1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 static inline void __super_lock(struct super_block *sb, bool excl) 54 { 55 if (excl) 56 down_write(&sb->s_umount); 57 else 58 down_read(&sb->s_umount); 59 } 60 61 static inline void super_unlock(struct super_block *sb, bool excl) 62 { 63 if (excl) 64 up_write(&sb->s_umount); 65 else 66 up_read(&sb->s_umount); 67 } 68 69 static inline void __super_lock_excl(struct super_block *sb) 70 { 71 __super_lock(sb, true); 72 } 73 74 static inline void super_unlock_excl(struct super_block *sb) 75 { 76 super_unlock(sb, true); 77 } 78 79 static inline void super_unlock_shared(struct super_block *sb) 80 { 81 super_unlock(sb, false); 82 } 83 84 static bool super_flags(const struct super_block *sb, unsigned int flags) 85 { 86 /* 87 * Pairs with smp_store_release() in super_wake() and ensures 88 * that we see @flags after we're woken. 89 */ 90 return smp_load_acquire(&sb->s_flags) & flags; 91 } 92 93 /** 94 * super_lock - wait for superblock to become ready and lock it 95 * @sb: superblock to wait for 96 * @excl: whether exclusive access is required 97 * 98 * If the superblock has neither passed through vfs_get_tree() or 99 * generic_shutdown_super() yet wait for it to happen. Either superblock 100 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're 101 * woken and we'll see SB_DYING. 102 * 103 * The caller must have acquired a temporary reference on @sb->s_count. 104 * 105 * Return: The function returns true if SB_BORN was set and with 106 * s_umount held. The function returns false if SB_DYING was 107 * set and without s_umount held. 108 */ 109 static __must_check bool super_lock(struct super_block *sb, bool excl) 110 { 111 lockdep_assert_not_held(&sb->s_umount); 112 113 /* wait until the superblock is ready or dying */ 114 wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING)); 115 116 /* Don't pointlessly acquire s_umount. */ 117 if (super_flags(sb, SB_DYING)) 118 return false; 119 120 __super_lock(sb, excl); 121 122 /* 123 * Has gone through generic_shutdown_super() in the meantime. 124 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to 125 * grab a reference to this. Tell them so. 126 */ 127 if (sb->s_flags & SB_DYING) { 128 super_unlock(sb, excl); 129 return false; 130 } 131 132 WARN_ON_ONCE(!(sb->s_flags & SB_BORN)); 133 return true; 134 } 135 136 /* wait and try to acquire read-side of @sb->s_umount */ 137 static inline bool super_lock_shared(struct super_block *sb) 138 { 139 return super_lock(sb, false); 140 } 141 142 /* wait and try to acquire write-side of @sb->s_umount */ 143 static inline bool super_lock_excl(struct super_block *sb) 144 { 145 return super_lock(sb, true); 146 } 147 148 /* wake waiters */ 149 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD) 150 static void super_wake(struct super_block *sb, unsigned int flag) 151 { 152 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS)); 153 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1); 154 155 /* 156 * Pairs with smp_load_acquire() in super_lock() to make sure 157 * all initializations in the superblock are seen by the user 158 * seeing SB_BORN sent. 159 */ 160 smp_store_release(&sb->s_flags, sb->s_flags | flag); 161 /* 162 * Pairs with the barrier in prepare_to_wait_event() to make sure 163 * ___wait_var_event() either sees SB_BORN set or 164 * waitqueue_active() check in wake_up_var() sees the waiter. 165 */ 166 smp_mb(); 167 wake_up_var(&sb->s_flags); 168 } 169 170 /* 171 * One thing we have to be careful of with a per-sb shrinker is that we don't 172 * drop the last active reference to the superblock from within the shrinker. 173 * If that happens we could trigger unregistering the shrinker from within the 174 * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we 175 * take a passive reference to the superblock to avoid this from occurring. 176 */ 177 static unsigned long super_cache_scan(struct shrinker *shrink, 178 struct shrink_control *sc) 179 { 180 struct super_block *sb; 181 long fs_objects = 0; 182 long total_objects; 183 long freed = 0; 184 long dentries; 185 long inodes; 186 187 sb = shrink->private_data; 188 189 /* 190 * Deadlock avoidance. We may hold various FS locks, and we don't want 191 * to recurse into the FS that called us in clear_inode() and friends.. 192 */ 193 if (!(sc->gfp_mask & __GFP_FS)) 194 return SHRINK_STOP; 195 196 if (!super_trylock_shared(sb)) 197 return SHRINK_STOP; 198 199 if (sb->s_op->nr_cached_objects) 200 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 201 202 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 203 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 204 total_objects = dentries + inodes + fs_objects + 1; 205 if (!total_objects) 206 total_objects = 1; 207 208 /* proportion the scan between the caches */ 209 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 210 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 211 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 212 213 /* 214 * prune the dcache first as the icache is pinned by it, then 215 * prune the icache, followed by the filesystem specific caches 216 * 217 * Ensure that we always scan at least one object - memcg kmem 218 * accounting uses this to fully empty the caches. 219 */ 220 sc->nr_to_scan = dentries + 1; 221 freed = prune_dcache_sb(sb, sc); 222 sc->nr_to_scan = inodes + 1; 223 freed += prune_icache_sb(sb, sc); 224 225 if (fs_objects) { 226 sc->nr_to_scan = fs_objects + 1; 227 freed += sb->s_op->free_cached_objects(sb, sc); 228 } 229 230 super_unlock_shared(sb); 231 return freed; 232 } 233 234 static unsigned long super_cache_count(struct shrinker *shrink, 235 struct shrink_control *sc) 236 { 237 struct super_block *sb; 238 long total_objects = 0; 239 240 sb = shrink->private_data; 241 242 /* 243 * We don't call super_trylock_shared() here as it is a scalability 244 * bottleneck, so we're exposed to partial setup state. The shrinker 245 * rwsem does not protect filesystem operations backing 246 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can 247 * change between super_cache_count and super_cache_scan, so we really 248 * don't need locks here. 249 * 250 * However, if we are currently mounting the superblock, the underlying 251 * filesystem might be in a state of partial construction and hence it 252 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check 253 * to avoid this situation, so do the same here. The memory barrier is 254 * matched with the one in mount_fs() as we don't hold locks here. 255 */ 256 if (!(sb->s_flags & SB_BORN)) 257 return 0; 258 smp_rmb(); 259 260 if (sb->s_op && sb->s_op->nr_cached_objects) 261 total_objects = sb->s_op->nr_cached_objects(sb, sc); 262 263 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 264 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 265 266 if (!total_objects) 267 return SHRINK_EMPTY; 268 269 total_objects = vfs_pressure_ratio(total_objects); 270 return total_objects; 271 } 272 273 static void destroy_super_work(struct work_struct *work) 274 { 275 struct super_block *s = container_of(work, struct super_block, 276 destroy_work); 277 fsnotify_sb_free(s); 278 security_sb_free(s); 279 put_user_ns(s->s_user_ns); 280 kfree(s->s_subtype); 281 for (int i = 0; i < SB_FREEZE_LEVELS; i++) 282 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 283 kfree(s); 284 } 285 286 static void destroy_super_rcu(struct rcu_head *head) 287 { 288 struct super_block *s = container_of(head, struct super_block, rcu); 289 INIT_WORK(&s->destroy_work, destroy_super_work); 290 schedule_work(&s->destroy_work); 291 } 292 293 /* Free a superblock that has never been seen by anyone */ 294 static void destroy_unused_super(struct super_block *s) 295 { 296 if (!s) 297 return; 298 super_unlock_excl(s); 299 list_lru_destroy(&s->s_dentry_lru); 300 list_lru_destroy(&s->s_inode_lru); 301 shrinker_free(s->s_shrink); 302 /* no delays needed */ 303 destroy_super_work(&s->destroy_work); 304 } 305 306 /** 307 * alloc_super - create new superblock 308 * @type: filesystem type superblock should belong to 309 * @flags: the mount flags 310 * @user_ns: User namespace for the super_block 311 * 312 * Allocates and initializes a new &struct super_block. alloc_super() 313 * returns a pointer new superblock or %NULL if allocation had failed. 314 */ 315 static struct super_block *alloc_super(struct file_system_type *type, int flags, 316 struct user_namespace *user_ns) 317 { 318 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL); 319 static const struct super_operations default_op; 320 int i; 321 322 if (!s) 323 return NULL; 324 325 INIT_LIST_HEAD(&s->s_mounts); 326 s->s_user_ns = get_user_ns(user_ns); 327 init_rwsem(&s->s_umount); 328 lockdep_set_class(&s->s_umount, &type->s_umount_key); 329 /* 330 * sget() can have s_umount recursion. 331 * 332 * When it cannot find a suitable sb, it allocates a new 333 * one (this one), and tries again to find a suitable old 334 * one. 335 * 336 * In case that succeeds, it will acquire the s_umount 337 * lock of the old one. Since these are clearly distrinct 338 * locks, and this object isn't exposed yet, there's no 339 * risk of deadlocks. 340 * 341 * Annotate this by putting this lock in a different 342 * subclass. 343 */ 344 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 345 346 if (security_sb_alloc(s)) 347 goto fail; 348 349 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 350 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 351 sb_writers_name[i], 352 &type->s_writers_key[i])) 353 goto fail; 354 } 355 s->s_bdi = &noop_backing_dev_info; 356 s->s_flags = flags; 357 if (s->s_user_ns != &init_user_ns) 358 s->s_iflags |= SB_I_NODEV; 359 INIT_HLIST_NODE(&s->s_instances); 360 INIT_HLIST_BL_HEAD(&s->s_roots); 361 mutex_init(&s->s_sync_lock); 362 INIT_LIST_HEAD(&s->s_inodes); 363 spin_lock_init(&s->s_inode_list_lock); 364 INIT_LIST_HEAD(&s->s_inodes_wb); 365 spin_lock_init(&s->s_inode_wblist_lock); 366 367 s->s_count = 1; 368 atomic_set(&s->s_active, 1); 369 mutex_init(&s->s_vfs_rename_mutex); 370 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 371 init_rwsem(&s->s_dquot.dqio_sem); 372 s->s_maxbytes = MAX_NON_LFS; 373 s->s_op = &default_op; 374 s->s_time_gran = 1000000000; 375 s->s_time_min = TIME64_MIN; 376 s->s_time_max = TIME64_MAX; 377 378 s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, 379 "sb-%s", type->name); 380 if (!s->s_shrink) 381 goto fail; 382 383 s->s_shrink->scan_objects = super_cache_scan; 384 s->s_shrink->count_objects = super_cache_count; 385 s->s_shrink->batch = 1024; 386 s->s_shrink->private_data = s; 387 388 if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink)) 389 goto fail; 390 if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink)) 391 goto fail; 392 return s; 393 394 fail: 395 destroy_unused_super(s); 396 return NULL; 397 } 398 399 /* Superblock refcounting */ 400 401 /* 402 * Drop a superblock's refcount. The caller must hold sb_lock. 403 */ 404 static void __put_super(struct super_block *s) 405 { 406 if (!--s->s_count) { 407 list_del_init(&s->s_list); 408 WARN_ON(s->s_dentry_lru.node); 409 WARN_ON(s->s_inode_lru.node); 410 WARN_ON(!list_empty(&s->s_mounts)); 411 call_rcu(&s->rcu, destroy_super_rcu); 412 } 413 } 414 415 /** 416 * put_super - drop a temporary reference to superblock 417 * @sb: superblock in question 418 * 419 * Drops a temporary reference, frees superblock if there's no 420 * references left. 421 */ 422 void put_super(struct super_block *sb) 423 { 424 spin_lock(&sb_lock); 425 __put_super(sb); 426 spin_unlock(&sb_lock); 427 } 428 429 static void kill_super_notify(struct super_block *sb) 430 { 431 lockdep_assert_not_held(&sb->s_umount); 432 433 /* already notified earlier */ 434 if (sb->s_flags & SB_DEAD) 435 return; 436 437 /* 438 * Remove it from @fs_supers so it isn't found by new 439 * sget{_fc}() walkers anymore. Any concurrent mounter still 440 * managing to grab a temporary reference is guaranteed to 441 * already see SB_DYING and will wait until we notify them about 442 * SB_DEAD. 443 */ 444 spin_lock(&sb_lock); 445 hlist_del_init(&sb->s_instances); 446 spin_unlock(&sb_lock); 447 448 /* 449 * Let concurrent mounts know that this thing is really dead. 450 * We don't need @sb->s_umount here as every concurrent caller 451 * will see SB_DYING and either discard the superblock or wait 452 * for SB_DEAD. 453 */ 454 super_wake(sb, SB_DEAD); 455 } 456 457 /** 458 * deactivate_locked_super - drop an active reference to superblock 459 * @s: superblock to deactivate 460 * 461 * Drops an active reference to superblock, converting it into a temporary 462 * one if there is no other active references left. In that case we 463 * tell fs driver to shut it down and drop the temporary reference we 464 * had just acquired. 465 * 466 * Caller holds exclusive lock on superblock; that lock is released. 467 */ 468 void deactivate_locked_super(struct super_block *s) 469 { 470 struct file_system_type *fs = s->s_type; 471 if (atomic_dec_and_test(&s->s_active)) { 472 shrinker_free(s->s_shrink); 473 fs->kill_sb(s); 474 475 kill_super_notify(s); 476 477 /* 478 * Since list_lru_destroy() may sleep, we cannot call it from 479 * put_super(), where we hold the sb_lock. Therefore we destroy 480 * the lru lists right now. 481 */ 482 list_lru_destroy(&s->s_dentry_lru); 483 list_lru_destroy(&s->s_inode_lru); 484 485 put_filesystem(fs); 486 put_super(s); 487 } else { 488 super_unlock_excl(s); 489 } 490 } 491 492 EXPORT_SYMBOL(deactivate_locked_super); 493 494 /** 495 * deactivate_super - drop an active reference to superblock 496 * @s: superblock to deactivate 497 * 498 * Variant of deactivate_locked_super(), except that superblock is *not* 499 * locked by caller. If we are going to drop the final active reference, 500 * lock will be acquired prior to that. 501 */ 502 void deactivate_super(struct super_block *s) 503 { 504 if (!atomic_add_unless(&s->s_active, -1, 1)) { 505 __super_lock_excl(s); 506 deactivate_locked_super(s); 507 } 508 } 509 510 EXPORT_SYMBOL(deactivate_super); 511 512 /** 513 * grab_super - acquire an active reference to a superblock 514 * @sb: superblock to acquire 515 * 516 * Acquire a temporary reference on a superblock and try to trade it for 517 * an active reference. This is used in sget{_fc}() to wait for a 518 * superblock to either become SB_BORN or for it to pass through 519 * sb->kill() and be marked as SB_DEAD. 520 * 521 * Return: This returns true if an active reference could be acquired, 522 * false if not. 523 */ 524 static bool grab_super(struct super_block *sb) 525 { 526 bool locked; 527 528 sb->s_count++; 529 spin_unlock(&sb_lock); 530 locked = super_lock_excl(sb); 531 if (locked) { 532 if (atomic_inc_not_zero(&sb->s_active)) { 533 put_super(sb); 534 return true; 535 } 536 super_unlock_excl(sb); 537 } 538 wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD)); 539 put_super(sb); 540 return false; 541 } 542 543 /* 544 * super_trylock_shared - try to grab ->s_umount shared 545 * @sb: reference we are trying to grab 546 * 547 * Try to prevent fs shutdown. This is used in places where we 548 * cannot take an active reference but we need to ensure that the 549 * filesystem is not shut down while we are working on it. It returns 550 * false if we cannot acquire s_umount or if we lose the race and 551 * filesystem already got into shutdown, and returns true with the s_umount 552 * lock held in read mode in case of success. On successful return, 553 * the caller must drop the s_umount lock when done. 554 * 555 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 556 * The reason why it's safe is that we are OK with doing trylock instead 557 * of down_read(). There's a couple of places that are OK with that, but 558 * it's very much not a general-purpose interface. 559 */ 560 bool super_trylock_shared(struct super_block *sb) 561 { 562 if (down_read_trylock(&sb->s_umount)) { 563 if (!(sb->s_flags & SB_DYING) && sb->s_root && 564 (sb->s_flags & SB_BORN)) 565 return true; 566 super_unlock_shared(sb); 567 } 568 569 return false; 570 } 571 572 /** 573 * retire_super - prevents superblock from being reused 574 * @sb: superblock to retire 575 * 576 * The function marks superblock to be ignored in superblock test, which 577 * prevents it from being reused for any new mounts. If the superblock has 578 * a private bdi, it also unregisters it, but doesn't reduce the refcount 579 * of the superblock to prevent potential races. The refcount is reduced 580 * by generic_shutdown_super(). The function can not be called 581 * concurrently with generic_shutdown_super(). It is safe to call the 582 * function multiple times, subsequent calls have no effect. 583 * 584 * The marker will affect the re-use only for block-device-based 585 * superblocks. Other superblocks will still get marked if this function 586 * is used, but that will not affect their reusability. 587 */ 588 void retire_super(struct super_block *sb) 589 { 590 WARN_ON(!sb->s_bdev); 591 __super_lock_excl(sb); 592 if (sb->s_iflags & SB_I_PERSB_BDI) { 593 bdi_unregister(sb->s_bdi); 594 sb->s_iflags &= ~SB_I_PERSB_BDI; 595 } 596 sb->s_iflags |= SB_I_RETIRED; 597 super_unlock_excl(sb); 598 } 599 EXPORT_SYMBOL(retire_super); 600 601 /** 602 * generic_shutdown_super - common helper for ->kill_sb() 603 * @sb: superblock to kill 604 * 605 * generic_shutdown_super() does all fs-independent work on superblock 606 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 607 * that need destruction out of superblock, call generic_shutdown_super() 608 * and release aforementioned objects. Note: dentries and inodes _are_ 609 * taken care of and do not need specific handling. 610 * 611 * Upon calling this function, the filesystem may no longer alter or 612 * rearrange the set of dentries belonging to this super_block, nor may it 613 * change the attachments of dentries to inodes. 614 */ 615 void generic_shutdown_super(struct super_block *sb) 616 { 617 const struct super_operations *sop = sb->s_op; 618 619 if (sb->s_root) { 620 shrink_dcache_for_umount(sb); 621 sync_filesystem(sb); 622 sb->s_flags &= ~SB_ACTIVE; 623 624 cgroup_writeback_umount(); 625 626 /* Evict all inodes with zero refcount. */ 627 evict_inodes(sb); 628 629 /* 630 * Clean up and evict any inodes that still have references due 631 * to fsnotify or the security policy. 632 */ 633 fsnotify_sb_delete(sb); 634 security_sb_delete(sb); 635 636 if (sb->s_dio_done_wq) { 637 destroy_workqueue(sb->s_dio_done_wq); 638 sb->s_dio_done_wq = NULL; 639 } 640 641 if (sop->put_super) 642 sop->put_super(sb); 643 644 /* 645 * Now that all potentially-encrypted inodes have been evicted, 646 * the fscrypt keyring can be destroyed. 647 */ 648 fscrypt_destroy_keyring(sb); 649 650 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), 651 "VFS: Busy inodes after unmount of %s (%s)", 652 sb->s_id, sb->s_type->name)) { 653 /* 654 * Adding a proper bailout path here would be hard, but 655 * we can at least make it more likely that a later 656 * iput_final() or such crashes cleanly. 657 */ 658 struct inode *inode; 659 660 spin_lock(&sb->s_inode_list_lock); 661 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 662 inode->i_op = VFS_PTR_POISON; 663 inode->i_sb = VFS_PTR_POISON; 664 inode->i_mapping = VFS_PTR_POISON; 665 } 666 spin_unlock(&sb->s_inode_list_lock); 667 } 668 } 669 /* 670 * Broadcast to everyone that grabbed a temporary reference to this 671 * superblock before we removed it from @fs_supers that the superblock 672 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now 673 * discard this superblock and treat it as dead. 674 * 675 * We leave the superblock on @fs_supers so it can be found by 676 * sget{_fc}() until we passed sb->kill_sb(). 677 */ 678 super_wake(sb, SB_DYING); 679 super_unlock_excl(sb); 680 if (sb->s_bdi != &noop_backing_dev_info) { 681 if (sb->s_iflags & SB_I_PERSB_BDI) 682 bdi_unregister(sb->s_bdi); 683 bdi_put(sb->s_bdi); 684 sb->s_bdi = &noop_backing_dev_info; 685 } 686 } 687 688 EXPORT_SYMBOL(generic_shutdown_super); 689 690 bool mount_capable(struct fs_context *fc) 691 { 692 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 693 return capable(CAP_SYS_ADMIN); 694 else 695 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 696 } 697 698 /** 699 * sget_fc - Find or create a superblock 700 * @fc: Filesystem context. 701 * @test: Comparison callback 702 * @set: Setup callback 703 * 704 * Create a new superblock or find an existing one. 705 * 706 * The @test callback is used to find a matching existing superblock. 707 * Whether or not the requested parameters in @fc are taken into account 708 * is specific to the @test callback that is used. They may even be 709 * completely ignored. 710 * 711 * If an extant superblock is matched, it will be returned unless: 712 * 713 * (1) the namespace the filesystem context @fc and the extant 714 * superblock's namespace differ 715 * 716 * (2) the filesystem context @fc has requested that reusing an extant 717 * superblock is not allowed 718 * 719 * In both cases EBUSY will be returned. 720 * 721 * If no match is made, a new superblock will be allocated and basic 722 * initialisation will be performed (s_type, s_fs_info and s_id will be 723 * set and the @set callback will be invoked), the superblock will be 724 * published and it will be returned in a partially constructed state 725 * with SB_BORN and SB_ACTIVE as yet unset. 726 * 727 * Return: On success, an extant or newly created superblock is 728 * returned. On failure an error pointer is returned. 729 */ 730 struct super_block *sget_fc(struct fs_context *fc, 731 int (*test)(struct super_block *, struct fs_context *), 732 int (*set)(struct super_block *, struct fs_context *)) 733 { 734 struct super_block *s = NULL; 735 struct super_block *old; 736 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 737 int err; 738 739 /* 740 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is 741 * not set, as the filesystem is likely unprepared to handle it. 742 * This can happen when fsconfig() is called from init_user_ns with 743 * an fs_fd opened in another user namespace. 744 */ 745 if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) { 746 errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed"); 747 return ERR_PTR(-EPERM); 748 } 749 750 retry: 751 spin_lock(&sb_lock); 752 if (test) { 753 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 754 if (test(old, fc)) 755 goto share_extant_sb; 756 } 757 } 758 if (!s) { 759 spin_unlock(&sb_lock); 760 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 761 if (!s) 762 return ERR_PTR(-ENOMEM); 763 goto retry; 764 } 765 766 s->s_fs_info = fc->s_fs_info; 767 err = set(s, fc); 768 if (err) { 769 s->s_fs_info = NULL; 770 spin_unlock(&sb_lock); 771 destroy_unused_super(s); 772 return ERR_PTR(err); 773 } 774 fc->s_fs_info = NULL; 775 s->s_type = fc->fs_type; 776 s->s_iflags |= fc->s_iflags; 777 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 778 /* 779 * Make the superblock visible on @super_blocks and @fs_supers. 780 * It's in a nascent state and users should wait on SB_BORN or 781 * SB_DYING to be set. 782 */ 783 list_add_tail(&s->s_list, &super_blocks); 784 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 785 spin_unlock(&sb_lock); 786 get_filesystem(s->s_type); 787 shrinker_register(s->s_shrink); 788 return s; 789 790 share_extant_sb: 791 if (user_ns != old->s_user_ns || fc->exclusive) { 792 spin_unlock(&sb_lock); 793 destroy_unused_super(s); 794 if (fc->exclusive) 795 warnfc(fc, "reusing existing filesystem not allowed"); 796 else 797 warnfc(fc, "reusing existing filesystem in another namespace not allowed"); 798 return ERR_PTR(-EBUSY); 799 } 800 if (!grab_super(old)) 801 goto retry; 802 destroy_unused_super(s); 803 return old; 804 } 805 EXPORT_SYMBOL(sget_fc); 806 807 /** 808 * sget - find or create a superblock 809 * @type: filesystem type superblock should belong to 810 * @test: comparison callback 811 * @set: setup callback 812 * @flags: mount flags 813 * @data: argument to each of them 814 */ 815 struct super_block *sget(struct file_system_type *type, 816 int (*test)(struct super_block *,void *), 817 int (*set)(struct super_block *,void *), 818 int flags, 819 void *data) 820 { 821 struct user_namespace *user_ns = current_user_ns(); 822 struct super_block *s = NULL; 823 struct super_block *old; 824 int err; 825 826 /* We don't yet pass the user namespace of the parent 827 * mount through to here so always use &init_user_ns 828 * until that changes. 829 */ 830 if (flags & SB_SUBMOUNT) 831 user_ns = &init_user_ns; 832 833 retry: 834 spin_lock(&sb_lock); 835 if (test) { 836 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 837 if (!test(old, data)) 838 continue; 839 if (user_ns != old->s_user_ns) { 840 spin_unlock(&sb_lock); 841 destroy_unused_super(s); 842 return ERR_PTR(-EBUSY); 843 } 844 if (!grab_super(old)) 845 goto retry; 846 destroy_unused_super(s); 847 return old; 848 } 849 } 850 if (!s) { 851 spin_unlock(&sb_lock); 852 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 853 if (!s) 854 return ERR_PTR(-ENOMEM); 855 goto retry; 856 } 857 858 err = set(s, data); 859 if (err) { 860 spin_unlock(&sb_lock); 861 destroy_unused_super(s); 862 return ERR_PTR(err); 863 } 864 s->s_type = type; 865 strscpy(s->s_id, type->name, sizeof(s->s_id)); 866 list_add_tail(&s->s_list, &super_blocks); 867 hlist_add_head(&s->s_instances, &type->fs_supers); 868 spin_unlock(&sb_lock); 869 get_filesystem(type); 870 shrinker_register(s->s_shrink); 871 return s; 872 } 873 EXPORT_SYMBOL(sget); 874 875 void drop_super(struct super_block *sb) 876 { 877 super_unlock_shared(sb); 878 put_super(sb); 879 } 880 881 EXPORT_SYMBOL(drop_super); 882 883 void drop_super_exclusive(struct super_block *sb) 884 { 885 super_unlock_excl(sb); 886 put_super(sb); 887 } 888 EXPORT_SYMBOL(drop_super_exclusive); 889 890 static void __iterate_supers(void (*f)(struct super_block *)) 891 { 892 struct super_block *sb, *p = NULL; 893 894 spin_lock(&sb_lock); 895 list_for_each_entry(sb, &super_blocks, s_list) { 896 if (super_flags(sb, SB_DYING)) 897 continue; 898 sb->s_count++; 899 spin_unlock(&sb_lock); 900 901 f(sb); 902 903 spin_lock(&sb_lock); 904 if (p) 905 __put_super(p); 906 p = sb; 907 } 908 if (p) 909 __put_super(p); 910 spin_unlock(&sb_lock); 911 } 912 /** 913 * iterate_supers - call function for all active superblocks 914 * @f: function to call 915 * @arg: argument to pass to it 916 * 917 * Scans the superblock list and calls given function, passing it 918 * locked superblock and given argument. 919 */ 920 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 921 { 922 struct super_block *sb, *p = NULL; 923 924 spin_lock(&sb_lock); 925 list_for_each_entry(sb, &super_blocks, s_list) { 926 bool locked; 927 928 sb->s_count++; 929 spin_unlock(&sb_lock); 930 931 locked = super_lock_shared(sb); 932 if (locked) { 933 if (sb->s_root) 934 f(sb, arg); 935 super_unlock_shared(sb); 936 } 937 938 spin_lock(&sb_lock); 939 if (p) 940 __put_super(p); 941 p = sb; 942 } 943 if (p) 944 __put_super(p); 945 spin_unlock(&sb_lock); 946 } 947 948 /** 949 * iterate_supers_type - call function for superblocks of given type 950 * @type: fs type 951 * @f: function to call 952 * @arg: argument to pass to it 953 * 954 * Scans the superblock list and calls given function, passing it 955 * locked superblock and given argument. 956 */ 957 void iterate_supers_type(struct file_system_type *type, 958 void (*f)(struct super_block *, void *), void *arg) 959 { 960 struct super_block *sb, *p = NULL; 961 962 spin_lock(&sb_lock); 963 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 964 bool locked; 965 966 sb->s_count++; 967 spin_unlock(&sb_lock); 968 969 locked = super_lock_shared(sb); 970 if (locked) { 971 if (sb->s_root) 972 f(sb, arg); 973 super_unlock_shared(sb); 974 } 975 976 spin_lock(&sb_lock); 977 if (p) 978 __put_super(p); 979 p = sb; 980 } 981 if (p) 982 __put_super(p); 983 spin_unlock(&sb_lock); 984 } 985 986 EXPORT_SYMBOL(iterate_supers_type); 987 988 struct super_block *user_get_super(dev_t dev, bool excl) 989 { 990 struct super_block *sb; 991 992 spin_lock(&sb_lock); 993 list_for_each_entry(sb, &super_blocks, s_list) { 994 if (sb->s_dev == dev) { 995 bool locked; 996 997 sb->s_count++; 998 spin_unlock(&sb_lock); 999 /* still alive? */ 1000 locked = super_lock(sb, excl); 1001 if (locked) { 1002 if (sb->s_root) 1003 return sb; 1004 super_unlock(sb, excl); 1005 } 1006 /* nope, got unmounted */ 1007 spin_lock(&sb_lock); 1008 __put_super(sb); 1009 break; 1010 } 1011 } 1012 spin_unlock(&sb_lock); 1013 return NULL; 1014 } 1015 1016 /** 1017 * reconfigure_super - asks filesystem to change superblock parameters 1018 * @fc: The superblock and configuration 1019 * 1020 * Alters the configuration parameters of a live superblock. 1021 */ 1022 int reconfigure_super(struct fs_context *fc) 1023 { 1024 struct super_block *sb = fc->root->d_sb; 1025 int retval; 1026 bool remount_ro = false; 1027 bool remount_rw = false; 1028 bool force = fc->sb_flags & SB_FORCE; 1029 1030 if (fc->sb_flags_mask & ~MS_RMT_MASK) 1031 return -EINVAL; 1032 if (sb->s_writers.frozen != SB_UNFROZEN) 1033 return -EBUSY; 1034 1035 retval = security_sb_remount(sb, fc->security); 1036 if (retval) 1037 return retval; 1038 1039 if (fc->sb_flags_mask & SB_RDONLY) { 1040 #ifdef CONFIG_BLOCK 1041 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 1042 bdev_read_only(sb->s_bdev)) 1043 return -EACCES; 1044 #endif 1045 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb); 1046 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 1047 } 1048 1049 if (remount_ro) { 1050 if (!hlist_empty(&sb->s_pins)) { 1051 super_unlock_excl(sb); 1052 group_pin_kill(&sb->s_pins); 1053 __super_lock_excl(sb); 1054 if (!sb->s_root) 1055 return 0; 1056 if (sb->s_writers.frozen != SB_UNFROZEN) 1057 return -EBUSY; 1058 remount_ro = !sb_rdonly(sb); 1059 } 1060 } 1061 shrink_dcache_sb(sb); 1062 1063 /* If we are reconfiguring to RDONLY and current sb is read/write, 1064 * make sure there are no files open for writing. 1065 */ 1066 if (remount_ro) { 1067 if (force) { 1068 sb_start_ro_state_change(sb); 1069 } else { 1070 retval = sb_prepare_remount_readonly(sb); 1071 if (retval) 1072 return retval; 1073 } 1074 } else if (remount_rw) { 1075 /* 1076 * Protect filesystem's reconfigure code from writes from 1077 * userspace until reconfigure finishes. 1078 */ 1079 sb_start_ro_state_change(sb); 1080 } 1081 1082 if (fc->ops->reconfigure) { 1083 retval = fc->ops->reconfigure(fc); 1084 if (retval) { 1085 if (!force) 1086 goto cancel_readonly; 1087 /* If forced remount, go ahead despite any errors */ 1088 WARN(1, "forced remount of a %s fs returned %i\n", 1089 sb->s_type->name, retval); 1090 } 1091 } 1092 1093 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 1094 (fc->sb_flags & fc->sb_flags_mask))); 1095 sb_end_ro_state_change(sb); 1096 1097 /* 1098 * Some filesystems modify their metadata via some other path than the 1099 * bdev buffer cache (eg. use a private mapping, or directories in 1100 * pagecache, etc). Also file data modifications go via their own 1101 * mappings. So If we try to mount readonly then copy the filesystem 1102 * from bdev, we could get stale data, so invalidate it to give a best 1103 * effort at coherency. 1104 */ 1105 if (remount_ro && sb->s_bdev) 1106 invalidate_bdev(sb->s_bdev); 1107 return 0; 1108 1109 cancel_readonly: 1110 sb_end_ro_state_change(sb); 1111 return retval; 1112 } 1113 1114 static void do_emergency_remount_callback(struct super_block *sb) 1115 { 1116 bool locked = super_lock_excl(sb); 1117 1118 if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) { 1119 struct fs_context *fc; 1120 1121 fc = fs_context_for_reconfigure(sb->s_root, 1122 SB_RDONLY | SB_FORCE, SB_RDONLY); 1123 if (!IS_ERR(fc)) { 1124 if (parse_monolithic_mount_data(fc, NULL) == 0) 1125 (void)reconfigure_super(fc); 1126 put_fs_context(fc); 1127 } 1128 } 1129 if (locked) 1130 super_unlock_excl(sb); 1131 } 1132 1133 static void do_emergency_remount(struct work_struct *work) 1134 { 1135 __iterate_supers(do_emergency_remount_callback); 1136 kfree(work); 1137 printk("Emergency Remount complete\n"); 1138 } 1139 1140 void emergency_remount(void) 1141 { 1142 struct work_struct *work; 1143 1144 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1145 if (work) { 1146 INIT_WORK(work, do_emergency_remount); 1147 schedule_work(work); 1148 } 1149 } 1150 1151 static void do_thaw_all_callback(struct super_block *sb) 1152 { 1153 bool locked = super_lock_excl(sb); 1154 1155 if (locked && sb->s_root) { 1156 if (IS_ENABLED(CONFIG_BLOCK)) 1157 while (sb->s_bdev && !bdev_thaw(sb->s_bdev)) 1158 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev); 1159 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE); 1160 return; 1161 } 1162 if (locked) 1163 super_unlock_excl(sb); 1164 } 1165 1166 static void do_thaw_all(struct work_struct *work) 1167 { 1168 __iterate_supers(do_thaw_all_callback); 1169 kfree(work); 1170 printk(KERN_WARNING "Emergency Thaw complete\n"); 1171 } 1172 1173 /** 1174 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1175 * 1176 * Used for emergency unfreeze of all filesystems via SysRq 1177 */ 1178 void emergency_thaw_all(void) 1179 { 1180 struct work_struct *work; 1181 1182 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1183 if (work) { 1184 INIT_WORK(work, do_thaw_all); 1185 schedule_work(work); 1186 } 1187 } 1188 1189 static DEFINE_IDA(unnamed_dev_ida); 1190 1191 /** 1192 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1193 * @p: Pointer to a dev_t. 1194 * 1195 * Filesystems which don't use real block devices can call this function 1196 * to allocate a virtual block device. 1197 * 1198 * Context: Any context. Frequently called while holding sb_lock. 1199 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1200 * or -ENOMEM if memory allocation failed. 1201 */ 1202 int get_anon_bdev(dev_t *p) 1203 { 1204 int dev; 1205 1206 /* 1207 * Many userspace utilities consider an FSID of 0 invalid. 1208 * Always return at least 1 from get_anon_bdev. 1209 */ 1210 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1211 GFP_ATOMIC); 1212 if (dev == -ENOSPC) 1213 dev = -EMFILE; 1214 if (dev < 0) 1215 return dev; 1216 1217 *p = MKDEV(0, dev); 1218 return 0; 1219 } 1220 EXPORT_SYMBOL(get_anon_bdev); 1221 1222 void free_anon_bdev(dev_t dev) 1223 { 1224 ida_free(&unnamed_dev_ida, MINOR(dev)); 1225 } 1226 EXPORT_SYMBOL(free_anon_bdev); 1227 1228 int set_anon_super(struct super_block *s, void *data) 1229 { 1230 return get_anon_bdev(&s->s_dev); 1231 } 1232 EXPORT_SYMBOL(set_anon_super); 1233 1234 void kill_anon_super(struct super_block *sb) 1235 { 1236 dev_t dev = sb->s_dev; 1237 generic_shutdown_super(sb); 1238 kill_super_notify(sb); 1239 free_anon_bdev(dev); 1240 } 1241 EXPORT_SYMBOL(kill_anon_super); 1242 1243 void kill_litter_super(struct super_block *sb) 1244 { 1245 if (sb->s_root) 1246 d_genocide(sb->s_root); 1247 kill_anon_super(sb); 1248 } 1249 EXPORT_SYMBOL(kill_litter_super); 1250 1251 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1252 { 1253 return set_anon_super(sb, NULL); 1254 } 1255 EXPORT_SYMBOL(set_anon_super_fc); 1256 1257 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1258 { 1259 return sb->s_fs_info == fc->s_fs_info; 1260 } 1261 1262 static int test_single_super(struct super_block *s, struct fs_context *fc) 1263 { 1264 return 1; 1265 } 1266 1267 static int vfs_get_super(struct fs_context *fc, 1268 int (*test)(struct super_block *, struct fs_context *), 1269 int (*fill_super)(struct super_block *sb, 1270 struct fs_context *fc)) 1271 { 1272 struct super_block *sb; 1273 int err; 1274 1275 sb = sget_fc(fc, test, set_anon_super_fc); 1276 if (IS_ERR(sb)) 1277 return PTR_ERR(sb); 1278 1279 if (!sb->s_root) { 1280 err = fill_super(sb, fc); 1281 if (err) 1282 goto error; 1283 1284 sb->s_flags |= SB_ACTIVE; 1285 } 1286 1287 fc->root = dget(sb->s_root); 1288 return 0; 1289 1290 error: 1291 deactivate_locked_super(sb); 1292 return err; 1293 } 1294 1295 int get_tree_nodev(struct fs_context *fc, 1296 int (*fill_super)(struct super_block *sb, 1297 struct fs_context *fc)) 1298 { 1299 return vfs_get_super(fc, NULL, fill_super); 1300 } 1301 EXPORT_SYMBOL(get_tree_nodev); 1302 1303 int get_tree_single(struct fs_context *fc, 1304 int (*fill_super)(struct super_block *sb, 1305 struct fs_context *fc)) 1306 { 1307 return vfs_get_super(fc, test_single_super, fill_super); 1308 } 1309 EXPORT_SYMBOL(get_tree_single); 1310 1311 int get_tree_keyed(struct fs_context *fc, 1312 int (*fill_super)(struct super_block *sb, 1313 struct fs_context *fc), 1314 void *key) 1315 { 1316 fc->s_fs_info = key; 1317 return vfs_get_super(fc, test_keyed_super, fill_super); 1318 } 1319 EXPORT_SYMBOL(get_tree_keyed); 1320 1321 static int set_bdev_super(struct super_block *s, void *data) 1322 { 1323 s->s_dev = *(dev_t *)data; 1324 return 0; 1325 } 1326 1327 static int super_s_dev_set(struct super_block *s, struct fs_context *fc) 1328 { 1329 return set_bdev_super(s, fc->sget_key); 1330 } 1331 1332 static int super_s_dev_test(struct super_block *s, struct fs_context *fc) 1333 { 1334 return !(s->s_iflags & SB_I_RETIRED) && 1335 s->s_dev == *(dev_t *)fc->sget_key; 1336 } 1337 1338 /** 1339 * sget_dev - Find or create a superblock by device number 1340 * @fc: Filesystem context. 1341 * @dev: device number 1342 * 1343 * Find or create a superblock using the provided device number that 1344 * will be stored in fc->sget_key. 1345 * 1346 * If an extant superblock is matched, then that will be returned with 1347 * an elevated reference count that the caller must transfer or discard. 1348 * 1349 * If no match is made, a new superblock will be allocated and basic 1350 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will 1351 * be set). The superblock will be published and it will be returned in 1352 * a partially constructed state with SB_BORN and SB_ACTIVE as yet 1353 * unset. 1354 * 1355 * Return: an existing or newly created superblock on success, an error 1356 * pointer on failure. 1357 */ 1358 struct super_block *sget_dev(struct fs_context *fc, dev_t dev) 1359 { 1360 fc->sget_key = &dev; 1361 return sget_fc(fc, super_s_dev_test, super_s_dev_set); 1362 } 1363 EXPORT_SYMBOL(sget_dev); 1364 1365 #ifdef CONFIG_BLOCK 1366 /* 1367 * Lock the superblock that is holder of the bdev. Returns the superblock 1368 * pointer if we successfully locked the superblock and it is alive. Otherwise 1369 * we return NULL and just unlock bdev->bd_holder_lock. 1370 * 1371 * The function must be called with bdev->bd_holder_lock and releases it. 1372 */ 1373 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl) 1374 __releases(&bdev->bd_holder_lock) 1375 { 1376 struct super_block *sb = bdev->bd_holder; 1377 bool locked; 1378 1379 lockdep_assert_held(&bdev->bd_holder_lock); 1380 lockdep_assert_not_held(&sb->s_umount); 1381 lockdep_assert_not_held(&bdev->bd_disk->open_mutex); 1382 1383 /* Make sure sb doesn't go away from under us */ 1384 spin_lock(&sb_lock); 1385 sb->s_count++; 1386 spin_unlock(&sb_lock); 1387 1388 mutex_unlock(&bdev->bd_holder_lock); 1389 1390 locked = super_lock(sb, excl); 1391 1392 /* 1393 * If the superblock wasn't already SB_DYING then we hold 1394 * s_umount and can safely drop our temporary reference. 1395 */ 1396 put_super(sb); 1397 1398 if (!locked) 1399 return NULL; 1400 1401 if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) { 1402 super_unlock(sb, excl); 1403 return NULL; 1404 } 1405 1406 return sb; 1407 } 1408 1409 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise) 1410 { 1411 struct super_block *sb; 1412 1413 sb = bdev_super_lock(bdev, false); 1414 if (!sb) 1415 return; 1416 1417 if (!surprise) 1418 sync_filesystem(sb); 1419 shrink_dcache_sb(sb); 1420 invalidate_inodes(sb); 1421 if (sb->s_op->shutdown) 1422 sb->s_op->shutdown(sb); 1423 1424 super_unlock_shared(sb); 1425 } 1426 1427 static void fs_bdev_sync(struct block_device *bdev) 1428 { 1429 struct super_block *sb; 1430 1431 sb = bdev_super_lock(bdev, false); 1432 if (!sb) 1433 return; 1434 1435 sync_filesystem(sb); 1436 super_unlock_shared(sb); 1437 } 1438 1439 static struct super_block *get_bdev_super(struct block_device *bdev) 1440 { 1441 bool active = false; 1442 struct super_block *sb; 1443 1444 sb = bdev_super_lock(bdev, true); 1445 if (sb) { 1446 active = atomic_inc_not_zero(&sb->s_active); 1447 super_unlock_excl(sb); 1448 } 1449 if (!active) 1450 return NULL; 1451 return sb; 1452 } 1453 1454 /** 1455 * fs_bdev_freeze - freeze owning filesystem of block device 1456 * @bdev: block device 1457 * 1458 * Freeze the filesystem that owns this block device if it is still 1459 * active. 1460 * 1461 * A filesystem that owns multiple block devices may be frozen from each 1462 * block device and won't be unfrozen until all block devices are 1463 * unfrozen. Each block device can only freeze the filesystem once as we 1464 * nest freezes for block devices in the block layer. 1465 * 1466 * Return: If the freeze was successful zero is returned. If the freeze 1467 * failed a negative error code is returned. 1468 */ 1469 static int fs_bdev_freeze(struct block_device *bdev) 1470 { 1471 struct super_block *sb; 1472 int error = 0; 1473 1474 lockdep_assert_held(&bdev->bd_fsfreeze_mutex); 1475 1476 sb = get_bdev_super(bdev); 1477 if (!sb) 1478 return -EINVAL; 1479 1480 if (sb->s_op->freeze_super) 1481 error = sb->s_op->freeze_super(sb, 1482 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1483 else 1484 error = freeze_super(sb, 1485 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1486 if (!error) 1487 error = sync_blockdev(bdev); 1488 deactivate_super(sb); 1489 return error; 1490 } 1491 1492 /** 1493 * fs_bdev_thaw - thaw owning filesystem of block device 1494 * @bdev: block device 1495 * 1496 * Thaw the filesystem that owns this block device. 1497 * 1498 * A filesystem that owns multiple block devices may be frozen from each 1499 * block device and won't be unfrozen until all block devices are 1500 * unfrozen. Each block device can only freeze the filesystem once as we 1501 * nest freezes for block devices in the block layer. 1502 * 1503 * Return: If the thaw was successful zero is returned. If the thaw 1504 * failed a negative error code is returned. If this function 1505 * returns zero it doesn't mean that the filesystem is unfrozen 1506 * as it may have been frozen multiple times (kernel may hold a 1507 * freeze or might be frozen from other block devices). 1508 */ 1509 static int fs_bdev_thaw(struct block_device *bdev) 1510 { 1511 struct super_block *sb; 1512 int error; 1513 1514 lockdep_assert_held(&bdev->bd_fsfreeze_mutex); 1515 1516 /* 1517 * The block device may have been frozen before it was claimed by a 1518 * filesystem. Concurrently another process might try to mount that 1519 * frozen block device and has temporarily claimed the block device for 1520 * that purpose causing a concurrent fs_bdev_thaw() to end up here. The 1521 * mounter is already about to abort mounting because they still saw an 1522 * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return 1523 * NULL in that case. 1524 */ 1525 sb = get_bdev_super(bdev); 1526 if (!sb) 1527 return -EINVAL; 1528 1529 if (sb->s_op->thaw_super) 1530 error = sb->s_op->thaw_super(sb, 1531 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1532 else 1533 error = thaw_super(sb, 1534 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1535 deactivate_super(sb); 1536 return error; 1537 } 1538 1539 const struct blk_holder_ops fs_holder_ops = { 1540 .mark_dead = fs_bdev_mark_dead, 1541 .sync = fs_bdev_sync, 1542 .freeze = fs_bdev_freeze, 1543 .thaw = fs_bdev_thaw, 1544 }; 1545 EXPORT_SYMBOL_GPL(fs_holder_ops); 1546 1547 int setup_bdev_super(struct super_block *sb, int sb_flags, 1548 struct fs_context *fc) 1549 { 1550 blk_mode_t mode = sb_open_mode(sb_flags); 1551 struct file *bdev_file; 1552 struct block_device *bdev; 1553 1554 bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops); 1555 if (IS_ERR(bdev_file)) { 1556 if (fc) 1557 errorf(fc, "%s: Can't open blockdev", fc->source); 1558 return PTR_ERR(bdev_file); 1559 } 1560 bdev = file_bdev(bdev_file); 1561 1562 /* 1563 * This really should be in blkdev_get_by_dev, but right now can't due 1564 * to legacy issues that require us to allow opening a block device node 1565 * writable from userspace even for a read-only block device. 1566 */ 1567 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) { 1568 bdev_fput(bdev_file); 1569 return -EACCES; 1570 } 1571 1572 /* 1573 * It is enough to check bdev was not frozen before we set 1574 * s_bdev as freezing will wait until SB_BORN is set. 1575 */ 1576 if (atomic_read(&bdev->bd_fsfreeze_count) > 0) { 1577 if (fc) 1578 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1579 bdev_fput(bdev_file); 1580 return -EBUSY; 1581 } 1582 spin_lock(&sb_lock); 1583 sb->s_bdev_file = bdev_file; 1584 sb->s_bdev = bdev; 1585 sb->s_bdi = bdi_get(bdev->bd_disk->bdi); 1586 if (bdev_stable_writes(bdev)) 1587 sb->s_iflags |= SB_I_STABLE_WRITES; 1588 spin_unlock(&sb_lock); 1589 1590 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1591 shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name, 1592 sb->s_id); 1593 sb_set_blocksize(sb, block_size(bdev)); 1594 return 0; 1595 } 1596 EXPORT_SYMBOL_GPL(setup_bdev_super); 1597 1598 /** 1599 * get_tree_bdev - Get a superblock based on a single block device 1600 * @fc: The filesystem context holding the parameters 1601 * @fill_super: Helper to initialise a new superblock 1602 */ 1603 int get_tree_bdev(struct fs_context *fc, 1604 int (*fill_super)(struct super_block *, 1605 struct fs_context *)) 1606 { 1607 struct super_block *s; 1608 int error = 0; 1609 dev_t dev; 1610 1611 if (!fc->source) 1612 return invalf(fc, "No source specified"); 1613 1614 error = lookup_bdev(fc->source, &dev); 1615 if (error) { 1616 errorf(fc, "%s: Can't lookup blockdev", fc->source); 1617 return error; 1618 } 1619 1620 fc->sb_flags |= SB_NOSEC; 1621 s = sget_dev(fc, dev); 1622 if (IS_ERR(s)) 1623 return PTR_ERR(s); 1624 1625 if (s->s_root) { 1626 /* Don't summarily change the RO/RW state. */ 1627 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1628 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev); 1629 deactivate_locked_super(s); 1630 return -EBUSY; 1631 } 1632 } else { 1633 error = setup_bdev_super(s, fc->sb_flags, fc); 1634 if (!error) 1635 error = fill_super(s, fc); 1636 if (error) { 1637 deactivate_locked_super(s); 1638 return error; 1639 } 1640 s->s_flags |= SB_ACTIVE; 1641 } 1642 1643 BUG_ON(fc->root); 1644 fc->root = dget(s->s_root); 1645 return 0; 1646 } 1647 EXPORT_SYMBOL(get_tree_bdev); 1648 1649 static int test_bdev_super(struct super_block *s, void *data) 1650 { 1651 return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data; 1652 } 1653 1654 struct dentry *mount_bdev(struct file_system_type *fs_type, 1655 int flags, const char *dev_name, void *data, 1656 int (*fill_super)(struct super_block *, void *, int)) 1657 { 1658 struct super_block *s; 1659 int error; 1660 dev_t dev; 1661 1662 error = lookup_bdev(dev_name, &dev); 1663 if (error) 1664 return ERR_PTR(error); 1665 1666 flags |= SB_NOSEC; 1667 s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev); 1668 if (IS_ERR(s)) 1669 return ERR_CAST(s); 1670 1671 if (s->s_root) { 1672 if ((flags ^ s->s_flags) & SB_RDONLY) { 1673 deactivate_locked_super(s); 1674 return ERR_PTR(-EBUSY); 1675 } 1676 } else { 1677 error = setup_bdev_super(s, flags, NULL); 1678 if (!error) 1679 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1680 if (error) { 1681 deactivate_locked_super(s); 1682 return ERR_PTR(error); 1683 } 1684 1685 s->s_flags |= SB_ACTIVE; 1686 } 1687 1688 return dget(s->s_root); 1689 } 1690 EXPORT_SYMBOL(mount_bdev); 1691 1692 void kill_block_super(struct super_block *sb) 1693 { 1694 struct block_device *bdev = sb->s_bdev; 1695 1696 generic_shutdown_super(sb); 1697 if (bdev) { 1698 sync_blockdev(bdev); 1699 bdev_fput(sb->s_bdev_file); 1700 } 1701 } 1702 1703 EXPORT_SYMBOL(kill_block_super); 1704 #endif 1705 1706 struct dentry *mount_nodev(struct file_system_type *fs_type, 1707 int flags, void *data, 1708 int (*fill_super)(struct super_block *, void *, int)) 1709 { 1710 int error; 1711 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1712 1713 if (IS_ERR(s)) 1714 return ERR_CAST(s); 1715 1716 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1717 if (error) { 1718 deactivate_locked_super(s); 1719 return ERR_PTR(error); 1720 } 1721 s->s_flags |= SB_ACTIVE; 1722 return dget(s->s_root); 1723 } 1724 EXPORT_SYMBOL(mount_nodev); 1725 1726 int reconfigure_single(struct super_block *s, 1727 int flags, void *data) 1728 { 1729 struct fs_context *fc; 1730 int ret; 1731 1732 /* The caller really need to be passing fc down into mount_single(), 1733 * then a chunk of this can be removed. [Bollocks -- AV] 1734 * Better yet, reconfiguration shouldn't happen, but rather the second 1735 * mount should be rejected if the parameters are not compatible. 1736 */ 1737 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1738 if (IS_ERR(fc)) 1739 return PTR_ERR(fc); 1740 1741 ret = parse_monolithic_mount_data(fc, data); 1742 if (ret < 0) 1743 goto out; 1744 1745 ret = reconfigure_super(fc); 1746 out: 1747 put_fs_context(fc); 1748 return ret; 1749 } 1750 1751 static int compare_single(struct super_block *s, void *p) 1752 { 1753 return 1; 1754 } 1755 1756 struct dentry *mount_single(struct file_system_type *fs_type, 1757 int flags, void *data, 1758 int (*fill_super)(struct super_block *, void *, int)) 1759 { 1760 struct super_block *s; 1761 int error; 1762 1763 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1764 if (IS_ERR(s)) 1765 return ERR_CAST(s); 1766 if (!s->s_root) { 1767 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1768 if (!error) 1769 s->s_flags |= SB_ACTIVE; 1770 } else { 1771 error = reconfigure_single(s, flags, data); 1772 } 1773 if (unlikely(error)) { 1774 deactivate_locked_super(s); 1775 return ERR_PTR(error); 1776 } 1777 return dget(s->s_root); 1778 } 1779 EXPORT_SYMBOL(mount_single); 1780 1781 /** 1782 * vfs_get_tree - Get the mountable root 1783 * @fc: The superblock configuration context. 1784 * 1785 * The filesystem is invoked to get or create a superblock which can then later 1786 * be used for mounting. The filesystem places a pointer to the root to be 1787 * used for mounting in @fc->root. 1788 */ 1789 int vfs_get_tree(struct fs_context *fc) 1790 { 1791 struct super_block *sb; 1792 int error; 1793 1794 if (fc->root) 1795 return -EBUSY; 1796 1797 /* Get the mountable root in fc->root, with a ref on the root and a ref 1798 * on the superblock. 1799 */ 1800 error = fc->ops->get_tree(fc); 1801 if (error < 0) 1802 return error; 1803 1804 if (!fc->root) { 1805 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1806 fc->fs_type->name); 1807 /* We don't know what the locking state of the superblock is - 1808 * if there is a superblock. 1809 */ 1810 BUG(); 1811 } 1812 1813 sb = fc->root->d_sb; 1814 WARN_ON(!sb->s_bdi); 1815 1816 /* 1817 * super_wake() contains a memory barrier which also care of 1818 * ordering for super_cache_count(). We place it before setting 1819 * SB_BORN as the data dependency between the two functions is 1820 * the superblock structure contents that we just set up, not 1821 * the SB_BORN flag. 1822 */ 1823 super_wake(sb, SB_BORN); 1824 1825 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1826 if (unlikely(error)) { 1827 fc_drop_locked(fc); 1828 return error; 1829 } 1830 1831 /* 1832 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1833 * but s_maxbytes was an unsigned long long for many releases. Throw 1834 * this warning for a little while to try and catch filesystems that 1835 * violate this rule. 1836 */ 1837 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1838 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1839 1840 return 0; 1841 } 1842 EXPORT_SYMBOL(vfs_get_tree); 1843 1844 /* 1845 * Setup private BDI for given superblock. It gets automatically cleaned up 1846 * in generic_shutdown_super(). 1847 */ 1848 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1849 { 1850 struct backing_dev_info *bdi; 1851 int err; 1852 va_list args; 1853 1854 bdi = bdi_alloc(NUMA_NO_NODE); 1855 if (!bdi) 1856 return -ENOMEM; 1857 1858 va_start(args, fmt); 1859 err = bdi_register_va(bdi, fmt, args); 1860 va_end(args); 1861 if (err) { 1862 bdi_put(bdi); 1863 return err; 1864 } 1865 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1866 sb->s_bdi = bdi; 1867 sb->s_iflags |= SB_I_PERSB_BDI; 1868 1869 return 0; 1870 } 1871 EXPORT_SYMBOL(super_setup_bdi_name); 1872 1873 /* 1874 * Setup private BDI for given superblock. I gets automatically cleaned up 1875 * in generic_shutdown_super(). 1876 */ 1877 int super_setup_bdi(struct super_block *sb) 1878 { 1879 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1880 1881 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1882 atomic_long_inc_return(&bdi_seq)); 1883 } 1884 EXPORT_SYMBOL(super_setup_bdi); 1885 1886 /** 1887 * sb_wait_write - wait until all writers to given file system finish 1888 * @sb: the super for which we wait 1889 * @level: type of writers we wait for (normal vs page fault) 1890 * 1891 * This function waits until there are no writers of given type to given file 1892 * system. 1893 */ 1894 static void sb_wait_write(struct super_block *sb, int level) 1895 { 1896 percpu_down_write(sb->s_writers.rw_sem + level-1); 1897 } 1898 1899 /* 1900 * We are going to return to userspace and forget about these locks, the 1901 * ownership goes to the caller of thaw_super() which does unlock(). 1902 */ 1903 static void lockdep_sb_freeze_release(struct super_block *sb) 1904 { 1905 int level; 1906 1907 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1908 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1909 } 1910 1911 /* 1912 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1913 */ 1914 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1915 { 1916 int level; 1917 1918 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1919 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1920 } 1921 1922 static void sb_freeze_unlock(struct super_block *sb, int level) 1923 { 1924 for (level--; level >= 0; level--) 1925 percpu_up_write(sb->s_writers.rw_sem + level); 1926 } 1927 1928 static int wait_for_partially_frozen(struct super_block *sb) 1929 { 1930 int ret = 0; 1931 1932 do { 1933 unsigned short old = sb->s_writers.frozen; 1934 1935 up_write(&sb->s_umount); 1936 ret = wait_var_event_killable(&sb->s_writers.frozen, 1937 sb->s_writers.frozen != old); 1938 down_write(&sb->s_umount); 1939 } while (ret == 0 && 1940 sb->s_writers.frozen != SB_UNFROZEN && 1941 sb->s_writers.frozen != SB_FREEZE_COMPLETE); 1942 1943 return ret; 1944 } 1945 1946 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE) 1947 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST) 1948 1949 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who) 1950 { 1951 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1952 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1953 1954 if (who & FREEZE_HOLDER_KERNEL) 1955 ++sb->s_writers.freeze_kcount; 1956 if (who & FREEZE_HOLDER_USERSPACE) 1957 ++sb->s_writers.freeze_ucount; 1958 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; 1959 } 1960 1961 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who) 1962 { 1963 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1964 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1965 1966 if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount) 1967 --sb->s_writers.freeze_kcount; 1968 if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount) 1969 --sb->s_writers.freeze_ucount; 1970 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; 1971 } 1972 1973 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who) 1974 { 1975 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1976 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1977 1978 if (who & FREEZE_HOLDER_KERNEL) 1979 return (who & FREEZE_MAY_NEST) || 1980 sb->s_writers.freeze_kcount == 0; 1981 if (who & FREEZE_HOLDER_USERSPACE) 1982 return (who & FREEZE_MAY_NEST) || 1983 sb->s_writers.freeze_ucount == 0; 1984 return false; 1985 } 1986 1987 /** 1988 * freeze_super - lock the filesystem and force it into a consistent state 1989 * @sb: the super to lock 1990 * @who: context that wants to freeze 1991 * 1992 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1993 * freeze_fs. Subsequent calls to this without first thawing the fs may return 1994 * -EBUSY. 1995 * 1996 * @who should be: 1997 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs; 1998 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs. 1999 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed. 2000 * 2001 * The @who argument distinguishes between the kernel and userspace trying to 2002 * freeze the filesystem. Although there cannot be multiple kernel freezes or 2003 * multiple userspace freezes in effect at any given time, the kernel and 2004 * userspace can both hold a filesystem frozen. The filesystem remains frozen 2005 * until there are no kernel or userspace freezes in effect. 2006 * 2007 * A filesystem may hold multiple devices and thus a filesystems may be 2008 * frozen through the block layer via multiple block devices. In this 2009 * case the request is marked as being allowed to nest by passing 2010 * FREEZE_MAY_NEST. The filesystem remains frozen until all block 2011 * devices are unfrozen. If multiple freezes are attempted without 2012 * FREEZE_MAY_NEST -EBUSY will be returned. 2013 * 2014 * During this function, sb->s_writers.frozen goes through these values: 2015 * 2016 * SB_UNFROZEN: File system is normal, all writes progress as usual. 2017 * 2018 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 2019 * writes should be blocked, though page faults are still allowed. We wait for 2020 * all writes to complete and then proceed to the next stage. 2021 * 2022 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 2023 * but internal fs threads can still modify the filesystem (although they 2024 * should not dirty new pages or inodes), writeback can run etc. After waiting 2025 * for all running page faults we sync the filesystem which will clean all 2026 * dirty pages and inodes (no new dirty pages or inodes can be created when 2027 * sync is running). 2028 * 2029 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 2030 * modification are blocked (e.g. XFS preallocation truncation on inode 2031 * reclaim). This is usually implemented by blocking new transactions for 2032 * filesystems that have them and need this additional guard. After all 2033 * internal writers are finished we call ->freeze_fs() to finish filesystem 2034 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 2035 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 2036 * 2037 * sb->s_writers.frozen is protected by sb->s_umount. 2038 * 2039 * Return: If the freeze was successful zero is returned. If the freeze 2040 * failed a negative error code is returned. 2041 */ 2042 int freeze_super(struct super_block *sb, enum freeze_holder who) 2043 { 2044 int ret; 2045 2046 if (!super_lock_excl(sb)) { 2047 WARN_ON_ONCE("Dying superblock while freezing!"); 2048 return -EINVAL; 2049 } 2050 atomic_inc(&sb->s_active); 2051 2052 retry: 2053 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { 2054 if (may_freeze(sb, who)) 2055 ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1); 2056 else 2057 ret = -EBUSY; 2058 /* All freezers share a single active reference. */ 2059 deactivate_locked_super(sb); 2060 return ret; 2061 } 2062 2063 if (sb->s_writers.frozen != SB_UNFROZEN) { 2064 ret = wait_for_partially_frozen(sb); 2065 if (ret) { 2066 deactivate_locked_super(sb); 2067 return ret; 2068 } 2069 2070 goto retry; 2071 } 2072 2073 if (sb_rdonly(sb)) { 2074 /* Nothing to do really... */ 2075 WARN_ON_ONCE(freeze_inc(sb, who) > 1); 2076 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2077 wake_up_var(&sb->s_writers.frozen); 2078 super_unlock_excl(sb); 2079 return 0; 2080 } 2081 2082 sb->s_writers.frozen = SB_FREEZE_WRITE; 2083 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 2084 super_unlock_excl(sb); 2085 sb_wait_write(sb, SB_FREEZE_WRITE); 2086 __super_lock_excl(sb); 2087 2088 /* Now we go and block page faults... */ 2089 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 2090 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 2091 2092 /* All writers are done so after syncing there won't be dirty data */ 2093 ret = sync_filesystem(sb); 2094 if (ret) { 2095 sb->s_writers.frozen = SB_UNFROZEN; 2096 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 2097 wake_up_var(&sb->s_writers.frozen); 2098 deactivate_locked_super(sb); 2099 return ret; 2100 } 2101 2102 /* Now wait for internal filesystem counter */ 2103 sb->s_writers.frozen = SB_FREEZE_FS; 2104 sb_wait_write(sb, SB_FREEZE_FS); 2105 2106 if (sb->s_op->freeze_fs) { 2107 ret = sb->s_op->freeze_fs(sb); 2108 if (ret) { 2109 printk(KERN_ERR 2110 "VFS:Filesystem freeze failed\n"); 2111 sb->s_writers.frozen = SB_UNFROZEN; 2112 sb_freeze_unlock(sb, SB_FREEZE_FS); 2113 wake_up_var(&sb->s_writers.frozen); 2114 deactivate_locked_super(sb); 2115 return ret; 2116 } 2117 } 2118 /* 2119 * For debugging purposes so that fs can warn if it sees write activity 2120 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 2121 */ 2122 WARN_ON_ONCE(freeze_inc(sb, who) > 1); 2123 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2124 wake_up_var(&sb->s_writers.frozen); 2125 lockdep_sb_freeze_release(sb); 2126 super_unlock_excl(sb); 2127 return 0; 2128 } 2129 EXPORT_SYMBOL(freeze_super); 2130 2131 /* 2132 * Undoes the effect of a freeze_super_locked call. If the filesystem is 2133 * frozen both by userspace and the kernel, a thaw call from either source 2134 * removes that state without releasing the other state or unlocking the 2135 * filesystem. 2136 */ 2137 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who) 2138 { 2139 int error = -EINVAL; 2140 2141 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) 2142 goto out_unlock; 2143 2144 /* 2145 * All freezers share a single active reference. 2146 * So just unlock in case there are any left. 2147 */ 2148 if (freeze_dec(sb, who)) 2149 goto out_unlock; 2150 2151 if (sb_rdonly(sb)) { 2152 sb->s_writers.frozen = SB_UNFROZEN; 2153 wake_up_var(&sb->s_writers.frozen); 2154 goto out_deactivate; 2155 } 2156 2157 lockdep_sb_freeze_acquire(sb); 2158 2159 if (sb->s_op->unfreeze_fs) { 2160 error = sb->s_op->unfreeze_fs(sb); 2161 if (error) { 2162 pr_err("VFS: Filesystem thaw failed\n"); 2163 freeze_inc(sb, who); 2164 lockdep_sb_freeze_release(sb); 2165 goto out_unlock; 2166 } 2167 } 2168 2169 sb->s_writers.frozen = SB_UNFROZEN; 2170 wake_up_var(&sb->s_writers.frozen); 2171 sb_freeze_unlock(sb, SB_FREEZE_FS); 2172 out_deactivate: 2173 deactivate_locked_super(sb); 2174 return 0; 2175 2176 out_unlock: 2177 super_unlock_excl(sb); 2178 return error; 2179 } 2180 2181 /** 2182 * thaw_super -- unlock filesystem 2183 * @sb: the super to thaw 2184 * @who: context that wants to freeze 2185 * 2186 * Unlocks the filesystem and marks it writeable again after freeze_super() 2187 * if there are no remaining freezes on the filesystem. 2188 * 2189 * @who should be: 2190 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs; 2191 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs. 2192 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed 2193 * 2194 * A filesystem may hold multiple devices and thus a filesystems may 2195 * have been frozen through the block layer via multiple block devices. 2196 * The filesystem remains frozen until all block devices are unfrozen. 2197 */ 2198 int thaw_super(struct super_block *sb, enum freeze_holder who) 2199 { 2200 if (!super_lock_excl(sb)) { 2201 WARN_ON_ONCE("Dying superblock while thawing!"); 2202 return -EINVAL; 2203 } 2204 return thaw_super_locked(sb, who); 2205 } 2206 EXPORT_SYMBOL(thaw_super); 2207 2208 /* 2209 * Create workqueue for deferred direct IO completions. We allocate the 2210 * workqueue when it's first needed. This avoids creating workqueue for 2211 * filesystems that don't need it and also allows us to create the workqueue 2212 * late enough so the we can include s_id in the name of the workqueue. 2213 */ 2214 int sb_init_dio_done_wq(struct super_block *sb) 2215 { 2216 struct workqueue_struct *old; 2217 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 2218 WQ_MEM_RECLAIM, 0, 2219 sb->s_id); 2220 if (!wq) 2221 return -ENOMEM; 2222 /* 2223 * This has to be atomic as more DIOs can race to create the workqueue 2224 */ 2225 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 2226 /* Someone created workqueue before us? Free ours... */ 2227 if (old) 2228 destroy_workqueue(wq); 2229 return 0; 2230 } 2231 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq); 2232