1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who, 43 const void *freeze_owner); 44 45 static LIST_HEAD(super_blocks); 46 static DEFINE_SPINLOCK(sb_lock); 47 48 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 49 "sb_writers", 50 "sb_pagefaults", 51 "sb_internal", 52 }; 53 54 static inline void __super_lock(struct super_block *sb, bool excl) 55 { 56 if (excl) 57 down_write(&sb->s_umount); 58 else 59 down_read(&sb->s_umount); 60 } 61 62 static inline void super_unlock(struct super_block *sb, bool excl) 63 { 64 if (excl) 65 up_write(&sb->s_umount); 66 else 67 up_read(&sb->s_umount); 68 } 69 70 static inline void __super_lock_excl(struct super_block *sb) 71 { 72 __super_lock(sb, true); 73 } 74 75 static inline void super_unlock_excl(struct super_block *sb) 76 { 77 super_unlock(sb, true); 78 } 79 80 static inline void super_unlock_shared(struct super_block *sb) 81 { 82 super_unlock(sb, false); 83 } 84 85 static bool super_flags(const struct super_block *sb, unsigned int flags) 86 { 87 /* 88 * Pairs with smp_store_release() in super_wake() and ensures 89 * that we see @flags after we're woken. 90 */ 91 return smp_load_acquire(&sb->s_flags) & flags; 92 } 93 94 /** 95 * super_lock - wait for superblock to become ready and lock it 96 * @sb: superblock to wait for 97 * @excl: whether exclusive access is required 98 * 99 * If the superblock has neither passed through vfs_get_tree() or 100 * generic_shutdown_super() yet wait for it to happen. Either superblock 101 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're 102 * woken and we'll see SB_DYING. 103 * 104 * The caller must have acquired a temporary reference on @sb->s_count. 105 * 106 * Return: The function returns true if SB_BORN was set and with 107 * s_umount held. The function returns false if SB_DYING was 108 * set and without s_umount held. 109 */ 110 static __must_check bool super_lock(struct super_block *sb, bool excl) 111 { 112 lockdep_assert_not_held(&sb->s_umount); 113 114 /* wait until the superblock is ready or dying */ 115 wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING)); 116 117 /* Don't pointlessly acquire s_umount. */ 118 if (super_flags(sb, SB_DYING)) 119 return false; 120 121 __super_lock(sb, excl); 122 123 /* 124 * Has gone through generic_shutdown_super() in the meantime. 125 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to 126 * grab a reference to this. Tell them so. 127 */ 128 if (sb->s_flags & SB_DYING) { 129 super_unlock(sb, excl); 130 return false; 131 } 132 133 WARN_ON_ONCE(!(sb->s_flags & SB_BORN)); 134 return true; 135 } 136 137 /* wait and try to acquire read-side of @sb->s_umount */ 138 static inline bool super_lock_shared(struct super_block *sb) 139 { 140 return super_lock(sb, false); 141 } 142 143 /* wait and try to acquire write-side of @sb->s_umount */ 144 static inline bool super_lock_excl(struct super_block *sb) 145 { 146 return super_lock(sb, true); 147 } 148 149 /* wake waiters */ 150 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD) 151 static void super_wake(struct super_block *sb, unsigned int flag) 152 { 153 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS)); 154 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1); 155 156 /* 157 * Pairs with smp_load_acquire() in super_lock() to make sure 158 * all initializations in the superblock are seen by the user 159 * seeing SB_BORN sent. 160 */ 161 smp_store_release(&sb->s_flags, sb->s_flags | flag); 162 /* 163 * Pairs with the barrier in prepare_to_wait_event() to make sure 164 * ___wait_var_event() either sees SB_BORN set or 165 * waitqueue_active() check in wake_up_var() sees the waiter. 166 */ 167 smp_mb(); 168 wake_up_var(&sb->s_flags); 169 } 170 171 /* 172 * One thing we have to be careful of with a per-sb shrinker is that we don't 173 * drop the last active reference to the superblock from within the shrinker. 174 * If that happens we could trigger unregistering the shrinker from within the 175 * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we 176 * take a passive reference to the superblock to avoid this from occurring. 177 */ 178 static unsigned long super_cache_scan(struct shrinker *shrink, 179 struct shrink_control *sc) 180 { 181 struct super_block *sb; 182 long fs_objects = 0; 183 long total_objects; 184 long freed = 0; 185 long dentries; 186 long inodes; 187 188 sb = shrink->private_data; 189 190 /* 191 * Deadlock avoidance. We may hold various FS locks, and we don't want 192 * to recurse into the FS that called us in clear_inode() and friends.. 193 */ 194 if (!(sc->gfp_mask & __GFP_FS)) 195 return SHRINK_STOP; 196 197 if (!super_trylock_shared(sb)) 198 return SHRINK_STOP; 199 200 if (sb->s_op->nr_cached_objects) 201 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 202 203 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 204 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 205 total_objects = dentries + inodes + fs_objects; 206 if (!total_objects) 207 total_objects = 1; 208 209 /* proportion the scan between the caches */ 210 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 211 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 212 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 213 214 /* 215 * prune the dcache first as the icache is pinned by it, then 216 * prune the icache, followed by the filesystem specific caches 217 * 218 * Ensure that we always scan at least one object - memcg kmem 219 * accounting uses this to fully empty the caches. 220 */ 221 sc->nr_to_scan = dentries + 1; 222 freed = prune_dcache_sb(sb, sc); 223 sc->nr_to_scan = inodes + 1; 224 freed += prune_icache_sb(sb, sc); 225 226 if (fs_objects) { 227 sc->nr_to_scan = fs_objects + 1; 228 freed += sb->s_op->free_cached_objects(sb, sc); 229 } 230 231 super_unlock_shared(sb); 232 return freed; 233 } 234 235 static unsigned long super_cache_count(struct shrinker *shrink, 236 struct shrink_control *sc) 237 { 238 struct super_block *sb; 239 long total_objects = 0; 240 241 sb = shrink->private_data; 242 243 /* 244 * We don't call super_trylock_shared() here as it is a scalability 245 * bottleneck, so we're exposed to partial setup state. The shrinker 246 * rwsem does not protect filesystem operations backing 247 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can 248 * change between super_cache_count and super_cache_scan, so we really 249 * don't need locks here. 250 * 251 * However, if we are currently mounting the superblock, the underlying 252 * filesystem might be in a state of partial construction and hence it 253 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check 254 * to avoid this situation, so do the same here. The memory barrier is 255 * matched with the one in mount_fs() as we don't hold locks here. 256 */ 257 if (!(sb->s_flags & SB_BORN)) 258 return 0; 259 smp_rmb(); 260 261 if (sb->s_op && sb->s_op->nr_cached_objects) 262 total_objects = sb->s_op->nr_cached_objects(sb, sc); 263 264 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 265 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 266 267 if (!total_objects) 268 return SHRINK_EMPTY; 269 270 total_objects = vfs_pressure_ratio(total_objects); 271 return total_objects; 272 } 273 274 static void destroy_super_work(struct work_struct *work) 275 { 276 struct super_block *s = container_of(work, struct super_block, 277 destroy_work); 278 fsnotify_sb_free(s); 279 security_sb_free(s); 280 put_user_ns(s->s_user_ns); 281 kfree(s->s_subtype); 282 for (int i = 0; i < SB_FREEZE_LEVELS; i++) 283 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 284 kfree(s); 285 } 286 287 static void destroy_super_rcu(struct rcu_head *head) 288 { 289 struct super_block *s = container_of(head, struct super_block, rcu); 290 INIT_WORK(&s->destroy_work, destroy_super_work); 291 schedule_work(&s->destroy_work); 292 } 293 294 /* Free a superblock that has never been seen by anyone */ 295 static void destroy_unused_super(struct super_block *s) 296 { 297 if (!s) 298 return; 299 super_unlock_excl(s); 300 list_lru_destroy(&s->s_dentry_lru); 301 list_lru_destroy(&s->s_inode_lru); 302 shrinker_free(s->s_shrink); 303 /* no delays needed */ 304 destroy_super_work(&s->destroy_work); 305 } 306 307 /** 308 * alloc_super - create new superblock 309 * @type: filesystem type superblock should belong to 310 * @flags: the mount flags 311 * @user_ns: User namespace for the super_block 312 * 313 * Allocates and initializes a new &struct super_block. alloc_super() 314 * returns a pointer new superblock or %NULL if allocation had failed. 315 */ 316 static struct super_block *alloc_super(struct file_system_type *type, int flags, 317 struct user_namespace *user_ns) 318 { 319 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL); 320 static const struct super_operations default_op; 321 int i; 322 323 if (!s) 324 return NULL; 325 326 s->s_user_ns = get_user_ns(user_ns); 327 init_rwsem(&s->s_umount); 328 lockdep_set_class(&s->s_umount, &type->s_umount_key); 329 /* 330 * sget() can have s_umount recursion. 331 * 332 * When it cannot find a suitable sb, it allocates a new 333 * one (this one), and tries again to find a suitable old 334 * one. 335 * 336 * In case that succeeds, it will acquire the s_umount 337 * lock of the old one. Since these are clearly distrinct 338 * locks, and this object isn't exposed yet, there's no 339 * risk of deadlocks. 340 * 341 * Annotate this by putting this lock in a different 342 * subclass. 343 */ 344 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 345 346 if (security_sb_alloc(s)) 347 goto fail; 348 349 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 350 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 351 sb_writers_name[i], 352 &type->s_writers_key[i])) 353 goto fail; 354 } 355 s->s_bdi = &noop_backing_dev_info; 356 s->s_flags = flags; 357 if (s->s_user_ns != &init_user_ns) 358 s->s_iflags |= SB_I_NODEV; 359 INIT_HLIST_NODE(&s->s_instances); 360 INIT_HLIST_BL_HEAD(&s->s_roots); 361 mutex_init(&s->s_sync_lock); 362 INIT_LIST_HEAD(&s->s_inodes); 363 spin_lock_init(&s->s_inode_list_lock); 364 INIT_LIST_HEAD(&s->s_inodes_wb); 365 spin_lock_init(&s->s_inode_wblist_lock); 366 367 s->s_count = 1; 368 atomic_set(&s->s_active, 1); 369 mutex_init(&s->s_vfs_rename_mutex); 370 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 371 init_rwsem(&s->s_dquot.dqio_sem); 372 s->s_maxbytes = MAX_NON_LFS; 373 s->s_op = &default_op; 374 s->s_time_gran = 1000000000; 375 s->s_time_min = TIME64_MIN; 376 s->s_time_max = TIME64_MAX; 377 378 s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, 379 "sb-%s", type->name); 380 if (!s->s_shrink) 381 goto fail; 382 383 s->s_shrink->scan_objects = super_cache_scan; 384 s->s_shrink->count_objects = super_cache_count; 385 s->s_shrink->batch = 1024; 386 s->s_shrink->private_data = s; 387 388 if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink)) 389 goto fail; 390 if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink)) 391 goto fail; 392 return s; 393 394 fail: 395 destroy_unused_super(s); 396 return NULL; 397 } 398 399 /* Superblock refcounting */ 400 401 /* 402 * Drop a superblock's refcount. The caller must hold sb_lock. 403 */ 404 static void __put_super(struct super_block *s) 405 { 406 if (!--s->s_count) { 407 list_del_init(&s->s_list); 408 WARN_ON(s->s_dentry_lru.node); 409 WARN_ON(s->s_inode_lru.node); 410 WARN_ON(s->s_mounts); 411 call_rcu(&s->rcu, destroy_super_rcu); 412 } 413 } 414 415 /** 416 * put_super - drop a temporary reference to superblock 417 * @sb: superblock in question 418 * 419 * Drops a temporary reference, frees superblock if there's no 420 * references left. 421 */ 422 void put_super(struct super_block *sb) 423 { 424 spin_lock(&sb_lock); 425 __put_super(sb); 426 spin_unlock(&sb_lock); 427 } 428 429 static void kill_super_notify(struct super_block *sb) 430 { 431 lockdep_assert_not_held(&sb->s_umount); 432 433 /* already notified earlier */ 434 if (sb->s_flags & SB_DEAD) 435 return; 436 437 /* 438 * Remove it from @fs_supers so it isn't found by new 439 * sget{_fc}() walkers anymore. Any concurrent mounter still 440 * managing to grab a temporary reference is guaranteed to 441 * already see SB_DYING and will wait until we notify them about 442 * SB_DEAD. 443 */ 444 spin_lock(&sb_lock); 445 hlist_del_init(&sb->s_instances); 446 spin_unlock(&sb_lock); 447 448 /* 449 * Let concurrent mounts know that this thing is really dead. 450 * We don't need @sb->s_umount here as every concurrent caller 451 * will see SB_DYING and either discard the superblock or wait 452 * for SB_DEAD. 453 */ 454 super_wake(sb, SB_DEAD); 455 } 456 457 /** 458 * deactivate_locked_super - drop an active reference to superblock 459 * @s: superblock to deactivate 460 * 461 * Drops an active reference to superblock, converting it into a temporary 462 * one if there is no other active references left. In that case we 463 * tell fs driver to shut it down and drop the temporary reference we 464 * had just acquired. 465 * 466 * Caller holds exclusive lock on superblock; that lock is released. 467 */ 468 void deactivate_locked_super(struct super_block *s) 469 { 470 struct file_system_type *fs = s->s_type; 471 if (atomic_dec_and_test(&s->s_active)) { 472 shrinker_free(s->s_shrink); 473 fs->kill_sb(s); 474 475 kill_super_notify(s); 476 477 /* 478 * Since list_lru_destroy() may sleep, we cannot call it from 479 * put_super(), where we hold the sb_lock. Therefore we destroy 480 * the lru lists right now. 481 */ 482 list_lru_destroy(&s->s_dentry_lru); 483 list_lru_destroy(&s->s_inode_lru); 484 485 put_filesystem(fs); 486 put_super(s); 487 } else { 488 super_unlock_excl(s); 489 } 490 } 491 492 EXPORT_SYMBOL(deactivate_locked_super); 493 494 /** 495 * deactivate_super - drop an active reference to superblock 496 * @s: superblock to deactivate 497 * 498 * Variant of deactivate_locked_super(), except that superblock is *not* 499 * locked by caller. If we are going to drop the final active reference, 500 * lock will be acquired prior to that. 501 */ 502 void deactivate_super(struct super_block *s) 503 { 504 if (!atomic_add_unless(&s->s_active, -1, 1)) { 505 __super_lock_excl(s); 506 deactivate_locked_super(s); 507 } 508 } 509 510 EXPORT_SYMBOL(deactivate_super); 511 512 /** 513 * grab_super - acquire an active reference to a superblock 514 * @sb: superblock to acquire 515 * 516 * Acquire a temporary reference on a superblock and try to trade it for 517 * an active reference. This is used in sget{_fc}() to wait for a 518 * superblock to either become SB_BORN or for it to pass through 519 * sb->kill() and be marked as SB_DEAD. 520 * 521 * Return: This returns true if an active reference could be acquired, 522 * false if not. 523 */ 524 static bool grab_super(struct super_block *sb) 525 { 526 bool locked; 527 528 sb->s_count++; 529 spin_unlock(&sb_lock); 530 locked = super_lock_excl(sb); 531 if (locked) { 532 if (atomic_inc_not_zero(&sb->s_active)) { 533 put_super(sb); 534 return true; 535 } 536 super_unlock_excl(sb); 537 } 538 wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD)); 539 put_super(sb); 540 return false; 541 } 542 543 /* 544 * super_trylock_shared - try to grab ->s_umount shared 545 * @sb: reference we are trying to grab 546 * 547 * Try to prevent fs shutdown. This is used in places where we 548 * cannot take an active reference but we need to ensure that the 549 * filesystem is not shut down while we are working on it. It returns 550 * false if we cannot acquire s_umount or if we lose the race and 551 * filesystem already got into shutdown, and returns true with the s_umount 552 * lock held in read mode in case of success. On successful return, 553 * the caller must drop the s_umount lock when done. 554 * 555 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 556 * The reason why it's safe is that we are OK with doing trylock instead 557 * of down_read(). There's a couple of places that are OK with that, but 558 * it's very much not a general-purpose interface. 559 */ 560 bool super_trylock_shared(struct super_block *sb) 561 { 562 if (down_read_trylock(&sb->s_umount)) { 563 if (!(sb->s_flags & SB_DYING) && sb->s_root && 564 (sb->s_flags & SB_BORN)) 565 return true; 566 super_unlock_shared(sb); 567 } 568 569 return false; 570 } 571 572 /** 573 * retire_super - prevents superblock from being reused 574 * @sb: superblock to retire 575 * 576 * The function marks superblock to be ignored in superblock test, which 577 * prevents it from being reused for any new mounts. If the superblock has 578 * a private bdi, it also unregisters it, but doesn't reduce the refcount 579 * of the superblock to prevent potential races. The refcount is reduced 580 * by generic_shutdown_super(). The function can not be called 581 * concurrently with generic_shutdown_super(). It is safe to call the 582 * function multiple times, subsequent calls have no effect. 583 * 584 * The marker will affect the re-use only for block-device-based 585 * superblocks. Other superblocks will still get marked if this function 586 * is used, but that will not affect their reusability. 587 */ 588 void retire_super(struct super_block *sb) 589 { 590 WARN_ON(!sb->s_bdev); 591 __super_lock_excl(sb); 592 if (sb->s_iflags & SB_I_PERSB_BDI) { 593 bdi_unregister(sb->s_bdi); 594 sb->s_iflags &= ~SB_I_PERSB_BDI; 595 } 596 sb->s_iflags |= SB_I_RETIRED; 597 super_unlock_excl(sb); 598 } 599 EXPORT_SYMBOL(retire_super); 600 601 /** 602 * generic_shutdown_super - common helper for ->kill_sb() 603 * @sb: superblock to kill 604 * 605 * generic_shutdown_super() does all fs-independent work on superblock 606 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 607 * that need destruction out of superblock, call generic_shutdown_super() 608 * and release aforementioned objects. Note: dentries and inodes _are_ 609 * taken care of and do not need specific handling. 610 * 611 * Upon calling this function, the filesystem may no longer alter or 612 * rearrange the set of dentries belonging to this super_block, nor may it 613 * change the attachments of dentries to inodes. 614 */ 615 void generic_shutdown_super(struct super_block *sb) 616 { 617 const struct super_operations *sop = sb->s_op; 618 619 if (sb->s_root) { 620 shrink_dcache_for_umount(sb); 621 sync_filesystem(sb); 622 sb->s_flags &= ~SB_ACTIVE; 623 624 cgroup_writeback_umount(sb); 625 626 /* Evict all inodes with zero refcount. */ 627 evict_inodes(sb); 628 629 /* 630 * Clean up and evict any inodes that still have references due 631 * to fsnotify or the security policy. 632 */ 633 fsnotify_sb_delete(sb); 634 security_sb_delete(sb); 635 636 if (sb->s_dio_done_wq) { 637 destroy_workqueue(sb->s_dio_done_wq); 638 sb->s_dio_done_wq = NULL; 639 } 640 641 if (sop->put_super) 642 sop->put_super(sb); 643 644 /* 645 * Now that all potentially-encrypted inodes have been evicted, 646 * the fscrypt keyring can be destroyed. 647 */ 648 fscrypt_destroy_keyring(sb); 649 650 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), NULL, 651 "VFS: Busy inodes after unmount of %s (%s)", 652 sb->s_id, sb->s_type->name)) { 653 /* 654 * Adding a proper bailout path here would be hard, but 655 * we can at least make it more likely that a later 656 * iput_final() or such crashes cleanly. 657 */ 658 struct inode *inode; 659 660 spin_lock(&sb->s_inode_list_lock); 661 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 662 inode->i_op = VFS_PTR_POISON; 663 inode->i_sb = VFS_PTR_POISON; 664 inode->i_mapping = VFS_PTR_POISON; 665 } 666 spin_unlock(&sb->s_inode_list_lock); 667 } 668 } 669 /* 670 * Broadcast to everyone that grabbed a temporary reference to this 671 * superblock before we removed it from @fs_supers that the superblock 672 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now 673 * discard this superblock and treat it as dead. 674 * 675 * We leave the superblock on @fs_supers so it can be found by 676 * sget{_fc}() until we passed sb->kill_sb(). 677 */ 678 super_wake(sb, SB_DYING); 679 super_unlock_excl(sb); 680 if (sb->s_bdi != &noop_backing_dev_info) { 681 if (sb->s_iflags & SB_I_PERSB_BDI) 682 bdi_unregister(sb->s_bdi); 683 bdi_put(sb->s_bdi); 684 sb->s_bdi = &noop_backing_dev_info; 685 } 686 } 687 688 EXPORT_SYMBOL(generic_shutdown_super); 689 690 bool mount_capable(struct fs_context *fc) 691 { 692 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 693 return capable(CAP_SYS_ADMIN); 694 else 695 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 696 } 697 698 /** 699 * sget_fc - Find or create a superblock 700 * @fc: Filesystem context. 701 * @test: Comparison callback 702 * @set: Setup callback 703 * 704 * Create a new superblock or find an existing one. 705 * 706 * The @test callback is used to find a matching existing superblock. 707 * Whether or not the requested parameters in @fc are taken into account 708 * is specific to the @test callback that is used. They may even be 709 * completely ignored. 710 * 711 * If an extant superblock is matched, it will be returned unless: 712 * 713 * (1) the namespace the filesystem context @fc and the extant 714 * superblock's namespace differ 715 * 716 * (2) the filesystem context @fc has requested that reusing an extant 717 * superblock is not allowed 718 * 719 * In both cases EBUSY will be returned. 720 * 721 * If no match is made, a new superblock will be allocated and basic 722 * initialisation will be performed (s_type, s_fs_info and s_id will be 723 * set and the @set callback will be invoked), the superblock will be 724 * published and it will be returned in a partially constructed state 725 * with SB_BORN and SB_ACTIVE as yet unset. 726 * 727 * Return: On success, an extant or newly created superblock is 728 * returned. On failure an error pointer is returned. 729 */ 730 struct super_block *sget_fc(struct fs_context *fc, 731 int (*test)(struct super_block *, struct fs_context *), 732 int (*set)(struct super_block *, struct fs_context *)) 733 { 734 struct super_block *s = NULL; 735 struct super_block *old; 736 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 737 int err; 738 739 /* 740 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is 741 * not set, as the filesystem is likely unprepared to handle it. 742 * This can happen when fsconfig() is called from init_user_ns with 743 * an fs_fd opened in another user namespace. 744 */ 745 if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) { 746 errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed"); 747 return ERR_PTR(-EPERM); 748 } 749 750 retry: 751 spin_lock(&sb_lock); 752 if (test) { 753 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 754 if (test(old, fc)) 755 goto share_extant_sb; 756 } 757 } 758 if (!s) { 759 spin_unlock(&sb_lock); 760 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 761 if (!s) 762 return ERR_PTR(-ENOMEM); 763 goto retry; 764 } 765 766 s->s_fs_info = fc->s_fs_info; 767 err = set(s, fc); 768 if (err) { 769 s->s_fs_info = NULL; 770 spin_unlock(&sb_lock); 771 destroy_unused_super(s); 772 return ERR_PTR(err); 773 } 774 fc->s_fs_info = NULL; 775 s->s_type = fc->fs_type; 776 s->s_iflags |= fc->s_iflags; 777 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 778 /* 779 * Make the superblock visible on @super_blocks and @fs_supers. 780 * It's in a nascent state and users should wait on SB_BORN or 781 * SB_DYING to be set. 782 */ 783 list_add_tail(&s->s_list, &super_blocks); 784 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 785 spin_unlock(&sb_lock); 786 get_filesystem(s->s_type); 787 shrinker_register(s->s_shrink); 788 return s; 789 790 share_extant_sb: 791 if (user_ns != old->s_user_ns || fc->exclusive) { 792 spin_unlock(&sb_lock); 793 destroy_unused_super(s); 794 if (fc->exclusive) 795 warnfc(fc, "reusing existing filesystem not allowed"); 796 else 797 warnfc(fc, "reusing existing filesystem in another namespace not allowed"); 798 return ERR_PTR(-EBUSY); 799 } 800 if (!grab_super(old)) 801 goto retry; 802 destroy_unused_super(s); 803 return old; 804 } 805 EXPORT_SYMBOL(sget_fc); 806 807 /** 808 * sget - find or create a superblock 809 * @type: filesystem type superblock should belong to 810 * @test: comparison callback 811 * @set: setup callback 812 * @flags: mount flags 813 * @data: argument to each of them 814 */ 815 struct super_block *sget(struct file_system_type *type, 816 int (*test)(struct super_block *,void *), 817 int (*set)(struct super_block *,void *), 818 int flags, 819 void *data) 820 { 821 struct user_namespace *user_ns = current_user_ns(); 822 struct super_block *s = NULL; 823 struct super_block *old; 824 int err; 825 826 retry: 827 spin_lock(&sb_lock); 828 if (test) { 829 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 830 if (!test(old, data)) 831 continue; 832 if (user_ns != old->s_user_ns) { 833 spin_unlock(&sb_lock); 834 destroy_unused_super(s); 835 return ERR_PTR(-EBUSY); 836 } 837 if (!grab_super(old)) 838 goto retry; 839 destroy_unused_super(s); 840 return old; 841 } 842 } 843 if (!s) { 844 spin_unlock(&sb_lock); 845 s = alloc_super(type, flags, user_ns); 846 if (!s) 847 return ERR_PTR(-ENOMEM); 848 goto retry; 849 } 850 851 err = set(s, data); 852 if (err) { 853 spin_unlock(&sb_lock); 854 destroy_unused_super(s); 855 return ERR_PTR(err); 856 } 857 s->s_type = type; 858 strscpy(s->s_id, type->name, sizeof(s->s_id)); 859 list_add_tail(&s->s_list, &super_blocks); 860 hlist_add_head(&s->s_instances, &type->fs_supers); 861 spin_unlock(&sb_lock); 862 get_filesystem(type); 863 shrinker_register(s->s_shrink); 864 return s; 865 } 866 EXPORT_SYMBOL(sget); 867 868 void drop_super(struct super_block *sb) 869 { 870 super_unlock_shared(sb); 871 put_super(sb); 872 } 873 874 EXPORT_SYMBOL(drop_super); 875 876 void drop_super_exclusive(struct super_block *sb) 877 { 878 super_unlock_excl(sb); 879 put_super(sb); 880 } 881 EXPORT_SYMBOL(drop_super_exclusive); 882 883 enum super_iter_flags_t { 884 SUPER_ITER_EXCL = (1U << 0), 885 SUPER_ITER_UNLOCKED = (1U << 1), 886 SUPER_ITER_REVERSE = (1U << 2), 887 }; 888 889 static inline struct super_block *first_super(enum super_iter_flags_t flags) 890 { 891 if (flags & SUPER_ITER_REVERSE) 892 return list_last_entry(&super_blocks, struct super_block, s_list); 893 return list_first_entry(&super_blocks, struct super_block, s_list); 894 } 895 896 static inline struct super_block *next_super(struct super_block *sb, 897 enum super_iter_flags_t flags) 898 { 899 if (flags & SUPER_ITER_REVERSE) 900 return list_prev_entry(sb, s_list); 901 return list_next_entry(sb, s_list); 902 } 903 904 static void __iterate_supers(void (*f)(struct super_block *, void *), void *arg, 905 enum super_iter_flags_t flags) 906 { 907 struct super_block *sb, *p = NULL; 908 bool excl = flags & SUPER_ITER_EXCL; 909 910 guard(spinlock)(&sb_lock); 911 912 for (sb = first_super(flags); 913 !list_entry_is_head(sb, &super_blocks, s_list); 914 sb = next_super(sb, flags)) { 915 if (super_flags(sb, SB_DYING)) 916 continue; 917 sb->s_count++; 918 spin_unlock(&sb_lock); 919 920 if (flags & SUPER_ITER_UNLOCKED) { 921 f(sb, arg); 922 } else if (super_lock(sb, excl)) { 923 f(sb, arg); 924 super_unlock(sb, excl); 925 } 926 927 spin_lock(&sb_lock); 928 if (p) 929 __put_super(p); 930 p = sb; 931 } 932 if (p) 933 __put_super(p); 934 } 935 936 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 937 { 938 __iterate_supers(f, arg, 0); 939 } 940 941 /** 942 * iterate_supers_type - call function for superblocks of given type 943 * @type: fs type 944 * @f: function to call 945 * @arg: argument to pass to it 946 * 947 * Scans the superblock list and calls given function, passing it 948 * locked superblock and given argument. 949 */ 950 void iterate_supers_type(struct file_system_type *type, 951 void (*f)(struct super_block *, void *), void *arg) 952 { 953 struct super_block *sb, *p = NULL; 954 955 spin_lock(&sb_lock); 956 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 957 bool locked; 958 959 if (super_flags(sb, SB_DYING)) 960 continue; 961 962 sb->s_count++; 963 spin_unlock(&sb_lock); 964 965 locked = super_lock_shared(sb); 966 if (locked) { 967 f(sb, arg); 968 super_unlock_shared(sb); 969 } 970 971 spin_lock(&sb_lock); 972 if (p) 973 __put_super(p); 974 p = sb; 975 } 976 if (p) 977 __put_super(p); 978 spin_unlock(&sb_lock); 979 } 980 981 EXPORT_SYMBOL(iterate_supers_type); 982 983 struct super_block *user_get_super(dev_t dev, bool excl) 984 { 985 struct super_block *sb; 986 987 spin_lock(&sb_lock); 988 list_for_each_entry(sb, &super_blocks, s_list) { 989 bool locked; 990 991 if (sb->s_dev != dev) 992 continue; 993 994 sb->s_count++; 995 spin_unlock(&sb_lock); 996 997 locked = super_lock(sb, excl); 998 if (locked) 999 return sb; 1000 1001 spin_lock(&sb_lock); 1002 __put_super(sb); 1003 break; 1004 } 1005 spin_unlock(&sb_lock); 1006 return NULL; 1007 } 1008 1009 /** 1010 * reconfigure_super - asks filesystem to change superblock parameters 1011 * @fc: The superblock and configuration 1012 * 1013 * Alters the configuration parameters of a live superblock. 1014 */ 1015 int reconfigure_super(struct fs_context *fc) 1016 { 1017 struct super_block *sb = fc->root->d_sb; 1018 int retval; 1019 bool remount_ro = false; 1020 bool remount_rw = false; 1021 bool force = fc->sb_flags & SB_FORCE; 1022 1023 if (fc->sb_flags_mask & ~MS_RMT_MASK) 1024 return -EINVAL; 1025 if (sb->s_writers.frozen != SB_UNFROZEN) 1026 return -EBUSY; 1027 1028 retval = security_sb_remount(sb, fc->security); 1029 if (retval) 1030 return retval; 1031 1032 if (fc->sb_flags_mask & SB_RDONLY) { 1033 #ifdef CONFIG_BLOCK 1034 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 1035 bdev_read_only(sb->s_bdev)) 1036 return -EACCES; 1037 #endif 1038 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb); 1039 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 1040 } 1041 1042 if (remount_ro) { 1043 if (!hlist_empty(&sb->s_pins)) { 1044 super_unlock_excl(sb); 1045 group_pin_kill(&sb->s_pins); 1046 __super_lock_excl(sb); 1047 if (!sb->s_root) 1048 return 0; 1049 if (sb->s_writers.frozen != SB_UNFROZEN) 1050 return -EBUSY; 1051 remount_ro = !sb_rdonly(sb); 1052 } 1053 } 1054 shrink_dcache_sb(sb); 1055 1056 /* If we are reconfiguring to RDONLY and current sb is read/write, 1057 * make sure there are no files open for writing. 1058 */ 1059 if (remount_ro) { 1060 if (force) { 1061 sb_start_ro_state_change(sb); 1062 } else { 1063 retval = sb_prepare_remount_readonly(sb); 1064 if (retval) 1065 return retval; 1066 } 1067 } else if (remount_rw) { 1068 /* 1069 * Protect filesystem's reconfigure code from writes from 1070 * userspace until reconfigure finishes. 1071 */ 1072 sb_start_ro_state_change(sb); 1073 } 1074 1075 if (fc->ops->reconfigure) { 1076 retval = fc->ops->reconfigure(fc); 1077 if (retval) { 1078 if (!force) 1079 goto cancel_readonly; 1080 /* If forced remount, go ahead despite any errors */ 1081 WARN(1, "forced remount of a %s fs returned %i\n", 1082 sb->s_type->name, retval); 1083 } 1084 } 1085 1086 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 1087 (fc->sb_flags & fc->sb_flags_mask))); 1088 sb_end_ro_state_change(sb); 1089 1090 /* 1091 * Some filesystems modify their metadata via some other path than the 1092 * bdev buffer cache (eg. use a private mapping, or directories in 1093 * pagecache, etc). Also file data modifications go via their own 1094 * mappings. So If we try to mount readonly then copy the filesystem 1095 * from bdev, we could get stale data, so invalidate it to give a best 1096 * effort at coherency. 1097 */ 1098 if (remount_ro && sb->s_bdev) 1099 invalidate_bdev(sb->s_bdev); 1100 return 0; 1101 1102 cancel_readonly: 1103 sb_end_ro_state_change(sb); 1104 return retval; 1105 } 1106 1107 static void do_emergency_remount_callback(struct super_block *sb, void *unused) 1108 { 1109 if (sb->s_bdev && !sb_rdonly(sb)) { 1110 struct fs_context *fc; 1111 1112 fc = fs_context_for_reconfigure(sb->s_root, 1113 SB_RDONLY | SB_FORCE, SB_RDONLY); 1114 if (!IS_ERR(fc)) { 1115 if (parse_monolithic_mount_data(fc, NULL) == 0) 1116 (void)reconfigure_super(fc); 1117 put_fs_context(fc); 1118 } 1119 } 1120 } 1121 1122 static void do_emergency_remount(struct work_struct *work) 1123 { 1124 __iterate_supers(do_emergency_remount_callback, NULL, 1125 SUPER_ITER_EXCL | SUPER_ITER_REVERSE); 1126 kfree(work); 1127 printk("Emergency Remount complete\n"); 1128 } 1129 1130 void emergency_remount(void) 1131 { 1132 struct work_struct *work; 1133 1134 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1135 if (work) { 1136 INIT_WORK(work, do_emergency_remount); 1137 schedule_work(work); 1138 } 1139 } 1140 1141 static void do_thaw_all_callback(struct super_block *sb, void *unused) 1142 { 1143 if (IS_ENABLED(CONFIG_BLOCK)) 1144 while (sb->s_bdev && !bdev_thaw(sb->s_bdev)) 1145 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev); 1146 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE, NULL); 1147 return; 1148 } 1149 1150 static void do_thaw_all(struct work_struct *work) 1151 { 1152 __iterate_supers(do_thaw_all_callback, NULL, SUPER_ITER_EXCL); 1153 kfree(work); 1154 printk(KERN_WARNING "Emergency Thaw complete\n"); 1155 } 1156 1157 /** 1158 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1159 * 1160 * Used for emergency unfreeze of all filesystems via SysRq 1161 */ 1162 void emergency_thaw_all(void) 1163 { 1164 struct work_struct *work; 1165 1166 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1167 if (work) { 1168 INIT_WORK(work, do_thaw_all); 1169 schedule_work(work); 1170 } 1171 } 1172 1173 static inline bool get_active_super(struct super_block *sb) 1174 { 1175 bool active = false; 1176 1177 if (super_lock_excl(sb)) { 1178 active = atomic_inc_not_zero(&sb->s_active); 1179 super_unlock_excl(sb); 1180 } 1181 return active; 1182 } 1183 1184 static const char *filesystems_freeze_ptr = "filesystems_freeze"; 1185 1186 static void filesystems_freeze_callback(struct super_block *sb, void *unused) 1187 { 1188 if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super) 1189 return; 1190 1191 if (!get_active_super(sb)) 1192 return; 1193 1194 if (sb->s_op->freeze_super) 1195 sb->s_op->freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, 1196 filesystems_freeze_ptr); 1197 else 1198 freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, 1199 filesystems_freeze_ptr); 1200 1201 deactivate_super(sb); 1202 } 1203 1204 void filesystems_freeze(void) 1205 { 1206 __iterate_supers(filesystems_freeze_callback, NULL, 1207 SUPER_ITER_UNLOCKED | SUPER_ITER_REVERSE); 1208 } 1209 1210 static void filesystems_thaw_callback(struct super_block *sb, void *unused) 1211 { 1212 if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super) 1213 return; 1214 1215 if (!get_active_super(sb)) 1216 return; 1217 1218 if (sb->s_op->thaw_super) 1219 sb->s_op->thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, 1220 filesystems_freeze_ptr); 1221 else 1222 thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, 1223 filesystems_freeze_ptr); 1224 1225 deactivate_super(sb); 1226 } 1227 1228 void filesystems_thaw(void) 1229 { 1230 __iterate_supers(filesystems_thaw_callback, NULL, SUPER_ITER_UNLOCKED); 1231 } 1232 1233 static DEFINE_IDA(unnamed_dev_ida); 1234 1235 /** 1236 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1237 * @p: Pointer to a dev_t. 1238 * 1239 * Filesystems which don't use real block devices can call this function 1240 * to allocate a virtual block device. 1241 * 1242 * Context: Any context. Frequently called while holding sb_lock. 1243 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1244 * or -ENOMEM if memory allocation failed. 1245 */ 1246 int get_anon_bdev(dev_t *p) 1247 { 1248 int dev; 1249 1250 /* 1251 * Many userspace utilities consider an FSID of 0 invalid. 1252 * Always return at least 1 from get_anon_bdev. 1253 */ 1254 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1255 GFP_ATOMIC); 1256 if (dev == -ENOSPC) 1257 dev = -EMFILE; 1258 if (dev < 0) 1259 return dev; 1260 1261 *p = MKDEV(0, dev); 1262 return 0; 1263 } 1264 EXPORT_SYMBOL(get_anon_bdev); 1265 1266 void free_anon_bdev(dev_t dev) 1267 { 1268 ida_free(&unnamed_dev_ida, MINOR(dev)); 1269 } 1270 EXPORT_SYMBOL(free_anon_bdev); 1271 1272 int set_anon_super(struct super_block *s, void *data) 1273 { 1274 return get_anon_bdev(&s->s_dev); 1275 } 1276 EXPORT_SYMBOL(set_anon_super); 1277 1278 void kill_anon_super(struct super_block *sb) 1279 { 1280 dev_t dev = sb->s_dev; 1281 generic_shutdown_super(sb); 1282 kill_super_notify(sb); 1283 free_anon_bdev(dev); 1284 } 1285 EXPORT_SYMBOL(kill_anon_super); 1286 1287 void kill_litter_super(struct super_block *sb) 1288 { 1289 if (sb->s_root) 1290 d_genocide(sb->s_root); 1291 kill_anon_super(sb); 1292 } 1293 EXPORT_SYMBOL(kill_litter_super); 1294 1295 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1296 { 1297 return set_anon_super(sb, NULL); 1298 } 1299 EXPORT_SYMBOL(set_anon_super_fc); 1300 1301 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1302 { 1303 return sb->s_fs_info == fc->s_fs_info; 1304 } 1305 1306 static int test_single_super(struct super_block *s, struct fs_context *fc) 1307 { 1308 return 1; 1309 } 1310 1311 static int vfs_get_super(struct fs_context *fc, 1312 int (*test)(struct super_block *, struct fs_context *), 1313 int (*fill_super)(struct super_block *sb, 1314 struct fs_context *fc)) 1315 { 1316 struct super_block *sb; 1317 int err; 1318 1319 sb = sget_fc(fc, test, set_anon_super_fc); 1320 if (IS_ERR(sb)) 1321 return PTR_ERR(sb); 1322 1323 if (!sb->s_root) { 1324 err = fill_super(sb, fc); 1325 if (err) 1326 goto error; 1327 1328 sb->s_flags |= SB_ACTIVE; 1329 } 1330 1331 fc->root = dget(sb->s_root); 1332 return 0; 1333 1334 error: 1335 deactivate_locked_super(sb); 1336 return err; 1337 } 1338 1339 int get_tree_nodev(struct fs_context *fc, 1340 int (*fill_super)(struct super_block *sb, 1341 struct fs_context *fc)) 1342 { 1343 return vfs_get_super(fc, NULL, fill_super); 1344 } 1345 EXPORT_SYMBOL(get_tree_nodev); 1346 1347 int get_tree_single(struct fs_context *fc, 1348 int (*fill_super)(struct super_block *sb, 1349 struct fs_context *fc)) 1350 { 1351 return vfs_get_super(fc, test_single_super, fill_super); 1352 } 1353 EXPORT_SYMBOL(get_tree_single); 1354 1355 int get_tree_keyed(struct fs_context *fc, 1356 int (*fill_super)(struct super_block *sb, 1357 struct fs_context *fc), 1358 void *key) 1359 { 1360 fc->s_fs_info = key; 1361 return vfs_get_super(fc, test_keyed_super, fill_super); 1362 } 1363 EXPORT_SYMBOL(get_tree_keyed); 1364 1365 static int set_bdev_super(struct super_block *s, void *data) 1366 { 1367 s->s_dev = *(dev_t *)data; 1368 return 0; 1369 } 1370 1371 static int super_s_dev_set(struct super_block *s, struct fs_context *fc) 1372 { 1373 return set_bdev_super(s, fc->sget_key); 1374 } 1375 1376 static int super_s_dev_test(struct super_block *s, struct fs_context *fc) 1377 { 1378 return !(s->s_iflags & SB_I_RETIRED) && 1379 s->s_dev == *(dev_t *)fc->sget_key; 1380 } 1381 1382 /** 1383 * sget_dev - Find or create a superblock by device number 1384 * @fc: Filesystem context. 1385 * @dev: device number 1386 * 1387 * Find or create a superblock using the provided device number that 1388 * will be stored in fc->sget_key. 1389 * 1390 * If an extant superblock is matched, then that will be returned with 1391 * an elevated reference count that the caller must transfer or discard. 1392 * 1393 * If no match is made, a new superblock will be allocated and basic 1394 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will 1395 * be set). The superblock will be published and it will be returned in 1396 * a partially constructed state with SB_BORN and SB_ACTIVE as yet 1397 * unset. 1398 * 1399 * Return: an existing or newly created superblock on success, an error 1400 * pointer on failure. 1401 */ 1402 struct super_block *sget_dev(struct fs_context *fc, dev_t dev) 1403 { 1404 fc->sget_key = &dev; 1405 return sget_fc(fc, super_s_dev_test, super_s_dev_set); 1406 } 1407 EXPORT_SYMBOL(sget_dev); 1408 1409 #ifdef CONFIG_BLOCK 1410 /* 1411 * Lock the superblock that is holder of the bdev. Returns the superblock 1412 * pointer if we successfully locked the superblock and it is alive. Otherwise 1413 * we return NULL and just unlock bdev->bd_holder_lock. 1414 * 1415 * The function must be called with bdev->bd_holder_lock and releases it. 1416 */ 1417 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl) 1418 __releases(&bdev->bd_holder_lock) 1419 { 1420 struct super_block *sb = bdev->bd_holder; 1421 bool locked; 1422 1423 lockdep_assert_held(&bdev->bd_holder_lock); 1424 lockdep_assert_not_held(&sb->s_umount); 1425 lockdep_assert_not_held(&bdev->bd_disk->open_mutex); 1426 1427 /* Make sure sb doesn't go away from under us */ 1428 spin_lock(&sb_lock); 1429 sb->s_count++; 1430 spin_unlock(&sb_lock); 1431 1432 mutex_unlock(&bdev->bd_holder_lock); 1433 1434 locked = super_lock(sb, excl); 1435 1436 /* 1437 * If the superblock wasn't already SB_DYING then we hold 1438 * s_umount and can safely drop our temporary reference. 1439 */ 1440 put_super(sb); 1441 1442 if (!locked) 1443 return NULL; 1444 1445 if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) { 1446 super_unlock(sb, excl); 1447 return NULL; 1448 } 1449 1450 return sb; 1451 } 1452 1453 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise) 1454 { 1455 struct super_block *sb; 1456 1457 sb = bdev_super_lock(bdev, false); 1458 if (!sb) 1459 return; 1460 1461 if (sb->s_op->remove_bdev) { 1462 int ret; 1463 1464 ret = sb->s_op->remove_bdev(sb, bdev); 1465 if (!ret) { 1466 super_unlock_shared(sb); 1467 return; 1468 } 1469 /* Fallback to shutdown. */ 1470 } 1471 1472 if (!surprise) 1473 sync_filesystem(sb); 1474 shrink_dcache_sb(sb); 1475 evict_inodes(sb); 1476 if (sb->s_op->shutdown) 1477 sb->s_op->shutdown(sb); 1478 1479 super_unlock_shared(sb); 1480 } 1481 1482 static void fs_bdev_sync(struct block_device *bdev) 1483 { 1484 struct super_block *sb; 1485 1486 sb = bdev_super_lock(bdev, false); 1487 if (!sb) 1488 return; 1489 1490 sync_filesystem(sb); 1491 super_unlock_shared(sb); 1492 } 1493 1494 static struct super_block *get_bdev_super(struct block_device *bdev) 1495 { 1496 bool active = false; 1497 struct super_block *sb; 1498 1499 sb = bdev_super_lock(bdev, true); 1500 if (sb) { 1501 active = atomic_inc_not_zero(&sb->s_active); 1502 super_unlock_excl(sb); 1503 } 1504 if (!active) 1505 return NULL; 1506 return sb; 1507 } 1508 1509 /** 1510 * fs_bdev_freeze - freeze owning filesystem of block device 1511 * @bdev: block device 1512 * 1513 * Freeze the filesystem that owns this block device if it is still 1514 * active. 1515 * 1516 * A filesystem that owns multiple block devices may be frozen from each 1517 * block device and won't be unfrozen until all block devices are 1518 * unfrozen. Each block device can only freeze the filesystem once as we 1519 * nest freezes for block devices in the block layer. 1520 * 1521 * Return: If the freeze was successful zero is returned. If the freeze 1522 * failed a negative error code is returned. 1523 */ 1524 static int fs_bdev_freeze(struct block_device *bdev) 1525 { 1526 struct super_block *sb; 1527 int error = 0; 1528 1529 lockdep_assert_held(&bdev->bd_fsfreeze_mutex); 1530 1531 sb = get_bdev_super(bdev); 1532 if (!sb) 1533 return -EINVAL; 1534 1535 if (sb->s_op->freeze_super) 1536 error = sb->s_op->freeze_super(sb, 1537 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); 1538 else 1539 error = freeze_super(sb, 1540 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); 1541 if (!error) 1542 error = sync_blockdev(bdev); 1543 deactivate_super(sb); 1544 return error; 1545 } 1546 1547 /** 1548 * fs_bdev_thaw - thaw owning filesystem of block device 1549 * @bdev: block device 1550 * 1551 * Thaw the filesystem that owns this block device. 1552 * 1553 * A filesystem that owns multiple block devices may be frozen from each 1554 * block device and won't be unfrozen until all block devices are 1555 * unfrozen. Each block device can only freeze the filesystem once as we 1556 * nest freezes for block devices in the block layer. 1557 * 1558 * Return: If the thaw was successful zero is returned. If the thaw 1559 * failed a negative error code is returned. If this function 1560 * returns zero it doesn't mean that the filesystem is unfrozen 1561 * as it may have been frozen multiple times (kernel may hold a 1562 * freeze or might be frozen from other block devices). 1563 */ 1564 static int fs_bdev_thaw(struct block_device *bdev) 1565 { 1566 struct super_block *sb; 1567 int error; 1568 1569 lockdep_assert_held(&bdev->bd_fsfreeze_mutex); 1570 1571 /* 1572 * The block device may have been frozen before it was claimed by a 1573 * filesystem. Concurrently another process might try to mount that 1574 * frozen block device and has temporarily claimed the block device for 1575 * that purpose causing a concurrent fs_bdev_thaw() to end up here. The 1576 * mounter is already about to abort mounting because they still saw an 1577 * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return 1578 * NULL in that case. 1579 */ 1580 sb = get_bdev_super(bdev); 1581 if (!sb) 1582 return -EINVAL; 1583 1584 if (sb->s_op->thaw_super) 1585 error = sb->s_op->thaw_super(sb, 1586 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); 1587 else 1588 error = thaw_super(sb, 1589 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); 1590 deactivate_super(sb); 1591 return error; 1592 } 1593 1594 const struct blk_holder_ops fs_holder_ops = { 1595 .mark_dead = fs_bdev_mark_dead, 1596 .sync = fs_bdev_sync, 1597 .freeze = fs_bdev_freeze, 1598 .thaw = fs_bdev_thaw, 1599 }; 1600 EXPORT_SYMBOL_GPL(fs_holder_ops); 1601 1602 int setup_bdev_super(struct super_block *sb, int sb_flags, 1603 struct fs_context *fc) 1604 { 1605 blk_mode_t mode = sb_open_mode(sb_flags); 1606 struct file *bdev_file; 1607 struct block_device *bdev; 1608 1609 bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops); 1610 if (IS_ERR(bdev_file)) { 1611 if (fc) 1612 errorf(fc, "%s: Can't open blockdev", fc->source); 1613 return PTR_ERR(bdev_file); 1614 } 1615 bdev = file_bdev(bdev_file); 1616 1617 /* 1618 * This really should be in blkdev_get_by_dev, but right now can't due 1619 * to legacy issues that require us to allow opening a block device node 1620 * writable from userspace even for a read-only block device. 1621 */ 1622 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) { 1623 bdev_fput(bdev_file); 1624 return -EACCES; 1625 } 1626 1627 /* 1628 * It is enough to check bdev was not frozen before we set 1629 * s_bdev as freezing will wait until SB_BORN is set. 1630 */ 1631 if (atomic_read(&bdev->bd_fsfreeze_count) > 0) { 1632 if (fc) 1633 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1634 bdev_fput(bdev_file); 1635 return -EBUSY; 1636 } 1637 spin_lock(&sb_lock); 1638 sb->s_bdev_file = bdev_file; 1639 sb->s_bdev = bdev; 1640 sb->s_bdi = bdi_get(bdev->bd_disk->bdi); 1641 if (bdev_stable_writes(bdev)) 1642 sb->s_iflags |= SB_I_STABLE_WRITES; 1643 spin_unlock(&sb_lock); 1644 1645 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1646 shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name, 1647 sb->s_id); 1648 sb_set_blocksize(sb, block_size(bdev)); 1649 return 0; 1650 } 1651 EXPORT_SYMBOL_GPL(setup_bdev_super); 1652 1653 /** 1654 * get_tree_bdev_flags - Get a superblock based on a single block device 1655 * @fc: The filesystem context holding the parameters 1656 * @fill_super: Helper to initialise a new superblock 1657 * @flags: GET_TREE_BDEV_* flags 1658 */ 1659 int get_tree_bdev_flags(struct fs_context *fc, 1660 int (*fill_super)(struct super_block *sb, 1661 struct fs_context *fc), unsigned int flags) 1662 { 1663 struct super_block *s; 1664 int error = 0; 1665 dev_t dev; 1666 1667 if (!fc->source) 1668 return invalf(fc, "No source specified"); 1669 1670 error = lookup_bdev(fc->source, &dev); 1671 if (error) { 1672 if (!(flags & GET_TREE_BDEV_QUIET_LOOKUP)) 1673 errorf(fc, "%s: Can't lookup blockdev", fc->source); 1674 return error; 1675 } 1676 fc->sb_flags |= SB_NOSEC; 1677 s = sget_dev(fc, dev); 1678 if (IS_ERR(s)) 1679 return PTR_ERR(s); 1680 1681 if (s->s_root) { 1682 /* Don't summarily change the RO/RW state. */ 1683 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1684 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev); 1685 deactivate_locked_super(s); 1686 return -EBUSY; 1687 } 1688 } else { 1689 error = setup_bdev_super(s, fc->sb_flags, fc); 1690 if (!error) 1691 error = fill_super(s, fc); 1692 if (error) { 1693 deactivate_locked_super(s); 1694 return error; 1695 } 1696 s->s_flags |= SB_ACTIVE; 1697 } 1698 1699 BUG_ON(fc->root); 1700 fc->root = dget(s->s_root); 1701 return 0; 1702 } 1703 EXPORT_SYMBOL_GPL(get_tree_bdev_flags); 1704 1705 /** 1706 * get_tree_bdev - Get a superblock based on a single block device 1707 * @fc: The filesystem context holding the parameters 1708 * @fill_super: Helper to initialise a new superblock 1709 */ 1710 int get_tree_bdev(struct fs_context *fc, 1711 int (*fill_super)(struct super_block *, 1712 struct fs_context *)) 1713 { 1714 return get_tree_bdev_flags(fc, fill_super, 0); 1715 } 1716 EXPORT_SYMBOL(get_tree_bdev); 1717 1718 void kill_block_super(struct super_block *sb) 1719 { 1720 struct block_device *bdev = sb->s_bdev; 1721 1722 generic_shutdown_super(sb); 1723 if (bdev) { 1724 sync_blockdev(bdev); 1725 bdev_fput(sb->s_bdev_file); 1726 } 1727 } 1728 1729 EXPORT_SYMBOL(kill_block_super); 1730 #endif 1731 1732 /** 1733 * vfs_get_tree - Get the mountable root 1734 * @fc: The superblock configuration context. 1735 * 1736 * The filesystem is invoked to get or create a superblock which can then later 1737 * be used for mounting. The filesystem places a pointer to the root to be 1738 * used for mounting in @fc->root. 1739 */ 1740 int vfs_get_tree(struct fs_context *fc) 1741 { 1742 struct super_block *sb; 1743 int error; 1744 1745 if (fc->root) 1746 return -EBUSY; 1747 1748 /* Get the mountable root in fc->root, with a ref on the root and a ref 1749 * on the superblock. 1750 */ 1751 error = fc->ops->get_tree(fc); 1752 if (error < 0) 1753 return error; 1754 1755 if (!fc->root) { 1756 pr_err("Filesystem %s get_tree() didn't set fc->root, returned %i\n", 1757 fc->fs_type->name, error); 1758 /* We don't know what the locking state of the superblock is - 1759 * if there is a superblock. 1760 */ 1761 BUG(); 1762 } 1763 1764 sb = fc->root->d_sb; 1765 WARN_ON(!sb->s_bdi); 1766 1767 /* 1768 * super_wake() contains a memory barrier which also care of 1769 * ordering for super_cache_count(). We place it before setting 1770 * SB_BORN as the data dependency between the two functions is 1771 * the superblock structure contents that we just set up, not 1772 * the SB_BORN flag. 1773 */ 1774 super_wake(sb, SB_BORN); 1775 1776 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1777 if (unlikely(error)) { 1778 fc_drop_locked(fc); 1779 return error; 1780 } 1781 1782 /* 1783 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1784 * but s_maxbytes was an unsigned long long for many releases. Throw 1785 * this warning for a little while to try and catch filesystems that 1786 * violate this rule. 1787 */ 1788 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1789 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1790 1791 return 0; 1792 } 1793 EXPORT_SYMBOL(vfs_get_tree); 1794 1795 /* 1796 * Setup private BDI for given superblock. It gets automatically cleaned up 1797 * in generic_shutdown_super(). 1798 */ 1799 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1800 { 1801 struct backing_dev_info *bdi; 1802 int err; 1803 va_list args; 1804 1805 bdi = bdi_alloc(NUMA_NO_NODE); 1806 if (!bdi) 1807 return -ENOMEM; 1808 1809 va_start(args, fmt); 1810 err = bdi_register_va(bdi, fmt, args); 1811 va_end(args); 1812 if (err) { 1813 bdi_put(bdi); 1814 return err; 1815 } 1816 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1817 sb->s_bdi = bdi; 1818 sb->s_iflags |= SB_I_PERSB_BDI; 1819 1820 return 0; 1821 } 1822 EXPORT_SYMBOL(super_setup_bdi_name); 1823 1824 /* 1825 * Setup private BDI for given superblock. I gets automatically cleaned up 1826 * in generic_shutdown_super(). 1827 */ 1828 int super_setup_bdi(struct super_block *sb) 1829 { 1830 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1831 1832 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1833 atomic_long_inc_return(&bdi_seq)); 1834 } 1835 EXPORT_SYMBOL(super_setup_bdi); 1836 1837 /** 1838 * sb_wait_write - wait until all writers to given file system finish 1839 * @sb: the super for which we wait 1840 * @level: type of writers we wait for (normal vs page fault) 1841 * 1842 * This function waits until there are no writers of given type to given file 1843 * system. 1844 */ 1845 static void sb_wait_write(struct super_block *sb, int level) 1846 { 1847 percpu_down_write(sb->s_writers.rw_sem + level-1); 1848 } 1849 1850 /* 1851 * We are going to return to userspace and forget about these locks, the 1852 * ownership goes to the caller of thaw_super() which does unlock(). 1853 */ 1854 static void lockdep_sb_freeze_release(struct super_block *sb) 1855 { 1856 int level; 1857 1858 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1859 percpu_rwsem_release(sb->s_writers.rw_sem + level, _THIS_IP_); 1860 } 1861 1862 /* 1863 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1864 */ 1865 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1866 { 1867 int level; 1868 1869 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1870 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1871 } 1872 1873 static void sb_freeze_unlock(struct super_block *sb, int level) 1874 { 1875 for (level--; level >= 0; level--) 1876 percpu_up_write(sb->s_writers.rw_sem + level); 1877 } 1878 1879 static int wait_for_partially_frozen(struct super_block *sb) 1880 { 1881 int ret = 0; 1882 1883 do { 1884 unsigned short old = sb->s_writers.frozen; 1885 1886 up_write(&sb->s_umount); 1887 ret = wait_var_event_killable(&sb->s_writers.frozen, 1888 sb->s_writers.frozen != old); 1889 down_write(&sb->s_umount); 1890 } while (ret == 0 && 1891 sb->s_writers.frozen != SB_UNFROZEN && 1892 sb->s_writers.frozen != SB_FREEZE_COMPLETE); 1893 1894 return ret; 1895 } 1896 1897 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE) 1898 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST | FREEZE_EXCL) 1899 1900 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who) 1901 { 1902 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1903 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1904 1905 if (who & FREEZE_HOLDER_KERNEL) 1906 ++sb->s_writers.freeze_kcount; 1907 if (who & FREEZE_HOLDER_USERSPACE) 1908 ++sb->s_writers.freeze_ucount; 1909 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; 1910 } 1911 1912 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who) 1913 { 1914 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1915 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1916 1917 if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount) 1918 --sb->s_writers.freeze_kcount; 1919 if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount) 1920 --sb->s_writers.freeze_ucount; 1921 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; 1922 } 1923 1924 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who, 1925 const void *freeze_owner) 1926 { 1927 lockdep_assert_held(&sb->s_umount); 1928 1929 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1930 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1931 1932 if (who & FREEZE_EXCL) { 1933 if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL))) 1934 return false; 1935 if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL))) 1936 return false; 1937 if (WARN_ON_ONCE(!freeze_owner)) 1938 return false; 1939 /* This freeze already has a specific owner. */ 1940 if (sb->s_writers.freeze_owner) 1941 return false; 1942 /* 1943 * This is already frozen multiple times so we're just 1944 * going to take a reference count and mark the freeze as 1945 * being owned by the caller. 1946 */ 1947 if (sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount) 1948 sb->s_writers.freeze_owner = freeze_owner; 1949 return true; 1950 } 1951 1952 if (who & FREEZE_HOLDER_KERNEL) 1953 return (who & FREEZE_MAY_NEST) || 1954 sb->s_writers.freeze_kcount == 0; 1955 if (who & FREEZE_HOLDER_USERSPACE) 1956 return (who & FREEZE_MAY_NEST) || 1957 sb->s_writers.freeze_ucount == 0; 1958 return false; 1959 } 1960 1961 static inline bool may_unfreeze(struct super_block *sb, enum freeze_holder who, 1962 const void *freeze_owner) 1963 { 1964 lockdep_assert_held(&sb->s_umount); 1965 1966 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1967 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1968 1969 if (who & FREEZE_EXCL) { 1970 if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL))) 1971 return false; 1972 if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL))) 1973 return false; 1974 if (WARN_ON_ONCE(!freeze_owner)) 1975 return false; 1976 if (WARN_ON_ONCE(sb->s_writers.freeze_kcount == 0)) 1977 return false; 1978 /* This isn't exclusively frozen. */ 1979 if (!sb->s_writers.freeze_owner) 1980 return false; 1981 /* This isn't exclusively frozen by us. */ 1982 if (sb->s_writers.freeze_owner != freeze_owner) 1983 return false; 1984 /* 1985 * This is still frozen multiple times so we're just 1986 * going to drop our reference count and undo our 1987 * exclusive freeze. 1988 */ 1989 if ((sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount) > 1) 1990 sb->s_writers.freeze_owner = NULL; 1991 return true; 1992 } 1993 1994 if (who & FREEZE_HOLDER_KERNEL) { 1995 /* 1996 * Someone's trying to steal the reference belonging to 1997 * @sb->s_writers.freeze_owner. 1998 */ 1999 if (sb->s_writers.freeze_kcount == 1 && 2000 sb->s_writers.freeze_owner) 2001 return false; 2002 return sb->s_writers.freeze_kcount > 0; 2003 } 2004 2005 if (who & FREEZE_HOLDER_USERSPACE) 2006 return sb->s_writers.freeze_ucount > 0; 2007 2008 return false; 2009 } 2010 2011 /** 2012 * freeze_super - lock the filesystem and force it into a consistent state 2013 * @sb: the super to lock 2014 * @who: context that wants to freeze 2015 * @freeze_owner: owner of the freeze 2016 * 2017 * Syncs the super to make sure the filesystem is consistent and calls the fs's 2018 * freeze_fs. Subsequent calls to this without first thawing the fs may return 2019 * -EBUSY. 2020 * 2021 * @who should be: 2022 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs; 2023 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs. 2024 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed. 2025 * 2026 * The @who argument distinguishes between the kernel and userspace trying to 2027 * freeze the filesystem. Although there cannot be multiple kernel freezes or 2028 * multiple userspace freezes in effect at any given time, the kernel and 2029 * userspace can both hold a filesystem frozen. The filesystem remains frozen 2030 * until there are no kernel or userspace freezes in effect. 2031 * 2032 * A filesystem may hold multiple devices and thus a filesystems may be 2033 * frozen through the block layer via multiple block devices. In this 2034 * case the request is marked as being allowed to nest by passing 2035 * FREEZE_MAY_NEST. The filesystem remains frozen until all block 2036 * devices are unfrozen. If multiple freezes are attempted without 2037 * FREEZE_MAY_NEST -EBUSY will be returned. 2038 * 2039 * During this function, sb->s_writers.frozen goes through these values: 2040 * 2041 * SB_UNFROZEN: File system is normal, all writes progress as usual. 2042 * 2043 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 2044 * writes should be blocked, though page faults are still allowed. We wait for 2045 * all writes to complete and then proceed to the next stage. 2046 * 2047 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 2048 * but internal fs threads can still modify the filesystem (although they 2049 * should not dirty new pages or inodes), writeback can run etc. After waiting 2050 * for all running page faults we sync the filesystem which will clean all 2051 * dirty pages and inodes (no new dirty pages or inodes can be created when 2052 * sync is running). 2053 * 2054 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 2055 * modification are blocked (e.g. XFS preallocation truncation on inode 2056 * reclaim). This is usually implemented by blocking new transactions for 2057 * filesystems that have them and need this additional guard. After all 2058 * internal writers are finished we call ->freeze_fs() to finish filesystem 2059 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 2060 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 2061 * 2062 * sb->s_writers.frozen is protected by sb->s_umount. 2063 * 2064 * Return: If the freeze was successful zero is returned. If the freeze 2065 * failed a negative error code is returned. 2066 */ 2067 int freeze_super(struct super_block *sb, enum freeze_holder who, const void *freeze_owner) 2068 { 2069 int ret; 2070 2071 if (!super_lock_excl(sb)) { 2072 WARN_ON_ONCE("Dying superblock while freezing!"); 2073 return -EINVAL; 2074 } 2075 atomic_inc(&sb->s_active); 2076 2077 retry: 2078 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { 2079 if (may_freeze(sb, who, freeze_owner)) 2080 ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1); 2081 else 2082 ret = -EBUSY; 2083 /* All freezers share a single active reference. */ 2084 deactivate_locked_super(sb); 2085 return ret; 2086 } 2087 2088 if (sb->s_writers.frozen != SB_UNFROZEN) { 2089 ret = wait_for_partially_frozen(sb); 2090 if (ret) { 2091 deactivate_locked_super(sb); 2092 return ret; 2093 } 2094 2095 goto retry; 2096 } 2097 2098 if (sb_rdonly(sb)) { 2099 /* Nothing to do really... */ 2100 WARN_ON_ONCE(freeze_inc(sb, who) > 1); 2101 sb->s_writers.freeze_owner = freeze_owner; 2102 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2103 wake_up_var(&sb->s_writers.frozen); 2104 super_unlock_excl(sb); 2105 return 0; 2106 } 2107 2108 sb->s_writers.frozen = SB_FREEZE_WRITE; 2109 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 2110 super_unlock_excl(sb); 2111 sb_wait_write(sb, SB_FREEZE_WRITE); 2112 __super_lock_excl(sb); 2113 2114 /* Now we go and block page faults... */ 2115 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 2116 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 2117 2118 /* All writers are done so after syncing there won't be dirty data */ 2119 ret = sync_filesystem(sb); 2120 if (ret) { 2121 sb->s_writers.frozen = SB_UNFROZEN; 2122 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 2123 wake_up_var(&sb->s_writers.frozen); 2124 deactivate_locked_super(sb); 2125 return ret; 2126 } 2127 2128 /* Now wait for internal filesystem counter */ 2129 sb->s_writers.frozen = SB_FREEZE_FS; 2130 sb_wait_write(sb, SB_FREEZE_FS); 2131 2132 if (sb->s_op->freeze_fs) { 2133 ret = sb->s_op->freeze_fs(sb); 2134 if (ret) { 2135 printk(KERN_ERR 2136 "VFS:Filesystem freeze failed\n"); 2137 sb->s_writers.frozen = SB_UNFROZEN; 2138 sb_freeze_unlock(sb, SB_FREEZE_FS); 2139 wake_up_var(&sb->s_writers.frozen); 2140 deactivate_locked_super(sb); 2141 return ret; 2142 } 2143 } 2144 /* 2145 * For debugging purposes so that fs can warn if it sees write activity 2146 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 2147 */ 2148 WARN_ON_ONCE(freeze_inc(sb, who) > 1); 2149 sb->s_writers.freeze_owner = freeze_owner; 2150 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2151 wake_up_var(&sb->s_writers.frozen); 2152 lockdep_sb_freeze_release(sb); 2153 super_unlock_excl(sb); 2154 return 0; 2155 } 2156 EXPORT_SYMBOL(freeze_super); 2157 2158 /* 2159 * Undoes the effect of a freeze_super_locked call. If the filesystem is 2160 * frozen both by userspace and the kernel, a thaw call from either source 2161 * removes that state without releasing the other state or unlocking the 2162 * filesystem. 2163 */ 2164 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who, 2165 const void *freeze_owner) 2166 { 2167 int error = -EINVAL; 2168 2169 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) 2170 goto out_unlock; 2171 2172 if (!may_unfreeze(sb, who, freeze_owner)) 2173 goto out_unlock; 2174 2175 /* 2176 * All freezers share a single active reference. 2177 * So just unlock in case there are any left. 2178 */ 2179 if (freeze_dec(sb, who)) 2180 goto out_unlock; 2181 2182 if (sb_rdonly(sb)) { 2183 sb->s_writers.frozen = SB_UNFROZEN; 2184 sb->s_writers.freeze_owner = NULL; 2185 wake_up_var(&sb->s_writers.frozen); 2186 goto out_deactivate; 2187 } 2188 2189 lockdep_sb_freeze_acquire(sb); 2190 2191 if (sb->s_op->unfreeze_fs) { 2192 error = sb->s_op->unfreeze_fs(sb); 2193 if (error) { 2194 pr_err("VFS: Filesystem thaw failed\n"); 2195 freeze_inc(sb, who); 2196 lockdep_sb_freeze_release(sb); 2197 goto out_unlock; 2198 } 2199 } 2200 2201 sb->s_writers.frozen = SB_UNFROZEN; 2202 sb->s_writers.freeze_owner = NULL; 2203 wake_up_var(&sb->s_writers.frozen); 2204 sb_freeze_unlock(sb, SB_FREEZE_FS); 2205 out_deactivate: 2206 deactivate_locked_super(sb); 2207 return 0; 2208 2209 out_unlock: 2210 super_unlock_excl(sb); 2211 return error; 2212 } 2213 2214 /** 2215 * thaw_super -- unlock filesystem 2216 * @sb: the super to thaw 2217 * @who: context that wants to freeze 2218 * @freeze_owner: owner of the freeze 2219 * 2220 * Unlocks the filesystem and marks it writeable again after freeze_super() 2221 * if there are no remaining freezes on the filesystem. 2222 * 2223 * @who should be: 2224 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs; 2225 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs. 2226 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed 2227 * 2228 * A filesystem may hold multiple devices and thus a filesystems may 2229 * have been frozen through the block layer via multiple block devices. 2230 * The filesystem remains frozen until all block devices are unfrozen. 2231 */ 2232 int thaw_super(struct super_block *sb, enum freeze_holder who, 2233 const void *freeze_owner) 2234 { 2235 if (!super_lock_excl(sb)) { 2236 WARN_ON_ONCE("Dying superblock while thawing!"); 2237 return -EINVAL; 2238 } 2239 return thaw_super_locked(sb, who, freeze_owner); 2240 } 2241 EXPORT_SYMBOL(thaw_super); 2242 2243 /* 2244 * Create workqueue for deferred direct IO completions. We allocate the 2245 * workqueue when it's first needed. This avoids creating workqueue for 2246 * filesystems that don't need it and also allows us to create the workqueue 2247 * late enough so the we can include s_id in the name of the workqueue. 2248 */ 2249 int sb_init_dio_done_wq(struct super_block *sb) 2250 { 2251 struct workqueue_struct *old; 2252 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 2253 WQ_MEM_RECLAIM | WQ_PERCPU, 2254 0, 2255 sb->s_id); 2256 if (!wq) 2257 return -ENOMEM; 2258 2259 old = NULL; 2260 /* 2261 * This has to be atomic as more DIOs can race to create the workqueue 2262 */ 2263 if (!try_cmpxchg(&sb->s_dio_done_wq, &old, wq)) { 2264 /* Someone created workqueue before us? Free ours... */ 2265 destroy_workqueue(wq); 2266 } 2267 return 0; 2268 } 2269 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq); 2270