1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who, 43 const void *freeze_owner); 44 45 static LIST_HEAD(super_blocks); 46 static DEFINE_SPINLOCK(sb_lock); 47 48 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 49 "sb_writers", 50 "sb_pagefaults", 51 "sb_internal", 52 }; 53 54 static inline void __super_lock(struct super_block *sb, bool excl) 55 { 56 if (excl) 57 down_write(&sb->s_umount); 58 else 59 down_read(&sb->s_umount); 60 } 61 62 static inline void super_unlock(struct super_block *sb, bool excl) 63 { 64 if (excl) 65 up_write(&sb->s_umount); 66 else 67 up_read(&sb->s_umount); 68 } 69 70 static inline void __super_lock_excl(struct super_block *sb) 71 { 72 __super_lock(sb, true); 73 } 74 75 static inline void super_unlock_excl(struct super_block *sb) 76 { 77 super_unlock(sb, true); 78 } 79 80 static inline void super_unlock_shared(struct super_block *sb) 81 { 82 super_unlock(sb, false); 83 } 84 85 static bool super_flags(const struct super_block *sb, unsigned int flags) 86 { 87 /* 88 * Pairs with smp_store_release() in super_wake() and ensures 89 * that we see @flags after we're woken. 90 */ 91 return smp_load_acquire(&sb->s_flags) & flags; 92 } 93 94 /** 95 * super_lock - wait for superblock to become ready and lock it 96 * @sb: superblock to wait for 97 * @excl: whether exclusive access is required 98 * 99 * If the superblock has neither passed through vfs_get_tree() or 100 * generic_shutdown_super() yet wait for it to happen. Either superblock 101 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're 102 * woken and we'll see SB_DYING. 103 * 104 * The caller must have acquired a temporary reference on @sb->s_count. 105 * 106 * Return: The function returns true if SB_BORN was set and with 107 * s_umount held. The function returns false if SB_DYING was 108 * set and without s_umount held. 109 */ 110 static __must_check bool super_lock(struct super_block *sb, bool excl) 111 { 112 lockdep_assert_not_held(&sb->s_umount); 113 114 /* wait until the superblock is ready or dying */ 115 wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING)); 116 117 /* Don't pointlessly acquire s_umount. */ 118 if (super_flags(sb, SB_DYING)) 119 return false; 120 121 __super_lock(sb, excl); 122 123 /* 124 * Has gone through generic_shutdown_super() in the meantime. 125 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to 126 * grab a reference to this. Tell them so. 127 */ 128 if (sb->s_flags & SB_DYING) { 129 super_unlock(sb, excl); 130 return false; 131 } 132 133 WARN_ON_ONCE(!(sb->s_flags & SB_BORN)); 134 return true; 135 } 136 137 /* wait and try to acquire read-side of @sb->s_umount */ 138 static inline bool super_lock_shared(struct super_block *sb) 139 { 140 return super_lock(sb, false); 141 } 142 143 /* wait and try to acquire write-side of @sb->s_umount */ 144 static inline bool super_lock_excl(struct super_block *sb) 145 { 146 return super_lock(sb, true); 147 } 148 149 /* wake waiters */ 150 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD) 151 static void super_wake(struct super_block *sb, unsigned int flag) 152 { 153 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS)); 154 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1); 155 156 /* 157 * Pairs with smp_load_acquire() in super_lock() to make sure 158 * all initializations in the superblock are seen by the user 159 * seeing SB_BORN sent. 160 */ 161 smp_store_release(&sb->s_flags, sb->s_flags | flag); 162 /* 163 * Pairs with the barrier in prepare_to_wait_event() to make sure 164 * ___wait_var_event() either sees SB_BORN set or 165 * waitqueue_active() check in wake_up_var() sees the waiter. 166 */ 167 smp_mb(); 168 wake_up_var(&sb->s_flags); 169 } 170 171 /* 172 * One thing we have to be careful of with a per-sb shrinker is that we don't 173 * drop the last active reference to the superblock from within the shrinker. 174 * If that happens we could trigger unregistering the shrinker from within the 175 * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we 176 * take a passive reference to the superblock to avoid this from occurring. 177 */ 178 static unsigned long super_cache_scan(struct shrinker *shrink, 179 struct shrink_control *sc) 180 { 181 struct super_block *sb; 182 long fs_objects = 0; 183 long total_objects; 184 long freed = 0; 185 long dentries; 186 long inodes; 187 188 sb = shrink->private_data; 189 190 /* 191 * Deadlock avoidance. We may hold various FS locks, and we don't want 192 * to recurse into the FS that called us in clear_inode() and friends.. 193 */ 194 if (!(sc->gfp_mask & __GFP_FS)) 195 return SHRINK_STOP; 196 197 if (!super_trylock_shared(sb)) 198 return SHRINK_STOP; 199 200 if (sb->s_op->nr_cached_objects) 201 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 202 203 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 204 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 205 total_objects = dentries + inodes + fs_objects; 206 if (!total_objects) 207 total_objects = 1; 208 209 /* proportion the scan between the caches */ 210 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 211 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 212 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 213 214 /* 215 * prune the dcache first as the icache is pinned by it, then 216 * prune the icache, followed by the filesystem specific caches 217 * 218 * Ensure that we always scan at least one object - memcg kmem 219 * accounting uses this to fully empty the caches. 220 */ 221 sc->nr_to_scan = dentries + 1; 222 freed = prune_dcache_sb(sb, sc); 223 sc->nr_to_scan = inodes + 1; 224 freed += prune_icache_sb(sb, sc); 225 226 if (fs_objects) { 227 sc->nr_to_scan = fs_objects + 1; 228 freed += sb->s_op->free_cached_objects(sb, sc); 229 } 230 231 super_unlock_shared(sb); 232 return freed; 233 } 234 235 static unsigned long super_cache_count(struct shrinker *shrink, 236 struct shrink_control *sc) 237 { 238 struct super_block *sb; 239 long total_objects = 0; 240 241 sb = shrink->private_data; 242 243 /* 244 * We don't call super_trylock_shared() here as it is a scalability 245 * bottleneck, so we're exposed to partial setup state. The shrinker 246 * rwsem does not protect filesystem operations backing 247 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can 248 * change between super_cache_count and super_cache_scan, so we really 249 * don't need locks here. 250 * 251 * However, if we are currently mounting the superblock, the underlying 252 * filesystem might be in a state of partial construction and hence it 253 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check 254 * to avoid this situation, so do the same here. The memory barrier is 255 * matched with the one in mount_fs() as we don't hold locks here. 256 */ 257 if (!(sb->s_flags & SB_BORN)) 258 return 0; 259 smp_rmb(); 260 261 if (sb->s_op && sb->s_op->nr_cached_objects) 262 total_objects = sb->s_op->nr_cached_objects(sb, sc); 263 264 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 265 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 266 267 if (!total_objects) 268 return SHRINK_EMPTY; 269 270 total_objects = vfs_pressure_ratio(total_objects); 271 return total_objects; 272 } 273 274 static void destroy_super_work(struct work_struct *work) 275 { 276 struct super_block *s = container_of(work, struct super_block, 277 destroy_work); 278 fsnotify_sb_free(s); 279 security_sb_free(s); 280 put_user_ns(s->s_user_ns); 281 kfree(s->s_subtype); 282 for (int i = 0; i < SB_FREEZE_LEVELS; i++) 283 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 284 kfree(s); 285 } 286 287 static void destroy_super_rcu(struct rcu_head *head) 288 { 289 struct super_block *s = container_of(head, struct super_block, rcu); 290 INIT_WORK(&s->destroy_work, destroy_super_work); 291 schedule_work(&s->destroy_work); 292 } 293 294 /* Free a superblock that has never been seen by anyone */ 295 static void destroy_unused_super(struct super_block *s) 296 { 297 if (!s) 298 return; 299 super_unlock_excl(s); 300 list_lru_destroy(&s->s_dentry_lru); 301 list_lru_destroy(&s->s_inode_lru); 302 shrinker_free(s->s_shrink); 303 /* no delays needed */ 304 destroy_super_work(&s->destroy_work); 305 } 306 307 /** 308 * alloc_super - create new superblock 309 * @type: filesystem type superblock should belong to 310 * @flags: the mount flags 311 * @user_ns: User namespace for the super_block 312 * 313 * Allocates and initializes a new &struct super_block. alloc_super() 314 * returns a pointer new superblock or %NULL if allocation had failed. 315 */ 316 static struct super_block *alloc_super(struct file_system_type *type, int flags, 317 struct user_namespace *user_ns) 318 { 319 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL); 320 static const struct super_operations default_op; 321 int i; 322 323 if (!s) 324 return NULL; 325 326 s->s_user_ns = get_user_ns(user_ns); 327 init_rwsem(&s->s_umount); 328 lockdep_set_class(&s->s_umount, &type->s_umount_key); 329 /* 330 * sget() can have s_umount recursion. 331 * 332 * When it cannot find a suitable sb, it allocates a new 333 * one (this one), and tries again to find a suitable old 334 * one. 335 * 336 * In case that succeeds, it will acquire the s_umount 337 * lock of the old one. Since these are clearly distrinct 338 * locks, and this object isn't exposed yet, there's no 339 * risk of deadlocks. 340 * 341 * Annotate this by putting this lock in a different 342 * subclass. 343 */ 344 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 345 346 if (security_sb_alloc(s)) 347 goto fail; 348 349 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 350 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 351 sb_writers_name[i], 352 &type->s_writers_key[i])) 353 goto fail; 354 } 355 s->s_bdi = &noop_backing_dev_info; 356 s->s_flags = flags; 357 if (s->s_user_ns != &init_user_ns) 358 s->s_iflags |= SB_I_NODEV; 359 INIT_HLIST_NODE(&s->s_instances); 360 INIT_HLIST_BL_HEAD(&s->s_roots); 361 mutex_init(&s->s_sync_lock); 362 INIT_LIST_HEAD(&s->s_inodes); 363 spin_lock_init(&s->s_inode_list_lock); 364 INIT_LIST_HEAD(&s->s_inodes_wb); 365 spin_lock_init(&s->s_inode_wblist_lock); 366 367 s->s_count = 1; 368 atomic_set(&s->s_active, 1); 369 mutex_init(&s->s_vfs_rename_mutex); 370 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 371 init_rwsem(&s->s_dquot.dqio_sem); 372 s->s_maxbytes = MAX_NON_LFS; 373 s->s_op = &default_op; 374 s->s_time_gran = 1000000000; 375 s->s_time_min = TIME64_MIN; 376 s->s_time_max = TIME64_MAX; 377 378 s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, 379 "sb-%s", type->name); 380 if (!s->s_shrink) 381 goto fail; 382 383 s->s_shrink->scan_objects = super_cache_scan; 384 s->s_shrink->count_objects = super_cache_count; 385 s->s_shrink->batch = 1024; 386 s->s_shrink->private_data = s; 387 388 if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink)) 389 goto fail; 390 if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink)) 391 goto fail; 392 s->s_min_writeback_pages = MIN_WRITEBACK_PAGES; 393 return s; 394 395 fail: 396 destroy_unused_super(s); 397 return NULL; 398 } 399 400 /* Superblock refcounting */ 401 402 /* 403 * Drop a superblock's refcount. The caller must hold sb_lock. 404 */ 405 static void __put_super(struct super_block *s) 406 { 407 if (!--s->s_count) { 408 list_del_init(&s->s_list); 409 WARN_ON(s->s_dentry_lru.node); 410 WARN_ON(s->s_inode_lru.node); 411 WARN_ON(s->s_mounts); 412 call_rcu(&s->rcu, destroy_super_rcu); 413 } 414 } 415 416 /** 417 * put_super - drop a temporary reference to superblock 418 * @sb: superblock in question 419 * 420 * Drops a temporary reference, frees superblock if there's no 421 * references left. 422 */ 423 void put_super(struct super_block *sb) 424 { 425 spin_lock(&sb_lock); 426 __put_super(sb); 427 spin_unlock(&sb_lock); 428 } 429 430 static void kill_super_notify(struct super_block *sb) 431 { 432 lockdep_assert_not_held(&sb->s_umount); 433 434 /* already notified earlier */ 435 if (sb->s_flags & SB_DEAD) 436 return; 437 438 /* 439 * Remove it from @fs_supers so it isn't found by new 440 * sget{_fc}() walkers anymore. Any concurrent mounter still 441 * managing to grab a temporary reference is guaranteed to 442 * already see SB_DYING and will wait until we notify them about 443 * SB_DEAD. 444 */ 445 spin_lock(&sb_lock); 446 hlist_del_init(&sb->s_instances); 447 spin_unlock(&sb_lock); 448 449 /* 450 * Let concurrent mounts know that this thing is really dead. 451 * We don't need @sb->s_umount here as every concurrent caller 452 * will see SB_DYING and either discard the superblock or wait 453 * for SB_DEAD. 454 */ 455 super_wake(sb, SB_DEAD); 456 } 457 458 /** 459 * deactivate_locked_super - drop an active reference to superblock 460 * @s: superblock to deactivate 461 * 462 * Drops an active reference to superblock, converting it into a temporary 463 * one if there is no other active references left. In that case we 464 * tell fs driver to shut it down and drop the temporary reference we 465 * had just acquired. 466 * 467 * Caller holds exclusive lock on superblock; that lock is released. 468 */ 469 void deactivate_locked_super(struct super_block *s) 470 { 471 struct file_system_type *fs = s->s_type; 472 if (atomic_dec_and_test(&s->s_active)) { 473 shrinker_free(s->s_shrink); 474 fs->kill_sb(s); 475 476 kill_super_notify(s); 477 478 /* 479 * Since list_lru_destroy() may sleep, we cannot call it from 480 * put_super(), where we hold the sb_lock. Therefore we destroy 481 * the lru lists right now. 482 */ 483 list_lru_destroy(&s->s_dentry_lru); 484 list_lru_destroy(&s->s_inode_lru); 485 486 put_filesystem(fs); 487 put_super(s); 488 } else { 489 super_unlock_excl(s); 490 } 491 } 492 493 EXPORT_SYMBOL(deactivate_locked_super); 494 495 /** 496 * deactivate_super - drop an active reference to superblock 497 * @s: superblock to deactivate 498 * 499 * Variant of deactivate_locked_super(), except that superblock is *not* 500 * locked by caller. If we are going to drop the final active reference, 501 * lock will be acquired prior to that. 502 */ 503 void deactivate_super(struct super_block *s) 504 { 505 if (!atomic_add_unless(&s->s_active, -1, 1)) { 506 __super_lock_excl(s); 507 deactivate_locked_super(s); 508 } 509 } 510 511 EXPORT_SYMBOL(deactivate_super); 512 513 /** 514 * grab_super - acquire an active reference to a superblock 515 * @sb: superblock to acquire 516 * 517 * Acquire a temporary reference on a superblock and try to trade it for 518 * an active reference. This is used in sget{_fc}() to wait for a 519 * superblock to either become SB_BORN or for it to pass through 520 * sb->kill() and be marked as SB_DEAD. 521 * 522 * Return: This returns true if an active reference could be acquired, 523 * false if not. 524 */ 525 static bool grab_super(struct super_block *sb) 526 { 527 bool locked; 528 529 sb->s_count++; 530 spin_unlock(&sb_lock); 531 locked = super_lock_excl(sb); 532 if (locked) { 533 if (atomic_inc_not_zero(&sb->s_active)) { 534 put_super(sb); 535 return true; 536 } 537 super_unlock_excl(sb); 538 } 539 wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD)); 540 put_super(sb); 541 return false; 542 } 543 544 /* 545 * super_trylock_shared - try to grab ->s_umount shared 546 * @sb: reference we are trying to grab 547 * 548 * Try to prevent fs shutdown. This is used in places where we 549 * cannot take an active reference but we need to ensure that the 550 * filesystem is not shut down while we are working on it. It returns 551 * false if we cannot acquire s_umount or if we lose the race and 552 * filesystem already got into shutdown, and returns true with the s_umount 553 * lock held in read mode in case of success. On successful return, 554 * the caller must drop the s_umount lock when done. 555 * 556 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 557 * The reason why it's safe is that we are OK with doing trylock instead 558 * of down_read(). There's a couple of places that are OK with that, but 559 * it's very much not a general-purpose interface. 560 */ 561 bool super_trylock_shared(struct super_block *sb) 562 { 563 if (down_read_trylock(&sb->s_umount)) { 564 if (!(sb->s_flags & SB_DYING) && sb->s_root && 565 (sb->s_flags & SB_BORN)) 566 return true; 567 super_unlock_shared(sb); 568 } 569 570 return false; 571 } 572 573 /** 574 * retire_super - prevents superblock from being reused 575 * @sb: superblock to retire 576 * 577 * The function marks superblock to be ignored in superblock test, which 578 * prevents it from being reused for any new mounts. If the superblock has 579 * a private bdi, it also unregisters it, but doesn't reduce the refcount 580 * of the superblock to prevent potential races. The refcount is reduced 581 * by generic_shutdown_super(). The function can not be called 582 * concurrently with generic_shutdown_super(). It is safe to call the 583 * function multiple times, subsequent calls have no effect. 584 * 585 * The marker will affect the re-use only for block-device-based 586 * superblocks. Other superblocks will still get marked if this function 587 * is used, but that will not affect their reusability. 588 */ 589 void retire_super(struct super_block *sb) 590 { 591 WARN_ON(!sb->s_bdev); 592 __super_lock_excl(sb); 593 if (sb->s_iflags & SB_I_PERSB_BDI) { 594 bdi_unregister(sb->s_bdi); 595 sb->s_iflags &= ~SB_I_PERSB_BDI; 596 } 597 sb->s_iflags |= SB_I_RETIRED; 598 super_unlock_excl(sb); 599 } 600 EXPORT_SYMBOL(retire_super); 601 602 /** 603 * generic_shutdown_super - common helper for ->kill_sb() 604 * @sb: superblock to kill 605 * 606 * generic_shutdown_super() does all fs-independent work on superblock 607 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 608 * that need destruction out of superblock, call generic_shutdown_super() 609 * and release aforementioned objects. Note: dentries and inodes _are_ 610 * taken care of and do not need specific handling. 611 * 612 * Upon calling this function, the filesystem may no longer alter or 613 * rearrange the set of dentries belonging to this super_block, nor may it 614 * change the attachments of dentries to inodes. 615 */ 616 void generic_shutdown_super(struct super_block *sb) 617 { 618 const struct super_operations *sop = sb->s_op; 619 620 if (sb->s_root) { 621 shrink_dcache_for_umount(sb); 622 sync_filesystem(sb); 623 sb->s_flags &= ~SB_ACTIVE; 624 625 cgroup_writeback_umount(sb); 626 627 /* Evict all inodes with zero refcount. */ 628 evict_inodes(sb); 629 630 /* 631 * Clean up and evict any inodes that still have references due 632 * to fsnotify or the security policy. 633 */ 634 fsnotify_sb_delete(sb); 635 security_sb_delete(sb); 636 637 if (sb->s_dio_done_wq) { 638 destroy_workqueue(sb->s_dio_done_wq); 639 sb->s_dio_done_wq = NULL; 640 } 641 642 if (sop->put_super) 643 sop->put_super(sb); 644 645 /* 646 * Now that all potentially-encrypted inodes have been evicted, 647 * the fscrypt keyring can be destroyed. 648 */ 649 fscrypt_destroy_keyring(sb); 650 651 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), NULL, 652 "VFS: Busy inodes after unmount of %s (%s)", 653 sb->s_id, sb->s_type->name)) { 654 /* 655 * Adding a proper bailout path here would be hard, but 656 * we can at least make it more likely that a later 657 * iput_final() or such crashes cleanly. 658 */ 659 struct inode *inode; 660 661 spin_lock(&sb->s_inode_list_lock); 662 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 663 inode->i_op = VFS_PTR_POISON; 664 inode->i_sb = VFS_PTR_POISON; 665 inode->i_mapping = VFS_PTR_POISON; 666 } 667 spin_unlock(&sb->s_inode_list_lock); 668 } 669 } 670 /* 671 * Broadcast to everyone that grabbed a temporary reference to this 672 * superblock before we removed it from @fs_supers that the superblock 673 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now 674 * discard this superblock and treat it as dead. 675 * 676 * We leave the superblock on @fs_supers so it can be found by 677 * sget{_fc}() until we passed sb->kill_sb(). 678 */ 679 super_wake(sb, SB_DYING); 680 super_unlock_excl(sb); 681 if (sb->s_bdi != &noop_backing_dev_info) { 682 if (sb->s_iflags & SB_I_PERSB_BDI) 683 bdi_unregister(sb->s_bdi); 684 bdi_put(sb->s_bdi); 685 sb->s_bdi = &noop_backing_dev_info; 686 } 687 } 688 689 EXPORT_SYMBOL(generic_shutdown_super); 690 691 bool mount_capable(struct fs_context *fc) 692 { 693 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 694 return capable(CAP_SYS_ADMIN); 695 else 696 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 697 } 698 699 /** 700 * sget_fc - Find or create a superblock 701 * @fc: Filesystem context. 702 * @test: Comparison callback 703 * @set: Setup callback 704 * 705 * Create a new superblock or find an existing one. 706 * 707 * The @test callback is used to find a matching existing superblock. 708 * Whether or not the requested parameters in @fc are taken into account 709 * is specific to the @test callback that is used. They may even be 710 * completely ignored. 711 * 712 * If an extant superblock is matched, it will be returned unless: 713 * 714 * (1) the namespace the filesystem context @fc and the extant 715 * superblock's namespace differ 716 * 717 * (2) the filesystem context @fc has requested that reusing an extant 718 * superblock is not allowed 719 * 720 * In both cases EBUSY will be returned. 721 * 722 * If no match is made, a new superblock will be allocated and basic 723 * initialisation will be performed (s_type, s_fs_info and s_id will be 724 * set and the @set callback will be invoked), the superblock will be 725 * published and it will be returned in a partially constructed state 726 * with SB_BORN and SB_ACTIVE as yet unset. 727 * 728 * Return: On success, an extant or newly created superblock is 729 * returned. On failure an error pointer is returned. 730 */ 731 struct super_block *sget_fc(struct fs_context *fc, 732 int (*test)(struct super_block *, struct fs_context *), 733 int (*set)(struct super_block *, struct fs_context *)) 734 { 735 struct super_block *s = NULL; 736 struct super_block *old; 737 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 738 int err; 739 740 /* 741 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is 742 * not set, as the filesystem is likely unprepared to handle it. 743 * This can happen when fsconfig() is called from init_user_ns with 744 * an fs_fd opened in another user namespace. 745 */ 746 if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) { 747 errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed"); 748 return ERR_PTR(-EPERM); 749 } 750 751 retry: 752 spin_lock(&sb_lock); 753 if (test) { 754 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 755 if (test(old, fc)) 756 goto share_extant_sb; 757 } 758 } 759 if (!s) { 760 spin_unlock(&sb_lock); 761 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 762 if (!s) 763 return ERR_PTR(-ENOMEM); 764 goto retry; 765 } 766 767 s->s_fs_info = fc->s_fs_info; 768 err = set(s, fc); 769 if (err) { 770 s->s_fs_info = NULL; 771 spin_unlock(&sb_lock); 772 destroy_unused_super(s); 773 return ERR_PTR(err); 774 } 775 fc->s_fs_info = NULL; 776 s->s_type = fc->fs_type; 777 s->s_iflags |= fc->s_iflags; 778 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 779 /* 780 * Make the superblock visible on @super_blocks and @fs_supers. 781 * It's in a nascent state and users should wait on SB_BORN or 782 * SB_DYING to be set. 783 */ 784 list_add_tail(&s->s_list, &super_blocks); 785 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 786 spin_unlock(&sb_lock); 787 get_filesystem(s->s_type); 788 shrinker_register(s->s_shrink); 789 return s; 790 791 share_extant_sb: 792 if (user_ns != old->s_user_ns || fc->exclusive) { 793 spin_unlock(&sb_lock); 794 destroy_unused_super(s); 795 if (fc->exclusive) 796 warnfc(fc, "reusing existing filesystem not allowed"); 797 else 798 warnfc(fc, "reusing existing filesystem in another namespace not allowed"); 799 return ERR_PTR(-EBUSY); 800 } 801 if (!grab_super(old)) 802 goto retry; 803 destroy_unused_super(s); 804 return old; 805 } 806 EXPORT_SYMBOL(sget_fc); 807 808 /** 809 * sget - find or create a superblock 810 * @type: filesystem type superblock should belong to 811 * @test: comparison callback 812 * @set: setup callback 813 * @flags: mount flags 814 * @data: argument to each of them 815 */ 816 struct super_block *sget(struct file_system_type *type, 817 int (*test)(struct super_block *,void *), 818 int (*set)(struct super_block *,void *), 819 int flags, 820 void *data) 821 { 822 struct user_namespace *user_ns = current_user_ns(); 823 struct super_block *s = NULL; 824 struct super_block *old; 825 int err; 826 827 retry: 828 spin_lock(&sb_lock); 829 if (test) { 830 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 831 if (!test(old, data)) 832 continue; 833 if (user_ns != old->s_user_ns) { 834 spin_unlock(&sb_lock); 835 destroy_unused_super(s); 836 return ERR_PTR(-EBUSY); 837 } 838 if (!grab_super(old)) 839 goto retry; 840 destroy_unused_super(s); 841 return old; 842 } 843 } 844 if (!s) { 845 spin_unlock(&sb_lock); 846 s = alloc_super(type, flags, user_ns); 847 if (!s) 848 return ERR_PTR(-ENOMEM); 849 goto retry; 850 } 851 852 err = set(s, data); 853 if (err) { 854 spin_unlock(&sb_lock); 855 destroy_unused_super(s); 856 return ERR_PTR(err); 857 } 858 s->s_type = type; 859 strscpy(s->s_id, type->name, sizeof(s->s_id)); 860 list_add_tail(&s->s_list, &super_blocks); 861 hlist_add_head(&s->s_instances, &type->fs_supers); 862 spin_unlock(&sb_lock); 863 get_filesystem(type); 864 shrinker_register(s->s_shrink); 865 return s; 866 } 867 EXPORT_SYMBOL(sget); 868 869 void drop_super(struct super_block *sb) 870 { 871 super_unlock_shared(sb); 872 put_super(sb); 873 } 874 875 EXPORT_SYMBOL(drop_super); 876 877 void drop_super_exclusive(struct super_block *sb) 878 { 879 super_unlock_excl(sb); 880 put_super(sb); 881 } 882 EXPORT_SYMBOL(drop_super_exclusive); 883 884 enum super_iter_flags_t { 885 SUPER_ITER_EXCL = (1U << 0), 886 SUPER_ITER_UNLOCKED = (1U << 1), 887 SUPER_ITER_REVERSE = (1U << 2), 888 }; 889 890 static inline struct super_block *first_super(enum super_iter_flags_t flags) 891 { 892 if (flags & SUPER_ITER_REVERSE) 893 return list_last_entry(&super_blocks, struct super_block, s_list); 894 return list_first_entry(&super_blocks, struct super_block, s_list); 895 } 896 897 static inline struct super_block *next_super(struct super_block *sb, 898 enum super_iter_flags_t flags) 899 { 900 if (flags & SUPER_ITER_REVERSE) 901 return list_prev_entry(sb, s_list); 902 return list_next_entry(sb, s_list); 903 } 904 905 static void __iterate_supers(void (*f)(struct super_block *, void *), void *arg, 906 enum super_iter_flags_t flags) 907 { 908 struct super_block *sb, *p = NULL; 909 bool excl = flags & SUPER_ITER_EXCL; 910 911 guard(spinlock)(&sb_lock); 912 913 for (sb = first_super(flags); 914 !list_entry_is_head(sb, &super_blocks, s_list); 915 sb = next_super(sb, flags)) { 916 if (super_flags(sb, SB_DYING)) 917 continue; 918 sb->s_count++; 919 spin_unlock(&sb_lock); 920 921 if (flags & SUPER_ITER_UNLOCKED) { 922 f(sb, arg); 923 } else if (super_lock(sb, excl)) { 924 f(sb, arg); 925 super_unlock(sb, excl); 926 } 927 928 spin_lock(&sb_lock); 929 if (p) 930 __put_super(p); 931 p = sb; 932 } 933 if (p) 934 __put_super(p); 935 } 936 937 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 938 { 939 __iterate_supers(f, arg, 0); 940 } 941 942 /** 943 * iterate_supers_type - call function for superblocks of given type 944 * @type: fs type 945 * @f: function to call 946 * @arg: argument to pass to it 947 * 948 * Scans the superblock list and calls given function, passing it 949 * locked superblock and given argument. 950 */ 951 void iterate_supers_type(struct file_system_type *type, 952 void (*f)(struct super_block *, void *), void *arg) 953 { 954 struct super_block *sb, *p = NULL; 955 956 spin_lock(&sb_lock); 957 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 958 bool locked; 959 960 if (super_flags(sb, SB_DYING)) 961 continue; 962 963 sb->s_count++; 964 spin_unlock(&sb_lock); 965 966 locked = super_lock_shared(sb); 967 if (locked) { 968 f(sb, arg); 969 super_unlock_shared(sb); 970 } 971 972 spin_lock(&sb_lock); 973 if (p) 974 __put_super(p); 975 p = sb; 976 } 977 if (p) 978 __put_super(p); 979 spin_unlock(&sb_lock); 980 } 981 982 EXPORT_SYMBOL(iterate_supers_type); 983 984 struct super_block *user_get_super(dev_t dev, bool excl) 985 { 986 struct super_block *sb; 987 988 spin_lock(&sb_lock); 989 list_for_each_entry(sb, &super_blocks, s_list) { 990 bool locked; 991 992 if (sb->s_dev != dev) 993 continue; 994 995 sb->s_count++; 996 spin_unlock(&sb_lock); 997 998 locked = super_lock(sb, excl); 999 if (locked) 1000 return sb; 1001 1002 spin_lock(&sb_lock); 1003 __put_super(sb); 1004 break; 1005 } 1006 spin_unlock(&sb_lock); 1007 return NULL; 1008 } 1009 1010 /** 1011 * reconfigure_super - asks filesystem to change superblock parameters 1012 * @fc: The superblock and configuration 1013 * 1014 * Alters the configuration parameters of a live superblock. 1015 */ 1016 int reconfigure_super(struct fs_context *fc) 1017 { 1018 struct super_block *sb = fc->root->d_sb; 1019 int retval; 1020 bool remount_ro = false; 1021 bool remount_rw = false; 1022 bool force = fc->sb_flags & SB_FORCE; 1023 1024 if (fc->sb_flags_mask & ~MS_RMT_MASK) 1025 return -EINVAL; 1026 if (sb->s_writers.frozen != SB_UNFROZEN) 1027 return -EBUSY; 1028 1029 retval = security_sb_remount(sb, fc->security); 1030 if (retval) 1031 return retval; 1032 1033 if (fc->sb_flags_mask & SB_RDONLY) { 1034 #ifdef CONFIG_BLOCK 1035 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 1036 bdev_read_only(sb->s_bdev)) 1037 return -EACCES; 1038 #endif 1039 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb); 1040 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 1041 } 1042 1043 if (remount_ro) { 1044 if (!hlist_empty(&sb->s_pins)) { 1045 super_unlock_excl(sb); 1046 group_pin_kill(&sb->s_pins); 1047 __super_lock_excl(sb); 1048 if (!sb->s_root) 1049 return 0; 1050 if (sb->s_writers.frozen != SB_UNFROZEN) 1051 return -EBUSY; 1052 remount_ro = !sb_rdonly(sb); 1053 } 1054 } 1055 shrink_dcache_sb(sb); 1056 1057 /* If we are reconfiguring to RDONLY and current sb is read/write, 1058 * make sure there are no files open for writing. 1059 */ 1060 if (remount_ro) { 1061 if (force) { 1062 sb_start_ro_state_change(sb); 1063 } else { 1064 retval = sb_prepare_remount_readonly(sb); 1065 if (retval) 1066 return retval; 1067 } 1068 } else if (remount_rw) { 1069 /* 1070 * Protect filesystem's reconfigure code from writes from 1071 * userspace until reconfigure finishes. 1072 */ 1073 sb_start_ro_state_change(sb); 1074 } 1075 1076 if (fc->ops->reconfigure) { 1077 retval = fc->ops->reconfigure(fc); 1078 if (retval) { 1079 if (!force) 1080 goto cancel_readonly; 1081 /* If forced remount, go ahead despite any errors */ 1082 WARN(1, "forced remount of a %s fs returned %i\n", 1083 sb->s_type->name, retval); 1084 } 1085 } 1086 1087 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 1088 (fc->sb_flags & fc->sb_flags_mask))); 1089 sb_end_ro_state_change(sb); 1090 1091 /* 1092 * Some filesystems modify their metadata via some other path than the 1093 * bdev buffer cache (eg. use a private mapping, or directories in 1094 * pagecache, etc). Also file data modifications go via their own 1095 * mappings. So If we try to mount readonly then copy the filesystem 1096 * from bdev, we could get stale data, so invalidate it to give a best 1097 * effort at coherency. 1098 */ 1099 if (remount_ro && sb->s_bdev) 1100 invalidate_bdev(sb->s_bdev); 1101 return 0; 1102 1103 cancel_readonly: 1104 sb_end_ro_state_change(sb); 1105 return retval; 1106 } 1107 1108 static void do_emergency_remount_callback(struct super_block *sb, void *unused) 1109 { 1110 if (sb->s_bdev && !sb_rdonly(sb)) { 1111 struct fs_context *fc; 1112 1113 fc = fs_context_for_reconfigure(sb->s_root, 1114 SB_RDONLY | SB_FORCE, SB_RDONLY); 1115 if (!IS_ERR(fc)) { 1116 if (parse_monolithic_mount_data(fc, NULL) == 0) 1117 (void)reconfigure_super(fc); 1118 put_fs_context(fc); 1119 } 1120 } 1121 } 1122 1123 static void do_emergency_remount(struct work_struct *work) 1124 { 1125 __iterate_supers(do_emergency_remount_callback, NULL, 1126 SUPER_ITER_EXCL | SUPER_ITER_REVERSE); 1127 kfree(work); 1128 printk("Emergency Remount complete\n"); 1129 } 1130 1131 void emergency_remount(void) 1132 { 1133 struct work_struct *work; 1134 1135 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1136 if (work) { 1137 INIT_WORK(work, do_emergency_remount); 1138 schedule_work(work); 1139 } 1140 } 1141 1142 static void do_thaw_all_callback(struct super_block *sb, void *unused) 1143 { 1144 if (IS_ENABLED(CONFIG_BLOCK)) 1145 while (sb->s_bdev && !bdev_thaw(sb->s_bdev)) 1146 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev); 1147 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE, NULL); 1148 return; 1149 } 1150 1151 static void do_thaw_all(struct work_struct *work) 1152 { 1153 __iterate_supers(do_thaw_all_callback, NULL, SUPER_ITER_EXCL); 1154 kfree(work); 1155 printk(KERN_WARNING "Emergency Thaw complete\n"); 1156 } 1157 1158 /** 1159 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1160 * 1161 * Used for emergency unfreeze of all filesystems via SysRq 1162 */ 1163 void emergency_thaw_all(void) 1164 { 1165 struct work_struct *work; 1166 1167 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1168 if (work) { 1169 INIT_WORK(work, do_thaw_all); 1170 schedule_work(work); 1171 } 1172 } 1173 1174 static inline bool get_active_super(struct super_block *sb) 1175 { 1176 bool active = false; 1177 1178 if (super_lock_excl(sb)) { 1179 active = atomic_inc_not_zero(&sb->s_active); 1180 super_unlock_excl(sb); 1181 } 1182 return active; 1183 } 1184 1185 static const char *filesystems_freeze_ptr = "filesystems_freeze"; 1186 1187 static void filesystems_freeze_callback(struct super_block *sb, void *freeze_all_ptr) 1188 { 1189 if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super) 1190 return; 1191 1192 if (freeze_all_ptr && !(sb->s_type->fs_flags & FS_POWER_FREEZE)) 1193 return; 1194 1195 if (!get_active_super(sb)) 1196 return; 1197 1198 if (sb->s_op->freeze_super) 1199 sb->s_op->freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, 1200 filesystems_freeze_ptr); 1201 else 1202 freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, 1203 filesystems_freeze_ptr); 1204 1205 deactivate_super(sb); 1206 } 1207 1208 void filesystems_freeze(bool freeze_all) 1209 { 1210 void *freeze_all_ptr = NULL; 1211 1212 if (freeze_all) 1213 freeze_all_ptr = &freeze_all; 1214 __iterate_supers(filesystems_freeze_callback, freeze_all_ptr, 1215 SUPER_ITER_UNLOCKED | SUPER_ITER_REVERSE); 1216 } 1217 1218 static void filesystems_thaw_callback(struct super_block *sb, void *unused) 1219 { 1220 if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super) 1221 return; 1222 1223 if (!get_active_super(sb)) 1224 return; 1225 1226 if (sb->s_op->thaw_super) 1227 sb->s_op->thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, 1228 filesystems_freeze_ptr); 1229 else 1230 thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, 1231 filesystems_freeze_ptr); 1232 1233 deactivate_super(sb); 1234 } 1235 1236 void filesystems_thaw(void) 1237 { 1238 __iterate_supers(filesystems_thaw_callback, NULL, SUPER_ITER_UNLOCKED); 1239 } 1240 1241 static DEFINE_IDA(unnamed_dev_ida); 1242 1243 /** 1244 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1245 * @p: Pointer to a dev_t. 1246 * 1247 * Filesystems which don't use real block devices can call this function 1248 * to allocate a virtual block device. 1249 * 1250 * Context: Any context. Frequently called while holding sb_lock. 1251 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1252 * or -ENOMEM if memory allocation failed. 1253 */ 1254 int get_anon_bdev(dev_t *p) 1255 { 1256 int dev; 1257 1258 /* 1259 * Many userspace utilities consider an FSID of 0 invalid. 1260 * Always return at least 1 from get_anon_bdev. 1261 */ 1262 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1263 GFP_ATOMIC); 1264 if (dev == -ENOSPC) 1265 dev = -EMFILE; 1266 if (dev < 0) 1267 return dev; 1268 1269 *p = MKDEV(0, dev); 1270 return 0; 1271 } 1272 EXPORT_SYMBOL(get_anon_bdev); 1273 1274 void free_anon_bdev(dev_t dev) 1275 { 1276 ida_free(&unnamed_dev_ida, MINOR(dev)); 1277 } 1278 EXPORT_SYMBOL(free_anon_bdev); 1279 1280 int set_anon_super(struct super_block *s, void *data) 1281 { 1282 return get_anon_bdev(&s->s_dev); 1283 } 1284 EXPORT_SYMBOL(set_anon_super); 1285 1286 void kill_anon_super(struct super_block *sb) 1287 { 1288 dev_t dev = sb->s_dev; 1289 generic_shutdown_super(sb); 1290 kill_super_notify(sb); 1291 free_anon_bdev(dev); 1292 } 1293 EXPORT_SYMBOL(kill_anon_super); 1294 1295 void kill_litter_super(struct super_block *sb) 1296 { 1297 if (sb->s_root) 1298 d_genocide(sb->s_root); 1299 kill_anon_super(sb); 1300 } 1301 EXPORT_SYMBOL(kill_litter_super); 1302 1303 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1304 { 1305 return set_anon_super(sb, NULL); 1306 } 1307 EXPORT_SYMBOL(set_anon_super_fc); 1308 1309 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1310 { 1311 return sb->s_fs_info == fc->s_fs_info; 1312 } 1313 1314 static int test_single_super(struct super_block *s, struct fs_context *fc) 1315 { 1316 return 1; 1317 } 1318 1319 static int vfs_get_super(struct fs_context *fc, 1320 int (*test)(struct super_block *, struct fs_context *), 1321 int (*fill_super)(struct super_block *sb, 1322 struct fs_context *fc)) 1323 { 1324 struct super_block *sb; 1325 int err; 1326 1327 sb = sget_fc(fc, test, set_anon_super_fc); 1328 if (IS_ERR(sb)) 1329 return PTR_ERR(sb); 1330 1331 if (!sb->s_root) { 1332 err = fill_super(sb, fc); 1333 if (err) 1334 goto error; 1335 1336 sb->s_flags |= SB_ACTIVE; 1337 } 1338 1339 fc->root = dget(sb->s_root); 1340 return 0; 1341 1342 error: 1343 deactivate_locked_super(sb); 1344 return err; 1345 } 1346 1347 int get_tree_nodev(struct fs_context *fc, 1348 int (*fill_super)(struct super_block *sb, 1349 struct fs_context *fc)) 1350 { 1351 return vfs_get_super(fc, NULL, fill_super); 1352 } 1353 EXPORT_SYMBOL(get_tree_nodev); 1354 1355 int get_tree_single(struct fs_context *fc, 1356 int (*fill_super)(struct super_block *sb, 1357 struct fs_context *fc)) 1358 { 1359 return vfs_get_super(fc, test_single_super, fill_super); 1360 } 1361 EXPORT_SYMBOL(get_tree_single); 1362 1363 int get_tree_keyed(struct fs_context *fc, 1364 int (*fill_super)(struct super_block *sb, 1365 struct fs_context *fc), 1366 void *key) 1367 { 1368 fc->s_fs_info = key; 1369 return vfs_get_super(fc, test_keyed_super, fill_super); 1370 } 1371 EXPORT_SYMBOL(get_tree_keyed); 1372 1373 static int set_bdev_super(struct super_block *s, void *data) 1374 { 1375 s->s_dev = *(dev_t *)data; 1376 return 0; 1377 } 1378 1379 static int super_s_dev_set(struct super_block *s, struct fs_context *fc) 1380 { 1381 return set_bdev_super(s, fc->sget_key); 1382 } 1383 1384 static int super_s_dev_test(struct super_block *s, struct fs_context *fc) 1385 { 1386 return !(s->s_iflags & SB_I_RETIRED) && 1387 s->s_dev == *(dev_t *)fc->sget_key; 1388 } 1389 1390 /** 1391 * sget_dev - Find or create a superblock by device number 1392 * @fc: Filesystem context. 1393 * @dev: device number 1394 * 1395 * Find or create a superblock using the provided device number that 1396 * will be stored in fc->sget_key. 1397 * 1398 * If an extant superblock is matched, then that will be returned with 1399 * an elevated reference count that the caller must transfer or discard. 1400 * 1401 * If no match is made, a new superblock will be allocated and basic 1402 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will 1403 * be set). The superblock will be published and it will be returned in 1404 * a partially constructed state with SB_BORN and SB_ACTIVE as yet 1405 * unset. 1406 * 1407 * Return: an existing or newly created superblock on success, an error 1408 * pointer on failure. 1409 */ 1410 struct super_block *sget_dev(struct fs_context *fc, dev_t dev) 1411 { 1412 fc->sget_key = &dev; 1413 return sget_fc(fc, super_s_dev_test, super_s_dev_set); 1414 } 1415 EXPORT_SYMBOL(sget_dev); 1416 1417 #ifdef CONFIG_BLOCK 1418 /* 1419 * Lock the superblock that is holder of the bdev. Returns the superblock 1420 * pointer if we successfully locked the superblock and it is alive. Otherwise 1421 * we return NULL and just unlock bdev->bd_holder_lock. 1422 * 1423 * The function must be called with bdev->bd_holder_lock and releases it. 1424 */ 1425 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl) 1426 __releases(&bdev->bd_holder_lock) 1427 { 1428 struct super_block *sb = bdev->bd_holder; 1429 bool locked; 1430 1431 lockdep_assert_held(&bdev->bd_holder_lock); 1432 lockdep_assert_not_held(&sb->s_umount); 1433 lockdep_assert_not_held(&bdev->bd_disk->open_mutex); 1434 1435 /* Make sure sb doesn't go away from under us */ 1436 spin_lock(&sb_lock); 1437 sb->s_count++; 1438 spin_unlock(&sb_lock); 1439 1440 mutex_unlock(&bdev->bd_holder_lock); 1441 1442 locked = super_lock(sb, excl); 1443 1444 /* 1445 * If the superblock wasn't already SB_DYING then we hold 1446 * s_umount and can safely drop our temporary reference. 1447 */ 1448 put_super(sb); 1449 1450 if (!locked) 1451 return NULL; 1452 1453 if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) { 1454 super_unlock(sb, excl); 1455 return NULL; 1456 } 1457 1458 return sb; 1459 } 1460 1461 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise) 1462 { 1463 struct super_block *sb; 1464 1465 sb = bdev_super_lock(bdev, false); 1466 if (!sb) 1467 return; 1468 1469 if (sb->s_op->remove_bdev) { 1470 int ret; 1471 1472 ret = sb->s_op->remove_bdev(sb, bdev); 1473 if (!ret) { 1474 super_unlock_shared(sb); 1475 return; 1476 } 1477 /* Fallback to shutdown. */ 1478 } 1479 1480 if (!surprise) 1481 sync_filesystem(sb); 1482 shrink_dcache_sb(sb); 1483 evict_inodes(sb); 1484 if (sb->s_op->shutdown) 1485 sb->s_op->shutdown(sb); 1486 1487 super_unlock_shared(sb); 1488 } 1489 1490 static void fs_bdev_sync(struct block_device *bdev) 1491 { 1492 struct super_block *sb; 1493 1494 sb = bdev_super_lock(bdev, false); 1495 if (!sb) 1496 return; 1497 1498 sync_filesystem(sb); 1499 super_unlock_shared(sb); 1500 } 1501 1502 static struct super_block *get_bdev_super(struct block_device *bdev) 1503 { 1504 bool active = false; 1505 struct super_block *sb; 1506 1507 sb = bdev_super_lock(bdev, true); 1508 if (sb) { 1509 active = atomic_inc_not_zero(&sb->s_active); 1510 super_unlock_excl(sb); 1511 } 1512 if (!active) 1513 return NULL; 1514 return sb; 1515 } 1516 1517 /** 1518 * fs_bdev_freeze - freeze owning filesystem of block device 1519 * @bdev: block device 1520 * 1521 * Freeze the filesystem that owns this block device if it is still 1522 * active. 1523 * 1524 * A filesystem that owns multiple block devices may be frozen from each 1525 * block device and won't be unfrozen until all block devices are 1526 * unfrozen. Each block device can only freeze the filesystem once as we 1527 * nest freezes for block devices in the block layer. 1528 * 1529 * Return: If the freeze was successful zero is returned. If the freeze 1530 * failed a negative error code is returned. 1531 */ 1532 static int fs_bdev_freeze(struct block_device *bdev) 1533 { 1534 struct super_block *sb; 1535 int error = 0; 1536 1537 lockdep_assert_held(&bdev->bd_fsfreeze_mutex); 1538 1539 sb = get_bdev_super(bdev); 1540 if (!sb) 1541 return -EINVAL; 1542 1543 if (sb->s_op->freeze_super) 1544 error = sb->s_op->freeze_super(sb, 1545 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); 1546 else 1547 error = freeze_super(sb, 1548 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); 1549 if (!error) 1550 error = sync_blockdev(bdev); 1551 deactivate_super(sb); 1552 return error; 1553 } 1554 1555 /** 1556 * fs_bdev_thaw - thaw owning filesystem of block device 1557 * @bdev: block device 1558 * 1559 * Thaw the filesystem that owns this block device. 1560 * 1561 * A filesystem that owns multiple block devices may be frozen from each 1562 * block device and won't be unfrozen until all block devices are 1563 * unfrozen. Each block device can only freeze the filesystem once as we 1564 * nest freezes for block devices in the block layer. 1565 * 1566 * Return: If the thaw was successful zero is returned. If the thaw 1567 * failed a negative error code is returned. If this function 1568 * returns zero it doesn't mean that the filesystem is unfrozen 1569 * as it may have been frozen multiple times (kernel may hold a 1570 * freeze or might be frozen from other block devices). 1571 */ 1572 static int fs_bdev_thaw(struct block_device *bdev) 1573 { 1574 struct super_block *sb; 1575 int error; 1576 1577 lockdep_assert_held(&bdev->bd_fsfreeze_mutex); 1578 1579 /* 1580 * The block device may have been frozen before it was claimed by a 1581 * filesystem. Concurrently another process might try to mount that 1582 * frozen block device and has temporarily claimed the block device for 1583 * that purpose causing a concurrent fs_bdev_thaw() to end up here. The 1584 * mounter is already about to abort mounting because they still saw an 1585 * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return 1586 * NULL in that case. 1587 */ 1588 sb = get_bdev_super(bdev); 1589 if (!sb) 1590 return -EINVAL; 1591 1592 if (sb->s_op->thaw_super) 1593 error = sb->s_op->thaw_super(sb, 1594 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); 1595 else 1596 error = thaw_super(sb, 1597 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); 1598 deactivate_super(sb); 1599 return error; 1600 } 1601 1602 const struct blk_holder_ops fs_holder_ops = { 1603 .mark_dead = fs_bdev_mark_dead, 1604 .sync = fs_bdev_sync, 1605 .freeze = fs_bdev_freeze, 1606 .thaw = fs_bdev_thaw, 1607 }; 1608 EXPORT_SYMBOL_GPL(fs_holder_ops); 1609 1610 int setup_bdev_super(struct super_block *sb, int sb_flags, 1611 struct fs_context *fc) 1612 { 1613 blk_mode_t mode = sb_open_mode(sb_flags); 1614 struct file *bdev_file; 1615 struct block_device *bdev; 1616 1617 bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops); 1618 if (IS_ERR(bdev_file)) { 1619 if (fc) 1620 errorf(fc, "%s: Can't open blockdev", fc->source); 1621 return PTR_ERR(bdev_file); 1622 } 1623 bdev = file_bdev(bdev_file); 1624 1625 /* 1626 * This really should be in blkdev_get_by_dev, but right now can't due 1627 * to legacy issues that require us to allow opening a block device node 1628 * writable from userspace even for a read-only block device. 1629 */ 1630 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) { 1631 bdev_fput(bdev_file); 1632 return -EACCES; 1633 } 1634 1635 /* 1636 * It is enough to check bdev was not frozen before we set 1637 * s_bdev as freezing will wait until SB_BORN is set. 1638 */ 1639 if (atomic_read(&bdev->bd_fsfreeze_count) > 0) { 1640 if (fc) 1641 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1642 bdev_fput(bdev_file); 1643 return -EBUSY; 1644 } 1645 spin_lock(&sb_lock); 1646 sb->s_bdev_file = bdev_file; 1647 sb->s_bdev = bdev; 1648 sb->s_bdi = bdi_get(bdev->bd_disk->bdi); 1649 if (bdev_stable_writes(bdev)) 1650 sb->s_iflags |= SB_I_STABLE_WRITES; 1651 spin_unlock(&sb_lock); 1652 1653 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1654 shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name, 1655 sb->s_id); 1656 sb_set_blocksize(sb, block_size(bdev)); 1657 return 0; 1658 } 1659 EXPORT_SYMBOL_GPL(setup_bdev_super); 1660 1661 /** 1662 * get_tree_bdev_flags - Get a superblock based on a single block device 1663 * @fc: The filesystem context holding the parameters 1664 * @fill_super: Helper to initialise a new superblock 1665 * @flags: GET_TREE_BDEV_* flags 1666 */ 1667 int get_tree_bdev_flags(struct fs_context *fc, 1668 int (*fill_super)(struct super_block *sb, 1669 struct fs_context *fc), unsigned int flags) 1670 { 1671 struct super_block *s; 1672 int error = 0; 1673 dev_t dev; 1674 1675 if (!fc->source) 1676 return invalf(fc, "No source specified"); 1677 1678 error = lookup_bdev(fc->source, &dev); 1679 if (error) { 1680 if (!(flags & GET_TREE_BDEV_QUIET_LOOKUP)) 1681 errorf(fc, "%s: Can't lookup blockdev", fc->source); 1682 return error; 1683 } 1684 fc->sb_flags |= SB_NOSEC; 1685 s = sget_dev(fc, dev); 1686 if (IS_ERR(s)) 1687 return PTR_ERR(s); 1688 1689 if (s->s_root) { 1690 /* Don't summarily change the RO/RW state. */ 1691 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1692 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev); 1693 deactivate_locked_super(s); 1694 return -EBUSY; 1695 } 1696 } else { 1697 error = setup_bdev_super(s, fc->sb_flags, fc); 1698 if (!error) 1699 error = fill_super(s, fc); 1700 if (error) { 1701 deactivate_locked_super(s); 1702 return error; 1703 } 1704 s->s_flags |= SB_ACTIVE; 1705 } 1706 1707 BUG_ON(fc->root); 1708 fc->root = dget(s->s_root); 1709 return 0; 1710 } 1711 EXPORT_SYMBOL_GPL(get_tree_bdev_flags); 1712 1713 /** 1714 * get_tree_bdev - Get a superblock based on a single block device 1715 * @fc: The filesystem context holding the parameters 1716 * @fill_super: Helper to initialise a new superblock 1717 */ 1718 int get_tree_bdev(struct fs_context *fc, 1719 int (*fill_super)(struct super_block *, 1720 struct fs_context *)) 1721 { 1722 return get_tree_bdev_flags(fc, fill_super, 0); 1723 } 1724 EXPORT_SYMBOL(get_tree_bdev); 1725 1726 void kill_block_super(struct super_block *sb) 1727 { 1728 struct block_device *bdev = sb->s_bdev; 1729 1730 generic_shutdown_super(sb); 1731 if (bdev) { 1732 sync_blockdev(bdev); 1733 bdev_fput(sb->s_bdev_file); 1734 } 1735 } 1736 1737 EXPORT_SYMBOL(kill_block_super); 1738 #endif 1739 1740 /** 1741 * vfs_get_tree - Get the mountable root 1742 * @fc: The superblock configuration context. 1743 * 1744 * The filesystem is invoked to get or create a superblock which can then later 1745 * be used for mounting. The filesystem places a pointer to the root to be 1746 * used for mounting in @fc->root. 1747 */ 1748 int vfs_get_tree(struct fs_context *fc) 1749 { 1750 struct super_block *sb; 1751 int error; 1752 1753 if (fc->root) 1754 return -EBUSY; 1755 1756 /* Get the mountable root in fc->root, with a ref on the root and a ref 1757 * on the superblock. 1758 */ 1759 error = fc->ops->get_tree(fc); 1760 if (error < 0) 1761 return error; 1762 1763 if (!fc->root) { 1764 pr_err("Filesystem %s get_tree() didn't set fc->root, returned %i\n", 1765 fc->fs_type->name, error); 1766 /* We don't know what the locking state of the superblock is - 1767 * if there is a superblock. 1768 */ 1769 BUG(); 1770 } 1771 1772 sb = fc->root->d_sb; 1773 WARN_ON(!sb->s_bdi); 1774 1775 /* 1776 * super_wake() contains a memory barrier which also care of 1777 * ordering for super_cache_count(). We place it before setting 1778 * SB_BORN as the data dependency between the two functions is 1779 * the superblock structure contents that we just set up, not 1780 * the SB_BORN flag. 1781 */ 1782 super_wake(sb, SB_BORN); 1783 1784 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1785 if (unlikely(error)) { 1786 fc_drop_locked(fc); 1787 return error; 1788 } 1789 1790 /* 1791 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1792 * but s_maxbytes was an unsigned long long for many releases. Throw 1793 * this warning for a little while to try and catch filesystems that 1794 * violate this rule. 1795 */ 1796 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1797 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1798 1799 return 0; 1800 } 1801 EXPORT_SYMBOL(vfs_get_tree); 1802 1803 /* 1804 * Setup private BDI for given superblock. It gets automatically cleaned up 1805 * in generic_shutdown_super(). 1806 */ 1807 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1808 { 1809 struct backing_dev_info *bdi; 1810 int err; 1811 va_list args; 1812 1813 bdi = bdi_alloc(NUMA_NO_NODE); 1814 if (!bdi) 1815 return -ENOMEM; 1816 1817 va_start(args, fmt); 1818 err = bdi_register_va(bdi, fmt, args); 1819 va_end(args); 1820 if (err) { 1821 bdi_put(bdi); 1822 return err; 1823 } 1824 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1825 sb->s_bdi = bdi; 1826 sb->s_iflags |= SB_I_PERSB_BDI; 1827 1828 return 0; 1829 } 1830 EXPORT_SYMBOL(super_setup_bdi_name); 1831 1832 /* 1833 * Setup private BDI for given superblock. I gets automatically cleaned up 1834 * in generic_shutdown_super(). 1835 */ 1836 int super_setup_bdi(struct super_block *sb) 1837 { 1838 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1839 1840 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1841 atomic_long_inc_return(&bdi_seq)); 1842 } 1843 EXPORT_SYMBOL(super_setup_bdi); 1844 1845 /** 1846 * sb_wait_write - wait until all writers to given file system finish 1847 * @sb: the super for which we wait 1848 * @level: type of writers we wait for (normal vs page fault) 1849 * 1850 * This function waits until there are no writers of given type to given file 1851 * system. 1852 */ 1853 static void sb_wait_write(struct super_block *sb, int level) 1854 { 1855 percpu_down_write(sb->s_writers.rw_sem + level-1); 1856 } 1857 1858 /* 1859 * We are going to return to userspace and forget about these locks, the 1860 * ownership goes to the caller of thaw_super() which does unlock(). 1861 */ 1862 static void lockdep_sb_freeze_release(struct super_block *sb) 1863 { 1864 int level; 1865 1866 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1867 percpu_rwsem_release(sb->s_writers.rw_sem + level, _THIS_IP_); 1868 } 1869 1870 /* 1871 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1872 */ 1873 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1874 { 1875 int level; 1876 1877 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1878 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1879 } 1880 1881 static void sb_freeze_unlock(struct super_block *sb, int level) 1882 { 1883 for (level--; level >= 0; level--) 1884 percpu_up_write(sb->s_writers.rw_sem + level); 1885 } 1886 1887 static int wait_for_partially_frozen(struct super_block *sb) 1888 { 1889 int ret = 0; 1890 1891 do { 1892 unsigned short old = sb->s_writers.frozen; 1893 1894 up_write(&sb->s_umount); 1895 ret = wait_var_event_killable(&sb->s_writers.frozen, 1896 sb->s_writers.frozen != old); 1897 down_write(&sb->s_umount); 1898 } while (ret == 0 && 1899 sb->s_writers.frozen != SB_UNFROZEN && 1900 sb->s_writers.frozen != SB_FREEZE_COMPLETE); 1901 1902 return ret; 1903 } 1904 1905 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE) 1906 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST | FREEZE_EXCL) 1907 1908 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who) 1909 { 1910 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1911 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1912 1913 if (who & FREEZE_HOLDER_KERNEL) 1914 ++sb->s_writers.freeze_kcount; 1915 if (who & FREEZE_HOLDER_USERSPACE) 1916 ++sb->s_writers.freeze_ucount; 1917 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; 1918 } 1919 1920 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who) 1921 { 1922 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1923 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1924 1925 if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount) 1926 --sb->s_writers.freeze_kcount; 1927 if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount) 1928 --sb->s_writers.freeze_ucount; 1929 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; 1930 } 1931 1932 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who, 1933 const void *freeze_owner) 1934 { 1935 lockdep_assert_held(&sb->s_umount); 1936 1937 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1938 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1939 1940 if (who & FREEZE_EXCL) { 1941 if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL))) 1942 return false; 1943 if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL))) 1944 return false; 1945 if (WARN_ON_ONCE(!freeze_owner)) 1946 return false; 1947 /* This freeze already has a specific owner. */ 1948 if (sb->s_writers.freeze_owner) 1949 return false; 1950 /* 1951 * This is already frozen multiple times so we're just 1952 * going to take a reference count and mark the freeze as 1953 * being owned by the caller. 1954 */ 1955 if (sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount) 1956 sb->s_writers.freeze_owner = freeze_owner; 1957 return true; 1958 } 1959 1960 if (who & FREEZE_HOLDER_KERNEL) 1961 return (who & FREEZE_MAY_NEST) || 1962 sb->s_writers.freeze_kcount == 0; 1963 if (who & FREEZE_HOLDER_USERSPACE) 1964 return (who & FREEZE_MAY_NEST) || 1965 sb->s_writers.freeze_ucount == 0; 1966 return false; 1967 } 1968 1969 static inline bool may_unfreeze(struct super_block *sb, enum freeze_holder who, 1970 const void *freeze_owner) 1971 { 1972 lockdep_assert_held(&sb->s_umount); 1973 1974 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1975 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1976 1977 if (who & FREEZE_EXCL) { 1978 if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL))) 1979 return false; 1980 if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL))) 1981 return false; 1982 if (WARN_ON_ONCE(!freeze_owner)) 1983 return false; 1984 if (WARN_ON_ONCE(sb->s_writers.freeze_kcount == 0)) 1985 return false; 1986 /* This isn't exclusively frozen. */ 1987 if (!sb->s_writers.freeze_owner) 1988 return false; 1989 /* This isn't exclusively frozen by us. */ 1990 if (sb->s_writers.freeze_owner != freeze_owner) 1991 return false; 1992 /* 1993 * This is still frozen multiple times so we're just 1994 * going to drop our reference count and undo our 1995 * exclusive freeze. 1996 */ 1997 if ((sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount) > 1) 1998 sb->s_writers.freeze_owner = NULL; 1999 return true; 2000 } 2001 2002 if (who & FREEZE_HOLDER_KERNEL) { 2003 /* 2004 * Someone's trying to steal the reference belonging to 2005 * @sb->s_writers.freeze_owner. 2006 */ 2007 if (sb->s_writers.freeze_kcount == 1 && 2008 sb->s_writers.freeze_owner) 2009 return false; 2010 return sb->s_writers.freeze_kcount > 0; 2011 } 2012 2013 if (who & FREEZE_HOLDER_USERSPACE) 2014 return sb->s_writers.freeze_ucount > 0; 2015 2016 return false; 2017 } 2018 2019 /** 2020 * freeze_super - lock the filesystem and force it into a consistent state 2021 * @sb: the super to lock 2022 * @who: context that wants to freeze 2023 * @freeze_owner: owner of the freeze 2024 * 2025 * Syncs the super to make sure the filesystem is consistent and calls the fs's 2026 * freeze_fs. Subsequent calls to this without first thawing the fs may return 2027 * -EBUSY. 2028 * 2029 * @who should be: 2030 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs; 2031 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs. 2032 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed. 2033 * 2034 * The @who argument distinguishes between the kernel and userspace trying to 2035 * freeze the filesystem. Although there cannot be multiple kernel freezes or 2036 * multiple userspace freezes in effect at any given time, the kernel and 2037 * userspace can both hold a filesystem frozen. The filesystem remains frozen 2038 * until there are no kernel or userspace freezes in effect. 2039 * 2040 * A filesystem may hold multiple devices and thus a filesystems may be 2041 * frozen through the block layer via multiple block devices. In this 2042 * case the request is marked as being allowed to nest by passing 2043 * FREEZE_MAY_NEST. The filesystem remains frozen until all block 2044 * devices are unfrozen. If multiple freezes are attempted without 2045 * FREEZE_MAY_NEST -EBUSY will be returned. 2046 * 2047 * During this function, sb->s_writers.frozen goes through these values: 2048 * 2049 * SB_UNFROZEN: File system is normal, all writes progress as usual. 2050 * 2051 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 2052 * writes should be blocked, though page faults are still allowed. We wait for 2053 * all writes to complete and then proceed to the next stage. 2054 * 2055 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 2056 * but internal fs threads can still modify the filesystem (although they 2057 * should not dirty new pages or inodes), writeback can run etc. After waiting 2058 * for all running page faults we sync the filesystem which will clean all 2059 * dirty pages and inodes (no new dirty pages or inodes can be created when 2060 * sync is running). 2061 * 2062 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 2063 * modification are blocked (e.g. XFS preallocation truncation on inode 2064 * reclaim). This is usually implemented by blocking new transactions for 2065 * filesystems that have them and need this additional guard. After all 2066 * internal writers are finished we call ->freeze_fs() to finish filesystem 2067 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 2068 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 2069 * 2070 * sb->s_writers.frozen is protected by sb->s_umount. 2071 * 2072 * Return: If the freeze was successful zero is returned. If the freeze 2073 * failed a negative error code is returned. 2074 */ 2075 int freeze_super(struct super_block *sb, enum freeze_holder who, const void *freeze_owner) 2076 { 2077 int ret; 2078 2079 if (!super_lock_excl(sb)) { 2080 WARN_ON_ONCE("Dying superblock while freezing!"); 2081 return -EINVAL; 2082 } 2083 atomic_inc(&sb->s_active); 2084 2085 retry: 2086 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { 2087 if (may_freeze(sb, who, freeze_owner)) 2088 ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1); 2089 else 2090 ret = -EBUSY; 2091 /* All freezers share a single active reference. */ 2092 deactivate_locked_super(sb); 2093 return ret; 2094 } 2095 2096 if (sb->s_writers.frozen != SB_UNFROZEN) { 2097 ret = wait_for_partially_frozen(sb); 2098 if (ret) { 2099 deactivate_locked_super(sb); 2100 return ret; 2101 } 2102 2103 goto retry; 2104 } 2105 2106 if (sb_rdonly(sb)) { 2107 /* Nothing to do really... */ 2108 WARN_ON_ONCE(freeze_inc(sb, who) > 1); 2109 sb->s_writers.freeze_owner = freeze_owner; 2110 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2111 wake_up_var(&sb->s_writers.frozen); 2112 super_unlock_excl(sb); 2113 return 0; 2114 } 2115 2116 sb->s_writers.frozen = SB_FREEZE_WRITE; 2117 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 2118 super_unlock_excl(sb); 2119 sb_wait_write(sb, SB_FREEZE_WRITE); 2120 __super_lock_excl(sb); 2121 2122 /* Now we go and block page faults... */ 2123 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 2124 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 2125 2126 /* All writers are done so after syncing there won't be dirty data */ 2127 ret = sync_filesystem(sb); 2128 if (ret) { 2129 sb->s_writers.frozen = SB_UNFROZEN; 2130 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 2131 wake_up_var(&sb->s_writers.frozen); 2132 deactivate_locked_super(sb); 2133 return ret; 2134 } 2135 2136 /* Now wait for internal filesystem counter */ 2137 sb->s_writers.frozen = SB_FREEZE_FS; 2138 sb_wait_write(sb, SB_FREEZE_FS); 2139 2140 if (sb->s_op->freeze_fs) { 2141 ret = sb->s_op->freeze_fs(sb); 2142 if (ret) { 2143 printk(KERN_ERR 2144 "VFS:Filesystem freeze failed\n"); 2145 sb->s_writers.frozen = SB_UNFROZEN; 2146 sb_freeze_unlock(sb, SB_FREEZE_FS); 2147 wake_up_var(&sb->s_writers.frozen); 2148 deactivate_locked_super(sb); 2149 return ret; 2150 } 2151 } 2152 /* 2153 * For debugging purposes so that fs can warn if it sees write activity 2154 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 2155 */ 2156 WARN_ON_ONCE(freeze_inc(sb, who) > 1); 2157 sb->s_writers.freeze_owner = freeze_owner; 2158 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2159 wake_up_var(&sb->s_writers.frozen); 2160 lockdep_sb_freeze_release(sb); 2161 super_unlock_excl(sb); 2162 return 0; 2163 } 2164 EXPORT_SYMBOL(freeze_super); 2165 2166 /* 2167 * Undoes the effect of a freeze_super_locked call. If the filesystem is 2168 * frozen both by userspace and the kernel, a thaw call from either source 2169 * removes that state without releasing the other state or unlocking the 2170 * filesystem. 2171 */ 2172 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who, 2173 const void *freeze_owner) 2174 { 2175 int error = -EINVAL; 2176 2177 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) 2178 goto out_unlock; 2179 2180 if (!may_unfreeze(sb, who, freeze_owner)) 2181 goto out_unlock; 2182 2183 /* 2184 * All freezers share a single active reference. 2185 * So just unlock in case there are any left. 2186 */ 2187 if (freeze_dec(sb, who)) 2188 goto out_unlock; 2189 2190 if (sb_rdonly(sb)) { 2191 sb->s_writers.frozen = SB_UNFROZEN; 2192 sb->s_writers.freeze_owner = NULL; 2193 wake_up_var(&sb->s_writers.frozen); 2194 goto out_deactivate; 2195 } 2196 2197 lockdep_sb_freeze_acquire(sb); 2198 2199 if (sb->s_op->unfreeze_fs) { 2200 error = sb->s_op->unfreeze_fs(sb); 2201 if (error) { 2202 pr_err("VFS: Filesystem thaw failed\n"); 2203 freeze_inc(sb, who); 2204 lockdep_sb_freeze_release(sb); 2205 goto out_unlock; 2206 } 2207 } 2208 2209 sb->s_writers.frozen = SB_UNFROZEN; 2210 sb->s_writers.freeze_owner = NULL; 2211 wake_up_var(&sb->s_writers.frozen); 2212 sb_freeze_unlock(sb, SB_FREEZE_FS); 2213 out_deactivate: 2214 deactivate_locked_super(sb); 2215 return 0; 2216 2217 out_unlock: 2218 super_unlock_excl(sb); 2219 return error; 2220 } 2221 2222 /** 2223 * thaw_super -- unlock filesystem 2224 * @sb: the super to thaw 2225 * @who: context that wants to freeze 2226 * @freeze_owner: owner of the freeze 2227 * 2228 * Unlocks the filesystem and marks it writeable again after freeze_super() 2229 * if there are no remaining freezes on the filesystem. 2230 * 2231 * @who should be: 2232 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs; 2233 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs. 2234 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed 2235 * 2236 * A filesystem may hold multiple devices and thus a filesystems may 2237 * have been frozen through the block layer via multiple block devices. 2238 * The filesystem remains frozen until all block devices are unfrozen. 2239 */ 2240 int thaw_super(struct super_block *sb, enum freeze_holder who, 2241 const void *freeze_owner) 2242 { 2243 if (!super_lock_excl(sb)) { 2244 WARN_ON_ONCE("Dying superblock while thawing!"); 2245 return -EINVAL; 2246 } 2247 return thaw_super_locked(sb, who, freeze_owner); 2248 } 2249 EXPORT_SYMBOL(thaw_super); 2250 2251 /* 2252 * Create workqueue for deferred direct IO completions. We allocate the 2253 * workqueue when it's first needed. This avoids creating workqueue for 2254 * filesystems that don't need it and also allows us to create the workqueue 2255 * late enough so the we can include s_id in the name of the workqueue. 2256 */ 2257 int sb_init_dio_done_wq(struct super_block *sb) 2258 { 2259 struct workqueue_struct *old; 2260 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 2261 WQ_MEM_RECLAIM | WQ_PERCPU, 2262 0, 2263 sb->s_id); 2264 if (!wq) 2265 return -ENOMEM; 2266 2267 old = NULL; 2268 /* 2269 * This has to be atomic as more DIOs can race to create the workqueue 2270 */ 2271 if (!try_cmpxchg(&sb->s_dio_done_wq, &old, wq)) { 2272 /* Someone created workqueue before us? Free ours... */ 2273 destroy_workqueue(wq); 2274 } 2275 return 0; 2276 } 2277 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq); 2278