xref: /linux/fs/super.c (revision 4f372263ef92ed2af55a8c226750b72021ff8d0f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who,
43 			     const void *freeze_owner);
44 
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47 
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 	"sb_writers",
50 	"sb_pagefaults",
51 	"sb_internal",
52 };
53 
54 static inline void __super_lock(struct super_block *sb, bool excl)
55 {
56 	if (excl)
57 		down_write(&sb->s_umount);
58 	else
59 		down_read(&sb->s_umount);
60 }
61 
62 static inline void super_unlock(struct super_block *sb, bool excl)
63 {
64 	if (excl)
65 		up_write(&sb->s_umount);
66 	else
67 		up_read(&sb->s_umount);
68 }
69 
70 static inline void __super_lock_excl(struct super_block *sb)
71 {
72 	__super_lock(sb, true);
73 }
74 
75 static inline void super_unlock_excl(struct super_block *sb)
76 {
77 	super_unlock(sb, true);
78 }
79 
80 static inline void super_unlock_shared(struct super_block *sb)
81 {
82 	super_unlock(sb, false);
83 }
84 
85 static bool super_flags(const struct super_block *sb, unsigned int flags)
86 {
87 	/*
88 	 * Pairs with smp_store_release() in super_wake() and ensures
89 	 * that we see @flags after we're woken.
90 	 */
91 	return smp_load_acquire(&sb->s_flags) & flags;
92 }
93 
94 /**
95  * super_lock - wait for superblock to become ready and lock it
96  * @sb: superblock to wait for
97  * @excl: whether exclusive access is required
98  *
99  * If the superblock has neither passed through vfs_get_tree() or
100  * generic_shutdown_super() yet wait for it to happen. Either superblock
101  * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
102  * woken and we'll see SB_DYING.
103  *
104  * The caller must have acquired a temporary reference on @sb->s_count.
105  *
106  * Return: The function returns true if SB_BORN was set and with
107  *         s_umount held. The function returns false if SB_DYING was
108  *         set and without s_umount held.
109  */
110 static __must_check bool super_lock(struct super_block *sb, bool excl)
111 {
112 	lockdep_assert_not_held(&sb->s_umount);
113 
114 	/* wait until the superblock is ready or dying */
115 	wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING));
116 
117 	/* Don't pointlessly acquire s_umount. */
118 	if (super_flags(sb, SB_DYING))
119 		return false;
120 
121 	__super_lock(sb, excl);
122 
123 	/*
124 	 * Has gone through generic_shutdown_super() in the meantime.
125 	 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
126 	 * grab a reference to this. Tell them so.
127 	 */
128 	if (sb->s_flags & SB_DYING) {
129 		super_unlock(sb, excl);
130 		return false;
131 	}
132 
133 	WARN_ON_ONCE(!(sb->s_flags & SB_BORN));
134 	return true;
135 }
136 
137 /* wait and try to acquire read-side of @sb->s_umount */
138 static inline bool super_lock_shared(struct super_block *sb)
139 {
140 	return super_lock(sb, false);
141 }
142 
143 /* wait and try to acquire write-side of @sb->s_umount */
144 static inline bool super_lock_excl(struct super_block *sb)
145 {
146 	return super_lock(sb, true);
147 }
148 
149 /* wake waiters */
150 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
151 static void super_wake(struct super_block *sb, unsigned int flag)
152 {
153 	WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
154 	WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
155 
156 	/*
157 	 * Pairs with smp_load_acquire() in super_lock() to make sure
158 	 * all initializations in the superblock are seen by the user
159 	 * seeing SB_BORN sent.
160 	 */
161 	smp_store_release(&sb->s_flags, sb->s_flags | flag);
162 	/*
163 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
164 	 * ___wait_var_event() either sees SB_BORN set or
165 	 * waitqueue_active() check in wake_up_var() sees the waiter.
166 	 */
167 	smp_mb();
168 	wake_up_var(&sb->s_flags);
169 }
170 
171 /*
172  * One thing we have to be careful of with a per-sb shrinker is that we don't
173  * drop the last active reference to the superblock from within the shrinker.
174  * If that happens we could trigger unregistering the shrinker from within the
175  * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
176  * take a passive reference to the superblock to avoid this from occurring.
177  */
178 static unsigned long super_cache_scan(struct shrinker *shrink,
179 				      struct shrink_control *sc)
180 {
181 	struct super_block *sb;
182 	long	fs_objects = 0;
183 	long	total_objects;
184 	long	freed = 0;
185 	long	dentries;
186 	long	inodes;
187 
188 	sb = shrink->private_data;
189 
190 	/*
191 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
192 	 * to recurse into the FS that called us in clear_inode() and friends..
193 	 */
194 	if (!(sc->gfp_mask & __GFP_FS))
195 		return SHRINK_STOP;
196 
197 	if (!super_trylock_shared(sb))
198 		return SHRINK_STOP;
199 
200 	if (sb->s_op->nr_cached_objects)
201 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
202 
203 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
204 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
205 	total_objects = dentries + inodes + fs_objects;
206 	if (!total_objects)
207 		total_objects = 1;
208 
209 	/* proportion the scan between the caches */
210 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
211 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
212 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
213 
214 	/*
215 	 * prune the dcache first as the icache is pinned by it, then
216 	 * prune the icache, followed by the filesystem specific caches
217 	 *
218 	 * Ensure that we always scan at least one object - memcg kmem
219 	 * accounting uses this to fully empty the caches.
220 	 */
221 	sc->nr_to_scan = dentries + 1;
222 	freed = prune_dcache_sb(sb, sc);
223 	sc->nr_to_scan = inodes + 1;
224 	freed += prune_icache_sb(sb, sc);
225 
226 	if (fs_objects) {
227 		sc->nr_to_scan = fs_objects + 1;
228 		freed += sb->s_op->free_cached_objects(sb, sc);
229 	}
230 
231 	super_unlock_shared(sb);
232 	return freed;
233 }
234 
235 static unsigned long super_cache_count(struct shrinker *shrink,
236 				       struct shrink_control *sc)
237 {
238 	struct super_block *sb;
239 	long	total_objects = 0;
240 
241 	sb = shrink->private_data;
242 
243 	/*
244 	 * We don't call super_trylock_shared() here as it is a scalability
245 	 * bottleneck, so we're exposed to partial setup state. The shrinker
246 	 * rwsem does not protect filesystem operations backing
247 	 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
248 	 * change between super_cache_count and super_cache_scan, so we really
249 	 * don't need locks here.
250 	 *
251 	 * However, if we are currently mounting the superblock, the underlying
252 	 * filesystem might be in a state of partial construction and hence it
253 	 * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
254 	 * to avoid this situation, so do the same here. The memory barrier is
255 	 * matched with the one in mount_fs() as we don't hold locks here.
256 	 */
257 	if (!(sb->s_flags & SB_BORN))
258 		return 0;
259 	smp_rmb();
260 
261 	if (sb->s_op && sb->s_op->nr_cached_objects)
262 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
263 
264 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
265 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
266 
267 	if (!total_objects)
268 		return SHRINK_EMPTY;
269 
270 	total_objects = vfs_pressure_ratio(total_objects);
271 	return total_objects;
272 }
273 
274 static void destroy_super_work(struct work_struct *work)
275 {
276 	struct super_block *s = container_of(work, struct super_block,
277 							destroy_work);
278 	fsnotify_sb_free(s);
279 	security_sb_free(s);
280 	put_user_ns(s->s_user_ns);
281 	kfree(s->s_subtype);
282 	for (int i = 0; i < SB_FREEZE_LEVELS; i++)
283 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
284 	kfree(s);
285 }
286 
287 static void destroy_super_rcu(struct rcu_head *head)
288 {
289 	struct super_block *s = container_of(head, struct super_block, rcu);
290 	INIT_WORK(&s->destroy_work, destroy_super_work);
291 	schedule_work(&s->destroy_work);
292 }
293 
294 /* Free a superblock that has never been seen by anyone */
295 static void destroy_unused_super(struct super_block *s)
296 {
297 	if (!s)
298 		return;
299 	super_unlock_excl(s);
300 	list_lru_destroy(&s->s_dentry_lru);
301 	list_lru_destroy(&s->s_inode_lru);
302 	shrinker_free(s->s_shrink);
303 	/* no delays needed */
304 	destroy_super_work(&s->destroy_work);
305 }
306 
307 /**
308  *	alloc_super	-	create new superblock
309  *	@type:	filesystem type superblock should belong to
310  *	@flags: the mount flags
311  *	@user_ns: User namespace for the super_block
312  *
313  *	Allocates and initializes a new &struct super_block.  alloc_super()
314  *	returns a pointer new superblock or %NULL if allocation had failed.
315  */
316 static struct super_block *alloc_super(struct file_system_type *type, int flags,
317 				       struct user_namespace *user_ns)
318 {
319 	struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL);
320 	static const struct super_operations default_op;
321 	int i;
322 
323 	if (!s)
324 		return NULL;
325 
326 	INIT_LIST_HEAD(&s->s_mounts);
327 	s->s_user_ns = get_user_ns(user_ns);
328 	init_rwsem(&s->s_umount);
329 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
330 	/*
331 	 * sget() can have s_umount recursion.
332 	 *
333 	 * When it cannot find a suitable sb, it allocates a new
334 	 * one (this one), and tries again to find a suitable old
335 	 * one.
336 	 *
337 	 * In case that succeeds, it will acquire the s_umount
338 	 * lock of the old one. Since these are clearly distrinct
339 	 * locks, and this object isn't exposed yet, there's no
340 	 * risk of deadlocks.
341 	 *
342 	 * Annotate this by putting this lock in a different
343 	 * subclass.
344 	 */
345 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
346 
347 	if (security_sb_alloc(s))
348 		goto fail;
349 
350 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
351 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
352 					sb_writers_name[i],
353 					&type->s_writers_key[i]))
354 			goto fail;
355 	}
356 	s->s_bdi = &noop_backing_dev_info;
357 	s->s_flags = flags;
358 	if (s->s_user_ns != &init_user_ns)
359 		s->s_iflags |= SB_I_NODEV;
360 	INIT_HLIST_NODE(&s->s_instances);
361 	INIT_HLIST_BL_HEAD(&s->s_roots);
362 	mutex_init(&s->s_sync_lock);
363 	INIT_LIST_HEAD(&s->s_inodes);
364 	spin_lock_init(&s->s_inode_list_lock);
365 	INIT_LIST_HEAD(&s->s_inodes_wb);
366 	spin_lock_init(&s->s_inode_wblist_lock);
367 
368 	s->s_count = 1;
369 	atomic_set(&s->s_active, 1);
370 	mutex_init(&s->s_vfs_rename_mutex);
371 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
372 	init_rwsem(&s->s_dquot.dqio_sem);
373 	s->s_maxbytes = MAX_NON_LFS;
374 	s->s_op = &default_op;
375 	s->s_time_gran = 1000000000;
376 	s->s_time_min = TIME64_MIN;
377 	s->s_time_max = TIME64_MAX;
378 
379 	s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
380 				     "sb-%s", type->name);
381 	if (!s->s_shrink)
382 		goto fail;
383 
384 	s->s_shrink->scan_objects = super_cache_scan;
385 	s->s_shrink->count_objects = super_cache_count;
386 	s->s_shrink->batch = 1024;
387 	s->s_shrink->private_data = s;
388 
389 	if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
390 		goto fail;
391 	if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
392 		goto fail;
393 	return s;
394 
395 fail:
396 	destroy_unused_super(s);
397 	return NULL;
398 }
399 
400 /* Superblock refcounting  */
401 
402 /*
403  * Drop a superblock's refcount.  The caller must hold sb_lock.
404  */
405 static void __put_super(struct super_block *s)
406 {
407 	if (!--s->s_count) {
408 		list_del_init(&s->s_list);
409 		WARN_ON(s->s_dentry_lru.node);
410 		WARN_ON(s->s_inode_lru.node);
411 		WARN_ON(!list_empty(&s->s_mounts));
412 		call_rcu(&s->rcu, destroy_super_rcu);
413 	}
414 }
415 
416 /**
417  *	put_super	-	drop a temporary reference to superblock
418  *	@sb: superblock in question
419  *
420  *	Drops a temporary reference, frees superblock if there's no
421  *	references left.
422  */
423 void put_super(struct super_block *sb)
424 {
425 	spin_lock(&sb_lock);
426 	__put_super(sb);
427 	spin_unlock(&sb_lock);
428 }
429 
430 static void kill_super_notify(struct super_block *sb)
431 {
432 	lockdep_assert_not_held(&sb->s_umount);
433 
434 	/* already notified earlier */
435 	if (sb->s_flags & SB_DEAD)
436 		return;
437 
438 	/*
439 	 * Remove it from @fs_supers so it isn't found by new
440 	 * sget{_fc}() walkers anymore. Any concurrent mounter still
441 	 * managing to grab a temporary reference is guaranteed to
442 	 * already see SB_DYING and will wait until we notify them about
443 	 * SB_DEAD.
444 	 */
445 	spin_lock(&sb_lock);
446 	hlist_del_init(&sb->s_instances);
447 	spin_unlock(&sb_lock);
448 
449 	/*
450 	 * Let concurrent mounts know that this thing is really dead.
451 	 * We don't need @sb->s_umount here as every concurrent caller
452 	 * will see SB_DYING and either discard the superblock or wait
453 	 * for SB_DEAD.
454 	 */
455 	super_wake(sb, SB_DEAD);
456 }
457 
458 /**
459  *	deactivate_locked_super	-	drop an active reference to superblock
460  *	@s: superblock to deactivate
461  *
462  *	Drops an active reference to superblock, converting it into a temporary
463  *	one if there is no other active references left.  In that case we
464  *	tell fs driver to shut it down and drop the temporary reference we
465  *	had just acquired.
466  *
467  *	Caller holds exclusive lock on superblock; that lock is released.
468  */
469 void deactivate_locked_super(struct super_block *s)
470 {
471 	struct file_system_type *fs = s->s_type;
472 	if (atomic_dec_and_test(&s->s_active)) {
473 		shrinker_free(s->s_shrink);
474 		fs->kill_sb(s);
475 
476 		kill_super_notify(s);
477 
478 		/*
479 		 * Since list_lru_destroy() may sleep, we cannot call it from
480 		 * put_super(), where we hold the sb_lock. Therefore we destroy
481 		 * the lru lists right now.
482 		 */
483 		list_lru_destroy(&s->s_dentry_lru);
484 		list_lru_destroy(&s->s_inode_lru);
485 
486 		put_filesystem(fs);
487 		put_super(s);
488 	} else {
489 		super_unlock_excl(s);
490 	}
491 }
492 
493 EXPORT_SYMBOL(deactivate_locked_super);
494 
495 /**
496  *	deactivate_super	-	drop an active reference to superblock
497  *	@s: superblock to deactivate
498  *
499  *	Variant of deactivate_locked_super(), except that superblock is *not*
500  *	locked by caller.  If we are going to drop the final active reference,
501  *	lock will be acquired prior to that.
502  */
503 void deactivate_super(struct super_block *s)
504 {
505 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
506 		__super_lock_excl(s);
507 		deactivate_locked_super(s);
508 	}
509 }
510 
511 EXPORT_SYMBOL(deactivate_super);
512 
513 /**
514  * grab_super - acquire an active reference to a superblock
515  * @sb: superblock to acquire
516  *
517  * Acquire a temporary reference on a superblock and try to trade it for
518  * an active reference. This is used in sget{_fc}() to wait for a
519  * superblock to either become SB_BORN or for it to pass through
520  * sb->kill() and be marked as SB_DEAD.
521  *
522  * Return: This returns true if an active reference could be acquired,
523  *         false if not.
524  */
525 static bool grab_super(struct super_block *sb)
526 {
527 	bool locked;
528 
529 	sb->s_count++;
530 	spin_unlock(&sb_lock);
531 	locked = super_lock_excl(sb);
532 	if (locked) {
533 		if (atomic_inc_not_zero(&sb->s_active)) {
534 			put_super(sb);
535 			return true;
536 		}
537 		super_unlock_excl(sb);
538 	}
539 	wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD));
540 	put_super(sb);
541 	return false;
542 }
543 
544 /*
545  *	super_trylock_shared - try to grab ->s_umount shared
546  *	@sb: reference we are trying to grab
547  *
548  *	Try to prevent fs shutdown.  This is used in places where we
549  *	cannot take an active reference but we need to ensure that the
550  *	filesystem is not shut down while we are working on it. It returns
551  *	false if we cannot acquire s_umount or if we lose the race and
552  *	filesystem already got into shutdown, and returns true with the s_umount
553  *	lock held in read mode in case of success. On successful return,
554  *	the caller must drop the s_umount lock when done.
555  *
556  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
557  *	The reason why it's safe is that we are OK with doing trylock instead
558  *	of down_read().  There's a couple of places that are OK with that, but
559  *	it's very much not a general-purpose interface.
560  */
561 bool super_trylock_shared(struct super_block *sb)
562 {
563 	if (down_read_trylock(&sb->s_umount)) {
564 		if (!(sb->s_flags & SB_DYING) && sb->s_root &&
565 		    (sb->s_flags & SB_BORN))
566 			return true;
567 		super_unlock_shared(sb);
568 	}
569 
570 	return false;
571 }
572 
573 /**
574  *	retire_super	-	prevents superblock from being reused
575  *	@sb: superblock to retire
576  *
577  *	The function marks superblock to be ignored in superblock test, which
578  *	prevents it from being reused for any new mounts.  If the superblock has
579  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
580  *	of the superblock to prevent potential races.  The refcount is reduced
581  *	by generic_shutdown_super().  The function can not be called
582  *	concurrently with generic_shutdown_super().  It is safe to call the
583  *	function multiple times, subsequent calls have no effect.
584  *
585  *	The marker will affect the re-use only for block-device-based
586  *	superblocks.  Other superblocks will still get marked if this function
587  *	is used, but that will not affect their reusability.
588  */
589 void retire_super(struct super_block *sb)
590 {
591 	WARN_ON(!sb->s_bdev);
592 	__super_lock_excl(sb);
593 	if (sb->s_iflags & SB_I_PERSB_BDI) {
594 		bdi_unregister(sb->s_bdi);
595 		sb->s_iflags &= ~SB_I_PERSB_BDI;
596 	}
597 	sb->s_iflags |= SB_I_RETIRED;
598 	super_unlock_excl(sb);
599 }
600 EXPORT_SYMBOL(retire_super);
601 
602 /**
603  *	generic_shutdown_super	-	common helper for ->kill_sb()
604  *	@sb: superblock to kill
605  *
606  *	generic_shutdown_super() does all fs-independent work on superblock
607  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
608  *	that need destruction out of superblock, call generic_shutdown_super()
609  *	and release aforementioned objects.  Note: dentries and inodes _are_
610  *	taken care of and do not need specific handling.
611  *
612  *	Upon calling this function, the filesystem may no longer alter or
613  *	rearrange the set of dentries belonging to this super_block, nor may it
614  *	change the attachments of dentries to inodes.
615  */
616 void generic_shutdown_super(struct super_block *sb)
617 {
618 	const struct super_operations *sop = sb->s_op;
619 
620 	if (sb->s_root) {
621 		shrink_dcache_for_umount(sb);
622 		sync_filesystem(sb);
623 		sb->s_flags &= ~SB_ACTIVE;
624 
625 		cgroup_writeback_umount(sb);
626 
627 		/* Evict all inodes with zero refcount. */
628 		evict_inodes(sb);
629 
630 		/*
631 		 * Clean up and evict any inodes that still have references due
632 		 * to fsnotify or the security policy.
633 		 */
634 		fsnotify_sb_delete(sb);
635 		security_sb_delete(sb);
636 
637 		if (sb->s_dio_done_wq) {
638 			destroy_workqueue(sb->s_dio_done_wq);
639 			sb->s_dio_done_wq = NULL;
640 		}
641 
642 		if (sop->put_super)
643 			sop->put_super(sb);
644 
645 		/*
646 		 * Now that all potentially-encrypted inodes have been evicted,
647 		 * the fscrypt keyring can be destroyed.
648 		 */
649 		fscrypt_destroy_keyring(sb);
650 
651 		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), NULL,
652 				"VFS: Busy inodes after unmount of %s (%s)",
653 				sb->s_id, sb->s_type->name)) {
654 			/*
655 			 * Adding a proper bailout path here would be hard, but
656 			 * we can at least make it more likely that a later
657 			 * iput_final() or such crashes cleanly.
658 			 */
659 			struct inode *inode;
660 
661 			spin_lock(&sb->s_inode_list_lock);
662 			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
663 				inode->i_op = VFS_PTR_POISON;
664 				inode->i_sb = VFS_PTR_POISON;
665 				inode->i_mapping = VFS_PTR_POISON;
666 			}
667 			spin_unlock(&sb->s_inode_list_lock);
668 		}
669 	}
670 	/*
671 	 * Broadcast to everyone that grabbed a temporary reference to this
672 	 * superblock before we removed it from @fs_supers that the superblock
673 	 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
674 	 * discard this superblock and treat it as dead.
675 	 *
676 	 * We leave the superblock on @fs_supers so it can be found by
677 	 * sget{_fc}() until we passed sb->kill_sb().
678 	 */
679 	super_wake(sb, SB_DYING);
680 	super_unlock_excl(sb);
681 	if (sb->s_bdi != &noop_backing_dev_info) {
682 		if (sb->s_iflags & SB_I_PERSB_BDI)
683 			bdi_unregister(sb->s_bdi);
684 		bdi_put(sb->s_bdi);
685 		sb->s_bdi = &noop_backing_dev_info;
686 	}
687 }
688 
689 EXPORT_SYMBOL(generic_shutdown_super);
690 
691 bool mount_capable(struct fs_context *fc)
692 {
693 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
694 		return capable(CAP_SYS_ADMIN);
695 	else
696 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
697 }
698 
699 /**
700  * sget_fc - Find or create a superblock
701  * @fc:	Filesystem context.
702  * @test: Comparison callback
703  * @set: Setup callback
704  *
705  * Create a new superblock or find an existing one.
706  *
707  * The @test callback is used to find a matching existing superblock.
708  * Whether or not the requested parameters in @fc are taken into account
709  * is specific to the @test callback that is used. They may even be
710  * completely ignored.
711  *
712  * If an extant superblock is matched, it will be returned unless:
713  *
714  * (1) the namespace the filesystem context @fc and the extant
715  *     superblock's namespace differ
716  *
717  * (2) the filesystem context @fc has requested that reusing an extant
718  *     superblock is not allowed
719  *
720  * In both cases EBUSY will be returned.
721  *
722  * If no match is made, a new superblock will be allocated and basic
723  * initialisation will be performed (s_type, s_fs_info and s_id will be
724  * set and the @set callback will be invoked), the superblock will be
725  * published and it will be returned in a partially constructed state
726  * with SB_BORN and SB_ACTIVE as yet unset.
727  *
728  * Return: On success, an extant or newly created superblock is
729  *         returned. On failure an error pointer is returned.
730  */
731 struct super_block *sget_fc(struct fs_context *fc,
732 			    int (*test)(struct super_block *, struct fs_context *),
733 			    int (*set)(struct super_block *, struct fs_context *))
734 {
735 	struct super_block *s = NULL;
736 	struct super_block *old;
737 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
738 	int err;
739 
740 	/*
741 	 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is
742 	 * not set, as the filesystem is likely unprepared to handle it.
743 	 * This can happen when fsconfig() is called from init_user_ns with
744 	 * an fs_fd opened in another user namespace.
745 	 */
746 	if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) {
747 		errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed");
748 		return ERR_PTR(-EPERM);
749 	}
750 
751 retry:
752 	spin_lock(&sb_lock);
753 	if (test) {
754 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
755 			if (test(old, fc))
756 				goto share_extant_sb;
757 		}
758 	}
759 	if (!s) {
760 		spin_unlock(&sb_lock);
761 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
762 		if (!s)
763 			return ERR_PTR(-ENOMEM);
764 		goto retry;
765 	}
766 
767 	s->s_fs_info = fc->s_fs_info;
768 	err = set(s, fc);
769 	if (err) {
770 		s->s_fs_info = NULL;
771 		spin_unlock(&sb_lock);
772 		destroy_unused_super(s);
773 		return ERR_PTR(err);
774 	}
775 	fc->s_fs_info = NULL;
776 	s->s_type = fc->fs_type;
777 	s->s_iflags |= fc->s_iflags;
778 	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
779 	/*
780 	 * Make the superblock visible on @super_blocks and @fs_supers.
781 	 * It's in a nascent state and users should wait on SB_BORN or
782 	 * SB_DYING to be set.
783 	 */
784 	list_add_tail(&s->s_list, &super_blocks);
785 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
786 	spin_unlock(&sb_lock);
787 	get_filesystem(s->s_type);
788 	shrinker_register(s->s_shrink);
789 	return s;
790 
791 share_extant_sb:
792 	if (user_ns != old->s_user_ns || fc->exclusive) {
793 		spin_unlock(&sb_lock);
794 		destroy_unused_super(s);
795 		if (fc->exclusive)
796 			warnfc(fc, "reusing existing filesystem not allowed");
797 		else
798 			warnfc(fc, "reusing existing filesystem in another namespace not allowed");
799 		return ERR_PTR(-EBUSY);
800 	}
801 	if (!grab_super(old))
802 		goto retry;
803 	destroy_unused_super(s);
804 	return old;
805 }
806 EXPORT_SYMBOL(sget_fc);
807 
808 /**
809  *	sget	-	find or create a superblock
810  *	@type:	  filesystem type superblock should belong to
811  *	@test:	  comparison callback
812  *	@set:	  setup callback
813  *	@flags:	  mount flags
814  *	@data:	  argument to each of them
815  */
816 struct super_block *sget(struct file_system_type *type,
817 			int (*test)(struct super_block *,void *),
818 			int (*set)(struct super_block *,void *),
819 			int flags,
820 			void *data)
821 {
822 	struct user_namespace *user_ns = current_user_ns();
823 	struct super_block *s = NULL;
824 	struct super_block *old;
825 	int err;
826 
827 	/* We don't yet pass the user namespace of the parent
828 	 * mount through to here so always use &init_user_ns
829 	 * until that changes.
830 	 */
831 	if (flags & SB_SUBMOUNT)
832 		user_ns = &init_user_ns;
833 
834 retry:
835 	spin_lock(&sb_lock);
836 	if (test) {
837 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
838 			if (!test(old, data))
839 				continue;
840 			if (user_ns != old->s_user_ns) {
841 				spin_unlock(&sb_lock);
842 				destroy_unused_super(s);
843 				return ERR_PTR(-EBUSY);
844 			}
845 			if (!grab_super(old))
846 				goto retry;
847 			destroy_unused_super(s);
848 			return old;
849 		}
850 	}
851 	if (!s) {
852 		spin_unlock(&sb_lock);
853 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
854 		if (!s)
855 			return ERR_PTR(-ENOMEM);
856 		goto retry;
857 	}
858 
859 	err = set(s, data);
860 	if (err) {
861 		spin_unlock(&sb_lock);
862 		destroy_unused_super(s);
863 		return ERR_PTR(err);
864 	}
865 	s->s_type = type;
866 	strscpy(s->s_id, type->name, sizeof(s->s_id));
867 	list_add_tail(&s->s_list, &super_blocks);
868 	hlist_add_head(&s->s_instances, &type->fs_supers);
869 	spin_unlock(&sb_lock);
870 	get_filesystem(type);
871 	shrinker_register(s->s_shrink);
872 	return s;
873 }
874 EXPORT_SYMBOL(sget);
875 
876 void drop_super(struct super_block *sb)
877 {
878 	super_unlock_shared(sb);
879 	put_super(sb);
880 }
881 
882 EXPORT_SYMBOL(drop_super);
883 
884 void drop_super_exclusive(struct super_block *sb)
885 {
886 	super_unlock_excl(sb);
887 	put_super(sb);
888 }
889 EXPORT_SYMBOL(drop_super_exclusive);
890 
891 enum super_iter_flags_t {
892 	SUPER_ITER_EXCL		= (1U << 0),
893 	SUPER_ITER_UNLOCKED	= (1U << 1),
894 	SUPER_ITER_REVERSE	= (1U << 2),
895 };
896 
897 static inline struct super_block *first_super(enum super_iter_flags_t flags)
898 {
899 	if (flags & SUPER_ITER_REVERSE)
900 		return list_last_entry(&super_blocks, struct super_block, s_list);
901 	return list_first_entry(&super_blocks, struct super_block, s_list);
902 }
903 
904 static inline struct super_block *next_super(struct super_block *sb,
905 					     enum super_iter_flags_t flags)
906 {
907 	if (flags & SUPER_ITER_REVERSE)
908 		return list_prev_entry(sb, s_list);
909 	return list_next_entry(sb, s_list);
910 }
911 
912 static void __iterate_supers(void (*f)(struct super_block *, void *), void *arg,
913 			     enum super_iter_flags_t flags)
914 {
915 	struct super_block *sb, *p = NULL;
916 	bool excl = flags & SUPER_ITER_EXCL;
917 
918 	guard(spinlock)(&sb_lock);
919 
920 	for (sb = first_super(flags);
921 	     !list_entry_is_head(sb, &super_blocks, s_list);
922 	     sb = next_super(sb, flags)) {
923 		if (super_flags(sb, SB_DYING))
924 			continue;
925 		sb->s_count++;
926 		spin_unlock(&sb_lock);
927 
928 		if (flags & SUPER_ITER_UNLOCKED) {
929 			f(sb, arg);
930 		} else if (super_lock(sb, excl)) {
931 			f(sb, arg);
932 			super_unlock(sb, excl);
933 		}
934 
935 		spin_lock(&sb_lock);
936 		if (p)
937 			__put_super(p);
938 		p = sb;
939 	}
940 	if (p)
941 		__put_super(p);
942 }
943 
944 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
945 {
946 	__iterate_supers(f, arg, 0);
947 }
948 
949 /**
950  *	iterate_supers_type - call function for superblocks of given type
951  *	@type: fs type
952  *	@f: function to call
953  *	@arg: argument to pass to it
954  *
955  *	Scans the superblock list and calls given function, passing it
956  *	locked superblock and given argument.
957  */
958 void iterate_supers_type(struct file_system_type *type,
959 	void (*f)(struct super_block *, void *), void *arg)
960 {
961 	struct super_block *sb, *p = NULL;
962 
963 	spin_lock(&sb_lock);
964 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
965 		bool locked;
966 
967 		if (super_flags(sb, SB_DYING))
968 			continue;
969 
970 		sb->s_count++;
971 		spin_unlock(&sb_lock);
972 
973 		locked = super_lock_shared(sb);
974 		if (locked)
975 			f(sb, arg);
976 
977 		spin_lock(&sb_lock);
978 		if (p)
979 			__put_super(p);
980 		p = sb;
981 	}
982 	if (p)
983 		__put_super(p);
984 	spin_unlock(&sb_lock);
985 }
986 
987 EXPORT_SYMBOL(iterate_supers_type);
988 
989 struct super_block *user_get_super(dev_t dev, bool excl)
990 {
991 	struct super_block *sb;
992 
993 	spin_lock(&sb_lock);
994 	list_for_each_entry(sb, &super_blocks, s_list) {
995 		bool locked;
996 
997 		if (sb->s_dev != dev)
998 			continue;
999 
1000 		sb->s_count++;
1001 		spin_unlock(&sb_lock);
1002 
1003 		locked = super_lock(sb, excl);
1004 		if (locked)
1005 			return sb;
1006 
1007 		spin_lock(&sb_lock);
1008 		__put_super(sb);
1009 		break;
1010 	}
1011 	spin_unlock(&sb_lock);
1012 	return NULL;
1013 }
1014 
1015 /**
1016  * reconfigure_super - asks filesystem to change superblock parameters
1017  * @fc: The superblock and configuration
1018  *
1019  * Alters the configuration parameters of a live superblock.
1020  */
1021 int reconfigure_super(struct fs_context *fc)
1022 {
1023 	struct super_block *sb = fc->root->d_sb;
1024 	int retval;
1025 	bool remount_ro = false;
1026 	bool remount_rw = false;
1027 	bool force = fc->sb_flags & SB_FORCE;
1028 
1029 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
1030 		return -EINVAL;
1031 	if (sb->s_writers.frozen != SB_UNFROZEN)
1032 		return -EBUSY;
1033 
1034 	retval = security_sb_remount(sb, fc->security);
1035 	if (retval)
1036 		return retval;
1037 
1038 	if (fc->sb_flags_mask & SB_RDONLY) {
1039 #ifdef CONFIG_BLOCK
1040 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1041 		    bdev_read_only(sb->s_bdev))
1042 			return -EACCES;
1043 #endif
1044 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1045 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1046 	}
1047 
1048 	if (remount_ro) {
1049 		if (!hlist_empty(&sb->s_pins)) {
1050 			super_unlock_excl(sb);
1051 			group_pin_kill(&sb->s_pins);
1052 			__super_lock_excl(sb);
1053 			if (!sb->s_root)
1054 				return 0;
1055 			if (sb->s_writers.frozen != SB_UNFROZEN)
1056 				return -EBUSY;
1057 			remount_ro = !sb_rdonly(sb);
1058 		}
1059 	}
1060 	shrink_dcache_sb(sb);
1061 
1062 	/* If we are reconfiguring to RDONLY and current sb is read/write,
1063 	 * make sure there are no files open for writing.
1064 	 */
1065 	if (remount_ro) {
1066 		if (force) {
1067 			sb_start_ro_state_change(sb);
1068 		} else {
1069 			retval = sb_prepare_remount_readonly(sb);
1070 			if (retval)
1071 				return retval;
1072 		}
1073 	} else if (remount_rw) {
1074 		/*
1075 		 * Protect filesystem's reconfigure code from writes from
1076 		 * userspace until reconfigure finishes.
1077 		 */
1078 		sb_start_ro_state_change(sb);
1079 	}
1080 
1081 	if (fc->ops->reconfigure) {
1082 		retval = fc->ops->reconfigure(fc);
1083 		if (retval) {
1084 			if (!force)
1085 				goto cancel_readonly;
1086 			/* If forced remount, go ahead despite any errors */
1087 			WARN(1, "forced remount of a %s fs returned %i\n",
1088 			     sb->s_type->name, retval);
1089 		}
1090 	}
1091 
1092 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1093 				 (fc->sb_flags & fc->sb_flags_mask)));
1094 	sb_end_ro_state_change(sb);
1095 
1096 	/*
1097 	 * Some filesystems modify their metadata via some other path than the
1098 	 * bdev buffer cache (eg. use a private mapping, or directories in
1099 	 * pagecache, etc). Also file data modifications go via their own
1100 	 * mappings. So If we try to mount readonly then copy the filesystem
1101 	 * from bdev, we could get stale data, so invalidate it to give a best
1102 	 * effort at coherency.
1103 	 */
1104 	if (remount_ro && sb->s_bdev)
1105 		invalidate_bdev(sb->s_bdev);
1106 	return 0;
1107 
1108 cancel_readonly:
1109 	sb_end_ro_state_change(sb);
1110 	return retval;
1111 }
1112 
1113 static void do_emergency_remount_callback(struct super_block *sb, void *unused)
1114 {
1115 	if (sb->s_bdev && !sb_rdonly(sb)) {
1116 		struct fs_context *fc;
1117 
1118 		fc = fs_context_for_reconfigure(sb->s_root,
1119 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1120 		if (!IS_ERR(fc)) {
1121 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1122 				(void)reconfigure_super(fc);
1123 			put_fs_context(fc);
1124 		}
1125 	}
1126 }
1127 
1128 static void do_emergency_remount(struct work_struct *work)
1129 {
1130 	__iterate_supers(do_emergency_remount_callback, NULL,
1131 			 SUPER_ITER_EXCL | SUPER_ITER_REVERSE);
1132 	kfree(work);
1133 	printk("Emergency Remount complete\n");
1134 }
1135 
1136 void emergency_remount(void)
1137 {
1138 	struct work_struct *work;
1139 
1140 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1141 	if (work) {
1142 		INIT_WORK(work, do_emergency_remount);
1143 		schedule_work(work);
1144 	}
1145 }
1146 
1147 static void do_thaw_all_callback(struct super_block *sb, void *unused)
1148 {
1149 	if (IS_ENABLED(CONFIG_BLOCK))
1150 		while (sb->s_bdev && !bdev_thaw(sb->s_bdev))
1151 			pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1152 	thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE, NULL);
1153 	return;
1154 }
1155 
1156 static void do_thaw_all(struct work_struct *work)
1157 {
1158 	__iterate_supers(do_thaw_all_callback, NULL, SUPER_ITER_EXCL);
1159 	kfree(work);
1160 	printk(KERN_WARNING "Emergency Thaw complete\n");
1161 }
1162 
1163 /**
1164  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1165  *
1166  * Used for emergency unfreeze of all filesystems via SysRq
1167  */
1168 void emergency_thaw_all(void)
1169 {
1170 	struct work_struct *work;
1171 
1172 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1173 	if (work) {
1174 		INIT_WORK(work, do_thaw_all);
1175 		schedule_work(work);
1176 	}
1177 }
1178 
1179 static inline bool get_active_super(struct super_block *sb)
1180 {
1181 	bool active = false;
1182 
1183 	if (super_lock_excl(sb)) {
1184 		active = atomic_inc_not_zero(&sb->s_active);
1185 		super_unlock_excl(sb);
1186 	}
1187 	return active;
1188 }
1189 
1190 static const char *filesystems_freeze_ptr = "filesystems_freeze";
1191 
1192 static void filesystems_freeze_callback(struct super_block *sb, void *unused)
1193 {
1194 	if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super)
1195 		return;
1196 
1197 	if (!get_active_super(sb))
1198 		return;
1199 
1200 	if (sb->s_op->freeze_super)
1201 		sb->s_op->freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1202 				       filesystems_freeze_ptr);
1203 	else
1204 		freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1205 			     filesystems_freeze_ptr);
1206 
1207 	deactivate_super(sb);
1208 }
1209 
1210 void filesystems_freeze(void)
1211 {
1212 	__iterate_supers(filesystems_freeze_callback, NULL,
1213 			 SUPER_ITER_UNLOCKED | SUPER_ITER_REVERSE);
1214 }
1215 
1216 static void filesystems_thaw_callback(struct super_block *sb, void *unused)
1217 {
1218 	if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super)
1219 		return;
1220 
1221 	if (!get_active_super(sb))
1222 		return;
1223 
1224 	if (sb->s_op->thaw_super)
1225 		sb->s_op->thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1226 				     filesystems_freeze_ptr);
1227 	else
1228 		thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1229 			   filesystems_freeze_ptr);
1230 
1231 	deactivate_super(sb);
1232 }
1233 
1234 void filesystems_thaw(void)
1235 {
1236 	__iterate_supers(filesystems_thaw_callback, NULL, SUPER_ITER_UNLOCKED);
1237 }
1238 
1239 static DEFINE_IDA(unnamed_dev_ida);
1240 
1241 /**
1242  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1243  * @p: Pointer to a dev_t.
1244  *
1245  * Filesystems which don't use real block devices can call this function
1246  * to allocate a virtual block device.
1247  *
1248  * Context: Any context.  Frequently called while holding sb_lock.
1249  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1250  * or -ENOMEM if memory allocation failed.
1251  */
1252 int get_anon_bdev(dev_t *p)
1253 {
1254 	int dev;
1255 
1256 	/*
1257 	 * Many userspace utilities consider an FSID of 0 invalid.
1258 	 * Always return at least 1 from get_anon_bdev.
1259 	 */
1260 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1261 			GFP_ATOMIC);
1262 	if (dev == -ENOSPC)
1263 		dev = -EMFILE;
1264 	if (dev < 0)
1265 		return dev;
1266 
1267 	*p = MKDEV(0, dev);
1268 	return 0;
1269 }
1270 EXPORT_SYMBOL(get_anon_bdev);
1271 
1272 void free_anon_bdev(dev_t dev)
1273 {
1274 	ida_free(&unnamed_dev_ida, MINOR(dev));
1275 }
1276 EXPORT_SYMBOL(free_anon_bdev);
1277 
1278 int set_anon_super(struct super_block *s, void *data)
1279 {
1280 	return get_anon_bdev(&s->s_dev);
1281 }
1282 EXPORT_SYMBOL(set_anon_super);
1283 
1284 void kill_anon_super(struct super_block *sb)
1285 {
1286 	dev_t dev = sb->s_dev;
1287 	generic_shutdown_super(sb);
1288 	kill_super_notify(sb);
1289 	free_anon_bdev(dev);
1290 }
1291 EXPORT_SYMBOL(kill_anon_super);
1292 
1293 void kill_litter_super(struct super_block *sb)
1294 {
1295 	if (sb->s_root)
1296 		d_genocide(sb->s_root);
1297 	kill_anon_super(sb);
1298 }
1299 EXPORT_SYMBOL(kill_litter_super);
1300 
1301 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1302 {
1303 	return set_anon_super(sb, NULL);
1304 }
1305 EXPORT_SYMBOL(set_anon_super_fc);
1306 
1307 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1308 {
1309 	return sb->s_fs_info == fc->s_fs_info;
1310 }
1311 
1312 static int test_single_super(struct super_block *s, struct fs_context *fc)
1313 {
1314 	return 1;
1315 }
1316 
1317 static int vfs_get_super(struct fs_context *fc,
1318 		int (*test)(struct super_block *, struct fs_context *),
1319 		int (*fill_super)(struct super_block *sb,
1320 				  struct fs_context *fc))
1321 {
1322 	struct super_block *sb;
1323 	int err;
1324 
1325 	sb = sget_fc(fc, test, set_anon_super_fc);
1326 	if (IS_ERR(sb))
1327 		return PTR_ERR(sb);
1328 
1329 	if (!sb->s_root) {
1330 		err = fill_super(sb, fc);
1331 		if (err)
1332 			goto error;
1333 
1334 		sb->s_flags |= SB_ACTIVE;
1335 	}
1336 
1337 	fc->root = dget(sb->s_root);
1338 	return 0;
1339 
1340 error:
1341 	deactivate_locked_super(sb);
1342 	return err;
1343 }
1344 
1345 int get_tree_nodev(struct fs_context *fc,
1346 		  int (*fill_super)(struct super_block *sb,
1347 				    struct fs_context *fc))
1348 {
1349 	return vfs_get_super(fc, NULL, fill_super);
1350 }
1351 EXPORT_SYMBOL(get_tree_nodev);
1352 
1353 int get_tree_single(struct fs_context *fc,
1354 		  int (*fill_super)(struct super_block *sb,
1355 				    struct fs_context *fc))
1356 {
1357 	return vfs_get_super(fc, test_single_super, fill_super);
1358 }
1359 EXPORT_SYMBOL(get_tree_single);
1360 
1361 int get_tree_keyed(struct fs_context *fc,
1362 		  int (*fill_super)(struct super_block *sb,
1363 				    struct fs_context *fc),
1364 		void *key)
1365 {
1366 	fc->s_fs_info = key;
1367 	return vfs_get_super(fc, test_keyed_super, fill_super);
1368 }
1369 EXPORT_SYMBOL(get_tree_keyed);
1370 
1371 static int set_bdev_super(struct super_block *s, void *data)
1372 {
1373 	s->s_dev = *(dev_t *)data;
1374 	return 0;
1375 }
1376 
1377 static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1378 {
1379 	return set_bdev_super(s, fc->sget_key);
1380 }
1381 
1382 static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1383 {
1384 	return !(s->s_iflags & SB_I_RETIRED) &&
1385 		s->s_dev == *(dev_t *)fc->sget_key;
1386 }
1387 
1388 /**
1389  * sget_dev - Find or create a superblock by device number
1390  * @fc: Filesystem context.
1391  * @dev: device number
1392  *
1393  * Find or create a superblock using the provided device number that
1394  * will be stored in fc->sget_key.
1395  *
1396  * If an extant superblock is matched, then that will be returned with
1397  * an elevated reference count that the caller must transfer or discard.
1398  *
1399  * If no match is made, a new superblock will be allocated and basic
1400  * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1401  * be set). The superblock will be published and it will be returned in
1402  * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1403  * unset.
1404  *
1405  * Return: an existing or newly created superblock on success, an error
1406  *         pointer on failure.
1407  */
1408 struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1409 {
1410 	fc->sget_key = &dev;
1411 	return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1412 }
1413 EXPORT_SYMBOL(sget_dev);
1414 
1415 #ifdef CONFIG_BLOCK
1416 /*
1417  * Lock the superblock that is holder of the bdev. Returns the superblock
1418  * pointer if we successfully locked the superblock and it is alive. Otherwise
1419  * we return NULL and just unlock bdev->bd_holder_lock.
1420  *
1421  * The function must be called with bdev->bd_holder_lock and releases it.
1422  */
1423 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl)
1424 	__releases(&bdev->bd_holder_lock)
1425 {
1426 	struct super_block *sb = bdev->bd_holder;
1427 	bool locked;
1428 
1429 	lockdep_assert_held(&bdev->bd_holder_lock);
1430 	lockdep_assert_not_held(&sb->s_umount);
1431 	lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
1432 
1433 	/* Make sure sb doesn't go away from under us */
1434 	spin_lock(&sb_lock);
1435 	sb->s_count++;
1436 	spin_unlock(&sb_lock);
1437 
1438 	mutex_unlock(&bdev->bd_holder_lock);
1439 
1440 	locked = super_lock(sb, excl);
1441 
1442 	/*
1443 	 * If the superblock wasn't already SB_DYING then we hold
1444 	 * s_umount and can safely drop our temporary reference.
1445          */
1446 	put_super(sb);
1447 
1448 	if (!locked)
1449 		return NULL;
1450 
1451 	if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1452 		super_unlock(sb, excl);
1453 		return NULL;
1454 	}
1455 
1456 	return sb;
1457 }
1458 
1459 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1460 {
1461 	struct super_block *sb;
1462 
1463 	sb = bdev_super_lock(bdev, false);
1464 	if (!sb)
1465 		return;
1466 
1467 	if (!surprise)
1468 		sync_filesystem(sb);
1469 	shrink_dcache_sb(sb);
1470 	evict_inodes(sb);
1471 	if (sb->s_op->shutdown)
1472 		sb->s_op->shutdown(sb);
1473 
1474 	super_unlock_shared(sb);
1475 }
1476 
1477 static void fs_bdev_sync(struct block_device *bdev)
1478 {
1479 	struct super_block *sb;
1480 
1481 	sb = bdev_super_lock(bdev, false);
1482 	if (!sb)
1483 		return;
1484 
1485 	sync_filesystem(sb);
1486 	super_unlock_shared(sb);
1487 }
1488 
1489 static struct super_block *get_bdev_super(struct block_device *bdev)
1490 {
1491 	bool active = false;
1492 	struct super_block *sb;
1493 
1494 	sb = bdev_super_lock(bdev, true);
1495 	if (sb) {
1496 		active = atomic_inc_not_zero(&sb->s_active);
1497 		super_unlock_excl(sb);
1498 	}
1499 	if (!active)
1500 		return NULL;
1501 	return sb;
1502 }
1503 
1504 /**
1505  * fs_bdev_freeze - freeze owning filesystem of block device
1506  * @bdev: block device
1507  *
1508  * Freeze the filesystem that owns this block device if it is still
1509  * active.
1510  *
1511  * A filesystem that owns multiple block devices may be frozen from each
1512  * block device and won't be unfrozen until all block devices are
1513  * unfrozen. Each block device can only freeze the filesystem once as we
1514  * nest freezes for block devices in the block layer.
1515  *
1516  * Return: If the freeze was successful zero is returned. If the freeze
1517  *         failed a negative error code is returned.
1518  */
1519 static int fs_bdev_freeze(struct block_device *bdev)
1520 {
1521 	struct super_block *sb;
1522 	int error = 0;
1523 
1524 	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1525 
1526 	sb = get_bdev_super(bdev);
1527 	if (!sb)
1528 		return -EINVAL;
1529 
1530 	if (sb->s_op->freeze_super)
1531 		error = sb->s_op->freeze_super(sb,
1532 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1533 	else
1534 		error = freeze_super(sb,
1535 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1536 	if (!error)
1537 		error = sync_blockdev(bdev);
1538 	deactivate_super(sb);
1539 	return error;
1540 }
1541 
1542 /**
1543  * fs_bdev_thaw - thaw owning filesystem of block device
1544  * @bdev: block device
1545  *
1546  * Thaw the filesystem that owns this block device.
1547  *
1548  * A filesystem that owns multiple block devices may be frozen from each
1549  * block device and won't be unfrozen until all block devices are
1550  * unfrozen. Each block device can only freeze the filesystem once as we
1551  * nest freezes for block devices in the block layer.
1552  *
1553  * Return: If the thaw was successful zero is returned. If the thaw
1554  *         failed a negative error code is returned. If this function
1555  *         returns zero it doesn't mean that the filesystem is unfrozen
1556  *         as it may have been frozen multiple times (kernel may hold a
1557  *         freeze or might be frozen from other block devices).
1558  */
1559 static int fs_bdev_thaw(struct block_device *bdev)
1560 {
1561 	struct super_block *sb;
1562 	int error;
1563 
1564 	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1565 
1566 	/*
1567 	 * The block device may have been frozen before it was claimed by a
1568 	 * filesystem. Concurrently another process might try to mount that
1569 	 * frozen block device and has temporarily claimed the block device for
1570 	 * that purpose causing a concurrent fs_bdev_thaw() to end up here. The
1571 	 * mounter is already about to abort mounting because they still saw an
1572 	 * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return
1573 	 * NULL in that case.
1574 	 */
1575 	sb = get_bdev_super(bdev);
1576 	if (!sb)
1577 		return -EINVAL;
1578 
1579 	if (sb->s_op->thaw_super)
1580 		error = sb->s_op->thaw_super(sb,
1581 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1582 	else
1583 		error = thaw_super(sb,
1584 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1585 	deactivate_super(sb);
1586 	return error;
1587 }
1588 
1589 const struct blk_holder_ops fs_holder_ops = {
1590 	.mark_dead		= fs_bdev_mark_dead,
1591 	.sync			= fs_bdev_sync,
1592 	.freeze			= fs_bdev_freeze,
1593 	.thaw			= fs_bdev_thaw,
1594 };
1595 EXPORT_SYMBOL_GPL(fs_holder_ops);
1596 
1597 int setup_bdev_super(struct super_block *sb, int sb_flags,
1598 		struct fs_context *fc)
1599 {
1600 	blk_mode_t mode = sb_open_mode(sb_flags);
1601 	struct file *bdev_file;
1602 	struct block_device *bdev;
1603 
1604 	bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1605 	if (IS_ERR(bdev_file)) {
1606 		if (fc)
1607 			errorf(fc, "%s: Can't open blockdev", fc->source);
1608 		return PTR_ERR(bdev_file);
1609 	}
1610 	bdev = file_bdev(bdev_file);
1611 
1612 	/*
1613 	 * This really should be in blkdev_get_by_dev, but right now can't due
1614 	 * to legacy issues that require us to allow opening a block device node
1615 	 * writable from userspace even for a read-only block device.
1616 	 */
1617 	if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1618 		bdev_fput(bdev_file);
1619 		return -EACCES;
1620 	}
1621 
1622 	/*
1623 	 * It is enough to check bdev was not frozen before we set
1624 	 * s_bdev as freezing will wait until SB_BORN is set.
1625 	 */
1626 	if (atomic_read(&bdev->bd_fsfreeze_count) > 0) {
1627 		if (fc)
1628 			warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1629 		bdev_fput(bdev_file);
1630 		return -EBUSY;
1631 	}
1632 	spin_lock(&sb_lock);
1633 	sb->s_bdev_file = bdev_file;
1634 	sb->s_bdev = bdev;
1635 	sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1636 	if (bdev_stable_writes(bdev))
1637 		sb->s_iflags |= SB_I_STABLE_WRITES;
1638 	spin_unlock(&sb_lock);
1639 
1640 	snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1641 	shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1642 				sb->s_id);
1643 	sb_set_blocksize(sb, block_size(bdev));
1644 	return 0;
1645 }
1646 EXPORT_SYMBOL_GPL(setup_bdev_super);
1647 
1648 /**
1649  * get_tree_bdev_flags - Get a superblock based on a single block device
1650  * @fc: The filesystem context holding the parameters
1651  * @fill_super: Helper to initialise a new superblock
1652  * @flags: GET_TREE_BDEV_* flags
1653  */
1654 int get_tree_bdev_flags(struct fs_context *fc,
1655 		int (*fill_super)(struct super_block *sb,
1656 				  struct fs_context *fc), unsigned int flags)
1657 {
1658 	struct super_block *s;
1659 	int error = 0;
1660 	dev_t dev;
1661 
1662 	if (!fc->source)
1663 		return invalf(fc, "No source specified");
1664 
1665 	error = lookup_bdev(fc->source, &dev);
1666 	if (error) {
1667 		if (!(flags & GET_TREE_BDEV_QUIET_LOOKUP))
1668 			errorf(fc, "%s: Can't lookup blockdev", fc->source);
1669 		return error;
1670 	}
1671 	fc->sb_flags |= SB_NOSEC;
1672 	s = sget_dev(fc, dev);
1673 	if (IS_ERR(s))
1674 		return PTR_ERR(s);
1675 
1676 	if (s->s_root) {
1677 		/* Don't summarily change the RO/RW state. */
1678 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1679 			warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1680 			deactivate_locked_super(s);
1681 			return -EBUSY;
1682 		}
1683 	} else {
1684 		error = setup_bdev_super(s, fc->sb_flags, fc);
1685 		if (!error)
1686 			error = fill_super(s, fc);
1687 		if (error) {
1688 			deactivate_locked_super(s);
1689 			return error;
1690 		}
1691 		s->s_flags |= SB_ACTIVE;
1692 	}
1693 
1694 	BUG_ON(fc->root);
1695 	fc->root = dget(s->s_root);
1696 	return 0;
1697 }
1698 EXPORT_SYMBOL_GPL(get_tree_bdev_flags);
1699 
1700 /**
1701  * get_tree_bdev - Get a superblock based on a single block device
1702  * @fc: The filesystem context holding the parameters
1703  * @fill_super: Helper to initialise a new superblock
1704  */
1705 int get_tree_bdev(struct fs_context *fc,
1706 		int (*fill_super)(struct super_block *,
1707 				  struct fs_context *))
1708 {
1709 	return get_tree_bdev_flags(fc, fill_super, 0);
1710 }
1711 EXPORT_SYMBOL(get_tree_bdev);
1712 
1713 static int test_bdev_super(struct super_block *s, void *data)
1714 {
1715 	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1716 }
1717 
1718 struct dentry *mount_bdev(struct file_system_type *fs_type,
1719 	int flags, const char *dev_name, void *data,
1720 	int (*fill_super)(struct super_block *, void *, int))
1721 {
1722 	struct super_block *s;
1723 	int error;
1724 	dev_t dev;
1725 
1726 	error = lookup_bdev(dev_name, &dev);
1727 	if (error)
1728 		return ERR_PTR(error);
1729 
1730 	flags |= SB_NOSEC;
1731 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
1732 	if (IS_ERR(s))
1733 		return ERR_CAST(s);
1734 
1735 	if (s->s_root) {
1736 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1737 			deactivate_locked_super(s);
1738 			return ERR_PTR(-EBUSY);
1739 		}
1740 	} else {
1741 		error = setup_bdev_super(s, flags, NULL);
1742 		if (!error)
1743 			error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1744 		if (error) {
1745 			deactivate_locked_super(s);
1746 			return ERR_PTR(error);
1747 		}
1748 
1749 		s->s_flags |= SB_ACTIVE;
1750 	}
1751 
1752 	return dget(s->s_root);
1753 }
1754 EXPORT_SYMBOL(mount_bdev);
1755 
1756 void kill_block_super(struct super_block *sb)
1757 {
1758 	struct block_device *bdev = sb->s_bdev;
1759 
1760 	generic_shutdown_super(sb);
1761 	if (bdev) {
1762 		sync_blockdev(bdev);
1763 		bdev_fput(sb->s_bdev_file);
1764 	}
1765 }
1766 
1767 EXPORT_SYMBOL(kill_block_super);
1768 #endif
1769 
1770 struct dentry *mount_nodev(struct file_system_type *fs_type,
1771 	int flags, void *data,
1772 	int (*fill_super)(struct super_block *, void *, int))
1773 {
1774 	int error;
1775 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1776 
1777 	if (IS_ERR(s))
1778 		return ERR_CAST(s);
1779 
1780 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1781 	if (error) {
1782 		deactivate_locked_super(s);
1783 		return ERR_PTR(error);
1784 	}
1785 	s->s_flags |= SB_ACTIVE;
1786 	return dget(s->s_root);
1787 }
1788 EXPORT_SYMBOL(mount_nodev);
1789 
1790 /**
1791  * vfs_get_tree - Get the mountable root
1792  * @fc: The superblock configuration context.
1793  *
1794  * The filesystem is invoked to get or create a superblock which can then later
1795  * be used for mounting.  The filesystem places a pointer to the root to be
1796  * used for mounting in @fc->root.
1797  */
1798 int vfs_get_tree(struct fs_context *fc)
1799 {
1800 	struct super_block *sb;
1801 	int error;
1802 
1803 	if (fc->root)
1804 		return -EBUSY;
1805 
1806 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1807 	 * on the superblock.
1808 	 */
1809 	error = fc->ops->get_tree(fc);
1810 	if (error < 0)
1811 		return error;
1812 
1813 	if (!fc->root) {
1814 		pr_err("Filesystem %s get_tree() didn't set fc->root, returned %i\n",
1815 		       fc->fs_type->name, error);
1816 		/* We don't know what the locking state of the superblock is -
1817 		 * if there is a superblock.
1818 		 */
1819 		BUG();
1820 	}
1821 
1822 	sb = fc->root->d_sb;
1823 	WARN_ON(!sb->s_bdi);
1824 
1825 	/*
1826 	 * super_wake() contains a memory barrier which also care of
1827 	 * ordering for super_cache_count(). We place it before setting
1828 	 * SB_BORN as the data dependency between the two functions is
1829 	 * the superblock structure contents that we just set up, not
1830 	 * the SB_BORN flag.
1831 	 */
1832 	super_wake(sb, SB_BORN);
1833 
1834 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1835 	if (unlikely(error)) {
1836 		fc_drop_locked(fc);
1837 		return error;
1838 	}
1839 
1840 	/*
1841 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1842 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1843 	 * this warning for a little while to try and catch filesystems that
1844 	 * violate this rule.
1845 	 */
1846 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1847 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1848 
1849 	return 0;
1850 }
1851 EXPORT_SYMBOL(vfs_get_tree);
1852 
1853 /*
1854  * Setup private BDI for given superblock. It gets automatically cleaned up
1855  * in generic_shutdown_super().
1856  */
1857 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1858 {
1859 	struct backing_dev_info *bdi;
1860 	int err;
1861 	va_list args;
1862 
1863 	bdi = bdi_alloc(NUMA_NO_NODE);
1864 	if (!bdi)
1865 		return -ENOMEM;
1866 
1867 	va_start(args, fmt);
1868 	err = bdi_register_va(bdi, fmt, args);
1869 	va_end(args);
1870 	if (err) {
1871 		bdi_put(bdi);
1872 		return err;
1873 	}
1874 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1875 	sb->s_bdi = bdi;
1876 	sb->s_iflags |= SB_I_PERSB_BDI;
1877 
1878 	return 0;
1879 }
1880 EXPORT_SYMBOL(super_setup_bdi_name);
1881 
1882 /*
1883  * Setup private BDI for given superblock. I gets automatically cleaned up
1884  * in generic_shutdown_super().
1885  */
1886 int super_setup_bdi(struct super_block *sb)
1887 {
1888 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1889 
1890 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1891 				    atomic_long_inc_return(&bdi_seq));
1892 }
1893 EXPORT_SYMBOL(super_setup_bdi);
1894 
1895 /**
1896  * sb_wait_write - wait until all writers to given file system finish
1897  * @sb: the super for which we wait
1898  * @level: type of writers we wait for (normal vs page fault)
1899  *
1900  * This function waits until there are no writers of given type to given file
1901  * system.
1902  */
1903 static void sb_wait_write(struct super_block *sb, int level)
1904 {
1905 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1906 }
1907 
1908 /*
1909  * We are going to return to userspace and forget about these locks, the
1910  * ownership goes to the caller of thaw_super() which does unlock().
1911  */
1912 static void lockdep_sb_freeze_release(struct super_block *sb)
1913 {
1914 	int level;
1915 
1916 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1917 		percpu_rwsem_release(sb->s_writers.rw_sem + level, _THIS_IP_);
1918 }
1919 
1920 /*
1921  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1922  */
1923 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1924 {
1925 	int level;
1926 
1927 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1928 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1929 }
1930 
1931 static void sb_freeze_unlock(struct super_block *sb, int level)
1932 {
1933 	for (level--; level >= 0; level--)
1934 		percpu_up_write(sb->s_writers.rw_sem + level);
1935 }
1936 
1937 static int wait_for_partially_frozen(struct super_block *sb)
1938 {
1939 	int ret = 0;
1940 
1941 	do {
1942 		unsigned short old = sb->s_writers.frozen;
1943 
1944 		up_write(&sb->s_umount);
1945 		ret = wait_var_event_killable(&sb->s_writers.frozen,
1946 					       sb->s_writers.frozen != old);
1947 		down_write(&sb->s_umount);
1948 	} while (ret == 0 &&
1949 		 sb->s_writers.frozen != SB_UNFROZEN &&
1950 		 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1951 
1952 	return ret;
1953 }
1954 
1955 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE)
1956 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST | FREEZE_EXCL)
1957 
1958 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who)
1959 {
1960 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1961 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1962 
1963 	if (who & FREEZE_HOLDER_KERNEL)
1964 		++sb->s_writers.freeze_kcount;
1965 	if (who & FREEZE_HOLDER_USERSPACE)
1966 		++sb->s_writers.freeze_ucount;
1967 	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1968 }
1969 
1970 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who)
1971 {
1972 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1973 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1974 
1975 	if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount)
1976 		--sb->s_writers.freeze_kcount;
1977 	if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount)
1978 		--sb->s_writers.freeze_ucount;
1979 	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1980 }
1981 
1982 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who,
1983 			      const void *freeze_owner)
1984 {
1985 	lockdep_assert_held(&sb->s_umount);
1986 
1987 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1988 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1989 
1990 	if (who & FREEZE_EXCL) {
1991 		if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL)))
1992 			return false;
1993 		if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL)))
1994 			return false;
1995 		if (WARN_ON_ONCE(!freeze_owner))
1996 			return false;
1997 		/* This freeze already has a specific owner. */
1998 		if (sb->s_writers.freeze_owner)
1999 			return false;
2000 		/*
2001 		 * This is already frozen multiple times so we're just
2002 		 * going to take a reference count and mark the freeze as
2003 		 * being owned by the caller.
2004 		 */
2005 		if (sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount)
2006 			sb->s_writers.freeze_owner = freeze_owner;
2007 		return true;
2008 	}
2009 
2010 	if (who & FREEZE_HOLDER_KERNEL)
2011 		return (who & FREEZE_MAY_NEST) ||
2012 		       sb->s_writers.freeze_kcount == 0;
2013 	if (who & FREEZE_HOLDER_USERSPACE)
2014 		return (who & FREEZE_MAY_NEST) ||
2015 		       sb->s_writers.freeze_ucount == 0;
2016 	return false;
2017 }
2018 
2019 static inline bool may_unfreeze(struct super_block *sb, enum freeze_holder who,
2020 				const void *freeze_owner)
2021 {
2022 	lockdep_assert_held(&sb->s_umount);
2023 
2024 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
2025 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
2026 
2027 	if (who & FREEZE_EXCL) {
2028 		if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL)))
2029 			return false;
2030 		if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL)))
2031 			return false;
2032 		if (WARN_ON_ONCE(!freeze_owner))
2033 			return false;
2034 		if (WARN_ON_ONCE(sb->s_writers.freeze_kcount == 0))
2035 			return false;
2036 		/* This isn't exclusively frozen. */
2037 		if (!sb->s_writers.freeze_owner)
2038 			return false;
2039 		/* This isn't exclusively frozen by us. */
2040 		if (sb->s_writers.freeze_owner != freeze_owner)
2041 			return false;
2042 		/*
2043 		 * This is still frozen multiple times so we're just
2044 		 * going to drop our reference count and undo our
2045 		 * exclusive freeze.
2046 		 */
2047 		if ((sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount) > 1)
2048 			sb->s_writers.freeze_owner = NULL;
2049 		return true;
2050 	}
2051 
2052 	if (who & FREEZE_HOLDER_KERNEL) {
2053 		/*
2054 		 * Someone's trying to steal the reference belonging to
2055 		 * @sb->s_writers.freeze_owner.
2056 		 */
2057 		if (sb->s_writers.freeze_kcount == 1 &&
2058 		    sb->s_writers.freeze_owner)
2059 			return false;
2060 		return sb->s_writers.freeze_kcount > 0;
2061 	}
2062 
2063 	if (who & FREEZE_HOLDER_USERSPACE)
2064 		return sb->s_writers.freeze_ucount > 0;
2065 
2066 	return false;
2067 }
2068 
2069 /**
2070  * freeze_super - lock the filesystem and force it into a consistent state
2071  * @sb: the super to lock
2072  * @who: context that wants to freeze
2073  * @freeze_owner: owner of the freeze
2074  *
2075  * Syncs the super to make sure the filesystem is consistent and calls the fs's
2076  * freeze_fs.  Subsequent calls to this without first thawing the fs may return
2077  * -EBUSY.
2078  *
2079  * @who should be:
2080  * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
2081  * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
2082  * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed.
2083  *
2084  * The @who argument distinguishes between the kernel and userspace trying to
2085  * freeze the filesystem.  Although there cannot be multiple kernel freezes or
2086  * multiple userspace freezes in effect at any given time, the kernel and
2087  * userspace can both hold a filesystem frozen.  The filesystem remains frozen
2088  * until there are no kernel or userspace freezes in effect.
2089  *
2090  * A filesystem may hold multiple devices and thus a filesystems may be
2091  * frozen through the block layer via multiple block devices. In this
2092  * case the request is marked as being allowed to nest by passing
2093  * FREEZE_MAY_NEST. The filesystem remains frozen until all block
2094  * devices are unfrozen. If multiple freezes are attempted without
2095  * FREEZE_MAY_NEST -EBUSY will be returned.
2096  *
2097  * During this function, sb->s_writers.frozen goes through these values:
2098  *
2099  * SB_UNFROZEN: File system is normal, all writes progress as usual.
2100  *
2101  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
2102  * writes should be blocked, though page faults are still allowed. We wait for
2103  * all writes to complete and then proceed to the next stage.
2104  *
2105  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
2106  * but internal fs threads can still modify the filesystem (although they
2107  * should not dirty new pages or inodes), writeback can run etc. After waiting
2108  * for all running page faults we sync the filesystem which will clean all
2109  * dirty pages and inodes (no new dirty pages or inodes can be created when
2110  * sync is running).
2111  *
2112  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
2113  * modification are blocked (e.g. XFS preallocation truncation on inode
2114  * reclaim). This is usually implemented by blocking new transactions for
2115  * filesystems that have them and need this additional guard. After all
2116  * internal writers are finished we call ->freeze_fs() to finish filesystem
2117  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
2118  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
2119  *
2120  * sb->s_writers.frozen is protected by sb->s_umount.
2121  *
2122  * Return: If the freeze was successful zero is returned. If the freeze
2123  *         failed a negative error code is returned.
2124  */
2125 int freeze_super(struct super_block *sb, enum freeze_holder who, const void *freeze_owner)
2126 {
2127 	int ret;
2128 
2129 	if (!super_lock_excl(sb)) {
2130 		WARN_ON_ONCE("Dying superblock while freezing!");
2131 		return -EINVAL;
2132 	}
2133 	atomic_inc(&sb->s_active);
2134 
2135 retry:
2136 	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2137 		if (may_freeze(sb, who, freeze_owner))
2138 			ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1);
2139 		else
2140 			ret = -EBUSY;
2141 		/* All freezers share a single active reference. */
2142 		deactivate_locked_super(sb);
2143 		return ret;
2144 	}
2145 
2146 	if (sb->s_writers.frozen != SB_UNFROZEN) {
2147 		ret = wait_for_partially_frozen(sb);
2148 		if (ret) {
2149 			deactivate_locked_super(sb);
2150 			return ret;
2151 		}
2152 
2153 		goto retry;
2154 	}
2155 
2156 	if (sb_rdonly(sb)) {
2157 		/* Nothing to do really... */
2158 		WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2159 		sb->s_writers.freeze_owner = freeze_owner;
2160 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2161 		wake_up_var(&sb->s_writers.frozen);
2162 		super_unlock_excl(sb);
2163 		return 0;
2164 	}
2165 
2166 	sb->s_writers.frozen = SB_FREEZE_WRITE;
2167 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
2168 	super_unlock_excl(sb);
2169 	sb_wait_write(sb, SB_FREEZE_WRITE);
2170 	__super_lock_excl(sb);
2171 
2172 	/* Now we go and block page faults... */
2173 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2174 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2175 
2176 	/* All writers are done so after syncing there won't be dirty data */
2177 	ret = sync_filesystem(sb);
2178 	if (ret) {
2179 		sb->s_writers.frozen = SB_UNFROZEN;
2180 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2181 		wake_up_var(&sb->s_writers.frozen);
2182 		deactivate_locked_super(sb);
2183 		return ret;
2184 	}
2185 
2186 	/* Now wait for internal filesystem counter */
2187 	sb->s_writers.frozen = SB_FREEZE_FS;
2188 	sb_wait_write(sb, SB_FREEZE_FS);
2189 
2190 	if (sb->s_op->freeze_fs) {
2191 		ret = sb->s_op->freeze_fs(sb);
2192 		if (ret) {
2193 			printk(KERN_ERR
2194 				"VFS:Filesystem freeze failed\n");
2195 			sb->s_writers.frozen = SB_UNFROZEN;
2196 			sb_freeze_unlock(sb, SB_FREEZE_FS);
2197 			wake_up_var(&sb->s_writers.frozen);
2198 			deactivate_locked_super(sb);
2199 			return ret;
2200 		}
2201 	}
2202 	/*
2203 	 * For debugging purposes so that fs can warn if it sees write activity
2204 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2205 	 */
2206 	WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2207 	sb->s_writers.freeze_owner = freeze_owner;
2208 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2209 	wake_up_var(&sb->s_writers.frozen);
2210 	lockdep_sb_freeze_release(sb);
2211 	super_unlock_excl(sb);
2212 	return 0;
2213 }
2214 EXPORT_SYMBOL(freeze_super);
2215 
2216 /*
2217  * Undoes the effect of a freeze_super_locked call.  If the filesystem is
2218  * frozen both by userspace and the kernel, a thaw call from either source
2219  * removes that state without releasing the other state or unlocking the
2220  * filesystem.
2221  */
2222 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who,
2223 			     const void *freeze_owner)
2224 {
2225 	int error = -EINVAL;
2226 
2227 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE)
2228 		goto out_unlock;
2229 
2230 	if (!may_unfreeze(sb, who, freeze_owner))
2231 		goto out_unlock;
2232 
2233 	/*
2234 	 * All freezers share a single active reference.
2235 	 * So just unlock in case there are any left.
2236 	 */
2237 	if (freeze_dec(sb, who))
2238 		goto out_unlock;
2239 
2240 	if (sb_rdonly(sb)) {
2241 		sb->s_writers.frozen = SB_UNFROZEN;
2242 		sb->s_writers.freeze_owner = NULL;
2243 		wake_up_var(&sb->s_writers.frozen);
2244 		goto out_deactivate;
2245 	}
2246 
2247 	lockdep_sb_freeze_acquire(sb);
2248 
2249 	if (sb->s_op->unfreeze_fs) {
2250 		error = sb->s_op->unfreeze_fs(sb);
2251 		if (error) {
2252 			pr_err("VFS: Filesystem thaw failed\n");
2253 			freeze_inc(sb, who);
2254 			lockdep_sb_freeze_release(sb);
2255 			goto out_unlock;
2256 		}
2257 	}
2258 
2259 	sb->s_writers.frozen = SB_UNFROZEN;
2260 	sb->s_writers.freeze_owner = NULL;
2261 	wake_up_var(&sb->s_writers.frozen);
2262 	sb_freeze_unlock(sb, SB_FREEZE_FS);
2263 out_deactivate:
2264 	deactivate_locked_super(sb);
2265 	return 0;
2266 
2267 out_unlock:
2268 	super_unlock_excl(sb);
2269 	return error;
2270 }
2271 
2272 /**
2273  * thaw_super -- unlock filesystem
2274  * @sb: the super to thaw
2275  * @who: context that wants to freeze
2276  * @freeze_owner: owner of the freeze
2277  *
2278  * Unlocks the filesystem and marks it writeable again after freeze_super()
2279  * if there are no remaining freezes on the filesystem.
2280  *
2281  * @who should be:
2282  * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2283  * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2284  * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed
2285  *
2286  * A filesystem may hold multiple devices and thus a filesystems may
2287  * have been frozen through the block layer via multiple block devices.
2288  * The filesystem remains frozen until all block devices are unfrozen.
2289  */
2290 int thaw_super(struct super_block *sb, enum freeze_holder who,
2291 	       const void *freeze_owner)
2292 {
2293 	if (!super_lock_excl(sb)) {
2294 		WARN_ON_ONCE("Dying superblock while thawing!");
2295 		return -EINVAL;
2296 	}
2297 	return thaw_super_locked(sb, who, freeze_owner);
2298 }
2299 EXPORT_SYMBOL(thaw_super);
2300 
2301 /*
2302  * Create workqueue for deferred direct IO completions. We allocate the
2303  * workqueue when it's first needed. This avoids creating workqueue for
2304  * filesystems that don't need it and also allows us to create the workqueue
2305  * late enough so the we can include s_id in the name of the workqueue.
2306  */
2307 int sb_init_dio_done_wq(struct super_block *sb)
2308 {
2309 	struct workqueue_struct *old;
2310 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2311 						      WQ_MEM_RECLAIM, 0,
2312 						      sb->s_id);
2313 	if (!wq)
2314 		return -ENOMEM;
2315 	/*
2316 	 * This has to be atomic as more DIOs can race to create the workqueue
2317 	 */
2318 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2319 	/* Someone created workqueue before us? Free ours... */
2320 	if (old)
2321 		destroy_workqueue(wq);
2322 	return 0;
2323 }
2324 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);
2325