xref: /linux/fs/super.c (revision 4e0385dd7469d933c4adf84a617f872ca547aa07)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h>		/* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include <linux/user_namespace.h>
37 #include "internal.h"
38 
39 
40 static LIST_HEAD(super_blocks);
41 static DEFINE_SPINLOCK(sb_lock);
42 
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 	"sb_writers",
45 	"sb_pagefaults",
46 	"sb_internal",
47 };
48 
49 /*
50  * One thing we have to be careful of with a per-sb shrinker is that we don't
51  * drop the last active reference to the superblock from within the shrinker.
52  * If that happens we could trigger unregistering the shrinker from within the
53  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54  * take a passive reference to the superblock to avoid this from occurring.
55  */
56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 				      struct shrink_control *sc)
58 {
59 	struct super_block *sb;
60 	long	fs_objects = 0;
61 	long	total_objects;
62 	long	freed = 0;
63 	long	dentries;
64 	long	inodes;
65 
66 	sb = container_of(shrink, struct super_block, s_shrink);
67 
68 	/*
69 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
70 	 * to recurse into the FS that called us in clear_inode() and friends..
71 	 */
72 	if (!(sc->gfp_mask & __GFP_FS))
73 		return SHRINK_STOP;
74 
75 	if (!trylock_super(sb))
76 		return SHRINK_STOP;
77 
78 	if (sb->s_op->nr_cached_objects)
79 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
80 
81 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
82 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
83 	total_objects = dentries + inodes + fs_objects + 1;
84 	if (!total_objects)
85 		total_objects = 1;
86 
87 	/* proportion the scan between the caches */
88 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
89 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
90 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
91 
92 	/*
93 	 * prune the dcache first as the icache is pinned by it, then
94 	 * prune the icache, followed by the filesystem specific caches
95 	 *
96 	 * Ensure that we always scan at least one object - memcg kmem
97 	 * accounting uses this to fully empty the caches.
98 	 */
99 	sc->nr_to_scan = dentries + 1;
100 	freed = prune_dcache_sb(sb, sc);
101 	sc->nr_to_scan = inodes + 1;
102 	freed += prune_icache_sb(sb, sc);
103 
104 	if (fs_objects) {
105 		sc->nr_to_scan = fs_objects + 1;
106 		freed += sb->s_op->free_cached_objects(sb, sc);
107 	}
108 
109 	up_read(&sb->s_umount);
110 	return freed;
111 }
112 
113 static unsigned long super_cache_count(struct shrinker *shrink,
114 				       struct shrink_control *sc)
115 {
116 	struct super_block *sb;
117 	long	total_objects = 0;
118 
119 	sb = container_of(shrink, struct super_block, s_shrink);
120 
121 	/*
122 	 * Don't call trylock_super as it is a potential
123 	 * scalability bottleneck. The counts could get updated
124 	 * between super_cache_count and super_cache_scan anyway.
125 	 * Call to super_cache_count with shrinker_rwsem held
126 	 * ensures the safety of call to list_lru_shrink_count() and
127 	 * s_op->nr_cached_objects().
128 	 */
129 	if (sb->s_op && sb->s_op->nr_cached_objects)
130 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
131 
132 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
133 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
134 
135 	total_objects = vfs_pressure_ratio(total_objects);
136 	return total_objects;
137 }
138 
139 static void destroy_super_work(struct work_struct *work)
140 {
141 	struct super_block *s = container_of(work, struct super_block,
142 							destroy_work);
143 	int i;
144 
145 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
146 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
147 	kfree(s);
148 }
149 
150 static void destroy_super_rcu(struct rcu_head *head)
151 {
152 	struct super_block *s = container_of(head, struct super_block, rcu);
153 	INIT_WORK(&s->destroy_work, destroy_super_work);
154 	schedule_work(&s->destroy_work);
155 }
156 
157 /**
158  *	destroy_super	-	frees a superblock
159  *	@s: superblock to free
160  *
161  *	Frees a superblock.
162  */
163 static void destroy_super(struct super_block *s)
164 {
165 	list_lru_destroy(&s->s_dentry_lru);
166 	list_lru_destroy(&s->s_inode_lru);
167 	security_sb_free(s);
168 	WARN_ON(!list_empty(&s->s_mounts));
169 	put_user_ns(s->s_user_ns);
170 	kfree(s->s_subtype);
171 	kfree(s->s_options);
172 	call_rcu(&s->rcu, destroy_super_rcu);
173 }
174 
175 /**
176  *	alloc_super	-	create new superblock
177  *	@type:	filesystem type superblock should belong to
178  *	@flags: the mount flags
179  *	@user_ns: User namespace for the super_block
180  *
181  *	Allocates and initializes a new &struct super_block.  alloc_super()
182  *	returns a pointer new superblock or %NULL if allocation had failed.
183  */
184 static struct super_block *alloc_super(struct file_system_type *type, int flags,
185 				       struct user_namespace *user_ns)
186 {
187 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
188 	static const struct super_operations default_op;
189 	int i;
190 
191 	if (!s)
192 		return NULL;
193 
194 	INIT_LIST_HEAD(&s->s_mounts);
195 	s->s_user_ns = get_user_ns(user_ns);
196 
197 	if (security_sb_alloc(s))
198 		goto fail;
199 
200 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
201 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
202 					sb_writers_name[i],
203 					&type->s_writers_key[i]))
204 			goto fail;
205 	}
206 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
207 	s->s_bdi = &noop_backing_dev_info;
208 	s->s_flags = flags;
209 	if (s->s_user_ns != &init_user_ns)
210 		s->s_iflags |= SB_I_NODEV;
211 	INIT_HLIST_NODE(&s->s_instances);
212 	INIT_HLIST_BL_HEAD(&s->s_anon);
213 	mutex_init(&s->s_sync_lock);
214 	INIT_LIST_HEAD(&s->s_inodes);
215 	spin_lock_init(&s->s_inode_list_lock);
216 	INIT_LIST_HEAD(&s->s_inodes_wb);
217 	spin_lock_init(&s->s_inode_wblist_lock);
218 
219 	if (list_lru_init_memcg(&s->s_dentry_lru))
220 		goto fail;
221 	if (list_lru_init_memcg(&s->s_inode_lru))
222 		goto fail;
223 
224 	init_rwsem(&s->s_umount);
225 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
226 	/*
227 	 * sget() can have s_umount recursion.
228 	 *
229 	 * When it cannot find a suitable sb, it allocates a new
230 	 * one (this one), and tries again to find a suitable old
231 	 * one.
232 	 *
233 	 * In case that succeeds, it will acquire the s_umount
234 	 * lock of the old one. Since these are clearly distrinct
235 	 * locks, and this object isn't exposed yet, there's no
236 	 * risk of deadlocks.
237 	 *
238 	 * Annotate this by putting this lock in a different
239 	 * subclass.
240 	 */
241 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
242 	s->s_count = 1;
243 	atomic_set(&s->s_active, 1);
244 	mutex_init(&s->s_vfs_rename_mutex);
245 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
246 	mutex_init(&s->s_dquot.dqio_mutex);
247 	s->s_maxbytes = MAX_NON_LFS;
248 	s->s_op = &default_op;
249 	s->s_time_gran = 1000000000;
250 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
251 
252 	s->s_shrink.seeks = DEFAULT_SEEKS;
253 	s->s_shrink.scan_objects = super_cache_scan;
254 	s->s_shrink.count_objects = super_cache_count;
255 	s->s_shrink.batch = 1024;
256 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
257 	return s;
258 
259 fail:
260 	destroy_super(s);
261 	return NULL;
262 }
263 
264 /* Superblock refcounting  */
265 
266 /*
267  * Drop a superblock's refcount.  The caller must hold sb_lock.
268  */
269 static void __put_super(struct super_block *sb)
270 {
271 	if (!--sb->s_count) {
272 		list_del_init(&sb->s_list);
273 		destroy_super(sb);
274 	}
275 }
276 
277 /**
278  *	put_super	-	drop a temporary reference to superblock
279  *	@sb: superblock in question
280  *
281  *	Drops a temporary reference, frees superblock if there's no
282  *	references left.
283  */
284 static void put_super(struct super_block *sb)
285 {
286 	spin_lock(&sb_lock);
287 	__put_super(sb);
288 	spin_unlock(&sb_lock);
289 }
290 
291 
292 /**
293  *	deactivate_locked_super	-	drop an active reference to superblock
294  *	@s: superblock to deactivate
295  *
296  *	Drops an active reference to superblock, converting it into a temporary
297  *	one if there is no other active references left.  In that case we
298  *	tell fs driver to shut it down and drop the temporary reference we
299  *	had just acquired.
300  *
301  *	Caller holds exclusive lock on superblock; that lock is released.
302  */
303 void deactivate_locked_super(struct super_block *s)
304 {
305 	struct file_system_type *fs = s->s_type;
306 	if (atomic_dec_and_test(&s->s_active)) {
307 		cleancache_invalidate_fs(s);
308 		unregister_shrinker(&s->s_shrink);
309 		fs->kill_sb(s);
310 
311 		/*
312 		 * Since list_lru_destroy() may sleep, we cannot call it from
313 		 * put_super(), where we hold the sb_lock. Therefore we destroy
314 		 * the lru lists right now.
315 		 */
316 		list_lru_destroy(&s->s_dentry_lru);
317 		list_lru_destroy(&s->s_inode_lru);
318 
319 		put_filesystem(fs);
320 		put_super(s);
321 	} else {
322 		up_write(&s->s_umount);
323 	}
324 }
325 
326 EXPORT_SYMBOL(deactivate_locked_super);
327 
328 /**
329  *	deactivate_super	-	drop an active reference to superblock
330  *	@s: superblock to deactivate
331  *
332  *	Variant of deactivate_locked_super(), except that superblock is *not*
333  *	locked by caller.  If we are going to drop the final active reference,
334  *	lock will be acquired prior to that.
335  */
336 void deactivate_super(struct super_block *s)
337 {
338         if (!atomic_add_unless(&s->s_active, -1, 1)) {
339 		down_write(&s->s_umount);
340 		deactivate_locked_super(s);
341 	}
342 }
343 
344 EXPORT_SYMBOL(deactivate_super);
345 
346 /**
347  *	grab_super - acquire an active reference
348  *	@s: reference we are trying to make active
349  *
350  *	Tries to acquire an active reference.  grab_super() is used when we
351  * 	had just found a superblock in super_blocks or fs_type->fs_supers
352  *	and want to turn it into a full-blown active reference.  grab_super()
353  *	is called with sb_lock held and drops it.  Returns 1 in case of
354  *	success, 0 if we had failed (superblock contents was already dead or
355  *	dying when grab_super() had been called).  Note that this is only
356  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
357  *	of their type), so increment of ->s_count is OK here.
358  */
359 static int grab_super(struct super_block *s) __releases(sb_lock)
360 {
361 	s->s_count++;
362 	spin_unlock(&sb_lock);
363 	down_write(&s->s_umount);
364 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
365 		put_super(s);
366 		return 1;
367 	}
368 	up_write(&s->s_umount);
369 	put_super(s);
370 	return 0;
371 }
372 
373 /*
374  *	trylock_super - try to grab ->s_umount shared
375  *	@sb: reference we are trying to grab
376  *
377  *	Try to prevent fs shutdown.  This is used in places where we
378  *	cannot take an active reference but we need to ensure that the
379  *	filesystem is not shut down while we are working on it. It returns
380  *	false if we cannot acquire s_umount or if we lose the race and
381  *	filesystem already got into shutdown, and returns true with the s_umount
382  *	lock held in read mode in case of success. On successful return,
383  *	the caller must drop the s_umount lock when done.
384  *
385  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
386  *	The reason why it's safe is that we are OK with doing trylock instead
387  *	of down_read().  There's a couple of places that are OK with that, but
388  *	it's very much not a general-purpose interface.
389  */
390 bool trylock_super(struct super_block *sb)
391 {
392 	if (down_read_trylock(&sb->s_umount)) {
393 		if (!hlist_unhashed(&sb->s_instances) &&
394 		    sb->s_root && (sb->s_flags & MS_BORN))
395 			return true;
396 		up_read(&sb->s_umount);
397 	}
398 
399 	return false;
400 }
401 
402 /**
403  *	generic_shutdown_super	-	common helper for ->kill_sb()
404  *	@sb: superblock to kill
405  *
406  *	generic_shutdown_super() does all fs-independent work on superblock
407  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
408  *	that need destruction out of superblock, call generic_shutdown_super()
409  *	and release aforementioned objects.  Note: dentries and inodes _are_
410  *	taken care of and do not need specific handling.
411  *
412  *	Upon calling this function, the filesystem may no longer alter or
413  *	rearrange the set of dentries belonging to this super_block, nor may it
414  *	change the attachments of dentries to inodes.
415  */
416 void generic_shutdown_super(struct super_block *sb)
417 {
418 	const struct super_operations *sop = sb->s_op;
419 
420 	if (sb->s_root) {
421 		shrink_dcache_for_umount(sb);
422 		sync_filesystem(sb);
423 		sb->s_flags &= ~MS_ACTIVE;
424 
425 		fsnotify_unmount_inodes(sb);
426 		cgroup_writeback_umount();
427 
428 		evict_inodes(sb);
429 
430 		if (sb->s_dio_done_wq) {
431 			destroy_workqueue(sb->s_dio_done_wq);
432 			sb->s_dio_done_wq = NULL;
433 		}
434 
435 		if (sop->put_super)
436 			sop->put_super(sb);
437 
438 		if (!list_empty(&sb->s_inodes)) {
439 			printk("VFS: Busy inodes after unmount of %s. "
440 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
441 			   sb->s_id);
442 		}
443 	}
444 	spin_lock(&sb_lock);
445 	/* should be initialized for __put_super_and_need_restart() */
446 	hlist_del_init(&sb->s_instances);
447 	spin_unlock(&sb_lock);
448 	up_write(&sb->s_umount);
449 }
450 
451 EXPORT_SYMBOL(generic_shutdown_super);
452 
453 /**
454  *	sget_userns -	find or create a superblock
455  *	@type:	filesystem type superblock should belong to
456  *	@test:	comparison callback
457  *	@set:	setup callback
458  *	@flags:	mount flags
459  *	@user_ns: User namespace for the super_block
460  *	@data:	argument to each of them
461  */
462 struct super_block *sget_userns(struct file_system_type *type,
463 			int (*test)(struct super_block *,void *),
464 			int (*set)(struct super_block *,void *),
465 			int flags, struct user_namespace *user_ns,
466 			void *data)
467 {
468 	struct super_block *s = NULL;
469 	struct super_block *old;
470 	int err;
471 
472 	if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) &&
473 	    !(type->fs_flags & FS_USERNS_MOUNT) &&
474 	    !capable(CAP_SYS_ADMIN))
475 		return ERR_PTR(-EPERM);
476 retry:
477 	spin_lock(&sb_lock);
478 	if (test) {
479 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
480 			if (!test(old, data))
481 				continue;
482 			if (user_ns != old->s_user_ns) {
483 				spin_unlock(&sb_lock);
484 				if (s) {
485 					up_write(&s->s_umount);
486 					destroy_super(s);
487 				}
488 				return ERR_PTR(-EBUSY);
489 			}
490 			if (!grab_super(old))
491 				goto retry;
492 			if (s) {
493 				up_write(&s->s_umount);
494 				destroy_super(s);
495 				s = NULL;
496 			}
497 			return old;
498 		}
499 	}
500 	if (!s) {
501 		spin_unlock(&sb_lock);
502 		s = alloc_super(type, (flags & ~MS_SUBMOUNT), user_ns);
503 		if (!s)
504 			return ERR_PTR(-ENOMEM);
505 		goto retry;
506 	}
507 
508 	err = set(s, data);
509 	if (err) {
510 		spin_unlock(&sb_lock);
511 		up_write(&s->s_umount);
512 		destroy_super(s);
513 		return ERR_PTR(err);
514 	}
515 	s->s_type = type;
516 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
517 	list_add_tail(&s->s_list, &super_blocks);
518 	hlist_add_head(&s->s_instances, &type->fs_supers);
519 	spin_unlock(&sb_lock);
520 	get_filesystem(type);
521 	register_shrinker(&s->s_shrink);
522 	return s;
523 }
524 
525 EXPORT_SYMBOL(sget_userns);
526 
527 /**
528  *	sget	-	find or create a superblock
529  *	@type:	  filesystem type superblock should belong to
530  *	@test:	  comparison callback
531  *	@set:	  setup callback
532  *	@flags:	  mount flags
533  *	@data:	  argument to each of them
534  */
535 struct super_block *sget(struct file_system_type *type,
536 			int (*test)(struct super_block *,void *),
537 			int (*set)(struct super_block *,void *),
538 			int flags,
539 			void *data)
540 {
541 	struct user_namespace *user_ns = current_user_ns();
542 
543 	/* We don't yet pass the user namespace of the parent
544 	 * mount through to here so always use &init_user_ns
545 	 * until that changes.
546 	 */
547 	if (flags & MS_SUBMOUNT)
548 		user_ns = &init_user_ns;
549 
550 	/* Ensure the requestor has permissions over the target filesystem */
551 	if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
552 		return ERR_PTR(-EPERM);
553 
554 	return sget_userns(type, test, set, flags, user_ns, data);
555 }
556 
557 EXPORT_SYMBOL(sget);
558 
559 void drop_super(struct super_block *sb)
560 {
561 	up_read(&sb->s_umount);
562 	put_super(sb);
563 }
564 
565 EXPORT_SYMBOL(drop_super);
566 
567 void drop_super_exclusive(struct super_block *sb)
568 {
569 	up_write(&sb->s_umount);
570 	put_super(sb);
571 }
572 EXPORT_SYMBOL(drop_super_exclusive);
573 
574 /**
575  *	iterate_supers - call function for all active superblocks
576  *	@f: function to call
577  *	@arg: argument to pass to it
578  *
579  *	Scans the superblock list and calls given function, passing it
580  *	locked superblock and given argument.
581  */
582 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
583 {
584 	struct super_block *sb, *p = NULL;
585 
586 	spin_lock(&sb_lock);
587 	list_for_each_entry(sb, &super_blocks, s_list) {
588 		if (hlist_unhashed(&sb->s_instances))
589 			continue;
590 		sb->s_count++;
591 		spin_unlock(&sb_lock);
592 
593 		down_read(&sb->s_umount);
594 		if (sb->s_root && (sb->s_flags & MS_BORN))
595 			f(sb, arg);
596 		up_read(&sb->s_umount);
597 
598 		spin_lock(&sb_lock);
599 		if (p)
600 			__put_super(p);
601 		p = sb;
602 	}
603 	if (p)
604 		__put_super(p);
605 	spin_unlock(&sb_lock);
606 }
607 
608 /**
609  *	iterate_supers_type - call function for superblocks of given type
610  *	@type: fs type
611  *	@f: function to call
612  *	@arg: argument to pass to it
613  *
614  *	Scans the superblock list and calls given function, passing it
615  *	locked superblock and given argument.
616  */
617 void iterate_supers_type(struct file_system_type *type,
618 	void (*f)(struct super_block *, void *), void *arg)
619 {
620 	struct super_block *sb, *p = NULL;
621 
622 	spin_lock(&sb_lock);
623 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
624 		sb->s_count++;
625 		spin_unlock(&sb_lock);
626 
627 		down_read(&sb->s_umount);
628 		if (sb->s_root && (sb->s_flags & MS_BORN))
629 			f(sb, arg);
630 		up_read(&sb->s_umount);
631 
632 		spin_lock(&sb_lock);
633 		if (p)
634 			__put_super(p);
635 		p = sb;
636 	}
637 	if (p)
638 		__put_super(p);
639 	spin_unlock(&sb_lock);
640 }
641 
642 EXPORT_SYMBOL(iterate_supers_type);
643 
644 static struct super_block *__get_super(struct block_device *bdev, bool excl)
645 {
646 	struct super_block *sb;
647 
648 	if (!bdev)
649 		return NULL;
650 
651 	spin_lock(&sb_lock);
652 rescan:
653 	list_for_each_entry(sb, &super_blocks, s_list) {
654 		if (hlist_unhashed(&sb->s_instances))
655 			continue;
656 		if (sb->s_bdev == bdev) {
657 			sb->s_count++;
658 			spin_unlock(&sb_lock);
659 			if (!excl)
660 				down_read(&sb->s_umount);
661 			else
662 				down_write(&sb->s_umount);
663 			/* still alive? */
664 			if (sb->s_root && (sb->s_flags & MS_BORN))
665 				return sb;
666 			if (!excl)
667 				up_read(&sb->s_umount);
668 			else
669 				up_write(&sb->s_umount);
670 			/* nope, got unmounted */
671 			spin_lock(&sb_lock);
672 			__put_super(sb);
673 			goto rescan;
674 		}
675 	}
676 	spin_unlock(&sb_lock);
677 	return NULL;
678 }
679 
680 /**
681  *	get_super - get the superblock of a device
682  *	@bdev: device to get the superblock for
683  *
684  *	Scans the superblock list and finds the superblock of the file system
685  *	mounted on the device given. %NULL is returned if no match is found.
686  */
687 struct super_block *get_super(struct block_device *bdev)
688 {
689 	return __get_super(bdev, false);
690 }
691 EXPORT_SYMBOL(get_super);
692 
693 static struct super_block *__get_super_thawed(struct block_device *bdev,
694 					      bool excl)
695 {
696 	while (1) {
697 		struct super_block *s = __get_super(bdev, excl);
698 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
699 			return s;
700 		if (!excl)
701 			up_read(&s->s_umount);
702 		else
703 			up_write(&s->s_umount);
704 		wait_event(s->s_writers.wait_unfrozen,
705 			   s->s_writers.frozen == SB_UNFROZEN);
706 		put_super(s);
707 	}
708 }
709 
710 /**
711  *	get_super_thawed - get thawed superblock of a device
712  *	@bdev: device to get the superblock for
713  *
714  *	Scans the superblock list and finds the superblock of the file system
715  *	mounted on the device. The superblock is returned once it is thawed
716  *	(or immediately if it was not frozen). %NULL is returned if no match
717  *	is found.
718  */
719 struct super_block *get_super_thawed(struct block_device *bdev)
720 {
721 	return __get_super_thawed(bdev, false);
722 }
723 EXPORT_SYMBOL(get_super_thawed);
724 
725 /**
726  *	get_super_exclusive_thawed - get thawed superblock of a device
727  *	@bdev: device to get the superblock for
728  *
729  *	Scans the superblock list and finds the superblock of the file system
730  *	mounted on the device. The superblock is returned once it is thawed
731  *	(or immediately if it was not frozen) and s_umount semaphore is held
732  *	in exclusive mode. %NULL is returned if no match is found.
733  */
734 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
735 {
736 	return __get_super_thawed(bdev, true);
737 }
738 EXPORT_SYMBOL(get_super_exclusive_thawed);
739 
740 /**
741  * get_active_super - get an active reference to the superblock of a device
742  * @bdev: device to get the superblock for
743  *
744  * Scans the superblock list and finds the superblock of the file system
745  * mounted on the device given.  Returns the superblock with an active
746  * reference or %NULL if none was found.
747  */
748 struct super_block *get_active_super(struct block_device *bdev)
749 {
750 	struct super_block *sb;
751 
752 	if (!bdev)
753 		return NULL;
754 
755 restart:
756 	spin_lock(&sb_lock);
757 	list_for_each_entry(sb, &super_blocks, s_list) {
758 		if (hlist_unhashed(&sb->s_instances))
759 			continue;
760 		if (sb->s_bdev == bdev) {
761 			if (!grab_super(sb))
762 				goto restart;
763 			up_write(&sb->s_umount);
764 			return sb;
765 		}
766 	}
767 	spin_unlock(&sb_lock);
768 	return NULL;
769 }
770 
771 struct super_block *user_get_super(dev_t dev)
772 {
773 	struct super_block *sb;
774 
775 	spin_lock(&sb_lock);
776 rescan:
777 	list_for_each_entry(sb, &super_blocks, s_list) {
778 		if (hlist_unhashed(&sb->s_instances))
779 			continue;
780 		if (sb->s_dev ==  dev) {
781 			sb->s_count++;
782 			spin_unlock(&sb_lock);
783 			down_read(&sb->s_umount);
784 			/* still alive? */
785 			if (sb->s_root && (sb->s_flags & MS_BORN))
786 				return sb;
787 			up_read(&sb->s_umount);
788 			/* nope, got unmounted */
789 			spin_lock(&sb_lock);
790 			__put_super(sb);
791 			goto rescan;
792 		}
793 	}
794 	spin_unlock(&sb_lock);
795 	return NULL;
796 }
797 
798 /**
799  *	do_remount_sb - asks filesystem to change mount options.
800  *	@sb:	superblock in question
801  *	@flags:	numeric part of options
802  *	@data:	the rest of options
803  *      @force: whether or not to force the change
804  *
805  *	Alters the mount options of a mounted file system.
806  */
807 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
808 {
809 	int retval;
810 	int remount_ro;
811 
812 	if (sb->s_writers.frozen != SB_UNFROZEN)
813 		return -EBUSY;
814 
815 #ifdef CONFIG_BLOCK
816 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
817 		return -EACCES;
818 #endif
819 
820 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
821 
822 	if (remount_ro) {
823 		if (!hlist_empty(&sb->s_pins)) {
824 			up_write(&sb->s_umount);
825 			group_pin_kill(&sb->s_pins);
826 			down_write(&sb->s_umount);
827 			if (!sb->s_root)
828 				return 0;
829 			if (sb->s_writers.frozen != SB_UNFROZEN)
830 				return -EBUSY;
831 			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
832 		}
833 	}
834 	shrink_dcache_sb(sb);
835 
836 	/* If we are remounting RDONLY and current sb is read/write,
837 	   make sure there are no rw files opened */
838 	if (remount_ro) {
839 		if (force) {
840 			sb->s_readonly_remount = 1;
841 			smp_wmb();
842 		} else {
843 			retval = sb_prepare_remount_readonly(sb);
844 			if (retval)
845 				return retval;
846 		}
847 	}
848 
849 	if (sb->s_op->remount_fs) {
850 		retval = sb->s_op->remount_fs(sb, &flags, data);
851 		if (retval) {
852 			if (!force)
853 				goto cancel_readonly;
854 			/* If forced remount, go ahead despite any errors */
855 			WARN(1, "forced remount of a %s fs returned %i\n",
856 			     sb->s_type->name, retval);
857 		}
858 	}
859 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
860 	/* Needs to be ordered wrt mnt_is_readonly() */
861 	smp_wmb();
862 	sb->s_readonly_remount = 0;
863 
864 	/*
865 	 * Some filesystems modify their metadata via some other path than the
866 	 * bdev buffer cache (eg. use a private mapping, or directories in
867 	 * pagecache, etc). Also file data modifications go via their own
868 	 * mappings. So If we try to mount readonly then copy the filesystem
869 	 * from bdev, we could get stale data, so invalidate it to give a best
870 	 * effort at coherency.
871 	 */
872 	if (remount_ro && sb->s_bdev)
873 		invalidate_bdev(sb->s_bdev);
874 	return 0;
875 
876 cancel_readonly:
877 	sb->s_readonly_remount = 0;
878 	return retval;
879 }
880 
881 static void do_emergency_remount(struct work_struct *work)
882 {
883 	struct super_block *sb, *p = NULL;
884 
885 	spin_lock(&sb_lock);
886 	list_for_each_entry(sb, &super_blocks, s_list) {
887 		if (hlist_unhashed(&sb->s_instances))
888 			continue;
889 		sb->s_count++;
890 		spin_unlock(&sb_lock);
891 		down_write(&sb->s_umount);
892 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
893 		    !(sb->s_flags & MS_RDONLY)) {
894 			/*
895 			 * What lock protects sb->s_flags??
896 			 */
897 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
898 		}
899 		up_write(&sb->s_umount);
900 		spin_lock(&sb_lock);
901 		if (p)
902 			__put_super(p);
903 		p = sb;
904 	}
905 	if (p)
906 		__put_super(p);
907 	spin_unlock(&sb_lock);
908 	kfree(work);
909 	printk("Emergency Remount complete\n");
910 }
911 
912 void emergency_remount(void)
913 {
914 	struct work_struct *work;
915 
916 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
917 	if (work) {
918 		INIT_WORK(work, do_emergency_remount);
919 		schedule_work(work);
920 	}
921 }
922 
923 /*
924  * Unnamed block devices are dummy devices used by virtual
925  * filesystems which don't use real block-devices.  -- jrs
926  */
927 
928 static DEFINE_IDA(unnamed_dev_ida);
929 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
930 /* Many userspace utilities consider an FSID of 0 invalid.
931  * Always return at least 1 from get_anon_bdev.
932  */
933 static int unnamed_dev_start = 1;
934 
935 int get_anon_bdev(dev_t *p)
936 {
937 	int dev;
938 	int error;
939 
940  retry:
941 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
942 		return -ENOMEM;
943 	spin_lock(&unnamed_dev_lock);
944 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
945 	if (!error)
946 		unnamed_dev_start = dev + 1;
947 	spin_unlock(&unnamed_dev_lock);
948 	if (error == -EAGAIN)
949 		/* We raced and lost with another CPU. */
950 		goto retry;
951 	else if (error)
952 		return -EAGAIN;
953 
954 	if (dev >= (1 << MINORBITS)) {
955 		spin_lock(&unnamed_dev_lock);
956 		ida_remove(&unnamed_dev_ida, dev);
957 		if (unnamed_dev_start > dev)
958 			unnamed_dev_start = dev;
959 		spin_unlock(&unnamed_dev_lock);
960 		return -EMFILE;
961 	}
962 	*p = MKDEV(0, dev & MINORMASK);
963 	return 0;
964 }
965 EXPORT_SYMBOL(get_anon_bdev);
966 
967 void free_anon_bdev(dev_t dev)
968 {
969 	int slot = MINOR(dev);
970 	spin_lock(&unnamed_dev_lock);
971 	ida_remove(&unnamed_dev_ida, slot);
972 	if (slot < unnamed_dev_start)
973 		unnamed_dev_start = slot;
974 	spin_unlock(&unnamed_dev_lock);
975 }
976 EXPORT_SYMBOL(free_anon_bdev);
977 
978 int set_anon_super(struct super_block *s, void *data)
979 {
980 	return get_anon_bdev(&s->s_dev);
981 }
982 
983 EXPORT_SYMBOL(set_anon_super);
984 
985 void kill_anon_super(struct super_block *sb)
986 {
987 	dev_t dev = sb->s_dev;
988 	generic_shutdown_super(sb);
989 	free_anon_bdev(dev);
990 }
991 
992 EXPORT_SYMBOL(kill_anon_super);
993 
994 void kill_litter_super(struct super_block *sb)
995 {
996 	if (sb->s_root)
997 		d_genocide(sb->s_root);
998 	kill_anon_super(sb);
999 }
1000 
1001 EXPORT_SYMBOL(kill_litter_super);
1002 
1003 static int ns_test_super(struct super_block *sb, void *data)
1004 {
1005 	return sb->s_fs_info == data;
1006 }
1007 
1008 static int ns_set_super(struct super_block *sb, void *data)
1009 {
1010 	sb->s_fs_info = data;
1011 	return set_anon_super(sb, NULL);
1012 }
1013 
1014 struct dentry *mount_ns(struct file_system_type *fs_type,
1015 	int flags, void *data, void *ns, struct user_namespace *user_ns,
1016 	int (*fill_super)(struct super_block *, void *, int))
1017 {
1018 	struct super_block *sb;
1019 
1020 	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1021 	 * over the namespace.
1022 	 */
1023 	if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1024 		return ERR_PTR(-EPERM);
1025 
1026 	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1027 			 user_ns, ns);
1028 	if (IS_ERR(sb))
1029 		return ERR_CAST(sb);
1030 
1031 	if (!sb->s_root) {
1032 		int err;
1033 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1034 		if (err) {
1035 			deactivate_locked_super(sb);
1036 			return ERR_PTR(err);
1037 		}
1038 
1039 		sb->s_flags |= MS_ACTIVE;
1040 	}
1041 
1042 	return dget(sb->s_root);
1043 }
1044 
1045 EXPORT_SYMBOL(mount_ns);
1046 
1047 #ifdef CONFIG_BLOCK
1048 static int set_bdev_super(struct super_block *s, void *data)
1049 {
1050 	s->s_bdev = data;
1051 	s->s_dev = s->s_bdev->bd_dev;
1052 
1053 	/*
1054 	 * We set the bdi here to the queue backing, file systems can
1055 	 * overwrite this in ->fill_super()
1056 	 */
1057 	s->s_bdi = bdev_get_queue(s->s_bdev)->backing_dev_info;
1058 	return 0;
1059 }
1060 
1061 static int test_bdev_super(struct super_block *s, void *data)
1062 {
1063 	return (void *)s->s_bdev == data;
1064 }
1065 
1066 struct dentry *mount_bdev(struct file_system_type *fs_type,
1067 	int flags, const char *dev_name, void *data,
1068 	int (*fill_super)(struct super_block *, void *, int))
1069 {
1070 	struct block_device *bdev;
1071 	struct super_block *s;
1072 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1073 	int error = 0;
1074 
1075 	if (!(flags & MS_RDONLY))
1076 		mode |= FMODE_WRITE;
1077 
1078 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1079 	if (IS_ERR(bdev))
1080 		return ERR_CAST(bdev);
1081 
1082 	/*
1083 	 * once the super is inserted into the list by sget, s_umount
1084 	 * will protect the lockfs code from trying to start a snapshot
1085 	 * while we are mounting
1086 	 */
1087 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1088 	if (bdev->bd_fsfreeze_count > 0) {
1089 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1090 		error = -EBUSY;
1091 		goto error_bdev;
1092 	}
1093 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1094 		 bdev);
1095 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1096 	if (IS_ERR(s))
1097 		goto error_s;
1098 
1099 	if (s->s_root) {
1100 		if ((flags ^ s->s_flags) & MS_RDONLY) {
1101 			deactivate_locked_super(s);
1102 			error = -EBUSY;
1103 			goto error_bdev;
1104 		}
1105 
1106 		/*
1107 		 * s_umount nests inside bd_mutex during
1108 		 * __invalidate_device().  blkdev_put() acquires
1109 		 * bd_mutex and can't be called under s_umount.  Drop
1110 		 * s_umount temporarily.  This is safe as we're
1111 		 * holding an active reference.
1112 		 */
1113 		up_write(&s->s_umount);
1114 		blkdev_put(bdev, mode);
1115 		down_write(&s->s_umount);
1116 	} else {
1117 		s->s_mode = mode;
1118 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1119 		sb_set_blocksize(s, block_size(bdev));
1120 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1121 		if (error) {
1122 			deactivate_locked_super(s);
1123 			goto error;
1124 		}
1125 
1126 		s->s_flags |= MS_ACTIVE;
1127 		bdev->bd_super = s;
1128 	}
1129 
1130 	return dget(s->s_root);
1131 
1132 error_s:
1133 	error = PTR_ERR(s);
1134 error_bdev:
1135 	blkdev_put(bdev, mode);
1136 error:
1137 	return ERR_PTR(error);
1138 }
1139 EXPORT_SYMBOL(mount_bdev);
1140 
1141 void kill_block_super(struct super_block *sb)
1142 {
1143 	struct block_device *bdev = sb->s_bdev;
1144 	fmode_t mode = sb->s_mode;
1145 
1146 	bdev->bd_super = NULL;
1147 	generic_shutdown_super(sb);
1148 	sync_blockdev(bdev);
1149 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1150 	blkdev_put(bdev, mode | FMODE_EXCL);
1151 }
1152 
1153 EXPORT_SYMBOL(kill_block_super);
1154 #endif
1155 
1156 struct dentry *mount_nodev(struct file_system_type *fs_type,
1157 	int flags, void *data,
1158 	int (*fill_super)(struct super_block *, void *, int))
1159 {
1160 	int error;
1161 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1162 
1163 	if (IS_ERR(s))
1164 		return ERR_CAST(s);
1165 
1166 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1167 	if (error) {
1168 		deactivate_locked_super(s);
1169 		return ERR_PTR(error);
1170 	}
1171 	s->s_flags |= MS_ACTIVE;
1172 	return dget(s->s_root);
1173 }
1174 EXPORT_SYMBOL(mount_nodev);
1175 
1176 static int compare_single(struct super_block *s, void *p)
1177 {
1178 	return 1;
1179 }
1180 
1181 struct dentry *mount_single(struct file_system_type *fs_type,
1182 	int flags, void *data,
1183 	int (*fill_super)(struct super_block *, void *, int))
1184 {
1185 	struct super_block *s;
1186 	int error;
1187 
1188 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1189 	if (IS_ERR(s))
1190 		return ERR_CAST(s);
1191 	if (!s->s_root) {
1192 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1193 		if (error) {
1194 			deactivate_locked_super(s);
1195 			return ERR_PTR(error);
1196 		}
1197 		s->s_flags |= MS_ACTIVE;
1198 	} else {
1199 		do_remount_sb(s, flags, data, 0);
1200 	}
1201 	return dget(s->s_root);
1202 }
1203 EXPORT_SYMBOL(mount_single);
1204 
1205 struct dentry *
1206 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1207 {
1208 	struct dentry *root;
1209 	struct super_block *sb;
1210 	char *secdata = NULL;
1211 	int error = -ENOMEM;
1212 
1213 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1214 		secdata = alloc_secdata();
1215 		if (!secdata)
1216 			goto out;
1217 
1218 		error = security_sb_copy_data(data, secdata);
1219 		if (error)
1220 			goto out_free_secdata;
1221 	}
1222 
1223 	root = type->mount(type, flags, name, data);
1224 	if (IS_ERR(root)) {
1225 		error = PTR_ERR(root);
1226 		goto out_free_secdata;
1227 	}
1228 	sb = root->d_sb;
1229 	BUG_ON(!sb);
1230 	WARN_ON(!sb->s_bdi);
1231 	sb->s_flags |= MS_BORN;
1232 
1233 	error = security_sb_kern_mount(sb, flags, secdata);
1234 	if (error)
1235 		goto out_sb;
1236 
1237 	/*
1238 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1239 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1240 	 * this warning for a little while to try and catch filesystems that
1241 	 * violate this rule.
1242 	 */
1243 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1244 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1245 
1246 	up_write(&sb->s_umount);
1247 	free_secdata(secdata);
1248 	return root;
1249 out_sb:
1250 	dput(root);
1251 	deactivate_locked_super(sb);
1252 out_free_secdata:
1253 	free_secdata(secdata);
1254 out:
1255 	return ERR_PTR(error);
1256 }
1257 
1258 /*
1259  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1260  * instead.
1261  */
1262 void __sb_end_write(struct super_block *sb, int level)
1263 {
1264 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1265 }
1266 EXPORT_SYMBOL(__sb_end_write);
1267 
1268 /*
1269  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1270  * instead.
1271  */
1272 int __sb_start_write(struct super_block *sb, int level, bool wait)
1273 {
1274 	bool force_trylock = false;
1275 	int ret = 1;
1276 
1277 #ifdef CONFIG_LOCKDEP
1278 	/*
1279 	 * We want lockdep to tell us about possible deadlocks with freezing
1280 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1281 	 * protection works as getting a read lock but there are subtle
1282 	 * problems. XFS for example gets freeze protection on internal level
1283 	 * twice in some cases, which is OK only because we already hold a
1284 	 * freeze protection also on higher level. Due to these cases we have
1285 	 * to use wait == F (trylock mode) which must not fail.
1286 	 */
1287 	if (wait) {
1288 		int i;
1289 
1290 		for (i = 0; i < level - 1; i++)
1291 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1292 				force_trylock = true;
1293 				break;
1294 			}
1295 	}
1296 #endif
1297 	if (wait && !force_trylock)
1298 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1299 	else
1300 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1301 
1302 	WARN_ON(force_trylock && !ret);
1303 	return ret;
1304 }
1305 EXPORT_SYMBOL(__sb_start_write);
1306 
1307 /**
1308  * sb_wait_write - wait until all writers to given file system finish
1309  * @sb: the super for which we wait
1310  * @level: type of writers we wait for (normal vs page fault)
1311  *
1312  * This function waits until there are no writers of given type to given file
1313  * system.
1314  */
1315 static void sb_wait_write(struct super_block *sb, int level)
1316 {
1317 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1318 }
1319 
1320 /*
1321  * We are going to return to userspace and forget about these locks, the
1322  * ownership goes to the caller of thaw_super() which does unlock().
1323  */
1324 static void lockdep_sb_freeze_release(struct super_block *sb)
1325 {
1326 	int level;
1327 
1328 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1329 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1330 }
1331 
1332 /*
1333  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1334  */
1335 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1336 {
1337 	int level;
1338 
1339 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1340 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1341 }
1342 
1343 static void sb_freeze_unlock(struct super_block *sb)
1344 {
1345 	int level;
1346 
1347 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1348 		percpu_up_write(sb->s_writers.rw_sem + level);
1349 }
1350 
1351 /**
1352  * freeze_super - lock the filesystem and force it into a consistent state
1353  * @sb: the super to lock
1354  *
1355  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1356  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1357  * -EBUSY.
1358  *
1359  * During this function, sb->s_writers.frozen goes through these values:
1360  *
1361  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1362  *
1363  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1364  * writes should be blocked, though page faults are still allowed. We wait for
1365  * all writes to complete and then proceed to the next stage.
1366  *
1367  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1368  * but internal fs threads can still modify the filesystem (although they
1369  * should not dirty new pages or inodes), writeback can run etc. After waiting
1370  * for all running page faults we sync the filesystem which will clean all
1371  * dirty pages and inodes (no new dirty pages or inodes can be created when
1372  * sync is running).
1373  *
1374  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1375  * modification are blocked (e.g. XFS preallocation truncation on inode
1376  * reclaim). This is usually implemented by blocking new transactions for
1377  * filesystems that have them and need this additional guard. After all
1378  * internal writers are finished we call ->freeze_fs() to finish filesystem
1379  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1380  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1381  *
1382  * sb->s_writers.frozen is protected by sb->s_umount.
1383  */
1384 int freeze_super(struct super_block *sb)
1385 {
1386 	int ret;
1387 
1388 	atomic_inc(&sb->s_active);
1389 	down_write(&sb->s_umount);
1390 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1391 		deactivate_locked_super(sb);
1392 		return -EBUSY;
1393 	}
1394 
1395 	if (!(sb->s_flags & MS_BORN)) {
1396 		up_write(&sb->s_umount);
1397 		return 0;	/* sic - it's "nothing to do" */
1398 	}
1399 
1400 	if (sb->s_flags & MS_RDONLY) {
1401 		/* Nothing to do really... */
1402 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1403 		up_write(&sb->s_umount);
1404 		return 0;
1405 	}
1406 
1407 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1408 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1409 	up_write(&sb->s_umount);
1410 	sb_wait_write(sb, SB_FREEZE_WRITE);
1411 	down_write(&sb->s_umount);
1412 
1413 	/* Now we go and block page faults... */
1414 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1415 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1416 
1417 	/* All writers are done so after syncing there won't be dirty data */
1418 	sync_filesystem(sb);
1419 
1420 	/* Now wait for internal filesystem counter */
1421 	sb->s_writers.frozen = SB_FREEZE_FS;
1422 	sb_wait_write(sb, SB_FREEZE_FS);
1423 
1424 	if (sb->s_op->freeze_fs) {
1425 		ret = sb->s_op->freeze_fs(sb);
1426 		if (ret) {
1427 			printk(KERN_ERR
1428 				"VFS:Filesystem freeze failed\n");
1429 			sb->s_writers.frozen = SB_UNFROZEN;
1430 			sb_freeze_unlock(sb);
1431 			wake_up(&sb->s_writers.wait_unfrozen);
1432 			deactivate_locked_super(sb);
1433 			return ret;
1434 		}
1435 	}
1436 	/*
1437 	 * For debugging purposes so that fs can warn if it sees write activity
1438 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1439 	 */
1440 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1441 	lockdep_sb_freeze_release(sb);
1442 	up_write(&sb->s_umount);
1443 	return 0;
1444 }
1445 EXPORT_SYMBOL(freeze_super);
1446 
1447 /**
1448  * thaw_super -- unlock filesystem
1449  * @sb: the super to thaw
1450  *
1451  * Unlocks the filesystem and marks it writeable again after freeze_super().
1452  */
1453 int thaw_super(struct super_block *sb)
1454 {
1455 	int error;
1456 
1457 	down_write(&sb->s_umount);
1458 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1459 		up_write(&sb->s_umount);
1460 		return -EINVAL;
1461 	}
1462 
1463 	if (sb->s_flags & MS_RDONLY) {
1464 		sb->s_writers.frozen = SB_UNFROZEN;
1465 		goto out;
1466 	}
1467 
1468 	lockdep_sb_freeze_acquire(sb);
1469 
1470 	if (sb->s_op->unfreeze_fs) {
1471 		error = sb->s_op->unfreeze_fs(sb);
1472 		if (error) {
1473 			printk(KERN_ERR
1474 				"VFS:Filesystem thaw failed\n");
1475 			lockdep_sb_freeze_release(sb);
1476 			up_write(&sb->s_umount);
1477 			return error;
1478 		}
1479 	}
1480 
1481 	sb->s_writers.frozen = SB_UNFROZEN;
1482 	sb_freeze_unlock(sb);
1483 out:
1484 	wake_up(&sb->s_writers.wait_unfrozen);
1485 	deactivate_locked_super(sb);
1486 	return 0;
1487 }
1488 EXPORT_SYMBOL(thaw_super);
1489