xref: /linux/fs/super.c (revision 52990390f91c1c39ca742fc8f390b29891d95127)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb);
43 
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46 
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 	"sb_writers",
49 	"sb_pagefaults",
50 	"sb_internal",
51 };
52 
53 /*
54  * One thing we have to be careful of with a per-sb shrinker is that we don't
55  * drop the last active reference to the superblock from within the shrinker.
56  * If that happens we could trigger unregistering the shrinker from within the
57  * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
58  * take a passive reference to the superblock to avoid this from occurring.
59  */
60 static unsigned long super_cache_scan(struct shrinker *shrink,
61 				      struct shrink_control *sc)
62 {
63 	struct super_block *sb;
64 	long	fs_objects = 0;
65 	long	total_objects;
66 	long	freed = 0;
67 	long	dentries;
68 	long	inodes;
69 
70 	sb = container_of(shrink, struct super_block, s_shrink);
71 
72 	/*
73 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
74 	 * to recurse into the FS that called us in clear_inode() and friends..
75 	 */
76 	if (!(sc->gfp_mask & __GFP_FS))
77 		return SHRINK_STOP;
78 
79 	if (!trylock_super(sb))
80 		return SHRINK_STOP;
81 
82 	if (sb->s_op->nr_cached_objects)
83 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
84 
85 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
86 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
87 	total_objects = dentries + inodes + fs_objects + 1;
88 	if (!total_objects)
89 		total_objects = 1;
90 
91 	/* proportion the scan between the caches */
92 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
93 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
94 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
95 
96 	/*
97 	 * prune the dcache first as the icache is pinned by it, then
98 	 * prune the icache, followed by the filesystem specific caches
99 	 *
100 	 * Ensure that we always scan at least one object - memcg kmem
101 	 * accounting uses this to fully empty the caches.
102 	 */
103 	sc->nr_to_scan = dentries + 1;
104 	freed = prune_dcache_sb(sb, sc);
105 	sc->nr_to_scan = inodes + 1;
106 	freed += prune_icache_sb(sb, sc);
107 
108 	if (fs_objects) {
109 		sc->nr_to_scan = fs_objects + 1;
110 		freed += sb->s_op->free_cached_objects(sb, sc);
111 	}
112 
113 	up_read(&sb->s_umount);
114 	return freed;
115 }
116 
117 static unsigned long super_cache_count(struct shrinker *shrink,
118 				       struct shrink_control *sc)
119 {
120 	struct super_block *sb;
121 	long	total_objects = 0;
122 
123 	sb = container_of(shrink, struct super_block, s_shrink);
124 
125 	/*
126 	 * We don't call trylock_super() here as it is a scalability bottleneck,
127 	 * so we're exposed to partial setup state. The shrinker rwsem does not
128 	 * protect filesystem operations backing list_lru_shrink_count() or
129 	 * s_op->nr_cached_objects(). Counts can change between
130 	 * super_cache_count and super_cache_scan, so we really don't need locks
131 	 * here.
132 	 *
133 	 * However, if we are currently mounting the superblock, the underlying
134 	 * filesystem might be in a state of partial construction and hence it
135 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
136 	 * avoid this situation, so do the same here. The memory barrier is
137 	 * matched with the one in mount_fs() as we don't hold locks here.
138 	 */
139 	if (!(sb->s_flags & SB_BORN))
140 		return 0;
141 	smp_rmb();
142 
143 	if (sb->s_op && sb->s_op->nr_cached_objects)
144 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
145 
146 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
147 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
148 
149 	if (!total_objects)
150 		return SHRINK_EMPTY;
151 
152 	total_objects = vfs_pressure_ratio(total_objects);
153 	return total_objects;
154 }
155 
156 static void destroy_super_work(struct work_struct *work)
157 {
158 	struct super_block *s = container_of(work, struct super_block,
159 							destroy_work);
160 	int i;
161 
162 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
163 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
164 	kfree(s);
165 }
166 
167 static void destroy_super_rcu(struct rcu_head *head)
168 {
169 	struct super_block *s = container_of(head, struct super_block, rcu);
170 	INIT_WORK(&s->destroy_work, destroy_super_work);
171 	schedule_work(&s->destroy_work);
172 }
173 
174 /* Free a superblock that has never been seen by anyone */
175 static void destroy_unused_super(struct super_block *s)
176 {
177 	if (!s)
178 		return;
179 	up_write(&s->s_umount);
180 	list_lru_destroy(&s->s_dentry_lru);
181 	list_lru_destroy(&s->s_inode_lru);
182 	security_sb_free(s);
183 	put_user_ns(s->s_user_ns);
184 	kfree(s->s_subtype);
185 	free_prealloced_shrinker(&s->s_shrink);
186 	/* no delays needed */
187 	destroy_super_work(&s->destroy_work);
188 }
189 
190 /**
191  *	alloc_super	-	create new superblock
192  *	@type:	filesystem type superblock should belong to
193  *	@flags: the mount flags
194  *	@user_ns: User namespace for the super_block
195  *
196  *	Allocates and initializes a new &struct super_block.  alloc_super()
197  *	returns a pointer new superblock or %NULL if allocation had failed.
198  */
199 static struct super_block *alloc_super(struct file_system_type *type, int flags,
200 				       struct user_namespace *user_ns)
201 {
202 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
203 	static const struct super_operations default_op;
204 	int i;
205 
206 	if (!s)
207 		return NULL;
208 
209 	INIT_LIST_HEAD(&s->s_mounts);
210 	s->s_user_ns = get_user_ns(user_ns);
211 	init_rwsem(&s->s_umount);
212 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
213 	/*
214 	 * sget() can have s_umount recursion.
215 	 *
216 	 * When it cannot find a suitable sb, it allocates a new
217 	 * one (this one), and tries again to find a suitable old
218 	 * one.
219 	 *
220 	 * In case that succeeds, it will acquire the s_umount
221 	 * lock of the old one. Since these are clearly distrinct
222 	 * locks, and this object isn't exposed yet, there's no
223 	 * risk of deadlocks.
224 	 *
225 	 * Annotate this by putting this lock in a different
226 	 * subclass.
227 	 */
228 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
229 
230 	if (security_sb_alloc(s))
231 		goto fail;
232 
233 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
234 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
235 					sb_writers_name[i],
236 					&type->s_writers_key[i]))
237 			goto fail;
238 	}
239 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
240 	s->s_bdi = &noop_backing_dev_info;
241 	s->s_flags = flags;
242 	if (s->s_user_ns != &init_user_ns)
243 		s->s_iflags |= SB_I_NODEV;
244 	INIT_HLIST_NODE(&s->s_instances);
245 	INIT_HLIST_BL_HEAD(&s->s_roots);
246 	mutex_init(&s->s_sync_lock);
247 	INIT_LIST_HEAD(&s->s_inodes);
248 	spin_lock_init(&s->s_inode_list_lock);
249 	INIT_LIST_HEAD(&s->s_inodes_wb);
250 	spin_lock_init(&s->s_inode_wblist_lock);
251 
252 	s->s_count = 1;
253 	atomic_set(&s->s_active, 1);
254 	mutex_init(&s->s_vfs_rename_mutex);
255 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 	init_rwsem(&s->s_dquot.dqio_sem);
257 	s->s_maxbytes = MAX_NON_LFS;
258 	s->s_op = &default_op;
259 	s->s_time_gran = 1000000000;
260 	s->s_time_min = TIME64_MIN;
261 	s->s_time_max = TIME64_MAX;
262 
263 	s->s_shrink.seeks = DEFAULT_SEEKS;
264 	s->s_shrink.scan_objects = super_cache_scan;
265 	s->s_shrink.count_objects = super_cache_count;
266 	s->s_shrink.batch = 1024;
267 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
268 	if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
269 		goto fail;
270 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
271 		goto fail;
272 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
273 		goto fail;
274 	return s;
275 
276 fail:
277 	destroy_unused_super(s);
278 	return NULL;
279 }
280 
281 /* Superblock refcounting  */
282 
283 /*
284  * Drop a superblock's refcount.  The caller must hold sb_lock.
285  */
286 static void __put_super(struct super_block *s)
287 {
288 	if (!--s->s_count) {
289 		list_del_init(&s->s_list);
290 		WARN_ON(s->s_dentry_lru.node);
291 		WARN_ON(s->s_inode_lru.node);
292 		WARN_ON(!list_empty(&s->s_mounts));
293 		security_sb_free(s);
294 		put_user_ns(s->s_user_ns);
295 		kfree(s->s_subtype);
296 		call_rcu(&s->rcu, destroy_super_rcu);
297 	}
298 }
299 
300 /**
301  *	put_super	-	drop a temporary reference to superblock
302  *	@sb: superblock in question
303  *
304  *	Drops a temporary reference, frees superblock if there's no
305  *	references left.
306  */
307 void put_super(struct super_block *sb)
308 {
309 	spin_lock(&sb_lock);
310 	__put_super(sb);
311 	spin_unlock(&sb_lock);
312 }
313 
314 
315 /**
316  *	deactivate_locked_super	-	drop an active reference to superblock
317  *	@s: superblock to deactivate
318  *
319  *	Drops an active reference to superblock, converting it into a temporary
320  *	one if there is no other active references left.  In that case we
321  *	tell fs driver to shut it down and drop the temporary reference we
322  *	had just acquired.
323  *
324  *	Caller holds exclusive lock on superblock; that lock is released.
325  */
326 void deactivate_locked_super(struct super_block *s)
327 {
328 	struct file_system_type *fs = s->s_type;
329 	if (atomic_dec_and_test(&s->s_active)) {
330 		unregister_shrinker(&s->s_shrink);
331 		fs->kill_sb(s);
332 
333 		/*
334 		 * Since list_lru_destroy() may sleep, we cannot call it from
335 		 * put_super(), where we hold the sb_lock. Therefore we destroy
336 		 * the lru lists right now.
337 		 */
338 		list_lru_destroy(&s->s_dentry_lru);
339 		list_lru_destroy(&s->s_inode_lru);
340 
341 		put_filesystem(fs);
342 		put_super(s);
343 	} else {
344 		up_write(&s->s_umount);
345 	}
346 }
347 
348 EXPORT_SYMBOL(deactivate_locked_super);
349 
350 /**
351  *	deactivate_super	-	drop an active reference to superblock
352  *	@s: superblock to deactivate
353  *
354  *	Variant of deactivate_locked_super(), except that superblock is *not*
355  *	locked by caller.  If we are going to drop the final active reference,
356  *	lock will be acquired prior to that.
357  */
358 void deactivate_super(struct super_block *s)
359 {
360 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
361 		down_write(&s->s_umount);
362 		deactivate_locked_super(s);
363 	}
364 }
365 
366 EXPORT_SYMBOL(deactivate_super);
367 
368 /**
369  *	grab_super - acquire an active reference
370  *	@s: reference we are trying to make active
371  *
372  *	Tries to acquire an active reference.  grab_super() is used when we
373  * 	had just found a superblock in super_blocks or fs_type->fs_supers
374  *	and want to turn it into a full-blown active reference.  grab_super()
375  *	is called with sb_lock held and drops it.  Returns 1 in case of
376  *	success, 0 if we had failed (superblock contents was already dead or
377  *	dying when grab_super() had been called).  Note that this is only
378  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
379  *	of their type), so increment of ->s_count is OK here.
380  */
381 static int grab_super(struct super_block *s) __releases(sb_lock)
382 {
383 	s->s_count++;
384 	spin_unlock(&sb_lock);
385 	down_write(&s->s_umount);
386 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
387 		put_super(s);
388 		return 1;
389 	}
390 	up_write(&s->s_umount);
391 	put_super(s);
392 	return 0;
393 }
394 
395 /*
396  *	trylock_super - try to grab ->s_umount shared
397  *	@sb: reference we are trying to grab
398  *
399  *	Try to prevent fs shutdown.  This is used in places where we
400  *	cannot take an active reference but we need to ensure that the
401  *	filesystem is not shut down while we are working on it. It returns
402  *	false if we cannot acquire s_umount or if we lose the race and
403  *	filesystem already got into shutdown, and returns true with the s_umount
404  *	lock held in read mode in case of success. On successful return,
405  *	the caller must drop the s_umount lock when done.
406  *
407  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
408  *	The reason why it's safe is that we are OK with doing trylock instead
409  *	of down_read().  There's a couple of places that are OK with that, but
410  *	it's very much not a general-purpose interface.
411  */
412 bool trylock_super(struct super_block *sb)
413 {
414 	if (down_read_trylock(&sb->s_umount)) {
415 		if (!hlist_unhashed(&sb->s_instances) &&
416 		    sb->s_root && (sb->s_flags & SB_BORN))
417 			return true;
418 		up_read(&sb->s_umount);
419 	}
420 
421 	return false;
422 }
423 
424 /**
425  *	retire_super	-	prevents superblock from being reused
426  *	@sb: superblock to retire
427  *
428  *	The function marks superblock to be ignored in superblock test, which
429  *	prevents it from being reused for any new mounts.  If the superblock has
430  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
431  *	of the superblock to prevent potential races.  The refcount is reduced
432  *	by generic_shutdown_super().  The function can not be called
433  *	concurrently with generic_shutdown_super().  It is safe to call the
434  *	function multiple times, subsequent calls have no effect.
435  *
436  *	The marker will affect the re-use only for block-device-based
437  *	superblocks.  Other superblocks will still get marked if this function
438  *	is used, but that will not affect their reusability.
439  */
440 void retire_super(struct super_block *sb)
441 {
442 	WARN_ON(!sb->s_bdev);
443 	down_write(&sb->s_umount);
444 	if (sb->s_iflags & SB_I_PERSB_BDI) {
445 		bdi_unregister(sb->s_bdi);
446 		sb->s_iflags &= ~SB_I_PERSB_BDI;
447 	}
448 	sb->s_iflags |= SB_I_RETIRED;
449 	up_write(&sb->s_umount);
450 }
451 EXPORT_SYMBOL(retire_super);
452 
453 /**
454  *	generic_shutdown_super	-	common helper for ->kill_sb()
455  *	@sb: superblock to kill
456  *
457  *	generic_shutdown_super() does all fs-independent work on superblock
458  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
459  *	that need destruction out of superblock, call generic_shutdown_super()
460  *	and release aforementioned objects.  Note: dentries and inodes _are_
461  *	taken care of and do not need specific handling.
462  *
463  *	Upon calling this function, the filesystem may no longer alter or
464  *	rearrange the set of dentries belonging to this super_block, nor may it
465  *	change the attachments of dentries to inodes.
466  */
467 void generic_shutdown_super(struct super_block *sb)
468 {
469 	const struct super_operations *sop = sb->s_op;
470 
471 	if (sb->s_root) {
472 		shrink_dcache_for_umount(sb);
473 		sync_filesystem(sb);
474 		sb->s_flags &= ~SB_ACTIVE;
475 
476 		cgroup_writeback_umount();
477 
478 		/* Evict all inodes with zero refcount. */
479 		evict_inodes(sb);
480 
481 		/*
482 		 * Clean up and evict any inodes that still have references due
483 		 * to fsnotify or the security policy.
484 		 */
485 		fsnotify_sb_delete(sb);
486 		security_sb_delete(sb);
487 
488 		/*
489 		 * Now that all potentially-encrypted inodes have been evicted,
490 		 * the fscrypt keyring can be destroyed.
491 		 */
492 		fscrypt_destroy_keyring(sb);
493 
494 		if (sb->s_dio_done_wq) {
495 			destroy_workqueue(sb->s_dio_done_wq);
496 			sb->s_dio_done_wq = NULL;
497 		}
498 
499 		if (sop->put_super)
500 			sop->put_super(sb);
501 
502 		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
503 				"VFS: Busy inodes after unmount of %s (%s)",
504 				sb->s_id, sb->s_type->name)) {
505 			/*
506 			 * Adding a proper bailout path here would be hard, but
507 			 * we can at least make it more likely that a later
508 			 * iput_final() or such crashes cleanly.
509 			 */
510 			struct inode *inode;
511 
512 			spin_lock(&sb->s_inode_list_lock);
513 			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
514 				inode->i_op = VFS_PTR_POISON;
515 				inode->i_sb = VFS_PTR_POISON;
516 				inode->i_mapping = VFS_PTR_POISON;
517 			}
518 			spin_unlock(&sb->s_inode_list_lock);
519 		}
520 	}
521 	spin_lock(&sb_lock);
522 	/* should be initialized for __put_super_and_need_restart() */
523 	hlist_del_init(&sb->s_instances);
524 	spin_unlock(&sb_lock);
525 	up_write(&sb->s_umount);
526 	if (sb->s_bdi != &noop_backing_dev_info) {
527 		if (sb->s_iflags & SB_I_PERSB_BDI)
528 			bdi_unregister(sb->s_bdi);
529 		bdi_put(sb->s_bdi);
530 		sb->s_bdi = &noop_backing_dev_info;
531 	}
532 }
533 
534 EXPORT_SYMBOL(generic_shutdown_super);
535 
536 bool mount_capable(struct fs_context *fc)
537 {
538 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
539 		return capable(CAP_SYS_ADMIN);
540 	else
541 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
542 }
543 
544 /**
545  * sget_fc - Find or create a superblock
546  * @fc:	Filesystem context.
547  * @test: Comparison callback
548  * @set: Setup callback
549  *
550  * Find or create a superblock using the parameters stored in the filesystem
551  * context and the two callback functions.
552  *
553  * If an extant superblock is matched, then that will be returned with an
554  * elevated reference count that the caller must transfer or discard.
555  *
556  * If no match is made, a new superblock will be allocated and basic
557  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
558  * the set() callback will be invoked), the superblock will be published and it
559  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
560  * as yet unset.
561  */
562 struct super_block *sget_fc(struct fs_context *fc,
563 			    int (*test)(struct super_block *, struct fs_context *),
564 			    int (*set)(struct super_block *, struct fs_context *))
565 {
566 	struct super_block *s = NULL;
567 	struct super_block *old;
568 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
569 	int err;
570 
571 retry:
572 	spin_lock(&sb_lock);
573 	if (test) {
574 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
575 			if (test(old, fc))
576 				goto share_extant_sb;
577 		}
578 	}
579 	if (!s) {
580 		spin_unlock(&sb_lock);
581 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
582 		if (!s)
583 			return ERR_PTR(-ENOMEM);
584 		goto retry;
585 	}
586 
587 	s->s_fs_info = fc->s_fs_info;
588 	err = set(s, fc);
589 	if (err) {
590 		s->s_fs_info = NULL;
591 		spin_unlock(&sb_lock);
592 		destroy_unused_super(s);
593 		return ERR_PTR(err);
594 	}
595 	fc->s_fs_info = NULL;
596 	s->s_type = fc->fs_type;
597 	s->s_iflags |= fc->s_iflags;
598 	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
599 	list_add_tail(&s->s_list, &super_blocks);
600 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
601 	spin_unlock(&sb_lock);
602 	get_filesystem(s->s_type);
603 	register_shrinker_prepared(&s->s_shrink);
604 	return s;
605 
606 share_extant_sb:
607 	if (user_ns != old->s_user_ns) {
608 		spin_unlock(&sb_lock);
609 		destroy_unused_super(s);
610 		return ERR_PTR(-EBUSY);
611 	}
612 	if (!grab_super(old))
613 		goto retry;
614 	destroy_unused_super(s);
615 	return old;
616 }
617 EXPORT_SYMBOL(sget_fc);
618 
619 /**
620  *	sget	-	find or create a superblock
621  *	@type:	  filesystem type superblock should belong to
622  *	@test:	  comparison callback
623  *	@set:	  setup callback
624  *	@flags:	  mount flags
625  *	@data:	  argument to each of them
626  */
627 struct super_block *sget(struct file_system_type *type,
628 			int (*test)(struct super_block *,void *),
629 			int (*set)(struct super_block *,void *),
630 			int flags,
631 			void *data)
632 {
633 	struct user_namespace *user_ns = current_user_ns();
634 	struct super_block *s = NULL;
635 	struct super_block *old;
636 	int err;
637 
638 	/* We don't yet pass the user namespace of the parent
639 	 * mount through to here so always use &init_user_ns
640 	 * until that changes.
641 	 */
642 	if (flags & SB_SUBMOUNT)
643 		user_ns = &init_user_ns;
644 
645 retry:
646 	spin_lock(&sb_lock);
647 	if (test) {
648 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
649 			if (!test(old, data))
650 				continue;
651 			if (user_ns != old->s_user_ns) {
652 				spin_unlock(&sb_lock);
653 				destroy_unused_super(s);
654 				return ERR_PTR(-EBUSY);
655 			}
656 			if (!grab_super(old))
657 				goto retry;
658 			destroy_unused_super(s);
659 			return old;
660 		}
661 	}
662 	if (!s) {
663 		spin_unlock(&sb_lock);
664 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
665 		if (!s)
666 			return ERR_PTR(-ENOMEM);
667 		goto retry;
668 	}
669 
670 	err = set(s, data);
671 	if (err) {
672 		spin_unlock(&sb_lock);
673 		destroy_unused_super(s);
674 		return ERR_PTR(err);
675 	}
676 	s->s_type = type;
677 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
678 	list_add_tail(&s->s_list, &super_blocks);
679 	hlist_add_head(&s->s_instances, &type->fs_supers);
680 	spin_unlock(&sb_lock);
681 	get_filesystem(type);
682 	register_shrinker_prepared(&s->s_shrink);
683 	return s;
684 }
685 EXPORT_SYMBOL(sget);
686 
687 void drop_super(struct super_block *sb)
688 {
689 	up_read(&sb->s_umount);
690 	put_super(sb);
691 }
692 
693 EXPORT_SYMBOL(drop_super);
694 
695 void drop_super_exclusive(struct super_block *sb)
696 {
697 	up_write(&sb->s_umount);
698 	put_super(sb);
699 }
700 EXPORT_SYMBOL(drop_super_exclusive);
701 
702 static void __iterate_supers(void (*f)(struct super_block *))
703 {
704 	struct super_block *sb, *p = NULL;
705 
706 	spin_lock(&sb_lock);
707 	list_for_each_entry(sb, &super_blocks, s_list) {
708 		if (hlist_unhashed(&sb->s_instances))
709 			continue;
710 		sb->s_count++;
711 		spin_unlock(&sb_lock);
712 
713 		f(sb);
714 
715 		spin_lock(&sb_lock);
716 		if (p)
717 			__put_super(p);
718 		p = sb;
719 	}
720 	if (p)
721 		__put_super(p);
722 	spin_unlock(&sb_lock);
723 }
724 /**
725  *	iterate_supers - call function for all active superblocks
726  *	@f: function to call
727  *	@arg: argument to pass to it
728  *
729  *	Scans the superblock list and calls given function, passing it
730  *	locked superblock and given argument.
731  */
732 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
733 {
734 	struct super_block *sb, *p = NULL;
735 
736 	spin_lock(&sb_lock);
737 	list_for_each_entry(sb, &super_blocks, s_list) {
738 		if (hlist_unhashed(&sb->s_instances))
739 			continue;
740 		sb->s_count++;
741 		spin_unlock(&sb_lock);
742 
743 		down_read(&sb->s_umount);
744 		if (sb->s_root && (sb->s_flags & SB_BORN))
745 			f(sb, arg);
746 		up_read(&sb->s_umount);
747 
748 		spin_lock(&sb_lock);
749 		if (p)
750 			__put_super(p);
751 		p = sb;
752 	}
753 	if (p)
754 		__put_super(p);
755 	spin_unlock(&sb_lock);
756 }
757 
758 /**
759  *	iterate_supers_type - call function for superblocks of given type
760  *	@type: fs type
761  *	@f: function to call
762  *	@arg: argument to pass to it
763  *
764  *	Scans the superblock list and calls given function, passing it
765  *	locked superblock and given argument.
766  */
767 void iterate_supers_type(struct file_system_type *type,
768 	void (*f)(struct super_block *, void *), void *arg)
769 {
770 	struct super_block *sb, *p = NULL;
771 
772 	spin_lock(&sb_lock);
773 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
774 		sb->s_count++;
775 		spin_unlock(&sb_lock);
776 
777 		down_read(&sb->s_umount);
778 		if (sb->s_root && (sb->s_flags & SB_BORN))
779 			f(sb, arg);
780 		up_read(&sb->s_umount);
781 
782 		spin_lock(&sb_lock);
783 		if (p)
784 			__put_super(p);
785 		p = sb;
786 	}
787 	if (p)
788 		__put_super(p);
789 	spin_unlock(&sb_lock);
790 }
791 
792 EXPORT_SYMBOL(iterate_supers_type);
793 
794 /**
795  * get_super - get the superblock of a device
796  * @bdev: device to get the superblock for
797  *
798  * Scans the superblock list and finds the superblock of the file system
799  * mounted on the device given. %NULL is returned if no match is found.
800  */
801 struct super_block *get_super(struct block_device *bdev)
802 {
803 	struct super_block *sb;
804 
805 	if (!bdev)
806 		return NULL;
807 
808 	spin_lock(&sb_lock);
809 rescan:
810 	list_for_each_entry(sb, &super_blocks, s_list) {
811 		if (hlist_unhashed(&sb->s_instances))
812 			continue;
813 		if (sb->s_bdev == bdev) {
814 			sb->s_count++;
815 			spin_unlock(&sb_lock);
816 			down_read(&sb->s_umount);
817 			/* still alive? */
818 			if (sb->s_root && (sb->s_flags & SB_BORN))
819 				return sb;
820 			up_read(&sb->s_umount);
821 			/* nope, got unmounted */
822 			spin_lock(&sb_lock);
823 			__put_super(sb);
824 			goto rescan;
825 		}
826 	}
827 	spin_unlock(&sb_lock);
828 	return NULL;
829 }
830 
831 /**
832  * get_active_super - get an active reference to the superblock of a device
833  * @bdev: device to get the superblock for
834  *
835  * Scans the superblock list and finds the superblock of the file system
836  * mounted on the device given.  Returns the superblock with an active
837  * reference or %NULL if none was found.
838  */
839 struct super_block *get_active_super(struct block_device *bdev)
840 {
841 	struct super_block *sb;
842 
843 	if (!bdev)
844 		return NULL;
845 
846 restart:
847 	spin_lock(&sb_lock);
848 	list_for_each_entry(sb, &super_blocks, s_list) {
849 		if (hlist_unhashed(&sb->s_instances))
850 			continue;
851 		if (sb->s_bdev == bdev) {
852 			if (!grab_super(sb))
853 				goto restart;
854 			up_write(&sb->s_umount);
855 			return sb;
856 		}
857 	}
858 	spin_unlock(&sb_lock);
859 	return NULL;
860 }
861 
862 struct super_block *user_get_super(dev_t dev, bool excl)
863 {
864 	struct super_block *sb;
865 
866 	spin_lock(&sb_lock);
867 rescan:
868 	list_for_each_entry(sb, &super_blocks, s_list) {
869 		if (hlist_unhashed(&sb->s_instances))
870 			continue;
871 		if (sb->s_dev ==  dev) {
872 			sb->s_count++;
873 			spin_unlock(&sb_lock);
874 			if (excl)
875 				down_write(&sb->s_umount);
876 			else
877 				down_read(&sb->s_umount);
878 			/* still alive? */
879 			if (sb->s_root && (sb->s_flags & SB_BORN))
880 				return sb;
881 			if (excl)
882 				up_write(&sb->s_umount);
883 			else
884 				up_read(&sb->s_umount);
885 			/* nope, got unmounted */
886 			spin_lock(&sb_lock);
887 			__put_super(sb);
888 			goto rescan;
889 		}
890 	}
891 	spin_unlock(&sb_lock);
892 	return NULL;
893 }
894 
895 /**
896  * reconfigure_super - asks filesystem to change superblock parameters
897  * @fc: The superblock and configuration
898  *
899  * Alters the configuration parameters of a live superblock.
900  */
901 int reconfigure_super(struct fs_context *fc)
902 {
903 	struct super_block *sb = fc->root->d_sb;
904 	int retval;
905 	bool remount_ro = false;
906 	bool force = fc->sb_flags & SB_FORCE;
907 
908 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
909 		return -EINVAL;
910 	if (sb->s_writers.frozen != SB_UNFROZEN)
911 		return -EBUSY;
912 
913 	retval = security_sb_remount(sb, fc->security);
914 	if (retval)
915 		return retval;
916 
917 	if (fc->sb_flags_mask & SB_RDONLY) {
918 #ifdef CONFIG_BLOCK
919 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
920 		    bdev_read_only(sb->s_bdev))
921 			return -EACCES;
922 #endif
923 
924 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
925 	}
926 
927 	if (remount_ro) {
928 		if (!hlist_empty(&sb->s_pins)) {
929 			up_write(&sb->s_umount);
930 			group_pin_kill(&sb->s_pins);
931 			down_write(&sb->s_umount);
932 			if (!sb->s_root)
933 				return 0;
934 			if (sb->s_writers.frozen != SB_UNFROZEN)
935 				return -EBUSY;
936 			remount_ro = !sb_rdonly(sb);
937 		}
938 	}
939 	shrink_dcache_sb(sb);
940 
941 	/* If we are reconfiguring to RDONLY and current sb is read/write,
942 	 * make sure there are no files open for writing.
943 	 */
944 	if (remount_ro) {
945 		if (force) {
946 			sb->s_readonly_remount = 1;
947 			smp_wmb();
948 		} else {
949 			retval = sb_prepare_remount_readonly(sb);
950 			if (retval)
951 				return retval;
952 		}
953 	}
954 
955 	if (fc->ops->reconfigure) {
956 		retval = fc->ops->reconfigure(fc);
957 		if (retval) {
958 			if (!force)
959 				goto cancel_readonly;
960 			/* If forced remount, go ahead despite any errors */
961 			WARN(1, "forced remount of a %s fs returned %i\n",
962 			     sb->s_type->name, retval);
963 		}
964 	}
965 
966 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
967 				 (fc->sb_flags & fc->sb_flags_mask)));
968 	/* Needs to be ordered wrt mnt_is_readonly() */
969 	smp_wmb();
970 	sb->s_readonly_remount = 0;
971 
972 	/*
973 	 * Some filesystems modify their metadata via some other path than the
974 	 * bdev buffer cache (eg. use a private mapping, or directories in
975 	 * pagecache, etc). Also file data modifications go via their own
976 	 * mappings. So If we try to mount readonly then copy the filesystem
977 	 * from bdev, we could get stale data, so invalidate it to give a best
978 	 * effort at coherency.
979 	 */
980 	if (remount_ro && sb->s_bdev)
981 		invalidate_bdev(sb->s_bdev);
982 	return 0;
983 
984 cancel_readonly:
985 	sb->s_readonly_remount = 0;
986 	return retval;
987 }
988 
989 static void do_emergency_remount_callback(struct super_block *sb)
990 {
991 	down_write(&sb->s_umount);
992 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
993 	    !sb_rdonly(sb)) {
994 		struct fs_context *fc;
995 
996 		fc = fs_context_for_reconfigure(sb->s_root,
997 					SB_RDONLY | SB_FORCE, SB_RDONLY);
998 		if (!IS_ERR(fc)) {
999 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1000 				(void)reconfigure_super(fc);
1001 			put_fs_context(fc);
1002 		}
1003 	}
1004 	up_write(&sb->s_umount);
1005 }
1006 
1007 static void do_emergency_remount(struct work_struct *work)
1008 {
1009 	__iterate_supers(do_emergency_remount_callback);
1010 	kfree(work);
1011 	printk("Emergency Remount complete\n");
1012 }
1013 
1014 void emergency_remount(void)
1015 {
1016 	struct work_struct *work;
1017 
1018 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1019 	if (work) {
1020 		INIT_WORK(work, do_emergency_remount);
1021 		schedule_work(work);
1022 	}
1023 }
1024 
1025 static void do_thaw_all_callback(struct super_block *sb)
1026 {
1027 	down_write(&sb->s_umount);
1028 	if (sb->s_root && sb->s_flags & SB_BORN) {
1029 		emergency_thaw_bdev(sb);
1030 		thaw_super_locked(sb);
1031 	} else {
1032 		up_write(&sb->s_umount);
1033 	}
1034 }
1035 
1036 static void do_thaw_all(struct work_struct *work)
1037 {
1038 	__iterate_supers(do_thaw_all_callback);
1039 	kfree(work);
1040 	printk(KERN_WARNING "Emergency Thaw complete\n");
1041 }
1042 
1043 /**
1044  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1045  *
1046  * Used for emergency unfreeze of all filesystems via SysRq
1047  */
1048 void emergency_thaw_all(void)
1049 {
1050 	struct work_struct *work;
1051 
1052 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1053 	if (work) {
1054 		INIT_WORK(work, do_thaw_all);
1055 		schedule_work(work);
1056 	}
1057 }
1058 
1059 static DEFINE_IDA(unnamed_dev_ida);
1060 
1061 /**
1062  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1063  * @p: Pointer to a dev_t.
1064  *
1065  * Filesystems which don't use real block devices can call this function
1066  * to allocate a virtual block device.
1067  *
1068  * Context: Any context.  Frequently called while holding sb_lock.
1069  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1070  * or -ENOMEM if memory allocation failed.
1071  */
1072 int get_anon_bdev(dev_t *p)
1073 {
1074 	int dev;
1075 
1076 	/*
1077 	 * Many userspace utilities consider an FSID of 0 invalid.
1078 	 * Always return at least 1 from get_anon_bdev.
1079 	 */
1080 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1081 			GFP_ATOMIC);
1082 	if (dev == -ENOSPC)
1083 		dev = -EMFILE;
1084 	if (dev < 0)
1085 		return dev;
1086 
1087 	*p = MKDEV(0, dev);
1088 	return 0;
1089 }
1090 EXPORT_SYMBOL(get_anon_bdev);
1091 
1092 void free_anon_bdev(dev_t dev)
1093 {
1094 	ida_free(&unnamed_dev_ida, MINOR(dev));
1095 }
1096 EXPORT_SYMBOL(free_anon_bdev);
1097 
1098 int set_anon_super(struct super_block *s, void *data)
1099 {
1100 	return get_anon_bdev(&s->s_dev);
1101 }
1102 EXPORT_SYMBOL(set_anon_super);
1103 
1104 void kill_anon_super(struct super_block *sb)
1105 {
1106 	dev_t dev = sb->s_dev;
1107 	generic_shutdown_super(sb);
1108 	free_anon_bdev(dev);
1109 }
1110 EXPORT_SYMBOL(kill_anon_super);
1111 
1112 void kill_litter_super(struct super_block *sb)
1113 {
1114 	if (sb->s_root)
1115 		d_genocide(sb->s_root);
1116 	kill_anon_super(sb);
1117 }
1118 EXPORT_SYMBOL(kill_litter_super);
1119 
1120 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1121 {
1122 	return set_anon_super(sb, NULL);
1123 }
1124 EXPORT_SYMBOL(set_anon_super_fc);
1125 
1126 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1127 {
1128 	return sb->s_fs_info == fc->s_fs_info;
1129 }
1130 
1131 static int test_single_super(struct super_block *s, struct fs_context *fc)
1132 {
1133 	return 1;
1134 }
1135 
1136 static int vfs_get_super(struct fs_context *fc, bool reconf,
1137 		int (*test)(struct super_block *, struct fs_context *),
1138 		int (*fill_super)(struct super_block *sb,
1139 				  struct fs_context *fc))
1140 {
1141 	struct super_block *sb;
1142 	int err;
1143 
1144 	sb = sget_fc(fc, test, set_anon_super_fc);
1145 	if (IS_ERR(sb))
1146 		return PTR_ERR(sb);
1147 
1148 	if (!sb->s_root) {
1149 		err = fill_super(sb, fc);
1150 		if (err)
1151 			goto error;
1152 
1153 		sb->s_flags |= SB_ACTIVE;
1154 		fc->root = dget(sb->s_root);
1155 	} else {
1156 		fc->root = dget(sb->s_root);
1157 		if (reconf) {
1158 			err = reconfigure_super(fc);
1159 			if (err < 0) {
1160 				dput(fc->root);
1161 				fc->root = NULL;
1162 				goto error;
1163 			}
1164 		}
1165 	}
1166 
1167 	return 0;
1168 
1169 error:
1170 	deactivate_locked_super(sb);
1171 	return err;
1172 }
1173 
1174 int get_tree_nodev(struct fs_context *fc,
1175 		  int (*fill_super)(struct super_block *sb,
1176 				    struct fs_context *fc))
1177 {
1178 	return vfs_get_super(fc, false, NULL, fill_super);
1179 }
1180 EXPORT_SYMBOL(get_tree_nodev);
1181 
1182 int get_tree_single(struct fs_context *fc,
1183 		  int (*fill_super)(struct super_block *sb,
1184 				    struct fs_context *fc))
1185 {
1186 	return vfs_get_super(fc, false, test_single_super, fill_super);
1187 }
1188 EXPORT_SYMBOL(get_tree_single);
1189 
1190 int get_tree_single_reconf(struct fs_context *fc,
1191 		  int (*fill_super)(struct super_block *sb,
1192 				    struct fs_context *fc))
1193 {
1194 	return vfs_get_super(fc, true, test_single_super, fill_super);
1195 }
1196 EXPORT_SYMBOL(get_tree_single_reconf);
1197 
1198 int get_tree_keyed(struct fs_context *fc,
1199 		  int (*fill_super)(struct super_block *sb,
1200 				    struct fs_context *fc),
1201 		void *key)
1202 {
1203 	fc->s_fs_info = key;
1204 	return vfs_get_super(fc, false, test_keyed_super, fill_super);
1205 }
1206 EXPORT_SYMBOL(get_tree_keyed);
1207 
1208 #ifdef CONFIG_BLOCK
1209 
1210 static int set_bdev_super(struct super_block *s, void *data)
1211 {
1212 	s->s_bdev = data;
1213 	s->s_dev = s->s_bdev->bd_dev;
1214 	s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1215 
1216 	if (bdev_stable_writes(s->s_bdev))
1217 		s->s_iflags |= SB_I_STABLE_WRITES;
1218 	return 0;
1219 }
1220 
1221 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1222 {
1223 	return set_bdev_super(s, fc->sget_key);
1224 }
1225 
1226 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1227 {
1228 	return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key;
1229 }
1230 
1231 /**
1232  * get_tree_bdev - Get a superblock based on a single block device
1233  * @fc: The filesystem context holding the parameters
1234  * @fill_super: Helper to initialise a new superblock
1235  */
1236 int get_tree_bdev(struct fs_context *fc,
1237 		int (*fill_super)(struct super_block *,
1238 				  struct fs_context *))
1239 {
1240 	struct block_device *bdev;
1241 	struct super_block *s;
1242 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1243 	int error = 0;
1244 
1245 	if (!(fc->sb_flags & SB_RDONLY))
1246 		mode |= FMODE_WRITE;
1247 
1248 	if (!fc->source)
1249 		return invalf(fc, "No source specified");
1250 
1251 	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1252 	if (IS_ERR(bdev)) {
1253 		errorf(fc, "%s: Can't open blockdev", fc->source);
1254 		return PTR_ERR(bdev);
1255 	}
1256 
1257 	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1258 	 * will protect the lockfs code from trying to start a snapshot while
1259 	 * we are mounting
1260 	 */
1261 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1262 	if (bdev->bd_fsfreeze_count > 0) {
1263 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1264 		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1265 		blkdev_put(bdev, mode);
1266 		return -EBUSY;
1267 	}
1268 
1269 	fc->sb_flags |= SB_NOSEC;
1270 	fc->sget_key = bdev;
1271 	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1272 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1273 	if (IS_ERR(s)) {
1274 		blkdev_put(bdev, mode);
1275 		return PTR_ERR(s);
1276 	}
1277 
1278 	if (s->s_root) {
1279 		/* Don't summarily change the RO/RW state. */
1280 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1281 			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1282 			deactivate_locked_super(s);
1283 			blkdev_put(bdev, mode);
1284 			return -EBUSY;
1285 		}
1286 
1287 		/*
1288 		 * s_umount nests inside open_mutex during
1289 		 * __invalidate_device().  blkdev_put() acquires
1290 		 * open_mutex and can't be called under s_umount.  Drop
1291 		 * s_umount temporarily.  This is safe as we're
1292 		 * holding an active reference.
1293 		 */
1294 		up_write(&s->s_umount);
1295 		blkdev_put(bdev, mode);
1296 		down_write(&s->s_umount);
1297 	} else {
1298 		s->s_mode = mode;
1299 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1300 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1301 					fc->fs_type->name, s->s_id);
1302 		sb_set_blocksize(s, block_size(bdev));
1303 		error = fill_super(s, fc);
1304 		if (error) {
1305 			deactivate_locked_super(s);
1306 			return error;
1307 		}
1308 
1309 		s->s_flags |= SB_ACTIVE;
1310 		bdev->bd_super = s;
1311 	}
1312 
1313 	BUG_ON(fc->root);
1314 	fc->root = dget(s->s_root);
1315 	return 0;
1316 }
1317 EXPORT_SYMBOL(get_tree_bdev);
1318 
1319 static int test_bdev_super(struct super_block *s, void *data)
1320 {
1321 	return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data;
1322 }
1323 
1324 struct dentry *mount_bdev(struct file_system_type *fs_type,
1325 	int flags, const char *dev_name, void *data,
1326 	int (*fill_super)(struct super_block *, void *, int))
1327 {
1328 	struct block_device *bdev;
1329 	struct super_block *s;
1330 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1331 	int error = 0;
1332 
1333 	if (!(flags & SB_RDONLY))
1334 		mode |= FMODE_WRITE;
1335 
1336 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1337 	if (IS_ERR(bdev))
1338 		return ERR_CAST(bdev);
1339 
1340 	/*
1341 	 * once the super is inserted into the list by sget, s_umount
1342 	 * will protect the lockfs code from trying to start a snapshot
1343 	 * while we are mounting
1344 	 */
1345 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1346 	if (bdev->bd_fsfreeze_count > 0) {
1347 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1348 		error = -EBUSY;
1349 		goto error_bdev;
1350 	}
1351 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1352 		 bdev);
1353 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1354 	if (IS_ERR(s))
1355 		goto error_s;
1356 
1357 	if (s->s_root) {
1358 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1359 			deactivate_locked_super(s);
1360 			error = -EBUSY;
1361 			goto error_bdev;
1362 		}
1363 
1364 		/*
1365 		 * s_umount nests inside open_mutex during
1366 		 * __invalidate_device().  blkdev_put() acquires
1367 		 * open_mutex and can't be called under s_umount.  Drop
1368 		 * s_umount temporarily.  This is safe as we're
1369 		 * holding an active reference.
1370 		 */
1371 		up_write(&s->s_umount);
1372 		blkdev_put(bdev, mode);
1373 		down_write(&s->s_umount);
1374 	} else {
1375 		s->s_mode = mode;
1376 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1377 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1378 					fs_type->name, s->s_id);
1379 		sb_set_blocksize(s, block_size(bdev));
1380 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1381 		if (error) {
1382 			deactivate_locked_super(s);
1383 			goto error;
1384 		}
1385 
1386 		s->s_flags |= SB_ACTIVE;
1387 		bdev->bd_super = s;
1388 	}
1389 
1390 	return dget(s->s_root);
1391 
1392 error_s:
1393 	error = PTR_ERR(s);
1394 error_bdev:
1395 	blkdev_put(bdev, mode);
1396 error:
1397 	return ERR_PTR(error);
1398 }
1399 EXPORT_SYMBOL(mount_bdev);
1400 
1401 void kill_block_super(struct super_block *sb)
1402 {
1403 	struct block_device *bdev = sb->s_bdev;
1404 	fmode_t mode = sb->s_mode;
1405 
1406 	bdev->bd_super = NULL;
1407 	generic_shutdown_super(sb);
1408 	sync_blockdev(bdev);
1409 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1410 	blkdev_put(bdev, mode | FMODE_EXCL);
1411 }
1412 
1413 EXPORT_SYMBOL(kill_block_super);
1414 #endif
1415 
1416 struct dentry *mount_nodev(struct file_system_type *fs_type,
1417 	int flags, void *data,
1418 	int (*fill_super)(struct super_block *, void *, int))
1419 {
1420 	int error;
1421 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1422 
1423 	if (IS_ERR(s))
1424 		return ERR_CAST(s);
1425 
1426 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1427 	if (error) {
1428 		deactivate_locked_super(s);
1429 		return ERR_PTR(error);
1430 	}
1431 	s->s_flags |= SB_ACTIVE;
1432 	return dget(s->s_root);
1433 }
1434 EXPORT_SYMBOL(mount_nodev);
1435 
1436 int reconfigure_single(struct super_block *s,
1437 		       int flags, void *data)
1438 {
1439 	struct fs_context *fc;
1440 	int ret;
1441 
1442 	/* The caller really need to be passing fc down into mount_single(),
1443 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1444 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1445 	 * mount should be rejected if the parameters are not compatible.
1446 	 */
1447 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1448 	if (IS_ERR(fc))
1449 		return PTR_ERR(fc);
1450 
1451 	ret = parse_monolithic_mount_data(fc, data);
1452 	if (ret < 0)
1453 		goto out;
1454 
1455 	ret = reconfigure_super(fc);
1456 out:
1457 	put_fs_context(fc);
1458 	return ret;
1459 }
1460 
1461 static int compare_single(struct super_block *s, void *p)
1462 {
1463 	return 1;
1464 }
1465 
1466 struct dentry *mount_single(struct file_system_type *fs_type,
1467 	int flags, void *data,
1468 	int (*fill_super)(struct super_block *, void *, int))
1469 {
1470 	struct super_block *s;
1471 	int error;
1472 
1473 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1474 	if (IS_ERR(s))
1475 		return ERR_CAST(s);
1476 	if (!s->s_root) {
1477 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1478 		if (!error)
1479 			s->s_flags |= SB_ACTIVE;
1480 	} else {
1481 		error = reconfigure_single(s, flags, data);
1482 	}
1483 	if (unlikely(error)) {
1484 		deactivate_locked_super(s);
1485 		return ERR_PTR(error);
1486 	}
1487 	return dget(s->s_root);
1488 }
1489 EXPORT_SYMBOL(mount_single);
1490 
1491 /**
1492  * vfs_get_tree - Get the mountable root
1493  * @fc: The superblock configuration context.
1494  *
1495  * The filesystem is invoked to get or create a superblock which can then later
1496  * be used for mounting.  The filesystem places a pointer to the root to be
1497  * used for mounting in @fc->root.
1498  */
1499 int vfs_get_tree(struct fs_context *fc)
1500 {
1501 	struct super_block *sb;
1502 	int error;
1503 
1504 	if (fc->root)
1505 		return -EBUSY;
1506 
1507 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1508 	 * on the superblock.
1509 	 */
1510 	error = fc->ops->get_tree(fc);
1511 	if (error < 0)
1512 		return error;
1513 
1514 	if (!fc->root) {
1515 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1516 		       fc->fs_type->name);
1517 		/* We don't know what the locking state of the superblock is -
1518 		 * if there is a superblock.
1519 		 */
1520 		BUG();
1521 	}
1522 
1523 	sb = fc->root->d_sb;
1524 	WARN_ON(!sb->s_bdi);
1525 
1526 	/*
1527 	 * Write barrier is for super_cache_count(). We place it before setting
1528 	 * SB_BORN as the data dependency between the two functions is the
1529 	 * superblock structure contents that we just set up, not the SB_BORN
1530 	 * flag.
1531 	 */
1532 	smp_wmb();
1533 	sb->s_flags |= SB_BORN;
1534 
1535 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1536 	if (unlikely(error)) {
1537 		fc_drop_locked(fc);
1538 		return error;
1539 	}
1540 
1541 	/*
1542 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1543 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1544 	 * this warning for a little while to try and catch filesystems that
1545 	 * violate this rule.
1546 	 */
1547 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1548 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1549 
1550 	return 0;
1551 }
1552 EXPORT_SYMBOL(vfs_get_tree);
1553 
1554 /*
1555  * Setup private BDI for given superblock. It gets automatically cleaned up
1556  * in generic_shutdown_super().
1557  */
1558 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1559 {
1560 	struct backing_dev_info *bdi;
1561 	int err;
1562 	va_list args;
1563 
1564 	bdi = bdi_alloc(NUMA_NO_NODE);
1565 	if (!bdi)
1566 		return -ENOMEM;
1567 
1568 	va_start(args, fmt);
1569 	err = bdi_register_va(bdi, fmt, args);
1570 	va_end(args);
1571 	if (err) {
1572 		bdi_put(bdi);
1573 		return err;
1574 	}
1575 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1576 	sb->s_bdi = bdi;
1577 	sb->s_iflags |= SB_I_PERSB_BDI;
1578 
1579 	return 0;
1580 }
1581 EXPORT_SYMBOL(super_setup_bdi_name);
1582 
1583 /*
1584  * Setup private BDI for given superblock. I gets automatically cleaned up
1585  * in generic_shutdown_super().
1586  */
1587 int super_setup_bdi(struct super_block *sb)
1588 {
1589 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1590 
1591 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1592 				    atomic_long_inc_return(&bdi_seq));
1593 }
1594 EXPORT_SYMBOL(super_setup_bdi);
1595 
1596 /**
1597  * sb_wait_write - wait until all writers to given file system finish
1598  * @sb: the super for which we wait
1599  * @level: type of writers we wait for (normal vs page fault)
1600  *
1601  * This function waits until there are no writers of given type to given file
1602  * system.
1603  */
1604 static void sb_wait_write(struct super_block *sb, int level)
1605 {
1606 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1607 }
1608 
1609 /*
1610  * We are going to return to userspace and forget about these locks, the
1611  * ownership goes to the caller of thaw_super() which does unlock().
1612  */
1613 static void lockdep_sb_freeze_release(struct super_block *sb)
1614 {
1615 	int level;
1616 
1617 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1618 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1619 }
1620 
1621 /*
1622  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1623  */
1624 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1625 {
1626 	int level;
1627 
1628 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1629 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1630 }
1631 
1632 static void sb_freeze_unlock(struct super_block *sb, int level)
1633 {
1634 	for (level--; level >= 0; level--)
1635 		percpu_up_write(sb->s_writers.rw_sem + level);
1636 }
1637 
1638 /**
1639  * freeze_super - lock the filesystem and force it into a consistent state
1640  * @sb: the super to lock
1641  *
1642  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1643  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1644  * -EBUSY.
1645  *
1646  * During this function, sb->s_writers.frozen goes through these values:
1647  *
1648  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1649  *
1650  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1651  * writes should be blocked, though page faults are still allowed. We wait for
1652  * all writes to complete and then proceed to the next stage.
1653  *
1654  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1655  * but internal fs threads can still modify the filesystem (although they
1656  * should not dirty new pages or inodes), writeback can run etc. After waiting
1657  * for all running page faults we sync the filesystem which will clean all
1658  * dirty pages and inodes (no new dirty pages or inodes can be created when
1659  * sync is running).
1660  *
1661  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1662  * modification are blocked (e.g. XFS preallocation truncation on inode
1663  * reclaim). This is usually implemented by blocking new transactions for
1664  * filesystems that have them and need this additional guard. After all
1665  * internal writers are finished we call ->freeze_fs() to finish filesystem
1666  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1667  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1668  *
1669  * sb->s_writers.frozen is protected by sb->s_umount.
1670  */
1671 int freeze_super(struct super_block *sb)
1672 {
1673 	int ret;
1674 
1675 	atomic_inc(&sb->s_active);
1676 	down_write(&sb->s_umount);
1677 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1678 		deactivate_locked_super(sb);
1679 		return -EBUSY;
1680 	}
1681 
1682 	if (!(sb->s_flags & SB_BORN)) {
1683 		up_write(&sb->s_umount);
1684 		return 0;	/* sic - it's "nothing to do" */
1685 	}
1686 
1687 	if (sb_rdonly(sb)) {
1688 		/* Nothing to do really... */
1689 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1690 		up_write(&sb->s_umount);
1691 		return 0;
1692 	}
1693 
1694 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1695 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1696 	up_write(&sb->s_umount);
1697 	sb_wait_write(sb, SB_FREEZE_WRITE);
1698 	down_write(&sb->s_umount);
1699 
1700 	/* Now we go and block page faults... */
1701 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1702 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1703 
1704 	/* All writers are done so after syncing there won't be dirty data */
1705 	ret = sync_filesystem(sb);
1706 	if (ret) {
1707 		sb->s_writers.frozen = SB_UNFROZEN;
1708 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1709 		wake_up(&sb->s_writers.wait_unfrozen);
1710 		deactivate_locked_super(sb);
1711 		return ret;
1712 	}
1713 
1714 	/* Now wait for internal filesystem counter */
1715 	sb->s_writers.frozen = SB_FREEZE_FS;
1716 	sb_wait_write(sb, SB_FREEZE_FS);
1717 
1718 	if (sb->s_op->freeze_fs) {
1719 		ret = sb->s_op->freeze_fs(sb);
1720 		if (ret) {
1721 			printk(KERN_ERR
1722 				"VFS:Filesystem freeze failed\n");
1723 			sb->s_writers.frozen = SB_UNFROZEN;
1724 			sb_freeze_unlock(sb, SB_FREEZE_FS);
1725 			wake_up(&sb->s_writers.wait_unfrozen);
1726 			deactivate_locked_super(sb);
1727 			return ret;
1728 		}
1729 	}
1730 	/*
1731 	 * For debugging purposes so that fs can warn if it sees write activity
1732 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1733 	 */
1734 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1735 	lockdep_sb_freeze_release(sb);
1736 	up_write(&sb->s_umount);
1737 	return 0;
1738 }
1739 EXPORT_SYMBOL(freeze_super);
1740 
1741 static int thaw_super_locked(struct super_block *sb)
1742 {
1743 	int error;
1744 
1745 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1746 		up_write(&sb->s_umount);
1747 		return -EINVAL;
1748 	}
1749 
1750 	if (sb_rdonly(sb)) {
1751 		sb->s_writers.frozen = SB_UNFROZEN;
1752 		goto out;
1753 	}
1754 
1755 	lockdep_sb_freeze_acquire(sb);
1756 
1757 	if (sb->s_op->unfreeze_fs) {
1758 		error = sb->s_op->unfreeze_fs(sb);
1759 		if (error) {
1760 			printk(KERN_ERR
1761 				"VFS:Filesystem thaw failed\n");
1762 			lockdep_sb_freeze_release(sb);
1763 			up_write(&sb->s_umount);
1764 			return error;
1765 		}
1766 	}
1767 
1768 	sb->s_writers.frozen = SB_UNFROZEN;
1769 	sb_freeze_unlock(sb, SB_FREEZE_FS);
1770 out:
1771 	wake_up(&sb->s_writers.wait_unfrozen);
1772 	deactivate_locked_super(sb);
1773 	return 0;
1774 }
1775 
1776 /**
1777  * thaw_super -- unlock filesystem
1778  * @sb: the super to thaw
1779  *
1780  * Unlocks the filesystem and marks it writeable again after freeze_super().
1781  */
1782 int thaw_super(struct super_block *sb)
1783 {
1784 	down_write(&sb->s_umount);
1785 	return thaw_super_locked(sb);
1786 }
1787 EXPORT_SYMBOL(thaw_super);
1788 
1789 /*
1790  * Create workqueue for deferred direct IO completions. We allocate the
1791  * workqueue when it's first needed. This avoids creating workqueue for
1792  * filesystems that don't need it and also allows us to create the workqueue
1793  * late enough so the we can include s_id in the name of the workqueue.
1794  */
1795 int sb_init_dio_done_wq(struct super_block *sb)
1796 {
1797 	struct workqueue_struct *old;
1798 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
1799 						      WQ_MEM_RECLAIM, 0,
1800 						      sb->s_id);
1801 	if (!wq)
1802 		return -ENOMEM;
1803 	/*
1804 	 * This has to be atomic as more DIOs can race to create the workqueue
1805 	 */
1806 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
1807 	/* Someone created workqueue before us? Free ours... */
1808 	if (old)
1809 		destroy_workqueue(wq);
1810 	return 0;
1811 }
1812