1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 static inline void __super_lock(struct super_block *sb, bool excl) 54 { 55 if (excl) 56 down_write(&sb->s_umount); 57 else 58 down_read(&sb->s_umount); 59 } 60 61 static inline void super_unlock(struct super_block *sb, bool excl) 62 { 63 if (excl) 64 up_write(&sb->s_umount); 65 else 66 up_read(&sb->s_umount); 67 } 68 69 static inline void __super_lock_excl(struct super_block *sb) 70 { 71 __super_lock(sb, true); 72 } 73 74 static inline void super_unlock_excl(struct super_block *sb) 75 { 76 super_unlock(sb, true); 77 } 78 79 static inline void super_unlock_shared(struct super_block *sb) 80 { 81 super_unlock(sb, false); 82 } 83 84 static bool super_flags(const struct super_block *sb, unsigned int flags) 85 { 86 /* 87 * Pairs with smp_store_release() in super_wake() and ensures 88 * that we see @flags after we're woken. 89 */ 90 return smp_load_acquire(&sb->s_flags) & flags; 91 } 92 93 /** 94 * super_lock - wait for superblock to become ready and lock it 95 * @sb: superblock to wait for 96 * @excl: whether exclusive access is required 97 * 98 * If the superblock has neither passed through vfs_get_tree() or 99 * generic_shutdown_super() yet wait for it to happen. Either superblock 100 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're 101 * woken and we'll see SB_DYING. 102 * 103 * The caller must have acquired a temporary reference on @sb->s_count. 104 * 105 * Return: The function returns true if SB_BORN was set and with 106 * s_umount held. The function returns false if SB_DYING was 107 * set and without s_umount held. 108 */ 109 static __must_check bool super_lock(struct super_block *sb, bool excl) 110 { 111 lockdep_assert_not_held(&sb->s_umount); 112 113 /* wait until the superblock is ready or dying */ 114 wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING)); 115 116 /* Don't pointlessly acquire s_umount. */ 117 if (super_flags(sb, SB_DYING)) 118 return false; 119 120 __super_lock(sb, excl); 121 122 /* 123 * Has gone through generic_shutdown_super() in the meantime. 124 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to 125 * grab a reference to this. Tell them so. 126 */ 127 if (sb->s_flags & SB_DYING) { 128 super_unlock(sb, excl); 129 return false; 130 } 131 132 WARN_ON_ONCE(!(sb->s_flags & SB_BORN)); 133 return true; 134 } 135 136 /* wait and try to acquire read-side of @sb->s_umount */ 137 static inline bool super_lock_shared(struct super_block *sb) 138 { 139 return super_lock(sb, false); 140 } 141 142 /* wait and try to acquire write-side of @sb->s_umount */ 143 static inline bool super_lock_excl(struct super_block *sb) 144 { 145 return super_lock(sb, true); 146 } 147 148 /* wake waiters */ 149 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD) 150 static void super_wake(struct super_block *sb, unsigned int flag) 151 { 152 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS)); 153 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1); 154 155 /* 156 * Pairs with smp_load_acquire() in super_lock() to make sure 157 * all initializations in the superblock are seen by the user 158 * seeing SB_BORN sent. 159 */ 160 smp_store_release(&sb->s_flags, sb->s_flags | flag); 161 /* 162 * Pairs with the barrier in prepare_to_wait_event() to make sure 163 * ___wait_var_event() either sees SB_BORN set or 164 * waitqueue_active() check in wake_up_var() sees the waiter. 165 */ 166 smp_mb(); 167 wake_up_var(&sb->s_flags); 168 } 169 170 /* 171 * One thing we have to be careful of with a per-sb shrinker is that we don't 172 * drop the last active reference to the superblock from within the shrinker. 173 * If that happens we could trigger unregistering the shrinker from within the 174 * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we 175 * take a passive reference to the superblock to avoid this from occurring. 176 */ 177 static unsigned long super_cache_scan(struct shrinker *shrink, 178 struct shrink_control *sc) 179 { 180 struct super_block *sb; 181 long fs_objects = 0; 182 long total_objects; 183 long freed = 0; 184 long dentries; 185 long inodes; 186 187 sb = shrink->private_data; 188 189 /* 190 * Deadlock avoidance. We may hold various FS locks, and we don't want 191 * to recurse into the FS that called us in clear_inode() and friends.. 192 */ 193 if (!(sc->gfp_mask & __GFP_FS)) 194 return SHRINK_STOP; 195 196 if (!super_trylock_shared(sb)) 197 return SHRINK_STOP; 198 199 if (sb->s_op->nr_cached_objects) 200 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 201 202 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 203 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 204 total_objects = dentries + inodes + fs_objects + 1; 205 if (!total_objects) 206 total_objects = 1; 207 208 /* proportion the scan between the caches */ 209 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 210 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 211 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 212 213 /* 214 * prune the dcache first as the icache is pinned by it, then 215 * prune the icache, followed by the filesystem specific caches 216 * 217 * Ensure that we always scan at least one object - memcg kmem 218 * accounting uses this to fully empty the caches. 219 */ 220 sc->nr_to_scan = dentries + 1; 221 freed = prune_dcache_sb(sb, sc); 222 sc->nr_to_scan = inodes + 1; 223 freed += prune_icache_sb(sb, sc); 224 225 if (fs_objects) { 226 sc->nr_to_scan = fs_objects + 1; 227 freed += sb->s_op->free_cached_objects(sb, sc); 228 } 229 230 super_unlock_shared(sb); 231 return freed; 232 } 233 234 static unsigned long super_cache_count(struct shrinker *shrink, 235 struct shrink_control *sc) 236 { 237 struct super_block *sb; 238 long total_objects = 0; 239 240 sb = shrink->private_data; 241 242 /* 243 * We don't call super_trylock_shared() here as it is a scalability 244 * bottleneck, so we're exposed to partial setup state. The shrinker 245 * rwsem does not protect filesystem operations backing 246 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can 247 * change between super_cache_count and super_cache_scan, so we really 248 * don't need locks here. 249 * 250 * However, if we are currently mounting the superblock, the underlying 251 * filesystem might be in a state of partial construction and hence it 252 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check 253 * to avoid this situation, so do the same here. The memory barrier is 254 * matched with the one in mount_fs() as we don't hold locks here. 255 */ 256 if (!(sb->s_flags & SB_BORN)) 257 return 0; 258 smp_rmb(); 259 260 if (sb->s_op && sb->s_op->nr_cached_objects) 261 total_objects = sb->s_op->nr_cached_objects(sb, sc); 262 263 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 264 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 265 266 if (!total_objects) 267 return SHRINK_EMPTY; 268 269 total_objects = vfs_pressure_ratio(total_objects); 270 return total_objects; 271 } 272 273 static void destroy_super_work(struct work_struct *work) 274 { 275 struct super_block *s = container_of(work, struct super_block, 276 destroy_work); 277 fsnotify_sb_free(s); 278 security_sb_free(s); 279 put_user_ns(s->s_user_ns); 280 kfree(s->s_subtype); 281 for (int i = 0; i < SB_FREEZE_LEVELS; i++) 282 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 283 kfree(s); 284 } 285 286 static void destroy_super_rcu(struct rcu_head *head) 287 { 288 struct super_block *s = container_of(head, struct super_block, rcu); 289 INIT_WORK(&s->destroy_work, destroy_super_work); 290 schedule_work(&s->destroy_work); 291 } 292 293 /* Free a superblock that has never been seen by anyone */ 294 static void destroy_unused_super(struct super_block *s) 295 { 296 if (!s) 297 return; 298 super_unlock_excl(s); 299 list_lru_destroy(&s->s_dentry_lru); 300 list_lru_destroy(&s->s_inode_lru); 301 shrinker_free(s->s_shrink); 302 /* no delays needed */ 303 destroy_super_work(&s->destroy_work); 304 } 305 306 /** 307 * alloc_super - create new superblock 308 * @type: filesystem type superblock should belong to 309 * @flags: the mount flags 310 * @user_ns: User namespace for the super_block 311 * 312 * Allocates and initializes a new &struct super_block. alloc_super() 313 * returns a pointer new superblock or %NULL if allocation had failed. 314 */ 315 static struct super_block *alloc_super(struct file_system_type *type, int flags, 316 struct user_namespace *user_ns) 317 { 318 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL); 319 static const struct super_operations default_op; 320 int i; 321 322 if (!s) 323 return NULL; 324 325 INIT_LIST_HEAD(&s->s_mounts); 326 s->s_user_ns = get_user_ns(user_ns); 327 init_rwsem(&s->s_umount); 328 lockdep_set_class(&s->s_umount, &type->s_umount_key); 329 /* 330 * sget() can have s_umount recursion. 331 * 332 * When it cannot find a suitable sb, it allocates a new 333 * one (this one), and tries again to find a suitable old 334 * one. 335 * 336 * In case that succeeds, it will acquire the s_umount 337 * lock of the old one. Since these are clearly distrinct 338 * locks, and this object isn't exposed yet, there's no 339 * risk of deadlocks. 340 * 341 * Annotate this by putting this lock in a different 342 * subclass. 343 */ 344 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 345 346 if (security_sb_alloc(s)) 347 goto fail; 348 349 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 350 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 351 sb_writers_name[i], 352 &type->s_writers_key[i])) 353 goto fail; 354 } 355 s->s_bdi = &noop_backing_dev_info; 356 s->s_flags = flags; 357 if (s->s_user_ns != &init_user_ns) 358 s->s_iflags |= SB_I_NODEV; 359 INIT_HLIST_NODE(&s->s_instances); 360 INIT_HLIST_BL_HEAD(&s->s_roots); 361 mutex_init(&s->s_sync_lock); 362 INIT_LIST_HEAD(&s->s_inodes); 363 spin_lock_init(&s->s_inode_list_lock); 364 INIT_LIST_HEAD(&s->s_inodes_wb); 365 spin_lock_init(&s->s_inode_wblist_lock); 366 367 s->s_count = 1; 368 atomic_set(&s->s_active, 1); 369 mutex_init(&s->s_vfs_rename_mutex); 370 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 371 init_rwsem(&s->s_dquot.dqio_sem); 372 s->s_maxbytes = MAX_NON_LFS; 373 s->s_op = &default_op; 374 s->s_time_gran = 1000000000; 375 s->s_time_min = TIME64_MIN; 376 s->s_time_max = TIME64_MAX; 377 378 s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, 379 "sb-%s", type->name); 380 if (!s->s_shrink) 381 goto fail; 382 383 s->s_shrink->scan_objects = super_cache_scan; 384 s->s_shrink->count_objects = super_cache_count; 385 s->s_shrink->batch = 1024; 386 s->s_shrink->private_data = s; 387 388 if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink)) 389 goto fail; 390 if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink)) 391 goto fail; 392 return s; 393 394 fail: 395 destroy_unused_super(s); 396 return NULL; 397 } 398 399 /* Superblock refcounting */ 400 401 /* 402 * Drop a superblock's refcount. The caller must hold sb_lock. 403 */ 404 static void __put_super(struct super_block *s) 405 { 406 if (!--s->s_count) { 407 list_del_init(&s->s_list); 408 WARN_ON(s->s_dentry_lru.node); 409 WARN_ON(s->s_inode_lru.node); 410 WARN_ON(!list_empty(&s->s_mounts)); 411 call_rcu(&s->rcu, destroy_super_rcu); 412 } 413 } 414 415 /** 416 * put_super - drop a temporary reference to superblock 417 * @sb: superblock in question 418 * 419 * Drops a temporary reference, frees superblock if there's no 420 * references left. 421 */ 422 void put_super(struct super_block *sb) 423 { 424 spin_lock(&sb_lock); 425 __put_super(sb); 426 spin_unlock(&sb_lock); 427 } 428 429 static void kill_super_notify(struct super_block *sb) 430 { 431 lockdep_assert_not_held(&sb->s_umount); 432 433 /* already notified earlier */ 434 if (sb->s_flags & SB_DEAD) 435 return; 436 437 /* 438 * Remove it from @fs_supers so it isn't found by new 439 * sget{_fc}() walkers anymore. Any concurrent mounter still 440 * managing to grab a temporary reference is guaranteed to 441 * already see SB_DYING and will wait until we notify them about 442 * SB_DEAD. 443 */ 444 spin_lock(&sb_lock); 445 hlist_del_init(&sb->s_instances); 446 spin_unlock(&sb_lock); 447 448 /* 449 * Let concurrent mounts know that this thing is really dead. 450 * We don't need @sb->s_umount here as every concurrent caller 451 * will see SB_DYING and either discard the superblock or wait 452 * for SB_DEAD. 453 */ 454 super_wake(sb, SB_DEAD); 455 } 456 457 /** 458 * deactivate_locked_super - drop an active reference to superblock 459 * @s: superblock to deactivate 460 * 461 * Drops an active reference to superblock, converting it into a temporary 462 * one if there is no other active references left. In that case we 463 * tell fs driver to shut it down and drop the temporary reference we 464 * had just acquired. 465 * 466 * Caller holds exclusive lock on superblock; that lock is released. 467 */ 468 void deactivate_locked_super(struct super_block *s) 469 { 470 struct file_system_type *fs = s->s_type; 471 if (atomic_dec_and_test(&s->s_active)) { 472 shrinker_free(s->s_shrink); 473 fs->kill_sb(s); 474 475 kill_super_notify(s); 476 477 /* 478 * Since list_lru_destroy() may sleep, we cannot call it from 479 * put_super(), where we hold the sb_lock. Therefore we destroy 480 * the lru lists right now. 481 */ 482 list_lru_destroy(&s->s_dentry_lru); 483 list_lru_destroy(&s->s_inode_lru); 484 485 put_filesystem(fs); 486 put_super(s); 487 } else { 488 super_unlock_excl(s); 489 } 490 } 491 492 EXPORT_SYMBOL(deactivate_locked_super); 493 494 /** 495 * deactivate_super - drop an active reference to superblock 496 * @s: superblock to deactivate 497 * 498 * Variant of deactivate_locked_super(), except that superblock is *not* 499 * locked by caller. If we are going to drop the final active reference, 500 * lock will be acquired prior to that. 501 */ 502 void deactivate_super(struct super_block *s) 503 { 504 if (!atomic_add_unless(&s->s_active, -1, 1)) { 505 __super_lock_excl(s); 506 deactivate_locked_super(s); 507 } 508 } 509 510 EXPORT_SYMBOL(deactivate_super); 511 512 /** 513 * grab_super - acquire an active reference to a superblock 514 * @sb: superblock to acquire 515 * 516 * Acquire a temporary reference on a superblock and try to trade it for 517 * an active reference. This is used in sget{_fc}() to wait for a 518 * superblock to either become SB_BORN or for it to pass through 519 * sb->kill() and be marked as SB_DEAD. 520 * 521 * Return: This returns true if an active reference could be acquired, 522 * false if not. 523 */ 524 static bool grab_super(struct super_block *sb) 525 { 526 bool locked; 527 528 sb->s_count++; 529 spin_unlock(&sb_lock); 530 locked = super_lock_excl(sb); 531 if (locked) { 532 if (atomic_inc_not_zero(&sb->s_active)) { 533 put_super(sb); 534 return true; 535 } 536 super_unlock_excl(sb); 537 } 538 wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD)); 539 put_super(sb); 540 return false; 541 } 542 543 /* 544 * super_trylock_shared - try to grab ->s_umount shared 545 * @sb: reference we are trying to grab 546 * 547 * Try to prevent fs shutdown. This is used in places where we 548 * cannot take an active reference but we need to ensure that the 549 * filesystem is not shut down while we are working on it. It returns 550 * false if we cannot acquire s_umount or if we lose the race and 551 * filesystem already got into shutdown, and returns true with the s_umount 552 * lock held in read mode in case of success. On successful return, 553 * the caller must drop the s_umount lock when done. 554 * 555 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 556 * The reason why it's safe is that we are OK with doing trylock instead 557 * of down_read(). There's a couple of places that are OK with that, but 558 * it's very much not a general-purpose interface. 559 */ 560 bool super_trylock_shared(struct super_block *sb) 561 { 562 if (down_read_trylock(&sb->s_umount)) { 563 if (!(sb->s_flags & SB_DYING) && sb->s_root && 564 (sb->s_flags & SB_BORN)) 565 return true; 566 super_unlock_shared(sb); 567 } 568 569 return false; 570 } 571 572 /** 573 * retire_super - prevents superblock from being reused 574 * @sb: superblock to retire 575 * 576 * The function marks superblock to be ignored in superblock test, which 577 * prevents it from being reused for any new mounts. If the superblock has 578 * a private bdi, it also unregisters it, but doesn't reduce the refcount 579 * of the superblock to prevent potential races. The refcount is reduced 580 * by generic_shutdown_super(). The function can not be called 581 * concurrently with generic_shutdown_super(). It is safe to call the 582 * function multiple times, subsequent calls have no effect. 583 * 584 * The marker will affect the re-use only for block-device-based 585 * superblocks. Other superblocks will still get marked if this function 586 * is used, but that will not affect their reusability. 587 */ 588 void retire_super(struct super_block *sb) 589 { 590 WARN_ON(!sb->s_bdev); 591 __super_lock_excl(sb); 592 if (sb->s_iflags & SB_I_PERSB_BDI) { 593 bdi_unregister(sb->s_bdi); 594 sb->s_iflags &= ~SB_I_PERSB_BDI; 595 } 596 sb->s_iflags |= SB_I_RETIRED; 597 super_unlock_excl(sb); 598 } 599 EXPORT_SYMBOL(retire_super); 600 601 /** 602 * generic_shutdown_super - common helper for ->kill_sb() 603 * @sb: superblock to kill 604 * 605 * generic_shutdown_super() does all fs-independent work on superblock 606 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 607 * that need destruction out of superblock, call generic_shutdown_super() 608 * and release aforementioned objects. Note: dentries and inodes _are_ 609 * taken care of and do not need specific handling. 610 * 611 * Upon calling this function, the filesystem may no longer alter or 612 * rearrange the set of dentries belonging to this super_block, nor may it 613 * change the attachments of dentries to inodes. 614 */ 615 void generic_shutdown_super(struct super_block *sb) 616 { 617 const struct super_operations *sop = sb->s_op; 618 619 if (sb->s_root) { 620 shrink_dcache_for_umount(sb); 621 sync_filesystem(sb); 622 sb->s_flags &= ~SB_ACTIVE; 623 624 cgroup_writeback_umount(); 625 626 /* Evict all inodes with zero refcount. */ 627 evict_inodes(sb); 628 629 /* 630 * Clean up and evict any inodes that still have references due 631 * to fsnotify or the security policy. 632 */ 633 fsnotify_sb_delete(sb); 634 security_sb_delete(sb); 635 636 if (sb->s_dio_done_wq) { 637 destroy_workqueue(sb->s_dio_done_wq); 638 sb->s_dio_done_wq = NULL; 639 } 640 641 if (sop->put_super) 642 sop->put_super(sb); 643 644 /* 645 * Now that all potentially-encrypted inodes have been evicted, 646 * the fscrypt keyring can be destroyed. 647 */ 648 fscrypt_destroy_keyring(sb); 649 650 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), 651 "VFS: Busy inodes after unmount of %s (%s)", 652 sb->s_id, sb->s_type->name)) { 653 /* 654 * Adding a proper bailout path here would be hard, but 655 * we can at least make it more likely that a later 656 * iput_final() or such crashes cleanly. 657 */ 658 struct inode *inode; 659 660 spin_lock(&sb->s_inode_list_lock); 661 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 662 inode->i_op = VFS_PTR_POISON; 663 inode->i_sb = VFS_PTR_POISON; 664 inode->i_mapping = VFS_PTR_POISON; 665 } 666 spin_unlock(&sb->s_inode_list_lock); 667 } 668 } 669 /* 670 * Broadcast to everyone that grabbed a temporary reference to this 671 * superblock before we removed it from @fs_supers that the superblock 672 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now 673 * discard this superblock and treat it as dead. 674 * 675 * We leave the superblock on @fs_supers so it can be found by 676 * sget{_fc}() until we passed sb->kill_sb(). 677 */ 678 super_wake(sb, SB_DYING); 679 super_unlock_excl(sb); 680 if (sb->s_bdi != &noop_backing_dev_info) { 681 if (sb->s_iflags & SB_I_PERSB_BDI) 682 bdi_unregister(sb->s_bdi); 683 bdi_put(sb->s_bdi); 684 sb->s_bdi = &noop_backing_dev_info; 685 } 686 } 687 688 EXPORT_SYMBOL(generic_shutdown_super); 689 690 bool mount_capable(struct fs_context *fc) 691 { 692 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 693 return capable(CAP_SYS_ADMIN); 694 else 695 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 696 } 697 698 /** 699 * sget_fc - Find or create a superblock 700 * @fc: Filesystem context. 701 * @test: Comparison callback 702 * @set: Setup callback 703 * 704 * Create a new superblock or find an existing one. 705 * 706 * The @test callback is used to find a matching existing superblock. 707 * Whether or not the requested parameters in @fc are taken into account 708 * is specific to the @test callback that is used. They may even be 709 * completely ignored. 710 * 711 * If an extant superblock is matched, it will be returned unless: 712 * 713 * (1) the namespace the filesystem context @fc and the extant 714 * superblock's namespace differ 715 * 716 * (2) the filesystem context @fc has requested that reusing an extant 717 * superblock is not allowed 718 * 719 * In both cases EBUSY will be returned. 720 * 721 * If no match is made, a new superblock will be allocated and basic 722 * initialisation will be performed (s_type, s_fs_info and s_id will be 723 * set and the @set callback will be invoked), the superblock will be 724 * published and it will be returned in a partially constructed state 725 * with SB_BORN and SB_ACTIVE as yet unset. 726 * 727 * Return: On success, an extant or newly created superblock is 728 * returned. On failure an error pointer is returned. 729 */ 730 struct super_block *sget_fc(struct fs_context *fc, 731 int (*test)(struct super_block *, struct fs_context *), 732 int (*set)(struct super_block *, struct fs_context *)) 733 { 734 struct super_block *s = NULL; 735 struct super_block *old; 736 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 737 int err; 738 739 retry: 740 spin_lock(&sb_lock); 741 if (test) { 742 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 743 if (test(old, fc)) 744 goto share_extant_sb; 745 } 746 } 747 if (!s) { 748 spin_unlock(&sb_lock); 749 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 750 if (!s) 751 return ERR_PTR(-ENOMEM); 752 goto retry; 753 } 754 755 s->s_fs_info = fc->s_fs_info; 756 err = set(s, fc); 757 if (err) { 758 s->s_fs_info = NULL; 759 spin_unlock(&sb_lock); 760 destroy_unused_super(s); 761 return ERR_PTR(err); 762 } 763 fc->s_fs_info = NULL; 764 s->s_type = fc->fs_type; 765 s->s_iflags |= fc->s_iflags; 766 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 767 /* 768 * Make the superblock visible on @super_blocks and @fs_supers. 769 * It's in a nascent state and users should wait on SB_BORN or 770 * SB_DYING to be set. 771 */ 772 list_add_tail(&s->s_list, &super_blocks); 773 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 774 spin_unlock(&sb_lock); 775 get_filesystem(s->s_type); 776 shrinker_register(s->s_shrink); 777 return s; 778 779 share_extant_sb: 780 if (user_ns != old->s_user_ns || fc->exclusive) { 781 spin_unlock(&sb_lock); 782 destroy_unused_super(s); 783 if (fc->exclusive) 784 warnfc(fc, "reusing existing filesystem not allowed"); 785 else 786 warnfc(fc, "reusing existing filesystem in another namespace not allowed"); 787 return ERR_PTR(-EBUSY); 788 } 789 if (!grab_super(old)) 790 goto retry; 791 destroy_unused_super(s); 792 return old; 793 } 794 EXPORT_SYMBOL(sget_fc); 795 796 /** 797 * sget - find or create a superblock 798 * @type: filesystem type superblock should belong to 799 * @test: comparison callback 800 * @set: setup callback 801 * @flags: mount flags 802 * @data: argument to each of them 803 */ 804 struct super_block *sget(struct file_system_type *type, 805 int (*test)(struct super_block *,void *), 806 int (*set)(struct super_block *,void *), 807 int flags, 808 void *data) 809 { 810 struct user_namespace *user_ns = current_user_ns(); 811 struct super_block *s = NULL; 812 struct super_block *old; 813 int err; 814 815 /* We don't yet pass the user namespace of the parent 816 * mount through to here so always use &init_user_ns 817 * until that changes. 818 */ 819 if (flags & SB_SUBMOUNT) 820 user_ns = &init_user_ns; 821 822 retry: 823 spin_lock(&sb_lock); 824 if (test) { 825 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 826 if (!test(old, data)) 827 continue; 828 if (user_ns != old->s_user_ns) { 829 spin_unlock(&sb_lock); 830 destroy_unused_super(s); 831 return ERR_PTR(-EBUSY); 832 } 833 if (!grab_super(old)) 834 goto retry; 835 destroy_unused_super(s); 836 return old; 837 } 838 } 839 if (!s) { 840 spin_unlock(&sb_lock); 841 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 842 if (!s) 843 return ERR_PTR(-ENOMEM); 844 goto retry; 845 } 846 847 err = set(s, data); 848 if (err) { 849 spin_unlock(&sb_lock); 850 destroy_unused_super(s); 851 return ERR_PTR(err); 852 } 853 s->s_type = type; 854 strscpy(s->s_id, type->name, sizeof(s->s_id)); 855 list_add_tail(&s->s_list, &super_blocks); 856 hlist_add_head(&s->s_instances, &type->fs_supers); 857 spin_unlock(&sb_lock); 858 get_filesystem(type); 859 shrinker_register(s->s_shrink); 860 return s; 861 } 862 EXPORT_SYMBOL(sget); 863 864 void drop_super(struct super_block *sb) 865 { 866 super_unlock_shared(sb); 867 put_super(sb); 868 } 869 870 EXPORT_SYMBOL(drop_super); 871 872 void drop_super_exclusive(struct super_block *sb) 873 { 874 super_unlock_excl(sb); 875 put_super(sb); 876 } 877 EXPORT_SYMBOL(drop_super_exclusive); 878 879 static void __iterate_supers(void (*f)(struct super_block *)) 880 { 881 struct super_block *sb, *p = NULL; 882 883 spin_lock(&sb_lock); 884 list_for_each_entry(sb, &super_blocks, s_list) { 885 if (super_flags(sb, SB_DYING)) 886 continue; 887 sb->s_count++; 888 spin_unlock(&sb_lock); 889 890 f(sb); 891 892 spin_lock(&sb_lock); 893 if (p) 894 __put_super(p); 895 p = sb; 896 } 897 if (p) 898 __put_super(p); 899 spin_unlock(&sb_lock); 900 } 901 /** 902 * iterate_supers - call function for all active superblocks 903 * @f: function to call 904 * @arg: argument to pass to it 905 * 906 * Scans the superblock list and calls given function, passing it 907 * locked superblock and given argument. 908 */ 909 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 910 { 911 struct super_block *sb, *p = NULL; 912 913 spin_lock(&sb_lock); 914 list_for_each_entry(sb, &super_blocks, s_list) { 915 bool locked; 916 917 sb->s_count++; 918 spin_unlock(&sb_lock); 919 920 locked = super_lock_shared(sb); 921 if (locked) { 922 if (sb->s_root) 923 f(sb, arg); 924 super_unlock_shared(sb); 925 } 926 927 spin_lock(&sb_lock); 928 if (p) 929 __put_super(p); 930 p = sb; 931 } 932 if (p) 933 __put_super(p); 934 spin_unlock(&sb_lock); 935 } 936 937 /** 938 * iterate_supers_type - call function for superblocks of given type 939 * @type: fs type 940 * @f: function to call 941 * @arg: argument to pass to it 942 * 943 * Scans the superblock list and calls given function, passing it 944 * locked superblock and given argument. 945 */ 946 void iterate_supers_type(struct file_system_type *type, 947 void (*f)(struct super_block *, void *), void *arg) 948 { 949 struct super_block *sb, *p = NULL; 950 951 spin_lock(&sb_lock); 952 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 953 bool locked; 954 955 sb->s_count++; 956 spin_unlock(&sb_lock); 957 958 locked = super_lock_shared(sb); 959 if (locked) { 960 if (sb->s_root) 961 f(sb, arg); 962 super_unlock_shared(sb); 963 } 964 965 spin_lock(&sb_lock); 966 if (p) 967 __put_super(p); 968 p = sb; 969 } 970 if (p) 971 __put_super(p); 972 spin_unlock(&sb_lock); 973 } 974 975 EXPORT_SYMBOL(iterate_supers_type); 976 977 struct super_block *user_get_super(dev_t dev, bool excl) 978 { 979 struct super_block *sb; 980 981 spin_lock(&sb_lock); 982 list_for_each_entry(sb, &super_blocks, s_list) { 983 if (sb->s_dev == dev) { 984 bool locked; 985 986 sb->s_count++; 987 spin_unlock(&sb_lock); 988 /* still alive? */ 989 locked = super_lock(sb, excl); 990 if (locked) { 991 if (sb->s_root) 992 return sb; 993 super_unlock(sb, excl); 994 } 995 /* nope, got unmounted */ 996 spin_lock(&sb_lock); 997 __put_super(sb); 998 break; 999 } 1000 } 1001 spin_unlock(&sb_lock); 1002 return NULL; 1003 } 1004 1005 /** 1006 * reconfigure_super - asks filesystem to change superblock parameters 1007 * @fc: The superblock and configuration 1008 * 1009 * Alters the configuration parameters of a live superblock. 1010 */ 1011 int reconfigure_super(struct fs_context *fc) 1012 { 1013 struct super_block *sb = fc->root->d_sb; 1014 int retval; 1015 bool remount_ro = false; 1016 bool remount_rw = false; 1017 bool force = fc->sb_flags & SB_FORCE; 1018 1019 if (fc->sb_flags_mask & ~MS_RMT_MASK) 1020 return -EINVAL; 1021 if (sb->s_writers.frozen != SB_UNFROZEN) 1022 return -EBUSY; 1023 1024 retval = security_sb_remount(sb, fc->security); 1025 if (retval) 1026 return retval; 1027 1028 if (fc->sb_flags_mask & SB_RDONLY) { 1029 #ifdef CONFIG_BLOCK 1030 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 1031 bdev_read_only(sb->s_bdev)) 1032 return -EACCES; 1033 #endif 1034 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb); 1035 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 1036 } 1037 1038 if (remount_ro) { 1039 if (!hlist_empty(&sb->s_pins)) { 1040 super_unlock_excl(sb); 1041 group_pin_kill(&sb->s_pins); 1042 __super_lock_excl(sb); 1043 if (!sb->s_root) 1044 return 0; 1045 if (sb->s_writers.frozen != SB_UNFROZEN) 1046 return -EBUSY; 1047 remount_ro = !sb_rdonly(sb); 1048 } 1049 } 1050 shrink_dcache_sb(sb); 1051 1052 /* If we are reconfiguring to RDONLY and current sb is read/write, 1053 * make sure there are no files open for writing. 1054 */ 1055 if (remount_ro) { 1056 if (force) { 1057 sb_start_ro_state_change(sb); 1058 } else { 1059 retval = sb_prepare_remount_readonly(sb); 1060 if (retval) 1061 return retval; 1062 } 1063 } else if (remount_rw) { 1064 /* 1065 * Protect filesystem's reconfigure code from writes from 1066 * userspace until reconfigure finishes. 1067 */ 1068 sb_start_ro_state_change(sb); 1069 } 1070 1071 if (fc->ops->reconfigure) { 1072 retval = fc->ops->reconfigure(fc); 1073 if (retval) { 1074 if (!force) 1075 goto cancel_readonly; 1076 /* If forced remount, go ahead despite any errors */ 1077 WARN(1, "forced remount of a %s fs returned %i\n", 1078 sb->s_type->name, retval); 1079 } 1080 } 1081 1082 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 1083 (fc->sb_flags & fc->sb_flags_mask))); 1084 sb_end_ro_state_change(sb); 1085 1086 /* 1087 * Some filesystems modify their metadata via some other path than the 1088 * bdev buffer cache (eg. use a private mapping, or directories in 1089 * pagecache, etc). Also file data modifications go via their own 1090 * mappings. So If we try to mount readonly then copy the filesystem 1091 * from bdev, we could get stale data, so invalidate it to give a best 1092 * effort at coherency. 1093 */ 1094 if (remount_ro && sb->s_bdev) 1095 invalidate_bdev(sb->s_bdev); 1096 return 0; 1097 1098 cancel_readonly: 1099 sb_end_ro_state_change(sb); 1100 return retval; 1101 } 1102 1103 static void do_emergency_remount_callback(struct super_block *sb) 1104 { 1105 bool locked = super_lock_excl(sb); 1106 1107 if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) { 1108 struct fs_context *fc; 1109 1110 fc = fs_context_for_reconfigure(sb->s_root, 1111 SB_RDONLY | SB_FORCE, SB_RDONLY); 1112 if (!IS_ERR(fc)) { 1113 if (parse_monolithic_mount_data(fc, NULL) == 0) 1114 (void)reconfigure_super(fc); 1115 put_fs_context(fc); 1116 } 1117 } 1118 if (locked) 1119 super_unlock_excl(sb); 1120 } 1121 1122 static void do_emergency_remount(struct work_struct *work) 1123 { 1124 __iterate_supers(do_emergency_remount_callback); 1125 kfree(work); 1126 printk("Emergency Remount complete\n"); 1127 } 1128 1129 void emergency_remount(void) 1130 { 1131 struct work_struct *work; 1132 1133 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1134 if (work) { 1135 INIT_WORK(work, do_emergency_remount); 1136 schedule_work(work); 1137 } 1138 } 1139 1140 static void do_thaw_all_callback(struct super_block *sb) 1141 { 1142 bool locked = super_lock_excl(sb); 1143 1144 if (locked && sb->s_root) { 1145 if (IS_ENABLED(CONFIG_BLOCK)) 1146 while (sb->s_bdev && !bdev_thaw(sb->s_bdev)) 1147 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev); 1148 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE); 1149 return; 1150 } 1151 if (locked) 1152 super_unlock_excl(sb); 1153 } 1154 1155 static void do_thaw_all(struct work_struct *work) 1156 { 1157 __iterate_supers(do_thaw_all_callback); 1158 kfree(work); 1159 printk(KERN_WARNING "Emergency Thaw complete\n"); 1160 } 1161 1162 /** 1163 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1164 * 1165 * Used for emergency unfreeze of all filesystems via SysRq 1166 */ 1167 void emergency_thaw_all(void) 1168 { 1169 struct work_struct *work; 1170 1171 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1172 if (work) { 1173 INIT_WORK(work, do_thaw_all); 1174 schedule_work(work); 1175 } 1176 } 1177 1178 static DEFINE_IDA(unnamed_dev_ida); 1179 1180 /** 1181 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1182 * @p: Pointer to a dev_t. 1183 * 1184 * Filesystems which don't use real block devices can call this function 1185 * to allocate a virtual block device. 1186 * 1187 * Context: Any context. Frequently called while holding sb_lock. 1188 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1189 * or -ENOMEM if memory allocation failed. 1190 */ 1191 int get_anon_bdev(dev_t *p) 1192 { 1193 int dev; 1194 1195 /* 1196 * Many userspace utilities consider an FSID of 0 invalid. 1197 * Always return at least 1 from get_anon_bdev. 1198 */ 1199 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1200 GFP_ATOMIC); 1201 if (dev == -ENOSPC) 1202 dev = -EMFILE; 1203 if (dev < 0) 1204 return dev; 1205 1206 *p = MKDEV(0, dev); 1207 return 0; 1208 } 1209 EXPORT_SYMBOL(get_anon_bdev); 1210 1211 void free_anon_bdev(dev_t dev) 1212 { 1213 ida_free(&unnamed_dev_ida, MINOR(dev)); 1214 } 1215 EXPORT_SYMBOL(free_anon_bdev); 1216 1217 int set_anon_super(struct super_block *s, void *data) 1218 { 1219 return get_anon_bdev(&s->s_dev); 1220 } 1221 EXPORT_SYMBOL(set_anon_super); 1222 1223 void kill_anon_super(struct super_block *sb) 1224 { 1225 dev_t dev = sb->s_dev; 1226 generic_shutdown_super(sb); 1227 kill_super_notify(sb); 1228 free_anon_bdev(dev); 1229 } 1230 EXPORT_SYMBOL(kill_anon_super); 1231 1232 void kill_litter_super(struct super_block *sb) 1233 { 1234 if (sb->s_root) 1235 d_genocide(sb->s_root); 1236 kill_anon_super(sb); 1237 } 1238 EXPORT_SYMBOL(kill_litter_super); 1239 1240 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1241 { 1242 return set_anon_super(sb, NULL); 1243 } 1244 EXPORT_SYMBOL(set_anon_super_fc); 1245 1246 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1247 { 1248 return sb->s_fs_info == fc->s_fs_info; 1249 } 1250 1251 static int test_single_super(struct super_block *s, struct fs_context *fc) 1252 { 1253 return 1; 1254 } 1255 1256 static int vfs_get_super(struct fs_context *fc, 1257 int (*test)(struct super_block *, struct fs_context *), 1258 int (*fill_super)(struct super_block *sb, 1259 struct fs_context *fc)) 1260 { 1261 struct super_block *sb; 1262 int err; 1263 1264 sb = sget_fc(fc, test, set_anon_super_fc); 1265 if (IS_ERR(sb)) 1266 return PTR_ERR(sb); 1267 1268 if (!sb->s_root) { 1269 err = fill_super(sb, fc); 1270 if (err) 1271 goto error; 1272 1273 sb->s_flags |= SB_ACTIVE; 1274 } 1275 1276 fc->root = dget(sb->s_root); 1277 return 0; 1278 1279 error: 1280 deactivate_locked_super(sb); 1281 return err; 1282 } 1283 1284 int get_tree_nodev(struct fs_context *fc, 1285 int (*fill_super)(struct super_block *sb, 1286 struct fs_context *fc)) 1287 { 1288 return vfs_get_super(fc, NULL, fill_super); 1289 } 1290 EXPORT_SYMBOL(get_tree_nodev); 1291 1292 int get_tree_single(struct fs_context *fc, 1293 int (*fill_super)(struct super_block *sb, 1294 struct fs_context *fc)) 1295 { 1296 return vfs_get_super(fc, test_single_super, fill_super); 1297 } 1298 EXPORT_SYMBOL(get_tree_single); 1299 1300 int get_tree_keyed(struct fs_context *fc, 1301 int (*fill_super)(struct super_block *sb, 1302 struct fs_context *fc), 1303 void *key) 1304 { 1305 fc->s_fs_info = key; 1306 return vfs_get_super(fc, test_keyed_super, fill_super); 1307 } 1308 EXPORT_SYMBOL(get_tree_keyed); 1309 1310 static int set_bdev_super(struct super_block *s, void *data) 1311 { 1312 s->s_dev = *(dev_t *)data; 1313 return 0; 1314 } 1315 1316 static int super_s_dev_set(struct super_block *s, struct fs_context *fc) 1317 { 1318 return set_bdev_super(s, fc->sget_key); 1319 } 1320 1321 static int super_s_dev_test(struct super_block *s, struct fs_context *fc) 1322 { 1323 return !(s->s_iflags & SB_I_RETIRED) && 1324 s->s_dev == *(dev_t *)fc->sget_key; 1325 } 1326 1327 /** 1328 * sget_dev - Find or create a superblock by device number 1329 * @fc: Filesystem context. 1330 * @dev: device number 1331 * 1332 * Find or create a superblock using the provided device number that 1333 * will be stored in fc->sget_key. 1334 * 1335 * If an extant superblock is matched, then that will be returned with 1336 * an elevated reference count that the caller must transfer or discard. 1337 * 1338 * If no match is made, a new superblock will be allocated and basic 1339 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will 1340 * be set). The superblock will be published and it will be returned in 1341 * a partially constructed state with SB_BORN and SB_ACTIVE as yet 1342 * unset. 1343 * 1344 * Return: an existing or newly created superblock on success, an error 1345 * pointer on failure. 1346 */ 1347 struct super_block *sget_dev(struct fs_context *fc, dev_t dev) 1348 { 1349 fc->sget_key = &dev; 1350 return sget_fc(fc, super_s_dev_test, super_s_dev_set); 1351 } 1352 EXPORT_SYMBOL(sget_dev); 1353 1354 #ifdef CONFIG_BLOCK 1355 /* 1356 * Lock the superblock that is holder of the bdev. Returns the superblock 1357 * pointer if we successfully locked the superblock and it is alive. Otherwise 1358 * we return NULL and just unlock bdev->bd_holder_lock. 1359 * 1360 * The function must be called with bdev->bd_holder_lock and releases it. 1361 */ 1362 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl) 1363 __releases(&bdev->bd_holder_lock) 1364 { 1365 struct super_block *sb = bdev->bd_holder; 1366 bool locked; 1367 1368 lockdep_assert_held(&bdev->bd_holder_lock); 1369 lockdep_assert_not_held(&sb->s_umount); 1370 lockdep_assert_not_held(&bdev->bd_disk->open_mutex); 1371 1372 /* Make sure sb doesn't go away from under us */ 1373 spin_lock(&sb_lock); 1374 sb->s_count++; 1375 spin_unlock(&sb_lock); 1376 1377 mutex_unlock(&bdev->bd_holder_lock); 1378 1379 locked = super_lock(sb, excl); 1380 1381 /* 1382 * If the superblock wasn't already SB_DYING then we hold 1383 * s_umount and can safely drop our temporary reference. 1384 */ 1385 put_super(sb); 1386 1387 if (!locked) 1388 return NULL; 1389 1390 if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) { 1391 super_unlock(sb, excl); 1392 return NULL; 1393 } 1394 1395 return sb; 1396 } 1397 1398 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise) 1399 { 1400 struct super_block *sb; 1401 1402 sb = bdev_super_lock(bdev, false); 1403 if (!sb) 1404 return; 1405 1406 if (!surprise) 1407 sync_filesystem(sb); 1408 shrink_dcache_sb(sb); 1409 invalidate_inodes(sb); 1410 if (sb->s_op->shutdown) 1411 sb->s_op->shutdown(sb); 1412 1413 super_unlock_shared(sb); 1414 } 1415 1416 static void fs_bdev_sync(struct block_device *bdev) 1417 { 1418 struct super_block *sb; 1419 1420 sb = bdev_super_lock(bdev, false); 1421 if (!sb) 1422 return; 1423 1424 sync_filesystem(sb); 1425 super_unlock_shared(sb); 1426 } 1427 1428 static struct super_block *get_bdev_super(struct block_device *bdev) 1429 { 1430 bool active = false; 1431 struct super_block *sb; 1432 1433 sb = bdev_super_lock(bdev, true); 1434 if (sb) { 1435 active = atomic_inc_not_zero(&sb->s_active); 1436 super_unlock_excl(sb); 1437 } 1438 if (!active) 1439 return NULL; 1440 return sb; 1441 } 1442 1443 /** 1444 * fs_bdev_freeze - freeze owning filesystem of block device 1445 * @bdev: block device 1446 * 1447 * Freeze the filesystem that owns this block device if it is still 1448 * active. 1449 * 1450 * A filesystem that owns multiple block devices may be frozen from each 1451 * block device and won't be unfrozen until all block devices are 1452 * unfrozen. Each block device can only freeze the filesystem once as we 1453 * nest freezes for block devices in the block layer. 1454 * 1455 * Return: If the freeze was successful zero is returned. If the freeze 1456 * failed a negative error code is returned. 1457 */ 1458 static int fs_bdev_freeze(struct block_device *bdev) 1459 { 1460 struct super_block *sb; 1461 int error = 0; 1462 1463 lockdep_assert_held(&bdev->bd_fsfreeze_mutex); 1464 1465 sb = get_bdev_super(bdev); 1466 if (!sb) 1467 return -EINVAL; 1468 1469 if (sb->s_op->freeze_super) 1470 error = sb->s_op->freeze_super(sb, 1471 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1472 else 1473 error = freeze_super(sb, 1474 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1475 if (!error) 1476 error = sync_blockdev(bdev); 1477 deactivate_super(sb); 1478 return error; 1479 } 1480 1481 /** 1482 * fs_bdev_thaw - thaw owning filesystem of block device 1483 * @bdev: block device 1484 * 1485 * Thaw the filesystem that owns this block device. 1486 * 1487 * A filesystem that owns multiple block devices may be frozen from each 1488 * block device and won't be unfrozen until all block devices are 1489 * unfrozen. Each block device can only freeze the filesystem once as we 1490 * nest freezes for block devices in the block layer. 1491 * 1492 * Return: If the thaw was successful zero is returned. If the thaw 1493 * failed a negative error code is returned. If this function 1494 * returns zero it doesn't mean that the filesystem is unfrozen 1495 * as it may have been frozen multiple times (kernel may hold a 1496 * freeze or might be frozen from other block devices). 1497 */ 1498 static int fs_bdev_thaw(struct block_device *bdev) 1499 { 1500 struct super_block *sb; 1501 int error; 1502 1503 lockdep_assert_held(&bdev->bd_fsfreeze_mutex); 1504 1505 sb = get_bdev_super(bdev); 1506 if (WARN_ON_ONCE(!sb)) 1507 return -EINVAL; 1508 1509 if (sb->s_op->thaw_super) 1510 error = sb->s_op->thaw_super(sb, 1511 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1512 else 1513 error = thaw_super(sb, 1514 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1515 deactivate_super(sb); 1516 return error; 1517 } 1518 1519 const struct blk_holder_ops fs_holder_ops = { 1520 .mark_dead = fs_bdev_mark_dead, 1521 .sync = fs_bdev_sync, 1522 .freeze = fs_bdev_freeze, 1523 .thaw = fs_bdev_thaw, 1524 }; 1525 EXPORT_SYMBOL_GPL(fs_holder_ops); 1526 1527 int setup_bdev_super(struct super_block *sb, int sb_flags, 1528 struct fs_context *fc) 1529 { 1530 blk_mode_t mode = sb_open_mode(sb_flags); 1531 struct file *bdev_file; 1532 struct block_device *bdev; 1533 1534 bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops); 1535 if (IS_ERR(bdev_file)) { 1536 if (fc) 1537 errorf(fc, "%s: Can't open blockdev", fc->source); 1538 return PTR_ERR(bdev_file); 1539 } 1540 bdev = file_bdev(bdev_file); 1541 1542 /* 1543 * This really should be in blkdev_get_by_dev, but right now can't due 1544 * to legacy issues that require us to allow opening a block device node 1545 * writable from userspace even for a read-only block device. 1546 */ 1547 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) { 1548 bdev_fput(bdev_file); 1549 return -EACCES; 1550 } 1551 1552 /* 1553 * It is enough to check bdev was not frozen before we set 1554 * s_bdev as freezing will wait until SB_BORN is set. 1555 */ 1556 if (atomic_read(&bdev->bd_fsfreeze_count) > 0) { 1557 if (fc) 1558 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1559 bdev_fput(bdev_file); 1560 return -EBUSY; 1561 } 1562 spin_lock(&sb_lock); 1563 sb->s_bdev_file = bdev_file; 1564 sb->s_bdev = bdev; 1565 sb->s_bdi = bdi_get(bdev->bd_disk->bdi); 1566 if (bdev_stable_writes(bdev)) 1567 sb->s_iflags |= SB_I_STABLE_WRITES; 1568 spin_unlock(&sb_lock); 1569 1570 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1571 shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name, 1572 sb->s_id); 1573 sb_set_blocksize(sb, block_size(bdev)); 1574 return 0; 1575 } 1576 EXPORT_SYMBOL_GPL(setup_bdev_super); 1577 1578 /** 1579 * get_tree_bdev - Get a superblock based on a single block device 1580 * @fc: The filesystem context holding the parameters 1581 * @fill_super: Helper to initialise a new superblock 1582 */ 1583 int get_tree_bdev(struct fs_context *fc, 1584 int (*fill_super)(struct super_block *, 1585 struct fs_context *)) 1586 { 1587 struct super_block *s; 1588 int error = 0; 1589 dev_t dev; 1590 1591 if (!fc->source) 1592 return invalf(fc, "No source specified"); 1593 1594 error = lookup_bdev(fc->source, &dev); 1595 if (error) { 1596 errorf(fc, "%s: Can't lookup blockdev", fc->source); 1597 return error; 1598 } 1599 1600 fc->sb_flags |= SB_NOSEC; 1601 s = sget_dev(fc, dev); 1602 if (IS_ERR(s)) 1603 return PTR_ERR(s); 1604 1605 if (s->s_root) { 1606 /* Don't summarily change the RO/RW state. */ 1607 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1608 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev); 1609 deactivate_locked_super(s); 1610 return -EBUSY; 1611 } 1612 } else { 1613 error = setup_bdev_super(s, fc->sb_flags, fc); 1614 if (!error) 1615 error = fill_super(s, fc); 1616 if (error) { 1617 deactivate_locked_super(s); 1618 return error; 1619 } 1620 s->s_flags |= SB_ACTIVE; 1621 } 1622 1623 BUG_ON(fc->root); 1624 fc->root = dget(s->s_root); 1625 return 0; 1626 } 1627 EXPORT_SYMBOL(get_tree_bdev); 1628 1629 static int test_bdev_super(struct super_block *s, void *data) 1630 { 1631 return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data; 1632 } 1633 1634 struct dentry *mount_bdev(struct file_system_type *fs_type, 1635 int flags, const char *dev_name, void *data, 1636 int (*fill_super)(struct super_block *, void *, int)) 1637 { 1638 struct super_block *s; 1639 int error; 1640 dev_t dev; 1641 1642 error = lookup_bdev(dev_name, &dev); 1643 if (error) 1644 return ERR_PTR(error); 1645 1646 flags |= SB_NOSEC; 1647 s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev); 1648 if (IS_ERR(s)) 1649 return ERR_CAST(s); 1650 1651 if (s->s_root) { 1652 if ((flags ^ s->s_flags) & SB_RDONLY) { 1653 deactivate_locked_super(s); 1654 return ERR_PTR(-EBUSY); 1655 } 1656 } else { 1657 error = setup_bdev_super(s, flags, NULL); 1658 if (!error) 1659 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1660 if (error) { 1661 deactivate_locked_super(s); 1662 return ERR_PTR(error); 1663 } 1664 1665 s->s_flags |= SB_ACTIVE; 1666 } 1667 1668 return dget(s->s_root); 1669 } 1670 EXPORT_SYMBOL(mount_bdev); 1671 1672 void kill_block_super(struct super_block *sb) 1673 { 1674 struct block_device *bdev = sb->s_bdev; 1675 1676 generic_shutdown_super(sb); 1677 if (bdev) { 1678 sync_blockdev(bdev); 1679 bdev_fput(sb->s_bdev_file); 1680 } 1681 } 1682 1683 EXPORT_SYMBOL(kill_block_super); 1684 #endif 1685 1686 struct dentry *mount_nodev(struct file_system_type *fs_type, 1687 int flags, void *data, 1688 int (*fill_super)(struct super_block *, void *, int)) 1689 { 1690 int error; 1691 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1692 1693 if (IS_ERR(s)) 1694 return ERR_CAST(s); 1695 1696 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1697 if (error) { 1698 deactivate_locked_super(s); 1699 return ERR_PTR(error); 1700 } 1701 s->s_flags |= SB_ACTIVE; 1702 return dget(s->s_root); 1703 } 1704 EXPORT_SYMBOL(mount_nodev); 1705 1706 int reconfigure_single(struct super_block *s, 1707 int flags, void *data) 1708 { 1709 struct fs_context *fc; 1710 int ret; 1711 1712 /* The caller really need to be passing fc down into mount_single(), 1713 * then a chunk of this can be removed. [Bollocks -- AV] 1714 * Better yet, reconfiguration shouldn't happen, but rather the second 1715 * mount should be rejected if the parameters are not compatible. 1716 */ 1717 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1718 if (IS_ERR(fc)) 1719 return PTR_ERR(fc); 1720 1721 ret = parse_monolithic_mount_data(fc, data); 1722 if (ret < 0) 1723 goto out; 1724 1725 ret = reconfigure_super(fc); 1726 out: 1727 put_fs_context(fc); 1728 return ret; 1729 } 1730 1731 static int compare_single(struct super_block *s, void *p) 1732 { 1733 return 1; 1734 } 1735 1736 struct dentry *mount_single(struct file_system_type *fs_type, 1737 int flags, void *data, 1738 int (*fill_super)(struct super_block *, void *, int)) 1739 { 1740 struct super_block *s; 1741 int error; 1742 1743 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1744 if (IS_ERR(s)) 1745 return ERR_CAST(s); 1746 if (!s->s_root) { 1747 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1748 if (!error) 1749 s->s_flags |= SB_ACTIVE; 1750 } else { 1751 error = reconfigure_single(s, flags, data); 1752 } 1753 if (unlikely(error)) { 1754 deactivate_locked_super(s); 1755 return ERR_PTR(error); 1756 } 1757 return dget(s->s_root); 1758 } 1759 EXPORT_SYMBOL(mount_single); 1760 1761 /** 1762 * vfs_get_tree - Get the mountable root 1763 * @fc: The superblock configuration context. 1764 * 1765 * The filesystem is invoked to get or create a superblock which can then later 1766 * be used for mounting. The filesystem places a pointer to the root to be 1767 * used for mounting in @fc->root. 1768 */ 1769 int vfs_get_tree(struct fs_context *fc) 1770 { 1771 struct super_block *sb; 1772 int error; 1773 1774 if (fc->root) 1775 return -EBUSY; 1776 1777 /* Get the mountable root in fc->root, with a ref on the root and a ref 1778 * on the superblock. 1779 */ 1780 error = fc->ops->get_tree(fc); 1781 if (error < 0) 1782 return error; 1783 1784 if (!fc->root) { 1785 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1786 fc->fs_type->name); 1787 /* We don't know what the locking state of the superblock is - 1788 * if there is a superblock. 1789 */ 1790 BUG(); 1791 } 1792 1793 sb = fc->root->d_sb; 1794 WARN_ON(!sb->s_bdi); 1795 1796 /* 1797 * super_wake() contains a memory barrier which also care of 1798 * ordering for super_cache_count(). We place it before setting 1799 * SB_BORN as the data dependency between the two functions is 1800 * the superblock structure contents that we just set up, not 1801 * the SB_BORN flag. 1802 */ 1803 super_wake(sb, SB_BORN); 1804 1805 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1806 if (unlikely(error)) { 1807 fc_drop_locked(fc); 1808 return error; 1809 } 1810 1811 /* 1812 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1813 * but s_maxbytes was an unsigned long long for many releases. Throw 1814 * this warning for a little while to try and catch filesystems that 1815 * violate this rule. 1816 */ 1817 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1818 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1819 1820 return 0; 1821 } 1822 EXPORT_SYMBOL(vfs_get_tree); 1823 1824 /* 1825 * Setup private BDI for given superblock. It gets automatically cleaned up 1826 * in generic_shutdown_super(). 1827 */ 1828 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1829 { 1830 struct backing_dev_info *bdi; 1831 int err; 1832 va_list args; 1833 1834 bdi = bdi_alloc(NUMA_NO_NODE); 1835 if (!bdi) 1836 return -ENOMEM; 1837 1838 va_start(args, fmt); 1839 err = bdi_register_va(bdi, fmt, args); 1840 va_end(args); 1841 if (err) { 1842 bdi_put(bdi); 1843 return err; 1844 } 1845 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1846 sb->s_bdi = bdi; 1847 sb->s_iflags |= SB_I_PERSB_BDI; 1848 1849 return 0; 1850 } 1851 EXPORT_SYMBOL(super_setup_bdi_name); 1852 1853 /* 1854 * Setup private BDI for given superblock. I gets automatically cleaned up 1855 * in generic_shutdown_super(). 1856 */ 1857 int super_setup_bdi(struct super_block *sb) 1858 { 1859 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1860 1861 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1862 atomic_long_inc_return(&bdi_seq)); 1863 } 1864 EXPORT_SYMBOL(super_setup_bdi); 1865 1866 /** 1867 * sb_wait_write - wait until all writers to given file system finish 1868 * @sb: the super for which we wait 1869 * @level: type of writers we wait for (normal vs page fault) 1870 * 1871 * This function waits until there are no writers of given type to given file 1872 * system. 1873 */ 1874 static void sb_wait_write(struct super_block *sb, int level) 1875 { 1876 percpu_down_write(sb->s_writers.rw_sem + level-1); 1877 } 1878 1879 /* 1880 * We are going to return to userspace and forget about these locks, the 1881 * ownership goes to the caller of thaw_super() which does unlock(). 1882 */ 1883 static void lockdep_sb_freeze_release(struct super_block *sb) 1884 { 1885 int level; 1886 1887 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1888 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1889 } 1890 1891 /* 1892 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1893 */ 1894 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1895 { 1896 int level; 1897 1898 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1899 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1900 } 1901 1902 static void sb_freeze_unlock(struct super_block *sb, int level) 1903 { 1904 for (level--; level >= 0; level--) 1905 percpu_up_write(sb->s_writers.rw_sem + level); 1906 } 1907 1908 static int wait_for_partially_frozen(struct super_block *sb) 1909 { 1910 int ret = 0; 1911 1912 do { 1913 unsigned short old = sb->s_writers.frozen; 1914 1915 up_write(&sb->s_umount); 1916 ret = wait_var_event_killable(&sb->s_writers.frozen, 1917 sb->s_writers.frozen != old); 1918 down_write(&sb->s_umount); 1919 } while (ret == 0 && 1920 sb->s_writers.frozen != SB_UNFROZEN && 1921 sb->s_writers.frozen != SB_FREEZE_COMPLETE); 1922 1923 return ret; 1924 } 1925 1926 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE) 1927 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST) 1928 1929 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who) 1930 { 1931 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1932 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1933 1934 if (who & FREEZE_HOLDER_KERNEL) 1935 ++sb->s_writers.freeze_kcount; 1936 if (who & FREEZE_HOLDER_USERSPACE) 1937 ++sb->s_writers.freeze_ucount; 1938 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; 1939 } 1940 1941 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who) 1942 { 1943 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1944 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1945 1946 if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount) 1947 --sb->s_writers.freeze_kcount; 1948 if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount) 1949 --sb->s_writers.freeze_ucount; 1950 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; 1951 } 1952 1953 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who) 1954 { 1955 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1956 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1957 1958 if (who & FREEZE_HOLDER_KERNEL) 1959 return (who & FREEZE_MAY_NEST) || 1960 sb->s_writers.freeze_kcount == 0; 1961 if (who & FREEZE_HOLDER_USERSPACE) 1962 return (who & FREEZE_MAY_NEST) || 1963 sb->s_writers.freeze_ucount == 0; 1964 return false; 1965 } 1966 1967 /** 1968 * freeze_super - lock the filesystem and force it into a consistent state 1969 * @sb: the super to lock 1970 * @who: context that wants to freeze 1971 * 1972 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1973 * freeze_fs. Subsequent calls to this without first thawing the fs may return 1974 * -EBUSY. 1975 * 1976 * @who should be: 1977 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs; 1978 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs. 1979 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed. 1980 * 1981 * The @who argument distinguishes between the kernel and userspace trying to 1982 * freeze the filesystem. Although there cannot be multiple kernel freezes or 1983 * multiple userspace freezes in effect at any given time, the kernel and 1984 * userspace can both hold a filesystem frozen. The filesystem remains frozen 1985 * until there are no kernel or userspace freezes in effect. 1986 * 1987 * A filesystem may hold multiple devices and thus a filesystems may be 1988 * frozen through the block layer via multiple block devices. In this 1989 * case the request is marked as being allowed to nest by passing 1990 * FREEZE_MAY_NEST. The filesystem remains frozen until all block 1991 * devices are unfrozen. If multiple freezes are attempted without 1992 * FREEZE_MAY_NEST -EBUSY will be returned. 1993 * 1994 * During this function, sb->s_writers.frozen goes through these values: 1995 * 1996 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1997 * 1998 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1999 * writes should be blocked, though page faults are still allowed. We wait for 2000 * all writes to complete and then proceed to the next stage. 2001 * 2002 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 2003 * but internal fs threads can still modify the filesystem (although they 2004 * should not dirty new pages or inodes), writeback can run etc. After waiting 2005 * for all running page faults we sync the filesystem which will clean all 2006 * dirty pages and inodes (no new dirty pages or inodes can be created when 2007 * sync is running). 2008 * 2009 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 2010 * modification are blocked (e.g. XFS preallocation truncation on inode 2011 * reclaim). This is usually implemented by blocking new transactions for 2012 * filesystems that have them and need this additional guard. After all 2013 * internal writers are finished we call ->freeze_fs() to finish filesystem 2014 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 2015 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 2016 * 2017 * sb->s_writers.frozen is protected by sb->s_umount. 2018 * 2019 * Return: If the freeze was successful zero is returned. If the freeze 2020 * failed a negative error code is returned. 2021 */ 2022 int freeze_super(struct super_block *sb, enum freeze_holder who) 2023 { 2024 int ret; 2025 2026 if (!super_lock_excl(sb)) { 2027 WARN_ON_ONCE("Dying superblock while freezing!"); 2028 return -EINVAL; 2029 } 2030 atomic_inc(&sb->s_active); 2031 2032 retry: 2033 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { 2034 if (may_freeze(sb, who)) 2035 ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1); 2036 else 2037 ret = -EBUSY; 2038 /* All freezers share a single active reference. */ 2039 deactivate_locked_super(sb); 2040 return ret; 2041 } 2042 2043 if (sb->s_writers.frozen != SB_UNFROZEN) { 2044 ret = wait_for_partially_frozen(sb); 2045 if (ret) { 2046 deactivate_locked_super(sb); 2047 return ret; 2048 } 2049 2050 goto retry; 2051 } 2052 2053 if (sb_rdonly(sb)) { 2054 /* Nothing to do really... */ 2055 WARN_ON_ONCE(freeze_inc(sb, who) > 1); 2056 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2057 wake_up_var(&sb->s_writers.frozen); 2058 super_unlock_excl(sb); 2059 return 0; 2060 } 2061 2062 sb->s_writers.frozen = SB_FREEZE_WRITE; 2063 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 2064 super_unlock_excl(sb); 2065 sb_wait_write(sb, SB_FREEZE_WRITE); 2066 __super_lock_excl(sb); 2067 2068 /* Now we go and block page faults... */ 2069 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 2070 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 2071 2072 /* All writers are done so after syncing there won't be dirty data */ 2073 ret = sync_filesystem(sb); 2074 if (ret) { 2075 sb->s_writers.frozen = SB_UNFROZEN; 2076 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 2077 wake_up_var(&sb->s_writers.frozen); 2078 deactivate_locked_super(sb); 2079 return ret; 2080 } 2081 2082 /* Now wait for internal filesystem counter */ 2083 sb->s_writers.frozen = SB_FREEZE_FS; 2084 sb_wait_write(sb, SB_FREEZE_FS); 2085 2086 if (sb->s_op->freeze_fs) { 2087 ret = sb->s_op->freeze_fs(sb); 2088 if (ret) { 2089 printk(KERN_ERR 2090 "VFS:Filesystem freeze failed\n"); 2091 sb->s_writers.frozen = SB_UNFROZEN; 2092 sb_freeze_unlock(sb, SB_FREEZE_FS); 2093 wake_up_var(&sb->s_writers.frozen); 2094 deactivate_locked_super(sb); 2095 return ret; 2096 } 2097 } 2098 /* 2099 * For debugging purposes so that fs can warn if it sees write activity 2100 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 2101 */ 2102 WARN_ON_ONCE(freeze_inc(sb, who) > 1); 2103 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2104 wake_up_var(&sb->s_writers.frozen); 2105 lockdep_sb_freeze_release(sb); 2106 super_unlock_excl(sb); 2107 return 0; 2108 } 2109 EXPORT_SYMBOL(freeze_super); 2110 2111 /* 2112 * Undoes the effect of a freeze_super_locked call. If the filesystem is 2113 * frozen both by userspace and the kernel, a thaw call from either source 2114 * removes that state without releasing the other state or unlocking the 2115 * filesystem. 2116 */ 2117 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who) 2118 { 2119 int error = -EINVAL; 2120 2121 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) 2122 goto out_unlock; 2123 2124 /* 2125 * All freezers share a single active reference. 2126 * So just unlock in case there are any left. 2127 */ 2128 if (freeze_dec(sb, who)) 2129 goto out_unlock; 2130 2131 if (sb_rdonly(sb)) { 2132 sb->s_writers.frozen = SB_UNFROZEN; 2133 wake_up_var(&sb->s_writers.frozen); 2134 goto out_deactivate; 2135 } 2136 2137 lockdep_sb_freeze_acquire(sb); 2138 2139 if (sb->s_op->unfreeze_fs) { 2140 error = sb->s_op->unfreeze_fs(sb); 2141 if (error) { 2142 pr_err("VFS: Filesystem thaw failed\n"); 2143 freeze_inc(sb, who); 2144 lockdep_sb_freeze_release(sb); 2145 goto out_unlock; 2146 } 2147 } 2148 2149 sb->s_writers.frozen = SB_UNFROZEN; 2150 wake_up_var(&sb->s_writers.frozen); 2151 sb_freeze_unlock(sb, SB_FREEZE_FS); 2152 out_deactivate: 2153 deactivate_locked_super(sb); 2154 return 0; 2155 2156 out_unlock: 2157 super_unlock_excl(sb); 2158 return error; 2159 } 2160 2161 /** 2162 * thaw_super -- unlock filesystem 2163 * @sb: the super to thaw 2164 * @who: context that wants to freeze 2165 * 2166 * Unlocks the filesystem and marks it writeable again after freeze_super() 2167 * if there are no remaining freezes on the filesystem. 2168 * 2169 * @who should be: 2170 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs; 2171 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs. 2172 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed 2173 * 2174 * A filesystem may hold multiple devices and thus a filesystems may 2175 * have been frozen through the block layer via multiple block devices. 2176 * The filesystem remains frozen until all block devices are unfrozen. 2177 */ 2178 int thaw_super(struct super_block *sb, enum freeze_holder who) 2179 { 2180 if (!super_lock_excl(sb)) { 2181 WARN_ON_ONCE("Dying superblock while thawing!"); 2182 return -EINVAL; 2183 } 2184 return thaw_super_locked(sb, who); 2185 } 2186 EXPORT_SYMBOL(thaw_super); 2187 2188 /* 2189 * Create workqueue for deferred direct IO completions. We allocate the 2190 * workqueue when it's first needed. This avoids creating workqueue for 2191 * filesystems that don't need it and also allows us to create the workqueue 2192 * late enough so the we can include s_id in the name of the workqueue. 2193 */ 2194 int sb_init_dio_done_wq(struct super_block *sb) 2195 { 2196 struct workqueue_struct *old; 2197 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 2198 WQ_MEM_RECLAIM, 0, 2199 sb->s_id); 2200 if (!wq) 2201 return -ENOMEM; 2202 /* 2203 * This has to be atomic as more DIOs can race to create the workqueue 2204 */ 2205 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 2206 /* Someone created workqueue before us? Free ours... */ 2207 if (old) 2208 destroy_workqueue(wq); 2209 return 0; 2210 } 2211 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq); 2212