_register_va(bdi, fmt, args); 1558 va_end(args); 1559 if (err) { 1560 bdi_put(bdi); 1561 return err; 1562 } 1563 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1564 sb->s_bdi = bdi; 1565 1566 return 0; 1567 } 1568 EXPORT_SYMBOL(super_setup_bdi_name); 1569 1570 /* 1571 * Setup private BDI for given superblock. I gets automatically cleaned up 1572 * in generic_shutdown_super(). 1573 */ 1574 int super_setup_bdi(struct super_block *sb) 1575 { 1576 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1577 1578 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1579 atomic_long_inc_return(&bdi_seq)); 1580 } 1581 EXPORT_SYMBOL(super_setup_bdi); 1582 1583 /** 1584 * sb_wait_write - wait until all writers to given file system finish 1585 * @sb: the super for which we wait 1586 * @level: type of writers we wait for (normal vs page fault) 1587 * 1588 * This function waits until there are no writers of given type to given file 1589 * system. 1590 */ 1591 static void sb_wait_write(struct super_block *sb, int level) 1592 { 1593 percpu_down_write(sb->s_writers.rw_sem + level-1); 1594 } 1595 1596 /* 1597 * We are going to return to userspace and forget about these locks, the 1598 * ownership goes to the caller of thaw_super() which does unlock(). 1599 */ 1600 static void lockdep_sb_freeze_release(struct super_block *sb) 1601 { 1602 int level; 1603 1604 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1605 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1606 } 1607 1608 /* 1609 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1610 */ 1611 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1612 { 1613 int level; 1614 1615 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1616 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1617 } 1618 1619 static void sb_freeze_unlock(struct super_block *sb) 1620 { 1621 int level; 1622 1623 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1624 percpu_up_write(sb->s_writers.rw_sem + level); 1625 } 1626 1627 /** 1628 * freeze_super - lock the filesystem and force it into a consistent state 1629 * @sb: the super to lock 1630 * 1631 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1632 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1633 * -EBUSY. 1634 * 1635 * During this function, sb->s_writers.frozen goes through these values: 1636 * 1637 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1638 * 1639 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1640 * writes should be blocked, though page faults are still allowed. We wait for 1641 * all writes to complete and then proceed to the next stage. 1642 * 1643 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1644 * but internal fs threads can still modify the filesystem (although they 1645 * should not dirty new pages or inodes), writeback can run etc. After waiting 1646 * for all running page faults we sync the filesystem which will clean all 1647 * dirty pages and inodes (no new dirty pages or inodes can be created when 1648 * sync is running). 1649 * 1650 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1651 * modification are blocked (e.g. XFS preallocation truncation on inode 1652 * reclaim). This is usually implemented by blocking new transactions for 1653 * filesystems that have them and need this additional guard. After all 1654 * internal writers are finished we call ->freeze_fs() to finish filesystem 1655 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1656 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1657 * 1658 * sb->s_writers.frozen is protected by sb->s_umount. 1659 */ 1660 int freeze_super(struct super_block *sb) 1661 { 1662 int ret; 1663 1664 atomic_inc(&sb->s_active); 1665 down_write(&sb->s_umount); 1666 if (sb->s_writers.frozen != SB_UNFROZEN) { 1667 deactivate_locked_super(sb); 1668 return -EBUSY; 1669 } 1670 1671 if (!(sb->s_flags & SB_BORN)) { 1672 up_write(&sb->s_umount); 1673 return 0; /* sic - it's "nothing to do" */ 1674 } 1675 1676 if (sb_rdonly(sb)) { 1677 /* Nothing to do really... */ 1678 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1679 up_write(&sb->s_umount); 1680 return 0; 1681 } 1682 1683 sb->s_writers.frozen = SB_FREEZE_WRITE; 1684 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1685 up_write(&sb->s_umount); 1686 sb_wait_write(sb, SB_FREEZE_WRITE); 1687 down_write(&sb->s_umount); 1688 1689 /* Now we go and block page faults... */ 1690 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1691 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1692 1693 /* All writers are done so after syncing there won't be dirty data */ 1694 sync_filesystem(sb); 1695 1696 /* Now wait for internal filesystem counter */ 1697 sb->s_writers.frozen = SB_FREEZE_FS; 1698 sb_wait_write(sb, SB_FREEZE_FS); 1699 1700 if (sb->s_op->freeze_fs) { 1701 ret = sb->s_op->freeze_fs(sb); 1702 if (ret) { 1703 printk(KERN_ERR 1704 "VFS:Filesystem freeze failed\n"); 1705 sb->s_writers.frozen = SB_UNFROZEN; 1706 sb_freeze_unlock(sb); 1707 wake_up(&sb->s_writers.wait_unfrozen); 1708 deactivate_locked_super(sb); 1709 return ret; 1710 } 1711 } 1712 /* 1713 * For debugging purposes so that fs can warn if it sees write activity 1714 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1715 */ 1716 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1717 lockdep_sb_freeze_release(sb); 1718 up_write(&sb->s_umount); 1719 return 0; 1720 } 1721 EXPORT_SYMBOL(freeze_super); 1722 1723 static int thaw_super_locked(struct super_block *sb) 1724 { 1725 int error; 1726 1727 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1728 up_write(&sb->s_umount); 1729 return -EINVAL; 1730 } 1731 1732 if (sb_rdonly(sb)) { 1733 sb->s_writers.frozen = SB_UNFROZEN; 1734 goto out; 1735 } 1736 1737 lockdep_sb_freeze_acquire(sb); 1738 1739 if (sb->s_op->unfreeze_fs) { 1740 error = sb->s_op->unfreeze_fs(sb); 1741 if (error) { 1742 printk(KERN_ERR 1743 "VFS:Filesystem thaw failed\n"); 1744 lockdep_sb_freeze_release(sb); 1745 up_write(&sb->s_umount); 1746 return error; 1747 } 1748 } 1749 1750 sb->s_writers.frozen = SB_UNFROZEN; 1751 sb_freeze_unlock(sb); 1752 out: 1753 wake_up(&sb->s_writers.wait_unfrozen); 1754 deactivate_locked_super(sb); 1755 return 0; 1756 } 1757 1758 /** 1759 * thaw_super -- unlock filesystem 1760 * @sb: the super to thaw 1761 * 1762 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1763 */ 1764 int thaw_super(struct super_block *sb) 1765 { 1766 down_write(&sb->s_umount); 1767 return thaw_super_locked(sb); 1768 } 1769 EXPORT_SYMBOL(thaw_super); 1770