1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/smp_lock.h> 27 #include <linux/acct.h> 28 #include <linux/blkdev.h> 29 #include <linux/quotaops.h> 30 #include <linux/namei.h> 31 #include <linux/mount.h> 32 #include <linux/security.h> 33 #include <linux/syscalls.h> 34 #include <linux/vfs.h> 35 #include <linux/writeback.h> /* for the emergency remount stuff */ 36 #include <linux/idr.h> 37 #include <linux/kobject.h> 38 #include <linux/mutex.h> 39 #include <linux/file.h> 40 #include <asm/uaccess.h> 41 #include "internal.h" 42 43 44 LIST_HEAD(super_blocks); 45 DEFINE_SPINLOCK(sb_lock); 46 47 /** 48 * alloc_super - create new superblock 49 * @type: filesystem type superblock should belong to 50 * 51 * Allocates and initializes a new &struct super_block. alloc_super() 52 * returns a pointer new superblock or %NULL if allocation had failed. 53 */ 54 static struct super_block *alloc_super(struct file_system_type *type) 55 { 56 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 57 static struct super_operations default_op; 58 59 if (s) { 60 if (security_sb_alloc(s)) { 61 kfree(s); 62 s = NULL; 63 goto out; 64 } 65 INIT_LIST_HEAD(&s->s_dirty); 66 INIT_LIST_HEAD(&s->s_io); 67 INIT_LIST_HEAD(&s->s_more_io); 68 INIT_LIST_HEAD(&s->s_files); 69 INIT_LIST_HEAD(&s->s_instances); 70 INIT_HLIST_HEAD(&s->s_anon); 71 INIT_LIST_HEAD(&s->s_inodes); 72 INIT_LIST_HEAD(&s->s_dentry_lru); 73 init_rwsem(&s->s_umount); 74 mutex_init(&s->s_lock); 75 lockdep_set_class(&s->s_umount, &type->s_umount_key); 76 /* 77 * The locking rules for s_lock are up to the 78 * filesystem. For example ext3fs has different 79 * lock ordering than usbfs: 80 */ 81 lockdep_set_class(&s->s_lock, &type->s_lock_key); 82 /* 83 * sget() can have s_umount recursion. 84 * 85 * When it cannot find a suitable sb, it allocates a new 86 * one (this one), and tries again to find a suitable old 87 * one. 88 * 89 * In case that succeeds, it will acquire the s_umount 90 * lock of the old one. Since these are clearly distrinct 91 * locks, and this object isn't exposed yet, there's no 92 * risk of deadlocks. 93 * 94 * Annotate this by putting this lock in a different 95 * subclass. 96 */ 97 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 98 s->s_count = S_BIAS; 99 atomic_set(&s->s_active, 1); 100 mutex_init(&s->s_vfs_rename_mutex); 101 mutex_init(&s->s_dquot.dqio_mutex); 102 mutex_init(&s->s_dquot.dqonoff_mutex); 103 init_rwsem(&s->s_dquot.dqptr_sem); 104 init_waitqueue_head(&s->s_wait_unfrozen); 105 s->s_maxbytes = MAX_NON_LFS; 106 s->dq_op = sb_dquot_ops; 107 s->s_qcop = sb_quotactl_ops; 108 s->s_op = &default_op; 109 s->s_time_gran = 1000000000; 110 } 111 out: 112 return s; 113 } 114 115 /** 116 * destroy_super - frees a superblock 117 * @s: superblock to free 118 * 119 * Frees a superblock. 120 */ 121 static inline void destroy_super(struct super_block *s) 122 { 123 security_sb_free(s); 124 kfree(s->s_subtype); 125 kfree(s->s_options); 126 kfree(s); 127 } 128 129 /* Superblock refcounting */ 130 131 /* 132 * Drop a superblock's refcount. Returns non-zero if the superblock was 133 * destroyed. The caller must hold sb_lock. 134 */ 135 static int __put_super(struct super_block *sb) 136 { 137 int ret = 0; 138 139 if (!--sb->s_count) { 140 destroy_super(sb); 141 ret = 1; 142 } 143 return ret; 144 } 145 146 /* 147 * Drop a superblock's refcount. 148 * Returns non-zero if the superblock is about to be destroyed and 149 * at least is already removed from super_blocks list, so if we are 150 * making a loop through super blocks then we need to restart. 151 * The caller must hold sb_lock. 152 */ 153 int __put_super_and_need_restart(struct super_block *sb) 154 { 155 /* check for race with generic_shutdown_super() */ 156 if (list_empty(&sb->s_list)) { 157 /* super block is removed, need to restart... */ 158 __put_super(sb); 159 return 1; 160 } 161 /* can't be the last, since s_list is still in use */ 162 sb->s_count--; 163 BUG_ON(sb->s_count == 0); 164 return 0; 165 } 166 167 /** 168 * put_super - drop a temporary reference to superblock 169 * @sb: superblock in question 170 * 171 * Drops a temporary reference, frees superblock if there's no 172 * references left. 173 */ 174 static void put_super(struct super_block *sb) 175 { 176 spin_lock(&sb_lock); 177 __put_super(sb); 178 spin_unlock(&sb_lock); 179 } 180 181 182 /** 183 * deactivate_super - drop an active reference to superblock 184 * @s: superblock to deactivate 185 * 186 * Drops an active reference to superblock, acquiring a temprory one if 187 * there is no active references left. In that case we lock superblock, 188 * tell fs driver to shut it down and drop the temporary reference we 189 * had just acquired. 190 */ 191 void deactivate_super(struct super_block *s) 192 { 193 struct file_system_type *fs = s->s_type; 194 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) { 195 s->s_count -= S_BIAS-1; 196 spin_unlock(&sb_lock); 197 vfs_dq_off(s, 0); 198 down_write(&s->s_umount); 199 fs->kill_sb(s); 200 put_filesystem(fs); 201 put_super(s); 202 } 203 } 204 205 EXPORT_SYMBOL(deactivate_super); 206 207 /** 208 * deactivate_locked_super - drop an active reference to superblock 209 * @s: superblock to deactivate 210 * 211 * Equivalent of up_write(&s->s_umount); deactivate_super(s);, except that 212 * it does not unlock it until it's all over. As the result, it's safe to 213 * use to dispose of new superblock on ->get_sb() failure exits - nobody 214 * will see the sucker until it's all over. Equivalent using up_write + 215 * deactivate_super is safe for that purpose only if superblock is either 216 * safe to use or has NULL ->s_root when we unlock. 217 */ 218 void deactivate_locked_super(struct super_block *s) 219 { 220 struct file_system_type *fs = s->s_type; 221 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) { 222 s->s_count -= S_BIAS-1; 223 spin_unlock(&sb_lock); 224 vfs_dq_off(s, 0); 225 fs->kill_sb(s); 226 put_filesystem(fs); 227 put_super(s); 228 } else { 229 up_write(&s->s_umount); 230 } 231 } 232 233 EXPORT_SYMBOL(deactivate_locked_super); 234 235 /** 236 * grab_super - acquire an active reference 237 * @s: reference we are trying to make active 238 * 239 * Tries to acquire an active reference. grab_super() is used when we 240 * had just found a superblock in super_blocks or fs_type->fs_supers 241 * and want to turn it into a full-blown active reference. grab_super() 242 * is called with sb_lock held and drops it. Returns 1 in case of 243 * success, 0 if we had failed (superblock contents was already dead or 244 * dying when grab_super() had been called). 245 */ 246 static int grab_super(struct super_block *s) __releases(sb_lock) 247 { 248 s->s_count++; 249 spin_unlock(&sb_lock); 250 down_write(&s->s_umount); 251 if (s->s_root) { 252 spin_lock(&sb_lock); 253 if (s->s_count > S_BIAS) { 254 atomic_inc(&s->s_active); 255 s->s_count--; 256 spin_unlock(&sb_lock); 257 return 1; 258 } 259 spin_unlock(&sb_lock); 260 } 261 up_write(&s->s_umount); 262 put_super(s); 263 yield(); 264 return 0; 265 } 266 267 /* 268 * Superblock locking. We really ought to get rid of these two. 269 */ 270 void lock_super(struct super_block * sb) 271 { 272 get_fs_excl(); 273 mutex_lock(&sb->s_lock); 274 } 275 276 void unlock_super(struct super_block * sb) 277 { 278 put_fs_excl(); 279 mutex_unlock(&sb->s_lock); 280 } 281 282 EXPORT_SYMBOL(lock_super); 283 EXPORT_SYMBOL(unlock_super); 284 285 /** 286 * generic_shutdown_super - common helper for ->kill_sb() 287 * @sb: superblock to kill 288 * 289 * generic_shutdown_super() does all fs-independent work on superblock 290 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 291 * that need destruction out of superblock, call generic_shutdown_super() 292 * and release aforementioned objects. Note: dentries and inodes _are_ 293 * taken care of and do not need specific handling. 294 * 295 * Upon calling this function, the filesystem may no longer alter or 296 * rearrange the set of dentries belonging to this super_block, nor may it 297 * change the attachments of dentries to inodes. 298 */ 299 void generic_shutdown_super(struct super_block *sb) 300 { 301 const struct super_operations *sop = sb->s_op; 302 303 304 if (sb->s_root) { 305 shrink_dcache_for_umount(sb); 306 sync_filesystem(sb); 307 get_fs_excl(); 308 sb->s_flags &= ~MS_ACTIVE; 309 310 /* bad name - it should be evict_inodes() */ 311 invalidate_inodes(sb); 312 313 if (sop->put_super) 314 sop->put_super(sb); 315 316 /* Forget any remaining inodes */ 317 if (invalidate_inodes(sb)) { 318 printk("VFS: Busy inodes after unmount of %s. " 319 "Self-destruct in 5 seconds. Have a nice day...\n", 320 sb->s_id); 321 } 322 put_fs_excl(); 323 } 324 spin_lock(&sb_lock); 325 /* should be initialized for __put_super_and_need_restart() */ 326 list_del_init(&sb->s_list); 327 list_del(&sb->s_instances); 328 spin_unlock(&sb_lock); 329 up_write(&sb->s_umount); 330 } 331 332 EXPORT_SYMBOL(generic_shutdown_super); 333 334 /** 335 * sget - find or create a superblock 336 * @type: filesystem type superblock should belong to 337 * @test: comparison callback 338 * @set: setup callback 339 * @data: argument to each of them 340 */ 341 struct super_block *sget(struct file_system_type *type, 342 int (*test)(struct super_block *,void *), 343 int (*set)(struct super_block *,void *), 344 void *data) 345 { 346 struct super_block *s = NULL; 347 struct super_block *old; 348 int err; 349 350 retry: 351 spin_lock(&sb_lock); 352 if (test) { 353 list_for_each_entry(old, &type->fs_supers, s_instances) { 354 if (!test(old, data)) 355 continue; 356 if (!grab_super(old)) 357 goto retry; 358 if (s) { 359 up_write(&s->s_umount); 360 destroy_super(s); 361 } 362 return old; 363 } 364 } 365 if (!s) { 366 spin_unlock(&sb_lock); 367 s = alloc_super(type); 368 if (!s) 369 return ERR_PTR(-ENOMEM); 370 goto retry; 371 } 372 373 err = set(s, data); 374 if (err) { 375 spin_unlock(&sb_lock); 376 up_write(&s->s_umount); 377 destroy_super(s); 378 return ERR_PTR(err); 379 } 380 s->s_type = type; 381 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 382 list_add_tail(&s->s_list, &super_blocks); 383 list_add(&s->s_instances, &type->fs_supers); 384 spin_unlock(&sb_lock); 385 get_filesystem(type); 386 return s; 387 } 388 389 EXPORT_SYMBOL(sget); 390 391 void drop_super(struct super_block *sb) 392 { 393 up_read(&sb->s_umount); 394 put_super(sb); 395 } 396 397 EXPORT_SYMBOL(drop_super); 398 399 /** 400 * sync_supers - helper for periodic superblock writeback 401 * 402 * Call the write_super method if present on all dirty superblocks in 403 * the system. This is for the periodic writeback used by most older 404 * filesystems. For data integrity superblock writeback use 405 * sync_filesystems() instead. 406 * 407 * Note: check the dirty flag before waiting, so we don't 408 * hold up the sync while mounting a device. (The newly 409 * mounted device won't need syncing.) 410 */ 411 void sync_supers(void) 412 { 413 struct super_block *sb; 414 415 spin_lock(&sb_lock); 416 restart: 417 list_for_each_entry(sb, &super_blocks, s_list) { 418 if (sb->s_op->write_super && sb->s_dirt) { 419 sb->s_count++; 420 spin_unlock(&sb_lock); 421 422 down_read(&sb->s_umount); 423 if (sb->s_root && sb->s_dirt) 424 sb->s_op->write_super(sb); 425 up_read(&sb->s_umount); 426 427 spin_lock(&sb_lock); 428 if (__put_super_and_need_restart(sb)) 429 goto restart; 430 } 431 } 432 spin_unlock(&sb_lock); 433 } 434 435 /** 436 * get_super - get the superblock of a device 437 * @bdev: device to get the superblock for 438 * 439 * Scans the superblock list and finds the superblock of the file system 440 * mounted on the device given. %NULL is returned if no match is found. 441 */ 442 443 struct super_block * get_super(struct block_device *bdev) 444 { 445 struct super_block *sb; 446 447 if (!bdev) 448 return NULL; 449 450 spin_lock(&sb_lock); 451 rescan: 452 list_for_each_entry(sb, &super_blocks, s_list) { 453 if (sb->s_bdev == bdev) { 454 sb->s_count++; 455 spin_unlock(&sb_lock); 456 down_read(&sb->s_umount); 457 if (sb->s_root) 458 return sb; 459 up_read(&sb->s_umount); 460 /* restart only when sb is no longer on the list */ 461 spin_lock(&sb_lock); 462 if (__put_super_and_need_restart(sb)) 463 goto rescan; 464 } 465 } 466 spin_unlock(&sb_lock); 467 return NULL; 468 } 469 470 EXPORT_SYMBOL(get_super); 471 472 struct super_block * user_get_super(dev_t dev) 473 { 474 struct super_block *sb; 475 476 spin_lock(&sb_lock); 477 rescan: 478 list_for_each_entry(sb, &super_blocks, s_list) { 479 if (sb->s_dev == dev) { 480 sb->s_count++; 481 spin_unlock(&sb_lock); 482 down_read(&sb->s_umount); 483 if (sb->s_root) 484 return sb; 485 up_read(&sb->s_umount); 486 /* restart only when sb is no longer on the list */ 487 spin_lock(&sb_lock); 488 if (__put_super_and_need_restart(sb)) 489 goto rescan; 490 } 491 } 492 spin_unlock(&sb_lock); 493 return NULL; 494 } 495 496 SYSCALL_DEFINE2(ustat, unsigned, dev, struct ustat __user *, ubuf) 497 { 498 struct super_block *s; 499 struct ustat tmp; 500 struct kstatfs sbuf; 501 int err = -EINVAL; 502 503 s = user_get_super(new_decode_dev(dev)); 504 if (s == NULL) 505 goto out; 506 err = vfs_statfs(s->s_root, &sbuf); 507 drop_super(s); 508 if (err) 509 goto out; 510 511 memset(&tmp,0,sizeof(struct ustat)); 512 tmp.f_tfree = sbuf.f_bfree; 513 tmp.f_tinode = sbuf.f_ffree; 514 515 err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0; 516 out: 517 return err; 518 } 519 520 /** 521 * do_remount_sb - asks filesystem to change mount options. 522 * @sb: superblock in question 523 * @flags: numeric part of options 524 * @data: the rest of options 525 * @force: whether or not to force the change 526 * 527 * Alters the mount options of a mounted file system. 528 */ 529 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 530 { 531 int retval; 532 int remount_rw; 533 534 #ifdef CONFIG_BLOCK 535 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 536 return -EACCES; 537 #endif 538 if (flags & MS_RDONLY) 539 acct_auto_close(sb); 540 shrink_dcache_sb(sb); 541 sync_filesystem(sb); 542 543 /* If we are remounting RDONLY and current sb is read/write, 544 make sure there are no rw files opened */ 545 if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) { 546 if (force) 547 mark_files_ro(sb); 548 else if (!fs_may_remount_ro(sb)) 549 return -EBUSY; 550 retval = vfs_dq_off(sb, 1); 551 if (retval < 0 && retval != -ENOSYS) 552 return -EBUSY; 553 } 554 remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY); 555 556 if (sb->s_op->remount_fs) { 557 retval = sb->s_op->remount_fs(sb, &flags, data); 558 if (retval) 559 return retval; 560 } 561 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 562 if (remount_rw) 563 vfs_dq_quota_on_remount(sb); 564 return 0; 565 } 566 567 static void do_emergency_remount(struct work_struct *work) 568 { 569 struct super_block *sb; 570 571 spin_lock(&sb_lock); 572 list_for_each_entry(sb, &super_blocks, s_list) { 573 sb->s_count++; 574 spin_unlock(&sb_lock); 575 down_write(&sb->s_umount); 576 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) { 577 /* 578 * ->remount_fs needs lock_kernel(). 579 * 580 * What lock protects sb->s_flags?? 581 */ 582 do_remount_sb(sb, MS_RDONLY, NULL, 1); 583 } 584 up_write(&sb->s_umount); 585 put_super(sb); 586 spin_lock(&sb_lock); 587 } 588 spin_unlock(&sb_lock); 589 kfree(work); 590 printk("Emergency Remount complete\n"); 591 } 592 593 void emergency_remount(void) 594 { 595 struct work_struct *work; 596 597 work = kmalloc(sizeof(*work), GFP_ATOMIC); 598 if (work) { 599 INIT_WORK(work, do_emergency_remount); 600 schedule_work(work); 601 } 602 } 603 604 /* 605 * Unnamed block devices are dummy devices used by virtual 606 * filesystems which don't use real block-devices. -- jrs 607 */ 608 609 static DEFINE_IDA(unnamed_dev_ida); 610 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 611 static int unnamed_dev_start = 0; /* don't bother trying below it */ 612 613 int set_anon_super(struct super_block *s, void *data) 614 { 615 int dev; 616 int error; 617 618 retry: 619 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 620 return -ENOMEM; 621 spin_lock(&unnamed_dev_lock); 622 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 623 if (!error) 624 unnamed_dev_start = dev + 1; 625 spin_unlock(&unnamed_dev_lock); 626 if (error == -EAGAIN) 627 /* We raced and lost with another CPU. */ 628 goto retry; 629 else if (error) 630 return -EAGAIN; 631 632 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) { 633 spin_lock(&unnamed_dev_lock); 634 ida_remove(&unnamed_dev_ida, dev); 635 if (unnamed_dev_start > dev) 636 unnamed_dev_start = dev; 637 spin_unlock(&unnamed_dev_lock); 638 return -EMFILE; 639 } 640 s->s_dev = MKDEV(0, dev & MINORMASK); 641 return 0; 642 } 643 644 EXPORT_SYMBOL(set_anon_super); 645 646 void kill_anon_super(struct super_block *sb) 647 { 648 int slot = MINOR(sb->s_dev); 649 650 generic_shutdown_super(sb); 651 spin_lock(&unnamed_dev_lock); 652 ida_remove(&unnamed_dev_ida, slot); 653 if (slot < unnamed_dev_start) 654 unnamed_dev_start = slot; 655 spin_unlock(&unnamed_dev_lock); 656 } 657 658 EXPORT_SYMBOL(kill_anon_super); 659 660 void kill_litter_super(struct super_block *sb) 661 { 662 if (sb->s_root) 663 d_genocide(sb->s_root); 664 kill_anon_super(sb); 665 } 666 667 EXPORT_SYMBOL(kill_litter_super); 668 669 static int ns_test_super(struct super_block *sb, void *data) 670 { 671 return sb->s_fs_info == data; 672 } 673 674 static int ns_set_super(struct super_block *sb, void *data) 675 { 676 sb->s_fs_info = data; 677 return set_anon_super(sb, NULL); 678 } 679 680 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data, 681 int (*fill_super)(struct super_block *, void *, int), 682 struct vfsmount *mnt) 683 { 684 struct super_block *sb; 685 686 sb = sget(fs_type, ns_test_super, ns_set_super, data); 687 if (IS_ERR(sb)) 688 return PTR_ERR(sb); 689 690 if (!sb->s_root) { 691 int err; 692 sb->s_flags = flags; 693 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 694 if (err) { 695 deactivate_locked_super(sb); 696 return err; 697 } 698 699 sb->s_flags |= MS_ACTIVE; 700 } 701 702 simple_set_mnt(mnt, sb); 703 return 0; 704 } 705 706 EXPORT_SYMBOL(get_sb_ns); 707 708 #ifdef CONFIG_BLOCK 709 static int set_bdev_super(struct super_block *s, void *data) 710 { 711 s->s_bdev = data; 712 s->s_dev = s->s_bdev->bd_dev; 713 return 0; 714 } 715 716 static int test_bdev_super(struct super_block *s, void *data) 717 { 718 return (void *)s->s_bdev == data; 719 } 720 721 int get_sb_bdev(struct file_system_type *fs_type, 722 int flags, const char *dev_name, void *data, 723 int (*fill_super)(struct super_block *, void *, int), 724 struct vfsmount *mnt) 725 { 726 struct block_device *bdev; 727 struct super_block *s; 728 fmode_t mode = FMODE_READ; 729 int error = 0; 730 731 if (!(flags & MS_RDONLY)) 732 mode |= FMODE_WRITE; 733 734 bdev = open_bdev_exclusive(dev_name, mode, fs_type); 735 if (IS_ERR(bdev)) 736 return PTR_ERR(bdev); 737 738 /* 739 * once the super is inserted into the list by sget, s_umount 740 * will protect the lockfs code from trying to start a snapshot 741 * while we are mounting 742 */ 743 down(&bdev->bd_mount_sem); 744 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev); 745 up(&bdev->bd_mount_sem); 746 if (IS_ERR(s)) 747 goto error_s; 748 749 if (s->s_root) { 750 if ((flags ^ s->s_flags) & MS_RDONLY) { 751 deactivate_locked_super(s); 752 error = -EBUSY; 753 goto error_bdev; 754 } 755 756 close_bdev_exclusive(bdev, mode); 757 } else { 758 char b[BDEVNAME_SIZE]; 759 760 s->s_flags = flags; 761 s->s_mode = mode; 762 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 763 sb_set_blocksize(s, block_size(bdev)); 764 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 765 if (error) { 766 deactivate_locked_super(s); 767 goto error; 768 } 769 770 s->s_flags |= MS_ACTIVE; 771 bdev->bd_super = s; 772 } 773 774 simple_set_mnt(mnt, s); 775 return 0; 776 777 error_s: 778 error = PTR_ERR(s); 779 error_bdev: 780 close_bdev_exclusive(bdev, mode); 781 error: 782 return error; 783 } 784 785 EXPORT_SYMBOL(get_sb_bdev); 786 787 void kill_block_super(struct super_block *sb) 788 { 789 struct block_device *bdev = sb->s_bdev; 790 fmode_t mode = sb->s_mode; 791 792 bdev->bd_super = NULL; 793 generic_shutdown_super(sb); 794 sync_blockdev(bdev); 795 close_bdev_exclusive(bdev, mode); 796 } 797 798 EXPORT_SYMBOL(kill_block_super); 799 #endif 800 801 int get_sb_nodev(struct file_system_type *fs_type, 802 int flags, void *data, 803 int (*fill_super)(struct super_block *, void *, int), 804 struct vfsmount *mnt) 805 { 806 int error; 807 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 808 809 if (IS_ERR(s)) 810 return PTR_ERR(s); 811 812 s->s_flags = flags; 813 814 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 815 if (error) { 816 deactivate_locked_super(s); 817 return error; 818 } 819 s->s_flags |= MS_ACTIVE; 820 simple_set_mnt(mnt, s); 821 return 0; 822 } 823 824 EXPORT_SYMBOL(get_sb_nodev); 825 826 static int compare_single(struct super_block *s, void *p) 827 { 828 return 1; 829 } 830 831 int get_sb_single(struct file_system_type *fs_type, 832 int flags, void *data, 833 int (*fill_super)(struct super_block *, void *, int), 834 struct vfsmount *mnt) 835 { 836 struct super_block *s; 837 int error; 838 839 s = sget(fs_type, compare_single, set_anon_super, NULL); 840 if (IS_ERR(s)) 841 return PTR_ERR(s); 842 if (!s->s_root) { 843 s->s_flags = flags; 844 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 845 if (error) { 846 deactivate_locked_super(s); 847 return error; 848 } 849 s->s_flags |= MS_ACTIVE; 850 } 851 do_remount_sb(s, flags, data, 0); 852 simple_set_mnt(mnt, s); 853 return 0; 854 } 855 856 EXPORT_SYMBOL(get_sb_single); 857 858 struct vfsmount * 859 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 860 { 861 struct vfsmount *mnt; 862 char *secdata = NULL; 863 int error; 864 865 if (!type) 866 return ERR_PTR(-ENODEV); 867 868 error = -ENOMEM; 869 mnt = alloc_vfsmnt(name); 870 if (!mnt) 871 goto out; 872 873 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 874 secdata = alloc_secdata(); 875 if (!secdata) 876 goto out_mnt; 877 878 error = security_sb_copy_data(data, secdata); 879 if (error) 880 goto out_free_secdata; 881 } 882 883 error = type->get_sb(type, flags, name, data, mnt); 884 if (error < 0) 885 goto out_free_secdata; 886 BUG_ON(!mnt->mnt_sb); 887 888 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata); 889 if (error) 890 goto out_sb; 891 892 mnt->mnt_mountpoint = mnt->mnt_root; 893 mnt->mnt_parent = mnt; 894 up_write(&mnt->mnt_sb->s_umount); 895 free_secdata(secdata); 896 return mnt; 897 out_sb: 898 dput(mnt->mnt_root); 899 deactivate_locked_super(mnt->mnt_sb); 900 out_free_secdata: 901 free_secdata(secdata); 902 out_mnt: 903 free_vfsmnt(mnt); 904 out: 905 return ERR_PTR(error); 906 } 907 908 EXPORT_SYMBOL_GPL(vfs_kern_mount); 909 910 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 911 { 912 int err; 913 const char *subtype = strchr(fstype, '.'); 914 if (subtype) { 915 subtype++; 916 err = -EINVAL; 917 if (!subtype[0]) 918 goto err; 919 } else 920 subtype = ""; 921 922 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 923 err = -ENOMEM; 924 if (!mnt->mnt_sb->s_subtype) 925 goto err; 926 return mnt; 927 928 err: 929 mntput(mnt); 930 return ERR_PTR(err); 931 } 932 933 struct vfsmount * 934 do_kern_mount(const char *fstype, int flags, const char *name, void *data) 935 { 936 struct file_system_type *type = get_fs_type(fstype); 937 struct vfsmount *mnt; 938 if (!type) 939 return ERR_PTR(-ENODEV); 940 mnt = vfs_kern_mount(type, flags, name, data); 941 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 942 !mnt->mnt_sb->s_subtype) 943 mnt = fs_set_subtype(mnt, fstype); 944 put_filesystem(type); 945 return mnt; 946 } 947 EXPORT_SYMBOL_GPL(do_kern_mount); 948 949 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 950 { 951 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 952 } 953 954 EXPORT_SYMBOL_GPL(kern_mount_data); 955