1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include "internal.h" 36 37 38 LIST_HEAD(super_blocks); 39 DEFINE_SPINLOCK(sb_lock); 40 41 /** 42 * alloc_super - create new superblock 43 * @type: filesystem type superblock should belong to 44 * 45 * Allocates and initializes a new &struct super_block. alloc_super() 46 * returns a pointer new superblock or %NULL if allocation had failed. 47 */ 48 static struct super_block *alloc_super(struct file_system_type *type) 49 { 50 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 51 static const struct super_operations default_op; 52 53 if (s) { 54 if (security_sb_alloc(s)) { 55 kfree(s); 56 s = NULL; 57 goto out; 58 } 59 #ifdef CONFIG_SMP 60 s->s_files = alloc_percpu(struct list_head); 61 if (!s->s_files) { 62 security_sb_free(s); 63 kfree(s); 64 s = NULL; 65 goto out; 66 } else { 67 int i; 68 69 for_each_possible_cpu(i) 70 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i)); 71 } 72 #else 73 INIT_LIST_HEAD(&s->s_files); 74 #endif 75 s->s_bdi = &default_backing_dev_info; 76 INIT_LIST_HEAD(&s->s_instances); 77 INIT_HLIST_BL_HEAD(&s->s_anon); 78 INIT_LIST_HEAD(&s->s_inodes); 79 INIT_LIST_HEAD(&s->s_dentry_lru); 80 init_rwsem(&s->s_umount); 81 mutex_init(&s->s_lock); 82 lockdep_set_class(&s->s_umount, &type->s_umount_key); 83 /* 84 * The locking rules for s_lock are up to the 85 * filesystem. For example ext3fs has different 86 * lock ordering than usbfs: 87 */ 88 lockdep_set_class(&s->s_lock, &type->s_lock_key); 89 /* 90 * sget() can have s_umount recursion. 91 * 92 * When it cannot find a suitable sb, it allocates a new 93 * one (this one), and tries again to find a suitable old 94 * one. 95 * 96 * In case that succeeds, it will acquire the s_umount 97 * lock of the old one. Since these are clearly distrinct 98 * locks, and this object isn't exposed yet, there's no 99 * risk of deadlocks. 100 * 101 * Annotate this by putting this lock in a different 102 * subclass. 103 */ 104 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 105 s->s_count = 1; 106 atomic_set(&s->s_active, 1); 107 mutex_init(&s->s_vfs_rename_mutex); 108 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 109 mutex_init(&s->s_dquot.dqio_mutex); 110 mutex_init(&s->s_dquot.dqonoff_mutex); 111 init_rwsem(&s->s_dquot.dqptr_sem); 112 init_waitqueue_head(&s->s_wait_unfrozen); 113 s->s_maxbytes = MAX_NON_LFS; 114 s->s_op = &default_op; 115 s->s_time_gran = 1000000000; 116 s->cleancache_poolid = -1; 117 } 118 out: 119 return s; 120 } 121 122 /** 123 * destroy_super - frees a superblock 124 * @s: superblock to free 125 * 126 * Frees a superblock. 127 */ 128 static inline void destroy_super(struct super_block *s) 129 { 130 #ifdef CONFIG_SMP 131 free_percpu(s->s_files); 132 #endif 133 security_sb_free(s); 134 kfree(s->s_subtype); 135 kfree(s->s_options); 136 kfree(s); 137 } 138 139 /* Superblock refcounting */ 140 141 /* 142 * Drop a superblock's refcount. The caller must hold sb_lock. 143 */ 144 void __put_super(struct super_block *sb) 145 { 146 if (!--sb->s_count) { 147 list_del_init(&sb->s_list); 148 destroy_super(sb); 149 } 150 } 151 152 /** 153 * put_super - drop a temporary reference to superblock 154 * @sb: superblock in question 155 * 156 * Drops a temporary reference, frees superblock if there's no 157 * references left. 158 */ 159 void put_super(struct super_block *sb) 160 { 161 spin_lock(&sb_lock); 162 __put_super(sb); 163 spin_unlock(&sb_lock); 164 } 165 166 167 /** 168 * deactivate_locked_super - drop an active reference to superblock 169 * @s: superblock to deactivate 170 * 171 * Drops an active reference to superblock, converting it into a temprory 172 * one if there is no other active references left. In that case we 173 * tell fs driver to shut it down and drop the temporary reference we 174 * had just acquired. 175 * 176 * Caller holds exclusive lock on superblock; that lock is released. 177 */ 178 void deactivate_locked_super(struct super_block *s) 179 { 180 struct file_system_type *fs = s->s_type; 181 if (atomic_dec_and_test(&s->s_active)) { 182 cleancache_flush_fs(s); 183 fs->kill_sb(s); 184 /* 185 * We need to call rcu_barrier so all the delayed rcu free 186 * inodes are flushed before we release the fs module. 187 */ 188 rcu_barrier(); 189 put_filesystem(fs); 190 put_super(s); 191 } else { 192 up_write(&s->s_umount); 193 } 194 } 195 196 EXPORT_SYMBOL(deactivate_locked_super); 197 198 /** 199 * deactivate_super - drop an active reference to superblock 200 * @s: superblock to deactivate 201 * 202 * Variant of deactivate_locked_super(), except that superblock is *not* 203 * locked by caller. If we are going to drop the final active reference, 204 * lock will be acquired prior to that. 205 */ 206 void deactivate_super(struct super_block *s) 207 { 208 if (!atomic_add_unless(&s->s_active, -1, 1)) { 209 down_write(&s->s_umount); 210 deactivate_locked_super(s); 211 } 212 } 213 214 EXPORT_SYMBOL(deactivate_super); 215 216 /** 217 * grab_super - acquire an active reference 218 * @s: reference we are trying to make active 219 * 220 * Tries to acquire an active reference. grab_super() is used when we 221 * had just found a superblock in super_blocks or fs_type->fs_supers 222 * and want to turn it into a full-blown active reference. grab_super() 223 * is called with sb_lock held and drops it. Returns 1 in case of 224 * success, 0 if we had failed (superblock contents was already dead or 225 * dying when grab_super() had been called). 226 */ 227 static int grab_super(struct super_block *s) __releases(sb_lock) 228 { 229 if (atomic_inc_not_zero(&s->s_active)) { 230 spin_unlock(&sb_lock); 231 return 1; 232 } 233 /* it's going away */ 234 s->s_count++; 235 spin_unlock(&sb_lock); 236 /* wait for it to die */ 237 down_write(&s->s_umount); 238 up_write(&s->s_umount); 239 put_super(s); 240 return 0; 241 } 242 243 /* 244 * Superblock locking. We really ought to get rid of these two. 245 */ 246 void lock_super(struct super_block * sb) 247 { 248 get_fs_excl(); 249 mutex_lock(&sb->s_lock); 250 } 251 252 void unlock_super(struct super_block * sb) 253 { 254 put_fs_excl(); 255 mutex_unlock(&sb->s_lock); 256 } 257 258 EXPORT_SYMBOL(lock_super); 259 EXPORT_SYMBOL(unlock_super); 260 261 /** 262 * generic_shutdown_super - common helper for ->kill_sb() 263 * @sb: superblock to kill 264 * 265 * generic_shutdown_super() does all fs-independent work on superblock 266 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 267 * that need destruction out of superblock, call generic_shutdown_super() 268 * and release aforementioned objects. Note: dentries and inodes _are_ 269 * taken care of and do not need specific handling. 270 * 271 * Upon calling this function, the filesystem may no longer alter or 272 * rearrange the set of dentries belonging to this super_block, nor may it 273 * change the attachments of dentries to inodes. 274 */ 275 void generic_shutdown_super(struct super_block *sb) 276 { 277 const struct super_operations *sop = sb->s_op; 278 279 280 if (sb->s_root) { 281 shrink_dcache_for_umount(sb); 282 sync_filesystem(sb); 283 get_fs_excl(); 284 sb->s_flags &= ~MS_ACTIVE; 285 286 fsnotify_unmount_inodes(&sb->s_inodes); 287 288 evict_inodes(sb); 289 290 if (sop->put_super) 291 sop->put_super(sb); 292 293 if (!list_empty(&sb->s_inodes)) { 294 printk("VFS: Busy inodes after unmount of %s. " 295 "Self-destruct in 5 seconds. Have a nice day...\n", 296 sb->s_id); 297 } 298 put_fs_excl(); 299 } 300 spin_lock(&sb_lock); 301 /* should be initialized for __put_super_and_need_restart() */ 302 list_del_init(&sb->s_instances); 303 spin_unlock(&sb_lock); 304 up_write(&sb->s_umount); 305 } 306 307 EXPORT_SYMBOL(generic_shutdown_super); 308 309 /** 310 * sget - find or create a superblock 311 * @type: filesystem type superblock should belong to 312 * @test: comparison callback 313 * @set: setup callback 314 * @data: argument to each of them 315 */ 316 struct super_block *sget(struct file_system_type *type, 317 int (*test)(struct super_block *,void *), 318 int (*set)(struct super_block *,void *), 319 void *data) 320 { 321 struct super_block *s = NULL; 322 struct super_block *old; 323 int err; 324 325 retry: 326 spin_lock(&sb_lock); 327 if (test) { 328 list_for_each_entry(old, &type->fs_supers, s_instances) { 329 if (!test(old, data)) 330 continue; 331 if (!grab_super(old)) 332 goto retry; 333 if (s) { 334 up_write(&s->s_umount); 335 destroy_super(s); 336 s = NULL; 337 } 338 down_write(&old->s_umount); 339 if (unlikely(!(old->s_flags & MS_BORN))) { 340 deactivate_locked_super(old); 341 goto retry; 342 } 343 return old; 344 } 345 } 346 if (!s) { 347 spin_unlock(&sb_lock); 348 s = alloc_super(type); 349 if (!s) 350 return ERR_PTR(-ENOMEM); 351 goto retry; 352 } 353 354 err = set(s, data); 355 if (err) { 356 spin_unlock(&sb_lock); 357 up_write(&s->s_umount); 358 destroy_super(s); 359 return ERR_PTR(err); 360 } 361 s->s_type = type; 362 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 363 list_add_tail(&s->s_list, &super_blocks); 364 list_add(&s->s_instances, &type->fs_supers); 365 spin_unlock(&sb_lock); 366 get_filesystem(type); 367 return s; 368 } 369 370 EXPORT_SYMBOL(sget); 371 372 void drop_super(struct super_block *sb) 373 { 374 up_read(&sb->s_umount); 375 put_super(sb); 376 } 377 378 EXPORT_SYMBOL(drop_super); 379 380 /** 381 * sync_supers - helper for periodic superblock writeback 382 * 383 * Call the write_super method if present on all dirty superblocks in 384 * the system. This is for the periodic writeback used by most older 385 * filesystems. For data integrity superblock writeback use 386 * sync_filesystems() instead. 387 * 388 * Note: check the dirty flag before waiting, so we don't 389 * hold up the sync while mounting a device. (The newly 390 * mounted device won't need syncing.) 391 */ 392 void sync_supers(void) 393 { 394 struct super_block *sb, *p = NULL; 395 396 spin_lock(&sb_lock); 397 list_for_each_entry(sb, &super_blocks, s_list) { 398 if (list_empty(&sb->s_instances)) 399 continue; 400 if (sb->s_op->write_super && sb->s_dirt) { 401 sb->s_count++; 402 spin_unlock(&sb_lock); 403 404 down_read(&sb->s_umount); 405 if (sb->s_root && sb->s_dirt) 406 sb->s_op->write_super(sb); 407 up_read(&sb->s_umount); 408 409 spin_lock(&sb_lock); 410 if (p) 411 __put_super(p); 412 p = sb; 413 } 414 } 415 if (p) 416 __put_super(p); 417 spin_unlock(&sb_lock); 418 } 419 420 /** 421 * iterate_supers - call function for all active superblocks 422 * @f: function to call 423 * @arg: argument to pass to it 424 * 425 * Scans the superblock list and calls given function, passing it 426 * locked superblock and given argument. 427 */ 428 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 429 { 430 struct super_block *sb, *p = NULL; 431 432 spin_lock(&sb_lock); 433 list_for_each_entry(sb, &super_blocks, s_list) { 434 if (list_empty(&sb->s_instances)) 435 continue; 436 sb->s_count++; 437 spin_unlock(&sb_lock); 438 439 down_read(&sb->s_umount); 440 if (sb->s_root) 441 f(sb, arg); 442 up_read(&sb->s_umount); 443 444 spin_lock(&sb_lock); 445 if (p) 446 __put_super(p); 447 p = sb; 448 } 449 if (p) 450 __put_super(p); 451 spin_unlock(&sb_lock); 452 } 453 454 /** 455 * get_super - get the superblock of a device 456 * @bdev: device to get the superblock for 457 * 458 * Scans the superblock list and finds the superblock of the file system 459 * mounted on the device given. %NULL is returned if no match is found. 460 */ 461 462 struct super_block *get_super(struct block_device *bdev) 463 { 464 struct super_block *sb; 465 466 if (!bdev) 467 return NULL; 468 469 spin_lock(&sb_lock); 470 rescan: 471 list_for_each_entry(sb, &super_blocks, s_list) { 472 if (list_empty(&sb->s_instances)) 473 continue; 474 if (sb->s_bdev == bdev) { 475 sb->s_count++; 476 spin_unlock(&sb_lock); 477 down_read(&sb->s_umount); 478 /* still alive? */ 479 if (sb->s_root) 480 return sb; 481 up_read(&sb->s_umount); 482 /* nope, got unmounted */ 483 spin_lock(&sb_lock); 484 __put_super(sb); 485 goto rescan; 486 } 487 } 488 spin_unlock(&sb_lock); 489 return NULL; 490 } 491 492 EXPORT_SYMBOL(get_super); 493 494 /** 495 * get_active_super - get an active reference to the superblock of a device 496 * @bdev: device to get the superblock for 497 * 498 * Scans the superblock list and finds the superblock of the file system 499 * mounted on the device given. Returns the superblock with an active 500 * reference or %NULL if none was found. 501 */ 502 struct super_block *get_active_super(struct block_device *bdev) 503 { 504 struct super_block *sb; 505 506 if (!bdev) 507 return NULL; 508 509 restart: 510 spin_lock(&sb_lock); 511 list_for_each_entry(sb, &super_blocks, s_list) { 512 if (list_empty(&sb->s_instances)) 513 continue; 514 if (sb->s_bdev == bdev) { 515 if (grab_super(sb)) /* drops sb_lock */ 516 return sb; 517 else 518 goto restart; 519 } 520 } 521 spin_unlock(&sb_lock); 522 return NULL; 523 } 524 525 struct super_block *user_get_super(dev_t dev) 526 { 527 struct super_block *sb; 528 529 spin_lock(&sb_lock); 530 rescan: 531 list_for_each_entry(sb, &super_blocks, s_list) { 532 if (list_empty(&sb->s_instances)) 533 continue; 534 if (sb->s_dev == dev) { 535 sb->s_count++; 536 spin_unlock(&sb_lock); 537 down_read(&sb->s_umount); 538 /* still alive? */ 539 if (sb->s_root) 540 return sb; 541 up_read(&sb->s_umount); 542 /* nope, got unmounted */ 543 spin_lock(&sb_lock); 544 __put_super(sb); 545 goto rescan; 546 } 547 } 548 spin_unlock(&sb_lock); 549 return NULL; 550 } 551 552 /** 553 * do_remount_sb - asks filesystem to change mount options. 554 * @sb: superblock in question 555 * @flags: numeric part of options 556 * @data: the rest of options 557 * @force: whether or not to force the change 558 * 559 * Alters the mount options of a mounted file system. 560 */ 561 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 562 { 563 int retval; 564 int remount_ro; 565 566 if (sb->s_frozen != SB_UNFROZEN) 567 return -EBUSY; 568 569 #ifdef CONFIG_BLOCK 570 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 571 return -EACCES; 572 #endif 573 574 if (flags & MS_RDONLY) 575 acct_auto_close(sb); 576 shrink_dcache_sb(sb); 577 sync_filesystem(sb); 578 579 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 580 581 /* If we are remounting RDONLY and current sb is read/write, 582 make sure there are no rw files opened */ 583 if (remount_ro) { 584 if (force) 585 mark_files_ro(sb); 586 else if (!fs_may_remount_ro(sb)) 587 return -EBUSY; 588 } 589 590 if (sb->s_op->remount_fs) { 591 retval = sb->s_op->remount_fs(sb, &flags, data); 592 if (retval) 593 return retval; 594 } 595 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 596 597 /* 598 * Some filesystems modify their metadata via some other path than the 599 * bdev buffer cache (eg. use a private mapping, or directories in 600 * pagecache, etc). Also file data modifications go via their own 601 * mappings. So If we try to mount readonly then copy the filesystem 602 * from bdev, we could get stale data, so invalidate it to give a best 603 * effort at coherency. 604 */ 605 if (remount_ro && sb->s_bdev) 606 invalidate_bdev(sb->s_bdev); 607 return 0; 608 } 609 610 static void do_emergency_remount(struct work_struct *work) 611 { 612 struct super_block *sb, *p = NULL; 613 614 spin_lock(&sb_lock); 615 list_for_each_entry(sb, &super_blocks, s_list) { 616 if (list_empty(&sb->s_instances)) 617 continue; 618 sb->s_count++; 619 spin_unlock(&sb_lock); 620 down_write(&sb->s_umount); 621 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) { 622 /* 623 * What lock protects sb->s_flags?? 624 */ 625 do_remount_sb(sb, MS_RDONLY, NULL, 1); 626 } 627 up_write(&sb->s_umount); 628 spin_lock(&sb_lock); 629 if (p) 630 __put_super(p); 631 p = sb; 632 } 633 if (p) 634 __put_super(p); 635 spin_unlock(&sb_lock); 636 kfree(work); 637 printk("Emergency Remount complete\n"); 638 } 639 640 void emergency_remount(void) 641 { 642 struct work_struct *work; 643 644 work = kmalloc(sizeof(*work), GFP_ATOMIC); 645 if (work) { 646 INIT_WORK(work, do_emergency_remount); 647 schedule_work(work); 648 } 649 } 650 651 /* 652 * Unnamed block devices are dummy devices used by virtual 653 * filesystems which don't use real block-devices. -- jrs 654 */ 655 656 static DEFINE_IDA(unnamed_dev_ida); 657 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 658 static int unnamed_dev_start = 0; /* don't bother trying below it */ 659 660 int set_anon_super(struct super_block *s, void *data) 661 { 662 int dev; 663 int error; 664 665 retry: 666 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 667 return -ENOMEM; 668 spin_lock(&unnamed_dev_lock); 669 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 670 if (!error) 671 unnamed_dev_start = dev + 1; 672 spin_unlock(&unnamed_dev_lock); 673 if (error == -EAGAIN) 674 /* We raced and lost with another CPU. */ 675 goto retry; 676 else if (error) 677 return -EAGAIN; 678 679 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) { 680 spin_lock(&unnamed_dev_lock); 681 ida_remove(&unnamed_dev_ida, dev); 682 if (unnamed_dev_start > dev) 683 unnamed_dev_start = dev; 684 spin_unlock(&unnamed_dev_lock); 685 return -EMFILE; 686 } 687 s->s_dev = MKDEV(0, dev & MINORMASK); 688 s->s_bdi = &noop_backing_dev_info; 689 return 0; 690 } 691 692 EXPORT_SYMBOL(set_anon_super); 693 694 void kill_anon_super(struct super_block *sb) 695 { 696 int slot = MINOR(sb->s_dev); 697 698 generic_shutdown_super(sb); 699 spin_lock(&unnamed_dev_lock); 700 ida_remove(&unnamed_dev_ida, slot); 701 if (slot < unnamed_dev_start) 702 unnamed_dev_start = slot; 703 spin_unlock(&unnamed_dev_lock); 704 } 705 706 EXPORT_SYMBOL(kill_anon_super); 707 708 void kill_litter_super(struct super_block *sb) 709 { 710 if (sb->s_root) 711 d_genocide(sb->s_root); 712 kill_anon_super(sb); 713 } 714 715 EXPORT_SYMBOL(kill_litter_super); 716 717 static int ns_test_super(struct super_block *sb, void *data) 718 { 719 return sb->s_fs_info == data; 720 } 721 722 static int ns_set_super(struct super_block *sb, void *data) 723 { 724 sb->s_fs_info = data; 725 return set_anon_super(sb, NULL); 726 } 727 728 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 729 void *data, int (*fill_super)(struct super_block *, void *, int)) 730 { 731 struct super_block *sb; 732 733 sb = sget(fs_type, ns_test_super, ns_set_super, data); 734 if (IS_ERR(sb)) 735 return ERR_CAST(sb); 736 737 if (!sb->s_root) { 738 int err; 739 sb->s_flags = flags; 740 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 741 if (err) { 742 deactivate_locked_super(sb); 743 return ERR_PTR(err); 744 } 745 746 sb->s_flags |= MS_ACTIVE; 747 } 748 749 return dget(sb->s_root); 750 } 751 752 EXPORT_SYMBOL(mount_ns); 753 754 #ifdef CONFIG_BLOCK 755 static int set_bdev_super(struct super_block *s, void *data) 756 { 757 s->s_bdev = data; 758 s->s_dev = s->s_bdev->bd_dev; 759 760 /* 761 * We set the bdi here to the queue backing, file systems can 762 * overwrite this in ->fill_super() 763 */ 764 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 765 return 0; 766 } 767 768 static int test_bdev_super(struct super_block *s, void *data) 769 { 770 return (void *)s->s_bdev == data; 771 } 772 773 struct dentry *mount_bdev(struct file_system_type *fs_type, 774 int flags, const char *dev_name, void *data, 775 int (*fill_super)(struct super_block *, void *, int)) 776 { 777 struct block_device *bdev; 778 struct super_block *s; 779 fmode_t mode = FMODE_READ | FMODE_EXCL; 780 int error = 0; 781 782 if (!(flags & MS_RDONLY)) 783 mode |= FMODE_WRITE; 784 785 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 786 if (IS_ERR(bdev)) 787 return ERR_CAST(bdev); 788 789 /* 790 * once the super is inserted into the list by sget, s_umount 791 * will protect the lockfs code from trying to start a snapshot 792 * while we are mounting 793 */ 794 mutex_lock(&bdev->bd_fsfreeze_mutex); 795 if (bdev->bd_fsfreeze_count > 0) { 796 mutex_unlock(&bdev->bd_fsfreeze_mutex); 797 error = -EBUSY; 798 goto error_bdev; 799 } 800 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev); 801 mutex_unlock(&bdev->bd_fsfreeze_mutex); 802 if (IS_ERR(s)) 803 goto error_s; 804 805 if (s->s_root) { 806 if ((flags ^ s->s_flags) & MS_RDONLY) { 807 deactivate_locked_super(s); 808 error = -EBUSY; 809 goto error_bdev; 810 } 811 812 /* 813 * s_umount nests inside bd_mutex during 814 * __invalidate_device(). blkdev_put() acquires 815 * bd_mutex and can't be called under s_umount. Drop 816 * s_umount temporarily. This is safe as we're 817 * holding an active reference. 818 */ 819 up_write(&s->s_umount); 820 blkdev_put(bdev, mode); 821 down_write(&s->s_umount); 822 } else { 823 char b[BDEVNAME_SIZE]; 824 825 s->s_flags = flags; 826 s->s_mode = mode; 827 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 828 sb_set_blocksize(s, block_size(bdev)); 829 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 830 if (error) { 831 deactivate_locked_super(s); 832 goto error; 833 } 834 835 s->s_flags |= MS_ACTIVE; 836 bdev->bd_super = s; 837 } 838 839 return dget(s->s_root); 840 841 error_s: 842 error = PTR_ERR(s); 843 error_bdev: 844 blkdev_put(bdev, mode); 845 error: 846 return ERR_PTR(error); 847 } 848 EXPORT_SYMBOL(mount_bdev); 849 850 void kill_block_super(struct super_block *sb) 851 { 852 struct block_device *bdev = sb->s_bdev; 853 fmode_t mode = sb->s_mode; 854 855 bdev->bd_super = NULL; 856 generic_shutdown_super(sb); 857 sync_blockdev(bdev); 858 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 859 blkdev_put(bdev, mode | FMODE_EXCL); 860 } 861 862 EXPORT_SYMBOL(kill_block_super); 863 #endif 864 865 struct dentry *mount_nodev(struct file_system_type *fs_type, 866 int flags, void *data, 867 int (*fill_super)(struct super_block *, void *, int)) 868 { 869 int error; 870 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 871 872 if (IS_ERR(s)) 873 return ERR_CAST(s); 874 875 s->s_flags = flags; 876 877 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 878 if (error) { 879 deactivate_locked_super(s); 880 return ERR_PTR(error); 881 } 882 s->s_flags |= MS_ACTIVE; 883 return dget(s->s_root); 884 } 885 EXPORT_SYMBOL(mount_nodev); 886 887 static int compare_single(struct super_block *s, void *p) 888 { 889 return 1; 890 } 891 892 struct dentry *mount_single(struct file_system_type *fs_type, 893 int flags, void *data, 894 int (*fill_super)(struct super_block *, void *, int)) 895 { 896 struct super_block *s; 897 int error; 898 899 s = sget(fs_type, compare_single, set_anon_super, NULL); 900 if (IS_ERR(s)) 901 return ERR_CAST(s); 902 if (!s->s_root) { 903 s->s_flags = flags; 904 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 905 if (error) { 906 deactivate_locked_super(s); 907 return ERR_PTR(error); 908 } 909 s->s_flags |= MS_ACTIVE; 910 } else { 911 do_remount_sb(s, flags, data, 0); 912 } 913 return dget(s->s_root); 914 } 915 EXPORT_SYMBOL(mount_single); 916 917 struct dentry * 918 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 919 { 920 struct dentry *root; 921 struct super_block *sb; 922 char *secdata = NULL; 923 int error = -ENOMEM; 924 925 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 926 secdata = alloc_secdata(); 927 if (!secdata) 928 goto out; 929 930 error = security_sb_copy_data(data, secdata); 931 if (error) 932 goto out_free_secdata; 933 } 934 935 root = type->mount(type, flags, name, data); 936 if (IS_ERR(root)) { 937 error = PTR_ERR(root); 938 goto out_free_secdata; 939 } 940 sb = root->d_sb; 941 BUG_ON(!sb); 942 WARN_ON(!sb->s_bdi); 943 WARN_ON(sb->s_bdi == &default_backing_dev_info); 944 sb->s_flags |= MS_BORN; 945 946 error = security_sb_kern_mount(sb, flags, secdata); 947 if (error) 948 goto out_sb; 949 950 /* 951 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 952 * but s_maxbytes was an unsigned long long for many releases. Throw 953 * this warning for a little while to try and catch filesystems that 954 * violate this rule. 955 */ 956 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 957 "negative value (%lld)\n", type->name, sb->s_maxbytes); 958 959 up_write(&sb->s_umount); 960 free_secdata(secdata); 961 return root; 962 out_sb: 963 dput(root); 964 deactivate_locked_super(sb); 965 out_free_secdata: 966 free_secdata(secdata); 967 out: 968 return ERR_PTR(error); 969 } 970 971 /** 972 * freeze_super - lock the filesystem and force it into a consistent state 973 * @sb: the super to lock 974 * 975 * Syncs the super to make sure the filesystem is consistent and calls the fs's 976 * freeze_fs. Subsequent calls to this without first thawing the fs will return 977 * -EBUSY. 978 */ 979 int freeze_super(struct super_block *sb) 980 { 981 int ret; 982 983 atomic_inc(&sb->s_active); 984 down_write(&sb->s_umount); 985 if (sb->s_frozen) { 986 deactivate_locked_super(sb); 987 return -EBUSY; 988 } 989 990 if (sb->s_flags & MS_RDONLY) { 991 sb->s_frozen = SB_FREEZE_TRANS; 992 smp_wmb(); 993 up_write(&sb->s_umount); 994 return 0; 995 } 996 997 sb->s_frozen = SB_FREEZE_WRITE; 998 smp_wmb(); 999 1000 sync_filesystem(sb); 1001 1002 sb->s_frozen = SB_FREEZE_TRANS; 1003 smp_wmb(); 1004 1005 sync_blockdev(sb->s_bdev); 1006 if (sb->s_op->freeze_fs) { 1007 ret = sb->s_op->freeze_fs(sb); 1008 if (ret) { 1009 printk(KERN_ERR 1010 "VFS:Filesystem freeze failed\n"); 1011 sb->s_frozen = SB_UNFROZEN; 1012 deactivate_locked_super(sb); 1013 return ret; 1014 } 1015 } 1016 up_write(&sb->s_umount); 1017 return 0; 1018 } 1019 EXPORT_SYMBOL(freeze_super); 1020 1021 /** 1022 * thaw_super -- unlock filesystem 1023 * @sb: the super to thaw 1024 * 1025 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1026 */ 1027 int thaw_super(struct super_block *sb) 1028 { 1029 int error; 1030 1031 down_write(&sb->s_umount); 1032 if (sb->s_frozen == SB_UNFROZEN) { 1033 up_write(&sb->s_umount); 1034 return -EINVAL; 1035 } 1036 1037 if (sb->s_flags & MS_RDONLY) 1038 goto out; 1039 1040 if (sb->s_op->unfreeze_fs) { 1041 error = sb->s_op->unfreeze_fs(sb); 1042 if (error) { 1043 printk(KERN_ERR 1044 "VFS:Filesystem thaw failed\n"); 1045 sb->s_frozen = SB_FREEZE_TRANS; 1046 up_write(&sb->s_umount); 1047 return error; 1048 } 1049 } 1050 1051 out: 1052 sb->s_frozen = SB_UNFROZEN; 1053 smp_wmb(); 1054 wake_up(&sb->s_wait_unfrozen); 1055 deactivate_locked_super(sb); 1056 1057 return 0; 1058 } 1059 EXPORT_SYMBOL(thaw_super); 1060