1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include "internal.h" 34 35 36 LIST_HEAD(super_blocks); 37 DEFINE_SPINLOCK(sb_lock); 38 39 /** 40 * alloc_super - create new superblock 41 * @type: filesystem type superblock should belong to 42 * 43 * Allocates and initializes a new &struct super_block. alloc_super() 44 * returns a pointer new superblock or %NULL if allocation had failed. 45 */ 46 static struct super_block *alloc_super(struct file_system_type *type) 47 { 48 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 49 static const struct super_operations default_op; 50 51 if (s) { 52 if (security_sb_alloc(s)) { 53 kfree(s); 54 s = NULL; 55 goto out; 56 } 57 INIT_LIST_HEAD(&s->s_files); 58 INIT_LIST_HEAD(&s->s_instances); 59 INIT_HLIST_HEAD(&s->s_anon); 60 INIT_LIST_HEAD(&s->s_inodes); 61 INIT_LIST_HEAD(&s->s_dentry_lru); 62 init_rwsem(&s->s_umount); 63 mutex_init(&s->s_lock); 64 lockdep_set_class(&s->s_umount, &type->s_umount_key); 65 /* 66 * The locking rules for s_lock are up to the 67 * filesystem. For example ext3fs has different 68 * lock ordering than usbfs: 69 */ 70 lockdep_set_class(&s->s_lock, &type->s_lock_key); 71 /* 72 * sget() can have s_umount recursion. 73 * 74 * When it cannot find a suitable sb, it allocates a new 75 * one (this one), and tries again to find a suitable old 76 * one. 77 * 78 * In case that succeeds, it will acquire the s_umount 79 * lock of the old one. Since these are clearly distrinct 80 * locks, and this object isn't exposed yet, there's no 81 * risk of deadlocks. 82 * 83 * Annotate this by putting this lock in a different 84 * subclass. 85 */ 86 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 87 s->s_count = 1; 88 atomic_set(&s->s_active, 1); 89 mutex_init(&s->s_vfs_rename_mutex); 90 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 91 mutex_init(&s->s_dquot.dqio_mutex); 92 mutex_init(&s->s_dquot.dqonoff_mutex); 93 init_rwsem(&s->s_dquot.dqptr_sem); 94 init_waitqueue_head(&s->s_wait_unfrozen); 95 s->s_maxbytes = MAX_NON_LFS; 96 s->s_op = &default_op; 97 s->s_time_gran = 1000000000; 98 } 99 out: 100 return s; 101 } 102 103 /** 104 * destroy_super - frees a superblock 105 * @s: superblock to free 106 * 107 * Frees a superblock. 108 */ 109 static inline void destroy_super(struct super_block *s) 110 { 111 security_sb_free(s); 112 kfree(s->s_subtype); 113 kfree(s->s_options); 114 kfree(s); 115 } 116 117 /* Superblock refcounting */ 118 119 /* 120 * Drop a superblock's refcount. The caller must hold sb_lock. 121 */ 122 void __put_super(struct super_block *sb) 123 { 124 if (!--sb->s_count) { 125 list_del_init(&sb->s_list); 126 destroy_super(sb); 127 } 128 } 129 130 /** 131 * put_super - drop a temporary reference to superblock 132 * @sb: superblock in question 133 * 134 * Drops a temporary reference, frees superblock if there's no 135 * references left. 136 */ 137 void put_super(struct super_block *sb) 138 { 139 spin_lock(&sb_lock); 140 __put_super(sb); 141 spin_unlock(&sb_lock); 142 } 143 144 145 /** 146 * deactivate_locked_super - drop an active reference to superblock 147 * @s: superblock to deactivate 148 * 149 * Drops an active reference to superblock, converting it into a temprory 150 * one if there is no other active references left. In that case we 151 * tell fs driver to shut it down and drop the temporary reference we 152 * had just acquired. 153 * 154 * Caller holds exclusive lock on superblock; that lock is released. 155 */ 156 void deactivate_locked_super(struct super_block *s) 157 { 158 struct file_system_type *fs = s->s_type; 159 if (atomic_dec_and_test(&s->s_active)) { 160 fs->kill_sb(s); 161 put_filesystem(fs); 162 put_super(s); 163 } else { 164 up_write(&s->s_umount); 165 } 166 } 167 168 EXPORT_SYMBOL(deactivate_locked_super); 169 170 /** 171 * deactivate_super - drop an active reference to superblock 172 * @s: superblock to deactivate 173 * 174 * Variant of deactivate_locked_super(), except that superblock is *not* 175 * locked by caller. If we are going to drop the final active reference, 176 * lock will be acquired prior to that. 177 */ 178 void deactivate_super(struct super_block *s) 179 { 180 if (!atomic_add_unless(&s->s_active, -1, 1)) { 181 down_write(&s->s_umount); 182 deactivate_locked_super(s); 183 } 184 } 185 186 EXPORT_SYMBOL(deactivate_super); 187 188 /** 189 * grab_super - acquire an active reference 190 * @s: reference we are trying to make active 191 * 192 * Tries to acquire an active reference. grab_super() is used when we 193 * had just found a superblock in super_blocks or fs_type->fs_supers 194 * and want to turn it into a full-blown active reference. grab_super() 195 * is called with sb_lock held and drops it. Returns 1 in case of 196 * success, 0 if we had failed (superblock contents was already dead or 197 * dying when grab_super() had been called). 198 */ 199 static int grab_super(struct super_block *s) __releases(sb_lock) 200 { 201 if (atomic_inc_not_zero(&s->s_active)) { 202 spin_unlock(&sb_lock); 203 return 1; 204 } 205 /* it's going away */ 206 s->s_count++; 207 spin_unlock(&sb_lock); 208 /* wait for it to die */ 209 down_write(&s->s_umount); 210 up_write(&s->s_umount); 211 put_super(s); 212 return 0; 213 } 214 215 /* 216 * Superblock locking. We really ought to get rid of these two. 217 */ 218 void lock_super(struct super_block * sb) 219 { 220 get_fs_excl(); 221 mutex_lock(&sb->s_lock); 222 } 223 224 void unlock_super(struct super_block * sb) 225 { 226 put_fs_excl(); 227 mutex_unlock(&sb->s_lock); 228 } 229 230 EXPORT_SYMBOL(lock_super); 231 EXPORT_SYMBOL(unlock_super); 232 233 /** 234 * generic_shutdown_super - common helper for ->kill_sb() 235 * @sb: superblock to kill 236 * 237 * generic_shutdown_super() does all fs-independent work on superblock 238 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 239 * that need destruction out of superblock, call generic_shutdown_super() 240 * and release aforementioned objects. Note: dentries and inodes _are_ 241 * taken care of and do not need specific handling. 242 * 243 * Upon calling this function, the filesystem may no longer alter or 244 * rearrange the set of dentries belonging to this super_block, nor may it 245 * change the attachments of dentries to inodes. 246 */ 247 void generic_shutdown_super(struct super_block *sb) 248 { 249 const struct super_operations *sop = sb->s_op; 250 251 252 if (sb->s_root) { 253 shrink_dcache_for_umount(sb); 254 sync_filesystem(sb); 255 get_fs_excl(); 256 sb->s_flags &= ~MS_ACTIVE; 257 258 /* bad name - it should be evict_inodes() */ 259 invalidate_inodes(sb); 260 261 if (sop->put_super) 262 sop->put_super(sb); 263 264 /* Forget any remaining inodes */ 265 if (invalidate_inodes(sb)) { 266 printk("VFS: Busy inodes after unmount of %s. " 267 "Self-destruct in 5 seconds. Have a nice day...\n", 268 sb->s_id); 269 } 270 put_fs_excl(); 271 } 272 spin_lock(&sb_lock); 273 /* should be initialized for __put_super_and_need_restart() */ 274 list_del_init(&sb->s_instances); 275 spin_unlock(&sb_lock); 276 up_write(&sb->s_umount); 277 } 278 279 EXPORT_SYMBOL(generic_shutdown_super); 280 281 /** 282 * sget - find or create a superblock 283 * @type: filesystem type superblock should belong to 284 * @test: comparison callback 285 * @set: setup callback 286 * @data: argument to each of them 287 */ 288 struct super_block *sget(struct file_system_type *type, 289 int (*test)(struct super_block *,void *), 290 int (*set)(struct super_block *,void *), 291 void *data) 292 { 293 struct super_block *s = NULL; 294 struct super_block *old; 295 int err; 296 297 retry: 298 spin_lock(&sb_lock); 299 if (test) { 300 list_for_each_entry(old, &type->fs_supers, s_instances) { 301 if (!test(old, data)) 302 continue; 303 if (!grab_super(old)) 304 goto retry; 305 if (s) { 306 up_write(&s->s_umount); 307 destroy_super(s); 308 } 309 down_write(&old->s_umount); 310 return old; 311 } 312 } 313 if (!s) { 314 spin_unlock(&sb_lock); 315 s = alloc_super(type); 316 if (!s) 317 return ERR_PTR(-ENOMEM); 318 goto retry; 319 } 320 321 err = set(s, data); 322 if (err) { 323 spin_unlock(&sb_lock); 324 up_write(&s->s_umount); 325 destroy_super(s); 326 return ERR_PTR(err); 327 } 328 s->s_type = type; 329 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 330 list_add_tail(&s->s_list, &super_blocks); 331 list_add(&s->s_instances, &type->fs_supers); 332 spin_unlock(&sb_lock); 333 get_filesystem(type); 334 return s; 335 } 336 337 EXPORT_SYMBOL(sget); 338 339 void drop_super(struct super_block *sb) 340 { 341 up_read(&sb->s_umount); 342 put_super(sb); 343 } 344 345 EXPORT_SYMBOL(drop_super); 346 347 /** 348 * sync_supers - helper for periodic superblock writeback 349 * 350 * Call the write_super method if present on all dirty superblocks in 351 * the system. This is for the periodic writeback used by most older 352 * filesystems. For data integrity superblock writeback use 353 * sync_filesystems() instead. 354 * 355 * Note: check the dirty flag before waiting, so we don't 356 * hold up the sync while mounting a device. (The newly 357 * mounted device won't need syncing.) 358 */ 359 void sync_supers(void) 360 { 361 struct super_block *sb, *n; 362 363 spin_lock(&sb_lock); 364 list_for_each_entry_safe(sb, n, &super_blocks, s_list) { 365 if (list_empty(&sb->s_instances)) 366 continue; 367 if (sb->s_op->write_super && sb->s_dirt) { 368 sb->s_count++; 369 spin_unlock(&sb_lock); 370 371 down_read(&sb->s_umount); 372 if (sb->s_root && sb->s_dirt) 373 sb->s_op->write_super(sb); 374 up_read(&sb->s_umount); 375 376 spin_lock(&sb_lock); 377 /* lock was dropped, must reset next */ 378 list_safe_reset_next(sb, n, s_list); 379 __put_super(sb); 380 } 381 } 382 spin_unlock(&sb_lock); 383 } 384 385 /** 386 * iterate_supers - call function for all active superblocks 387 * @f: function to call 388 * @arg: argument to pass to it 389 * 390 * Scans the superblock list and calls given function, passing it 391 * locked superblock and given argument. 392 */ 393 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 394 { 395 struct super_block *sb, *n; 396 397 spin_lock(&sb_lock); 398 list_for_each_entry_safe(sb, n, &super_blocks, s_list) { 399 if (list_empty(&sb->s_instances)) 400 continue; 401 sb->s_count++; 402 spin_unlock(&sb_lock); 403 404 down_read(&sb->s_umount); 405 if (sb->s_root) 406 f(sb, arg); 407 up_read(&sb->s_umount); 408 409 spin_lock(&sb_lock); 410 /* lock was dropped, must reset next */ 411 list_safe_reset_next(sb, n, s_list); 412 __put_super(sb); 413 } 414 spin_unlock(&sb_lock); 415 } 416 417 /** 418 * get_super - get the superblock of a device 419 * @bdev: device to get the superblock for 420 * 421 * Scans the superblock list and finds the superblock of the file system 422 * mounted on the device given. %NULL is returned if no match is found. 423 */ 424 425 struct super_block *get_super(struct block_device *bdev) 426 { 427 struct super_block *sb; 428 429 if (!bdev) 430 return NULL; 431 432 spin_lock(&sb_lock); 433 rescan: 434 list_for_each_entry(sb, &super_blocks, s_list) { 435 if (list_empty(&sb->s_instances)) 436 continue; 437 if (sb->s_bdev == bdev) { 438 sb->s_count++; 439 spin_unlock(&sb_lock); 440 down_read(&sb->s_umount); 441 /* still alive? */ 442 if (sb->s_root) 443 return sb; 444 up_read(&sb->s_umount); 445 /* nope, got unmounted */ 446 spin_lock(&sb_lock); 447 __put_super(sb); 448 goto rescan; 449 } 450 } 451 spin_unlock(&sb_lock); 452 return NULL; 453 } 454 455 EXPORT_SYMBOL(get_super); 456 457 /** 458 * get_active_super - get an active reference to the superblock of a device 459 * @bdev: device to get the superblock for 460 * 461 * Scans the superblock list and finds the superblock of the file system 462 * mounted on the device given. Returns the superblock with an active 463 * reference or %NULL if none was found. 464 */ 465 struct super_block *get_active_super(struct block_device *bdev) 466 { 467 struct super_block *sb; 468 469 if (!bdev) 470 return NULL; 471 472 restart: 473 spin_lock(&sb_lock); 474 list_for_each_entry(sb, &super_blocks, s_list) { 475 if (list_empty(&sb->s_instances)) 476 continue; 477 if (sb->s_bdev == bdev) { 478 if (grab_super(sb)) /* drops sb_lock */ 479 return sb; 480 else 481 goto restart; 482 } 483 } 484 spin_unlock(&sb_lock); 485 return NULL; 486 } 487 488 struct super_block *user_get_super(dev_t dev) 489 { 490 struct super_block *sb; 491 492 spin_lock(&sb_lock); 493 rescan: 494 list_for_each_entry(sb, &super_blocks, s_list) { 495 if (list_empty(&sb->s_instances)) 496 continue; 497 if (sb->s_dev == dev) { 498 sb->s_count++; 499 spin_unlock(&sb_lock); 500 down_read(&sb->s_umount); 501 /* still alive? */ 502 if (sb->s_root) 503 return sb; 504 up_read(&sb->s_umount); 505 /* nope, got unmounted */ 506 spin_lock(&sb_lock); 507 __put_super(sb); 508 goto rescan; 509 } 510 } 511 spin_unlock(&sb_lock); 512 return NULL; 513 } 514 515 /** 516 * do_remount_sb - asks filesystem to change mount options. 517 * @sb: superblock in question 518 * @flags: numeric part of options 519 * @data: the rest of options 520 * @force: whether or not to force the change 521 * 522 * Alters the mount options of a mounted file system. 523 */ 524 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 525 { 526 int retval; 527 int remount_ro; 528 529 if (sb->s_frozen != SB_UNFROZEN) 530 return -EBUSY; 531 532 #ifdef CONFIG_BLOCK 533 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 534 return -EACCES; 535 #endif 536 537 if (flags & MS_RDONLY) 538 acct_auto_close(sb); 539 shrink_dcache_sb(sb); 540 sync_filesystem(sb); 541 542 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 543 544 /* If we are remounting RDONLY and current sb is read/write, 545 make sure there are no rw files opened */ 546 if (remount_ro) { 547 if (force) 548 mark_files_ro(sb); 549 else if (!fs_may_remount_ro(sb)) 550 return -EBUSY; 551 } 552 553 if (sb->s_op->remount_fs) { 554 retval = sb->s_op->remount_fs(sb, &flags, data); 555 if (retval) 556 return retval; 557 } 558 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 559 560 /* 561 * Some filesystems modify their metadata via some other path than the 562 * bdev buffer cache (eg. use a private mapping, or directories in 563 * pagecache, etc). Also file data modifications go via their own 564 * mappings. So If we try to mount readonly then copy the filesystem 565 * from bdev, we could get stale data, so invalidate it to give a best 566 * effort at coherency. 567 */ 568 if (remount_ro && sb->s_bdev) 569 invalidate_bdev(sb->s_bdev); 570 return 0; 571 } 572 573 static void do_emergency_remount(struct work_struct *work) 574 { 575 struct super_block *sb, *n; 576 577 spin_lock(&sb_lock); 578 list_for_each_entry_safe(sb, n, &super_blocks, s_list) { 579 if (list_empty(&sb->s_instances)) 580 continue; 581 sb->s_count++; 582 spin_unlock(&sb_lock); 583 down_write(&sb->s_umount); 584 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) { 585 /* 586 * What lock protects sb->s_flags?? 587 */ 588 do_remount_sb(sb, MS_RDONLY, NULL, 1); 589 } 590 up_write(&sb->s_umount); 591 spin_lock(&sb_lock); 592 /* lock was dropped, must reset next */ 593 list_safe_reset_next(sb, n, s_list); 594 __put_super(sb); 595 } 596 spin_unlock(&sb_lock); 597 kfree(work); 598 printk("Emergency Remount complete\n"); 599 } 600 601 void emergency_remount(void) 602 { 603 struct work_struct *work; 604 605 work = kmalloc(sizeof(*work), GFP_ATOMIC); 606 if (work) { 607 INIT_WORK(work, do_emergency_remount); 608 schedule_work(work); 609 } 610 } 611 612 /* 613 * Unnamed block devices are dummy devices used by virtual 614 * filesystems which don't use real block-devices. -- jrs 615 */ 616 617 static DEFINE_IDA(unnamed_dev_ida); 618 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 619 static int unnamed_dev_start = 0; /* don't bother trying below it */ 620 621 int set_anon_super(struct super_block *s, void *data) 622 { 623 int dev; 624 int error; 625 626 retry: 627 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 628 return -ENOMEM; 629 spin_lock(&unnamed_dev_lock); 630 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 631 if (!error) 632 unnamed_dev_start = dev + 1; 633 spin_unlock(&unnamed_dev_lock); 634 if (error == -EAGAIN) 635 /* We raced and lost with another CPU. */ 636 goto retry; 637 else if (error) 638 return -EAGAIN; 639 640 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) { 641 spin_lock(&unnamed_dev_lock); 642 ida_remove(&unnamed_dev_ida, dev); 643 if (unnamed_dev_start > dev) 644 unnamed_dev_start = dev; 645 spin_unlock(&unnamed_dev_lock); 646 return -EMFILE; 647 } 648 s->s_dev = MKDEV(0, dev & MINORMASK); 649 s->s_bdi = &noop_backing_dev_info; 650 return 0; 651 } 652 653 EXPORT_SYMBOL(set_anon_super); 654 655 void kill_anon_super(struct super_block *sb) 656 { 657 int slot = MINOR(sb->s_dev); 658 659 generic_shutdown_super(sb); 660 spin_lock(&unnamed_dev_lock); 661 ida_remove(&unnamed_dev_ida, slot); 662 if (slot < unnamed_dev_start) 663 unnamed_dev_start = slot; 664 spin_unlock(&unnamed_dev_lock); 665 } 666 667 EXPORT_SYMBOL(kill_anon_super); 668 669 void kill_litter_super(struct super_block *sb) 670 { 671 if (sb->s_root) 672 d_genocide(sb->s_root); 673 kill_anon_super(sb); 674 } 675 676 EXPORT_SYMBOL(kill_litter_super); 677 678 static int ns_test_super(struct super_block *sb, void *data) 679 { 680 return sb->s_fs_info == data; 681 } 682 683 static int ns_set_super(struct super_block *sb, void *data) 684 { 685 sb->s_fs_info = data; 686 return set_anon_super(sb, NULL); 687 } 688 689 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data, 690 int (*fill_super)(struct super_block *, void *, int), 691 struct vfsmount *mnt) 692 { 693 struct super_block *sb; 694 695 sb = sget(fs_type, ns_test_super, ns_set_super, data); 696 if (IS_ERR(sb)) 697 return PTR_ERR(sb); 698 699 if (!sb->s_root) { 700 int err; 701 sb->s_flags = flags; 702 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 703 if (err) { 704 deactivate_locked_super(sb); 705 return err; 706 } 707 708 sb->s_flags |= MS_ACTIVE; 709 } 710 711 simple_set_mnt(mnt, sb); 712 return 0; 713 } 714 715 EXPORT_SYMBOL(get_sb_ns); 716 717 #ifdef CONFIG_BLOCK 718 static int set_bdev_super(struct super_block *s, void *data) 719 { 720 s->s_bdev = data; 721 s->s_dev = s->s_bdev->bd_dev; 722 723 /* 724 * We set the bdi here to the queue backing, file systems can 725 * overwrite this in ->fill_super() 726 */ 727 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 728 return 0; 729 } 730 731 static int test_bdev_super(struct super_block *s, void *data) 732 { 733 return (void *)s->s_bdev == data; 734 } 735 736 int get_sb_bdev(struct file_system_type *fs_type, 737 int flags, const char *dev_name, void *data, 738 int (*fill_super)(struct super_block *, void *, int), 739 struct vfsmount *mnt) 740 { 741 struct block_device *bdev; 742 struct super_block *s; 743 fmode_t mode = FMODE_READ; 744 int error = 0; 745 746 if (!(flags & MS_RDONLY)) 747 mode |= FMODE_WRITE; 748 749 bdev = open_bdev_exclusive(dev_name, mode, fs_type); 750 if (IS_ERR(bdev)) 751 return PTR_ERR(bdev); 752 753 /* 754 * once the super is inserted into the list by sget, s_umount 755 * will protect the lockfs code from trying to start a snapshot 756 * while we are mounting 757 */ 758 mutex_lock(&bdev->bd_fsfreeze_mutex); 759 if (bdev->bd_fsfreeze_count > 0) { 760 mutex_unlock(&bdev->bd_fsfreeze_mutex); 761 error = -EBUSY; 762 goto error_bdev; 763 } 764 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev); 765 mutex_unlock(&bdev->bd_fsfreeze_mutex); 766 if (IS_ERR(s)) 767 goto error_s; 768 769 if (s->s_root) { 770 if ((flags ^ s->s_flags) & MS_RDONLY) { 771 deactivate_locked_super(s); 772 error = -EBUSY; 773 goto error_bdev; 774 } 775 776 close_bdev_exclusive(bdev, mode); 777 } else { 778 char b[BDEVNAME_SIZE]; 779 780 s->s_flags = flags; 781 s->s_mode = mode; 782 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 783 sb_set_blocksize(s, block_size(bdev)); 784 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 785 if (error) { 786 deactivate_locked_super(s); 787 goto error; 788 } 789 790 s->s_flags |= MS_ACTIVE; 791 bdev->bd_super = s; 792 } 793 794 simple_set_mnt(mnt, s); 795 return 0; 796 797 error_s: 798 error = PTR_ERR(s); 799 error_bdev: 800 close_bdev_exclusive(bdev, mode); 801 error: 802 return error; 803 } 804 805 EXPORT_SYMBOL(get_sb_bdev); 806 807 void kill_block_super(struct super_block *sb) 808 { 809 struct block_device *bdev = sb->s_bdev; 810 fmode_t mode = sb->s_mode; 811 812 bdev->bd_super = NULL; 813 generic_shutdown_super(sb); 814 sync_blockdev(bdev); 815 close_bdev_exclusive(bdev, mode); 816 } 817 818 EXPORT_SYMBOL(kill_block_super); 819 #endif 820 821 int get_sb_nodev(struct file_system_type *fs_type, 822 int flags, void *data, 823 int (*fill_super)(struct super_block *, void *, int), 824 struct vfsmount *mnt) 825 { 826 int error; 827 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 828 829 if (IS_ERR(s)) 830 return PTR_ERR(s); 831 832 s->s_flags = flags; 833 834 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 835 if (error) { 836 deactivate_locked_super(s); 837 return error; 838 } 839 s->s_flags |= MS_ACTIVE; 840 simple_set_mnt(mnt, s); 841 return 0; 842 } 843 844 EXPORT_SYMBOL(get_sb_nodev); 845 846 static int compare_single(struct super_block *s, void *p) 847 { 848 return 1; 849 } 850 851 int get_sb_single(struct file_system_type *fs_type, 852 int flags, void *data, 853 int (*fill_super)(struct super_block *, void *, int), 854 struct vfsmount *mnt) 855 { 856 struct super_block *s; 857 int error; 858 859 s = sget(fs_type, compare_single, set_anon_super, NULL); 860 if (IS_ERR(s)) 861 return PTR_ERR(s); 862 if (!s->s_root) { 863 s->s_flags = flags; 864 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 865 if (error) { 866 deactivate_locked_super(s); 867 return error; 868 } 869 s->s_flags |= MS_ACTIVE; 870 } else { 871 do_remount_sb(s, flags, data, 0); 872 } 873 simple_set_mnt(mnt, s); 874 return 0; 875 } 876 877 EXPORT_SYMBOL(get_sb_single); 878 879 struct vfsmount * 880 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 881 { 882 struct vfsmount *mnt; 883 char *secdata = NULL; 884 int error; 885 886 if (!type) 887 return ERR_PTR(-ENODEV); 888 889 error = -ENOMEM; 890 mnt = alloc_vfsmnt(name); 891 if (!mnt) 892 goto out; 893 894 if (flags & MS_KERNMOUNT) 895 mnt->mnt_flags = MNT_INTERNAL; 896 897 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 898 secdata = alloc_secdata(); 899 if (!secdata) 900 goto out_mnt; 901 902 error = security_sb_copy_data(data, secdata); 903 if (error) 904 goto out_free_secdata; 905 } 906 907 error = type->get_sb(type, flags, name, data, mnt); 908 if (error < 0) 909 goto out_free_secdata; 910 BUG_ON(!mnt->mnt_sb); 911 WARN_ON(!mnt->mnt_sb->s_bdi); 912 913 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata); 914 if (error) 915 goto out_sb; 916 917 /* 918 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 919 * but s_maxbytes was an unsigned long long for many releases. Throw 920 * this warning for a little while to try and catch filesystems that 921 * violate this rule. This warning should be either removed or 922 * converted to a BUG() in 2.6.34. 923 */ 924 WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 925 "negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes); 926 927 mnt->mnt_mountpoint = mnt->mnt_root; 928 mnt->mnt_parent = mnt; 929 up_write(&mnt->mnt_sb->s_umount); 930 free_secdata(secdata); 931 return mnt; 932 out_sb: 933 dput(mnt->mnt_root); 934 deactivate_locked_super(mnt->mnt_sb); 935 out_free_secdata: 936 free_secdata(secdata); 937 out_mnt: 938 free_vfsmnt(mnt); 939 out: 940 return ERR_PTR(error); 941 } 942 943 EXPORT_SYMBOL_GPL(vfs_kern_mount); 944 945 /** 946 * freeze_super - lock the filesystem and force it into a consistent state 947 * @sb: the super to lock 948 * 949 * Syncs the super to make sure the filesystem is consistent and calls the fs's 950 * freeze_fs. Subsequent calls to this without first thawing the fs will return 951 * -EBUSY. 952 */ 953 int freeze_super(struct super_block *sb) 954 { 955 int ret; 956 957 atomic_inc(&sb->s_active); 958 down_write(&sb->s_umount); 959 if (sb->s_frozen) { 960 deactivate_locked_super(sb); 961 return -EBUSY; 962 } 963 964 if (sb->s_flags & MS_RDONLY) { 965 sb->s_frozen = SB_FREEZE_TRANS; 966 smp_wmb(); 967 up_write(&sb->s_umount); 968 return 0; 969 } 970 971 sb->s_frozen = SB_FREEZE_WRITE; 972 smp_wmb(); 973 974 sync_filesystem(sb); 975 976 sb->s_frozen = SB_FREEZE_TRANS; 977 smp_wmb(); 978 979 sync_blockdev(sb->s_bdev); 980 if (sb->s_op->freeze_fs) { 981 ret = sb->s_op->freeze_fs(sb); 982 if (ret) { 983 printk(KERN_ERR 984 "VFS:Filesystem freeze failed\n"); 985 sb->s_frozen = SB_UNFROZEN; 986 deactivate_locked_super(sb); 987 return ret; 988 } 989 } 990 up_write(&sb->s_umount); 991 return 0; 992 } 993 EXPORT_SYMBOL(freeze_super); 994 995 /** 996 * thaw_super -- unlock filesystem 997 * @sb: the super to thaw 998 * 999 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1000 */ 1001 int thaw_super(struct super_block *sb) 1002 { 1003 int error; 1004 1005 down_write(&sb->s_umount); 1006 if (sb->s_frozen == SB_UNFROZEN) { 1007 up_write(&sb->s_umount); 1008 return -EINVAL; 1009 } 1010 1011 if (sb->s_flags & MS_RDONLY) 1012 goto out; 1013 1014 if (sb->s_op->unfreeze_fs) { 1015 error = sb->s_op->unfreeze_fs(sb); 1016 if (error) { 1017 printk(KERN_ERR 1018 "VFS:Filesystem thaw failed\n"); 1019 sb->s_frozen = SB_FREEZE_TRANS; 1020 up_write(&sb->s_umount); 1021 return error; 1022 } 1023 } 1024 1025 out: 1026 sb->s_frozen = SB_UNFROZEN; 1027 smp_wmb(); 1028 wake_up(&sb->s_wait_unfrozen); 1029 deactivate_locked_super(sb); 1030 1031 return 0; 1032 } 1033 EXPORT_SYMBOL(thaw_super); 1034 1035 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1036 { 1037 int err; 1038 const char *subtype = strchr(fstype, '.'); 1039 if (subtype) { 1040 subtype++; 1041 err = -EINVAL; 1042 if (!subtype[0]) 1043 goto err; 1044 } else 1045 subtype = ""; 1046 1047 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1048 err = -ENOMEM; 1049 if (!mnt->mnt_sb->s_subtype) 1050 goto err; 1051 return mnt; 1052 1053 err: 1054 mntput(mnt); 1055 return ERR_PTR(err); 1056 } 1057 1058 struct vfsmount * 1059 do_kern_mount(const char *fstype, int flags, const char *name, void *data) 1060 { 1061 struct file_system_type *type = get_fs_type(fstype); 1062 struct vfsmount *mnt; 1063 if (!type) 1064 return ERR_PTR(-ENODEV); 1065 mnt = vfs_kern_mount(type, flags, name, data); 1066 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 1067 !mnt->mnt_sb->s_subtype) 1068 mnt = fs_set_subtype(mnt, fstype); 1069 put_filesystem(type); 1070 return mnt; 1071 } 1072 EXPORT_SYMBOL_GPL(do_kern_mount); 1073 1074 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 1075 { 1076 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 1077 } 1078 1079 EXPORT_SYMBOL_GPL(kern_mount_data); 1080