xref: /linux/fs/super.c (revision 60b2737de1b1ddfdb90f3ba622634eb49d6f3603)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbj�rn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/config.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/smp_lock.h>
28 #include <linux/acct.h>
29 #include <linux/blkdev.h>
30 #include <linux/quotaops.h>
31 #include <linux/namei.h>
32 #include <linux/buffer_head.h>		/* for fsync_super() */
33 #include <linux/mount.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/vfs.h>
37 #include <linux/writeback.h>		/* for the emergency remount stuff */
38 #include <linux/idr.h>
39 #include <linux/kobject.h>
40 #include <asm/uaccess.h>
41 
42 
43 void get_filesystem(struct file_system_type *fs);
44 void put_filesystem(struct file_system_type *fs);
45 struct file_system_type *get_fs_type(const char *name);
46 
47 LIST_HEAD(super_blocks);
48 DEFINE_SPINLOCK(sb_lock);
49 
50 /**
51  *	alloc_super	-	create new superblock
52  *
53  *	Allocates and initializes a new &struct super_block.  alloc_super()
54  *	returns a pointer new superblock or %NULL if allocation had failed.
55  */
56 static struct super_block *alloc_super(void)
57 {
58 	struct super_block *s = kmalloc(sizeof(struct super_block),  GFP_USER);
59 	static struct super_operations default_op;
60 
61 	if (s) {
62 		memset(s, 0, sizeof(struct super_block));
63 		if (security_sb_alloc(s)) {
64 			kfree(s);
65 			s = NULL;
66 			goto out;
67 		}
68 		INIT_LIST_HEAD(&s->s_dirty);
69 		INIT_LIST_HEAD(&s->s_io);
70 		INIT_LIST_HEAD(&s->s_files);
71 		INIT_LIST_HEAD(&s->s_instances);
72 		INIT_HLIST_HEAD(&s->s_anon);
73 		INIT_LIST_HEAD(&s->s_inodes);
74 		init_rwsem(&s->s_umount);
75 		sema_init(&s->s_lock, 1);
76 		down_write(&s->s_umount);
77 		s->s_count = S_BIAS;
78 		atomic_set(&s->s_active, 1);
79 		sema_init(&s->s_vfs_rename_sem,1);
80 		sema_init(&s->s_dquot.dqio_sem, 1);
81 		sema_init(&s->s_dquot.dqonoff_sem, 1);
82 		init_rwsem(&s->s_dquot.dqptr_sem);
83 		init_waitqueue_head(&s->s_wait_unfrozen);
84 		s->s_maxbytes = MAX_NON_LFS;
85 		s->dq_op = sb_dquot_ops;
86 		s->s_qcop = sb_quotactl_ops;
87 		s->s_op = &default_op;
88 		s->s_time_gran = 1000000000;
89 	}
90 out:
91 	return s;
92 }
93 
94 /**
95  *	destroy_super	-	frees a superblock
96  *	@s: superblock to free
97  *
98  *	Frees a superblock.
99  */
100 static inline void destroy_super(struct super_block *s)
101 {
102 	security_sb_free(s);
103 	kfree(s);
104 }
105 
106 /* Superblock refcounting  */
107 
108 /*
109  * Drop a superblock's refcount.  Returns non-zero if the superblock was
110  * destroyed.  The caller must hold sb_lock.
111  */
112 int __put_super(struct super_block *sb)
113 {
114 	int ret = 0;
115 
116 	if (!--sb->s_count) {
117 		destroy_super(sb);
118 		ret = 1;
119 	}
120 	return ret;
121 }
122 
123 /*
124  * Drop a superblock's refcount.
125  * Returns non-zero if the superblock is about to be destroyed and
126  * at least is already removed from super_blocks list, so if we are
127  * making a loop through super blocks then we need to restart.
128  * The caller must hold sb_lock.
129  */
130 int __put_super_and_need_restart(struct super_block *sb)
131 {
132 	/* check for race with generic_shutdown_super() */
133 	if (list_empty(&sb->s_list)) {
134 		/* super block is removed, need to restart... */
135 		__put_super(sb);
136 		return 1;
137 	}
138 	/* can't be the last, since s_list is still in use */
139 	sb->s_count--;
140 	BUG_ON(sb->s_count == 0);
141 	return 0;
142 }
143 
144 /**
145  *	put_super	-	drop a temporary reference to superblock
146  *	@sb: superblock in question
147  *
148  *	Drops a temporary reference, frees superblock if there's no
149  *	references left.
150  */
151 static void put_super(struct super_block *sb)
152 {
153 	spin_lock(&sb_lock);
154 	__put_super(sb);
155 	spin_unlock(&sb_lock);
156 }
157 
158 
159 /**
160  *	deactivate_super	-	drop an active reference to superblock
161  *	@s: superblock to deactivate
162  *
163  *	Drops an active reference to superblock, acquiring a temprory one if
164  *	there is no active references left.  In that case we lock superblock,
165  *	tell fs driver to shut it down and drop the temporary reference we
166  *	had just acquired.
167  */
168 void deactivate_super(struct super_block *s)
169 {
170 	struct file_system_type *fs = s->s_type;
171 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
172 		s->s_count -= S_BIAS-1;
173 		spin_unlock(&sb_lock);
174 		down_write(&s->s_umount);
175 		fs->kill_sb(s);
176 		put_filesystem(fs);
177 		put_super(s);
178 	}
179 }
180 
181 EXPORT_SYMBOL(deactivate_super);
182 
183 /**
184  *	grab_super - acquire an active reference
185  *	@s: reference we are trying to make active
186  *
187  *	Tries to acquire an active reference.  grab_super() is used when we
188  * 	had just found a superblock in super_blocks or fs_type->fs_supers
189  *	and want to turn it into a full-blown active reference.  grab_super()
190  *	is called with sb_lock held and drops it.  Returns 1 in case of
191  *	success, 0 if we had failed (superblock contents was already dead or
192  *	dying when grab_super() had been called).
193  */
194 static int grab_super(struct super_block *s)
195 {
196 	s->s_count++;
197 	spin_unlock(&sb_lock);
198 	down_write(&s->s_umount);
199 	if (s->s_root) {
200 		spin_lock(&sb_lock);
201 		if (s->s_count > S_BIAS) {
202 			atomic_inc(&s->s_active);
203 			s->s_count--;
204 			spin_unlock(&sb_lock);
205 			return 1;
206 		}
207 		spin_unlock(&sb_lock);
208 	}
209 	up_write(&s->s_umount);
210 	put_super(s);
211 	yield();
212 	return 0;
213 }
214 
215 /**
216  *	generic_shutdown_super	-	common helper for ->kill_sb()
217  *	@sb: superblock to kill
218  *
219  *	generic_shutdown_super() does all fs-independent work on superblock
220  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
221  *	that need destruction out of superblock, call generic_shutdown_super()
222  *	and release aforementioned objects.  Note: dentries and inodes _are_
223  *	taken care of and do not need specific handling.
224  */
225 void generic_shutdown_super(struct super_block *sb)
226 {
227 	struct dentry *root = sb->s_root;
228 	struct super_operations *sop = sb->s_op;
229 
230 	if (root) {
231 		sb->s_root = NULL;
232 		shrink_dcache_parent(root);
233 		shrink_dcache_anon(&sb->s_anon);
234 		dput(root);
235 		fsync_super(sb);
236 		lock_super(sb);
237 		sb->s_flags &= ~MS_ACTIVE;
238 		/* bad name - it should be evict_inodes() */
239 		invalidate_inodes(sb);
240 		lock_kernel();
241 
242 		if (sop->write_super && sb->s_dirt)
243 			sop->write_super(sb);
244 		if (sop->put_super)
245 			sop->put_super(sb);
246 
247 		/* Forget any remaining inodes */
248 		if (invalidate_inodes(sb)) {
249 			printk("VFS: Busy inodes after unmount. "
250 			   "Self-destruct in 5 seconds.  Have a nice day...\n");
251 		}
252 
253 		unlock_kernel();
254 		unlock_super(sb);
255 	}
256 	spin_lock(&sb_lock);
257 	/* should be initialized for __put_super_and_need_restart() */
258 	list_del_init(&sb->s_list);
259 	list_del(&sb->s_instances);
260 	spin_unlock(&sb_lock);
261 	up_write(&sb->s_umount);
262 }
263 
264 EXPORT_SYMBOL(generic_shutdown_super);
265 
266 /**
267  *	sget	-	find or create a superblock
268  *	@type:	filesystem type superblock should belong to
269  *	@test:	comparison callback
270  *	@set:	setup callback
271  *	@data:	argument to each of them
272  */
273 struct super_block *sget(struct file_system_type *type,
274 			int (*test)(struct super_block *,void *),
275 			int (*set)(struct super_block *,void *),
276 			void *data)
277 {
278 	struct super_block *s = NULL;
279 	struct list_head *p;
280 	int err;
281 
282 retry:
283 	spin_lock(&sb_lock);
284 	if (test) list_for_each(p, &type->fs_supers) {
285 		struct super_block *old;
286 		old = list_entry(p, struct super_block, s_instances);
287 		if (!test(old, data))
288 			continue;
289 		if (!grab_super(old))
290 			goto retry;
291 		if (s)
292 			destroy_super(s);
293 		return old;
294 	}
295 	if (!s) {
296 		spin_unlock(&sb_lock);
297 		s = alloc_super();
298 		if (!s)
299 			return ERR_PTR(-ENOMEM);
300 		goto retry;
301 	}
302 
303 	err = set(s, data);
304 	if (err) {
305 		spin_unlock(&sb_lock);
306 		destroy_super(s);
307 		return ERR_PTR(err);
308 	}
309 	s->s_type = type;
310 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
311 	list_add_tail(&s->s_list, &super_blocks);
312 	list_add(&s->s_instances, &type->fs_supers);
313 	spin_unlock(&sb_lock);
314 	get_filesystem(type);
315 	return s;
316 }
317 
318 EXPORT_SYMBOL(sget);
319 
320 void drop_super(struct super_block *sb)
321 {
322 	up_read(&sb->s_umount);
323 	put_super(sb);
324 }
325 
326 EXPORT_SYMBOL(drop_super);
327 
328 static inline void write_super(struct super_block *sb)
329 {
330 	lock_super(sb);
331 	if (sb->s_root && sb->s_dirt)
332 		if (sb->s_op->write_super)
333 			sb->s_op->write_super(sb);
334 	unlock_super(sb);
335 }
336 
337 /*
338  * Note: check the dirty flag before waiting, so we don't
339  * hold up the sync while mounting a device. (The newly
340  * mounted device won't need syncing.)
341  */
342 void sync_supers(void)
343 {
344 	struct super_block * sb;
345 restart:
346 	spin_lock(&sb_lock);
347 	sb = sb_entry(super_blocks.next);
348 	while (sb != sb_entry(&super_blocks))
349 		if (sb->s_dirt) {
350 			sb->s_count++;
351 			spin_unlock(&sb_lock);
352 			down_read(&sb->s_umount);
353 			write_super(sb);
354 			drop_super(sb);
355 			goto restart;
356 		} else
357 			sb = sb_entry(sb->s_list.next);
358 	spin_unlock(&sb_lock);
359 }
360 
361 /*
362  * Call the ->sync_fs super_op against all filesytems which are r/w and
363  * which implement it.
364  *
365  * This operation is careful to avoid the livelock which could easily happen
366  * if two or more filesystems are being continuously dirtied.  s_need_sync_fs
367  * is used only here.  We set it against all filesystems and then clear it as
368  * we sync them.  So redirtied filesystems are skipped.
369  *
370  * But if process A is currently running sync_filesytems and then process B
371  * calls sync_filesystems as well, process B will set all the s_need_sync_fs
372  * flags again, which will cause process A to resync everything.  Fix that with
373  * a local mutex.
374  *
375  * (Fabian) Avoid sync_fs with clean fs & wait mode 0
376  */
377 void sync_filesystems(int wait)
378 {
379 	struct super_block *sb;
380 	static DECLARE_MUTEX(mutex);
381 
382 	down(&mutex);		/* Could be down_interruptible */
383 	spin_lock(&sb_lock);
384 	for (sb = sb_entry(super_blocks.next); sb != sb_entry(&super_blocks);
385 			sb = sb_entry(sb->s_list.next)) {
386 		if (!sb->s_op->sync_fs)
387 			continue;
388 		if (sb->s_flags & MS_RDONLY)
389 			continue;
390 		sb->s_need_sync_fs = 1;
391 	}
392 	spin_unlock(&sb_lock);
393 
394 restart:
395 	spin_lock(&sb_lock);
396 	for (sb = sb_entry(super_blocks.next); sb != sb_entry(&super_blocks);
397 			sb = sb_entry(sb->s_list.next)) {
398 		if (!sb->s_need_sync_fs)
399 			continue;
400 		sb->s_need_sync_fs = 0;
401 		if (sb->s_flags & MS_RDONLY)
402 			continue;	/* hm.  Was remounted r/o meanwhile */
403 		sb->s_count++;
404 		spin_unlock(&sb_lock);
405 		down_read(&sb->s_umount);
406 		if (sb->s_root && (wait || sb->s_dirt))
407 			sb->s_op->sync_fs(sb, wait);
408 		drop_super(sb);
409 		goto restart;
410 	}
411 	spin_unlock(&sb_lock);
412 	up(&mutex);
413 }
414 
415 /**
416  *	get_super - get the superblock of a device
417  *	@bdev: device to get the superblock for
418  *
419  *	Scans the superblock list and finds the superblock of the file system
420  *	mounted on the device given. %NULL is returned if no match is found.
421  */
422 
423 struct super_block * get_super(struct block_device *bdev)
424 {
425 	struct list_head *p;
426 	if (!bdev)
427 		return NULL;
428 rescan:
429 	spin_lock(&sb_lock);
430 	list_for_each(p, &super_blocks) {
431 		struct super_block *s = sb_entry(p);
432 		if (s->s_bdev == bdev) {
433 			s->s_count++;
434 			spin_unlock(&sb_lock);
435 			down_read(&s->s_umount);
436 			if (s->s_root)
437 				return s;
438 			drop_super(s);
439 			goto rescan;
440 		}
441 	}
442 	spin_unlock(&sb_lock);
443 	return NULL;
444 }
445 
446 EXPORT_SYMBOL(get_super);
447 
448 struct super_block * user_get_super(dev_t dev)
449 {
450 	struct list_head *p;
451 
452 rescan:
453 	spin_lock(&sb_lock);
454 	list_for_each(p, &super_blocks) {
455 		struct super_block *s = sb_entry(p);
456 		if (s->s_dev ==  dev) {
457 			s->s_count++;
458 			spin_unlock(&sb_lock);
459 			down_read(&s->s_umount);
460 			if (s->s_root)
461 				return s;
462 			drop_super(s);
463 			goto rescan;
464 		}
465 	}
466 	spin_unlock(&sb_lock);
467 	return NULL;
468 }
469 
470 EXPORT_SYMBOL(user_get_super);
471 
472 asmlinkage long sys_ustat(unsigned dev, struct ustat __user * ubuf)
473 {
474         struct super_block *s;
475         struct ustat tmp;
476         struct kstatfs sbuf;
477 	int err = -EINVAL;
478 
479         s = user_get_super(new_decode_dev(dev));
480         if (s == NULL)
481                 goto out;
482 	err = vfs_statfs(s, &sbuf);
483 	drop_super(s);
484 	if (err)
485 		goto out;
486 
487         memset(&tmp,0,sizeof(struct ustat));
488         tmp.f_tfree = sbuf.f_bfree;
489         tmp.f_tinode = sbuf.f_ffree;
490 
491         err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
492 out:
493 	return err;
494 }
495 
496 /**
497  *	mark_files_ro
498  *	@sb: superblock in question
499  *
500  *	All files are marked read/only.  We don't care about pending
501  *	delete files so this should be used in 'force' mode only
502  */
503 
504 static void mark_files_ro(struct super_block *sb)
505 {
506 	struct file *f;
507 
508 	file_list_lock();
509 	list_for_each_entry(f, &sb->s_files, f_list) {
510 		if (S_ISREG(f->f_dentry->d_inode->i_mode) && file_count(f))
511 			f->f_mode &= ~FMODE_WRITE;
512 	}
513 	file_list_unlock();
514 }
515 
516 /**
517  *	do_remount_sb - asks filesystem to change mount options.
518  *	@sb:	superblock in question
519  *	@flags:	numeric part of options
520  *	@data:	the rest of options
521  *      @force: whether or not to force the change
522  *
523  *	Alters the mount options of a mounted file system.
524  */
525 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
526 {
527 	int retval;
528 
529 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
530 		return -EACCES;
531 	if (flags & MS_RDONLY)
532 		acct_auto_close(sb);
533 	shrink_dcache_sb(sb);
534 	fsync_super(sb);
535 
536 	/* If we are remounting RDONLY and current sb is read/write,
537 	   make sure there are no rw files opened */
538 	if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
539 		if (force)
540 			mark_files_ro(sb);
541 		else if (!fs_may_remount_ro(sb))
542 			return -EBUSY;
543 	}
544 
545 	if (sb->s_op->remount_fs) {
546 		lock_super(sb);
547 		retval = sb->s_op->remount_fs(sb, &flags, data);
548 		unlock_super(sb);
549 		if (retval)
550 			return retval;
551 	}
552 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
553 	return 0;
554 }
555 
556 static void do_emergency_remount(unsigned long foo)
557 {
558 	struct super_block *sb;
559 
560 	spin_lock(&sb_lock);
561 	list_for_each_entry(sb, &super_blocks, s_list) {
562 		sb->s_count++;
563 		spin_unlock(&sb_lock);
564 		down_read(&sb->s_umount);
565 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
566 			/*
567 			 * ->remount_fs needs lock_kernel().
568 			 *
569 			 * What lock protects sb->s_flags??
570 			 */
571 			lock_kernel();
572 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
573 			unlock_kernel();
574 		}
575 		drop_super(sb);
576 		spin_lock(&sb_lock);
577 	}
578 	spin_unlock(&sb_lock);
579 	printk("Emergency Remount complete\n");
580 }
581 
582 void emergency_remount(void)
583 {
584 	pdflush_operation(do_emergency_remount, 0);
585 }
586 
587 /*
588  * Unnamed block devices are dummy devices used by virtual
589  * filesystems which don't use real block-devices.  -- jrs
590  */
591 
592 static struct idr unnamed_dev_idr;
593 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
594 
595 int set_anon_super(struct super_block *s, void *data)
596 {
597 	int dev;
598 	int error;
599 
600  retry:
601 	if (idr_pre_get(&unnamed_dev_idr, GFP_ATOMIC) == 0)
602 		return -ENOMEM;
603 	spin_lock(&unnamed_dev_lock);
604 	error = idr_get_new(&unnamed_dev_idr, NULL, &dev);
605 	spin_unlock(&unnamed_dev_lock);
606 	if (error == -EAGAIN)
607 		/* We raced and lost with another CPU. */
608 		goto retry;
609 	else if (error)
610 		return -EAGAIN;
611 
612 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
613 		spin_lock(&unnamed_dev_lock);
614 		idr_remove(&unnamed_dev_idr, dev);
615 		spin_unlock(&unnamed_dev_lock);
616 		return -EMFILE;
617 	}
618 	s->s_dev = MKDEV(0, dev & MINORMASK);
619 	return 0;
620 }
621 
622 EXPORT_SYMBOL(set_anon_super);
623 
624 void kill_anon_super(struct super_block *sb)
625 {
626 	int slot = MINOR(sb->s_dev);
627 
628 	generic_shutdown_super(sb);
629 	spin_lock(&unnamed_dev_lock);
630 	idr_remove(&unnamed_dev_idr, slot);
631 	spin_unlock(&unnamed_dev_lock);
632 }
633 
634 EXPORT_SYMBOL(kill_anon_super);
635 
636 void __init unnamed_dev_init(void)
637 {
638 	idr_init(&unnamed_dev_idr);
639 }
640 
641 void kill_litter_super(struct super_block *sb)
642 {
643 	if (sb->s_root)
644 		d_genocide(sb->s_root);
645 	kill_anon_super(sb);
646 }
647 
648 EXPORT_SYMBOL(kill_litter_super);
649 
650 static int set_bdev_super(struct super_block *s, void *data)
651 {
652 	s->s_bdev = data;
653 	s->s_dev = s->s_bdev->bd_dev;
654 	return 0;
655 }
656 
657 static int test_bdev_super(struct super_block *s, void *data)
658 {
659 	return (void *)s->s_bdev == data;
660 }
661 
662 static void bdev_uevent(struct block_device *bdev, enum kobject_action action)
663 {
664 	if (bdev->bd_disk) {
665 		if (bdev->bd_part)
666 			kobject_uevent(&bdev->bd_part->kobj, action, NULL);
667 		else
668 			kobject_uevent(&bdev->bd_disk->kobj, action, NULL);
669 	}
670 }
671 
672 struct super_block *get_sb_bdev(struct file_system_type *fs_type,
673 	int flags, const char *dev_name, void *data,
674 	int (*fill_super)(struct super_block *, void *, int))
675 {
676 	struct block_device *bdev;
677 	struct super_block *s;
678 	int error = 0;
679 
680 	bdev = open_bdev_excl(dev_name, flags, fs_type);
681 	if (IS_ERR(bdev))
682 		return (struct super_block *)bdev;
683 
684 	/*
685 	 * once the super is inserted into the list by sget, s_umount
686 	 * will protect the lockfs code from trying to start a snapshot
687 	 * while we are mounting
688 	 */
689 	down(&bdev->bd_mount_sem);
690 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
691 	up(&bdev->bd_mount_sem);
692 	if (IS_ERR(s))
693 		goto out;
694 
695 	if (s->s_root) {
696 		if ((flags ^ s->s_flags) & MS_RDONLY) {
697 			up_write(&s->s_umount);
698 			deactivate_super(s);
699 			s = ERR_PTR(-EBUSY);
700 		}
701 		goto out;
702 	} else {
703 		char b[BDEVNAME_SIZE];
704 
705 		s->s_flags = flags;
706 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
707 		s->s_old_blocksize = block_size(bdev);
708 		sb_set_blocksize(s, s->s_old_blocksize);
709 		error = fill_super(s, data, flags & MS_VERBOSE ? 1 : 0);
710 		if (error) {
711 			up_write(&s->s_umount);
712 			deactivate_super(s);
713 			s = ERR_PTR(error);
714 		} else {
715 			s->s_flags |= MS_ACTIVE;
716 			bdev_uevent(bdev, KOBJ_MOUNT);
717 		}
718 	}
719 
720 	return s;
721 
722 out:
723 	close_bdev_excl(bdev);
724 	return s;
725 }
726 
727 EXPORT_SYMBOL(get_sb_bdev);
728 
729 void kill_block_super(struct super_block *sb)
730 {
731 	struct block_device *bdev = sb->s_bdev;
732 
733 	bdev_uevent(bdev, KOBJ_UMOUNT);
734 	generic_shutdown_super(sb);
735 	sync_blockdev(bdev);
736 	close_bdev_excl(bdev);
737 }
738 
739 EXPORT_SYMBOL(kill_block_super);
740 
741 struct super_block *get_sb_nodev(struct file_system_type *fs_type,
742 	int flags, void *data,
743 	int (*fill_super)(struct super_block *, void *, int))
744 {
745 	int error;
746 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
747 
748 	if (IS_ERR(s))
749 		return s;
750 
751 	s->s_flags = flags;
752 
753 	error = fill_super(s, data, flags & MS_VERBOSE ? 1 : 0);
754 	if (error) {
755 		up_write(&s->s_umount);
756 		deactivate_super(s);
757 		return ERR_PTR(error);
758 	}
759 	s->s_flags |= MS_ACTIVE;
760 	return s;
761 }
762 
763 EXPORT_SYMBOL(get_sb_nodev);
764 
765 static int compare_single(struct super_block *s, void *p)
766 {
767 	return 1;
768 }
769 
770 struct super_block *get_sb_single(struct file_system_type *fs_type,
771 	int flags, void *data,
772 	int (*fill_super)(struct super_block *, void *, int))
773 {
774 	struct super_block *s;
775 	int error;
776 
777 	s = sget(fs_type, compare_single, set_anon_super, NULL);
778 	if (IS_ERR(s))
779 		return s;
780 	if (!s->s_root) {
781 		s->s_flags = flags;
782 		error = fill_super(s, data, flags & MS_VERBOSE ? 1 : 0);
783 		if (error) {
784 			up_write(&s->s_umount);
785 			deactivate_super(s);
786 			return ERR_PTR(error);
787 		}
788 		s->s_flags |= MS_ACTIVE;
789 	}
790 	do_remount_sb(s, flags, data, 0);
791 	return s;
792 }
793 
794 EXPORT_SYMBOL(get_sb_single);
795 
796 struct vfsmount *
797 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
798 {
799 	struct file_system_type *type = get_fs_type(fstype);
800 	struct super_block *sb = ERR_PTR(-ENOMEM);
801 	struct vfsmount *mnt;
802 	int error;
803 	char *secdata = NULL;
804 
805 	if (!type)
806 		return ERR_PTR(-ENODEV);
807 
808 	mnt = alloc_vfsmnt(name);
809 	if (!mnt)
810 		goto out;
811 
812 	if (data) {
813 		secdata = alloc_secdata();
814 		if (!secdata) {
815 			sb = ERR_PTR(-ENOMEM);
816 			goto out_mnt;
817 		}
818 
819 		error = security_sb_copy_data(type, data, secdata);
820 		if (error) {
821 			sb = ERR_PTR(error);
822 			goto out_free_secdata;
823 		}
824 	}
825 
826 	sb = type->get_sb(type, flags, name, data);
827 	if (IS_ERR(sb))
828 		goto out_free_secdata;
829  	error = security_sb_kern_mount(sb, secdata);
830  	if (error)
831  		goto out_sb;
832 	mnt->mnt_sb = sb;
833 	mnt->mnt_root = dget(sb->s_root);
834 	mnt->mnt_mountpoint = sb->s_root;
835 	mnt->mnt_parent = mnt;
836 	mnt->mnt_namespace = current->namespace;
837 	up_write(&sb->s_umount);
838 	free_secdata(secdata);
839 	put_filesystem(type);
840 	return mnt;
841 out_sb:
842 	up_write(&sb->s_umount);
843 	deactivate_super(sb);
844 	sb = ERR_PTR(error);
845 out_free_secdata:
846 	free_secdata(secdata);
847 out_mnt:
848 	free_vfsmnt(mnt);
849 out:
850 	put_filesystem(type);
851 	return (struct vfsmount *)sb;
852 }
853 
854 EXPORT_SYMBOL_GPL(do_kern_mount);
855 
856 struct vfsmount *kern_mount(struct file_system_type *type)
857 {
858 	return do_kern_mount(type->name, 0, type->name, NULL);
859 }
860 
861 EXPORT_SYMBOL(kern_mount);
862