xref: /linux/fs/super.c (revision 36239c6704b71da7fb8e2a9429e159a84d0c5a3e)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include "internal.h"
34 
35 
36 LIST_HEAD(super_blocks);
37 DEFINE_SPINLOCK(sb_lock);
38 
39 /**
40  *	alloc_super	-	create new superblock
41  *	@type:	filesystem type superblock should belong to
42  *
43  *	Allocates and initializes a new &struct super_block.  alloc_super()
44  *	returns a pointer new superblock or %NULL if allocation had failed.
45  */
46 static struct super_block *alloc_super(struct file_system_type *type)
47 {
48 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
49 	static const struct super_operations default_op;
50 
51 	if (s) {
52 		if (security_sb_alloc(s)) {
53 			kfree(s);
54 			s = NULL;
55 			goto out;
56 		}
57 		INIT_LIST_HEAD(&s->s_files);
58 		INIT_LIST_HEAD(&s->s_instances);
59 		INIT_HLIST_HEAD(&s->s_anon);
60 		INIT_LIST_HEAD(&s->s_inodes);
61 		INIT_LIST_HEAD(&s->s_dentry_lru);
62 		init_rwsem(&s->s_umount);
63 		mutex_init(&s->s_lock);
64 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
65 		/*
66 		 * The locking rules for s_lock are up to the
67 		 * filesystem. For example ext3fs has different
68 		 * lock ordering than usbfs:
69 		 */
70 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
71 		/*
72 		 * sget() can have s_umount recursion.
73 		 *
74 		 * When it cannot find a suitable sb, it allocates a new
75 		 * one (this one), and tries again to find a suitable old
76 		 * one.
77 		 *
78 		 * In case that succeeds, it will acquire the s_umount
79 		 * lock of the old one. Since these are clearly distrinct
80 		 * locks, and this object isn't exposed yet, there's no
81 		 * risk of deadlocks.
82 		 *
83 		 * Annotate this by putting this lock in a different
84 		 * subclass.
85 		 */
86 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
87 		s->s_count = 1;
88 		atomic_set(&s->s_active, 1);
89 		mutex_init(&s->s_vfs_rename_mutex);
90 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
91 		mutex_init(&s->s_dquot.dqio_mutex);
92 		mutex_init(&s->s_dquot.dqonoff_mutex);
93 		init_rwsem(&s->s_dquot.dqptr_sem);
94 		init_waitqueue_head(&s->s_wait_unfrozen);
95 		s->s_maxbytes = MAX_NON_LFS;
96 		s->s_op = &default_op;
97 		s->s_time_gran = 1000000000;
98 	}
99 out:
100 	return s;
101 }
102 
103 /**
104  *	destroy_super	-	frees a superblock
105  *	@s: superblock to free
106  *
107  *	Frees a superblock.
108  */
109 static inline void destroy_super(struct super_block *s)
110 {
111 	security_sb_free(s);
112 	kfree(s->s_subtype);
113 	kfree(s->s_options);
114 	kfree(s);
115 }
116 
117 /* Superblock refcounting  */
118 
119 /*
120  * Drop a superblock's refcount.  The caller must hold sb_lock.
121  */
122 void __put_super(struct super_block *sb)
123 {
124 	if (!--sb->s_count) {
125 		list_del_init(&sb->s_list);
126 		destroy_super(sb);
127 	}
128 }
129 
130 /**
131  *	put_super	-	drop a temporary reference to superblock
132  *	@sb: superblock in question
133  *
134  *	Drops a temporary reference, frees superblock if there's no
135  *	references left.
136  */
137 void put_super(struct super_block *sb)
138 {
139 	spin_lock(&sb_lock);
140 	__put_super(sb);
141 	spin_unlock(&sb_lock);
142 }
143 
144 
145 /**
146  *	deactivate_locked_super	-	drop an active reference to superblock
147  *	@s: superblock to deactivate
148  *
149  *	Drops an active reference to superblock, converting it into a temprory
150  *	one if there is no other active references left.  In that case we
151  *	tell fs driver to shut it down and drop the temporary reference we
152  *	had just acquired.
153  *
154  *	Caller holds exclusive lock on superblock; that lock is released.
155  */
156 void deactivate_locked_super(struct super_block *s)
157 {
158 	struct file_system_type *fs = s->s_type;
159 	if (atomic_dec_and_test(&s->s_active)) {
160 		fs->kill_sb(s);
161 		put_filesystem(fs);
162 		put_super(s);
163 	} else {
164 		up_write(&s->s_umount);
165 	}
166 }
167 
168 EXPORT_SYMBOL(deactivate_locked_super);
169 
170 /**
171  *	deactivate_super	-	drop an active reference to superblock
172  *	@s: superblock to deactivate
173  *
174  *	Variant of deactivate_locked_super(), except that superblock is *not*
175  *	locked by caller.  If we are going to drop the final active reference,
176  *	lock will be acquired prior to that.
177  */
178 void deactivate_super(struct super_block *s)
179 {
180         if (!atomic_add_unless(&s->s_active, -1, 1)) {
181 		down_write(&s->s_umount);
182 		deactivate_locked_super(s);
183 	}
184 }
185 
186 EXPORT_SYMBOL(deactivate_super);
187 
188 /**
189  *	grab_super - acquire an active reference
190  *	@s: reference we are trying to make active
191  *
192  *	Tries to acquire an active reference.  grab_super() is used when we
193  * 	had just found a superblock in super_blocks or fs_type->fs_supers
194  *	and want to turn it into a full-blown active reference.  grab_super()
195  *	is called with sb_lock held and drops it.  Returns 1 in case of
196  *	success, 0 if we had failed (superblock contents was already dead or
197  *	dying when grab_super() had been called).
198  */
199 static int grab_super(struct super_block *s) __releases(sb_lock)
200 {
201 	if (atomic_inc_not_zero(&s->s_active)) {
202 		spin_unlock(&sb_lock);
203 		return 1;
204 	}
205 	/* it's going away */
206 	s->s_count++;
207 	spin_unlock(&sb_lock);
208 	/* wait for it to die */
209 	down_write(&s->s_umount);
210 	up_write(&s->s_umount);
211 	put_super(s);
212 	return 0;
213 }
214 
215 /*
216  * Superblock locking.  We really ought to get rid of these two.
217  */
218 void lock_super(struct super_block * sb)
219 {
220 	get_fs_excl();
221 	mutex_lock(&sb->s_lock);
222 }
223 
224 void unlock_super(struct super_block * sb)
225 {
226 	put_fs_excl();
227 	mutex_unlock(&sb->s_lock);
228 }
229 
230 EXPORT_SYMBOL(lock_super);
231 EXPORT_SYMBOL(unlock_super);
232 
233 /**
234  *	generic_shutdown_super	-	common helper for ->kill_sb()
235  *	@sb: superblock to kill
236  *
237  *	generic_shutdown_super() does all fs-independent work on superblock
238  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
239  *	that need destruction out of superblock, call generic_shutdown_super()
240  *	and release aforementioned objects.  Note: dentries and inodes _are_
241  *	taken care of and do not need specific handling.
242  *
243  *	Upon calling this function, the filesystem may no longer alter or
244  *	rearrange the set of dentries belonging to this super_block, nor may it
245  *	change the attachments of dentries to inodes.
246  */
247 void generic_shutdown_super(struct super_block *sb)
248 {
249 	const struct super_operations *sop = sb->s_op;
250 
251 
252 	if (sb->s_root) {
253 		shrink_dcache_for_umount(sb);
254 		sync_filesystem(sb);
255 		get_fs_excl();
256 		sb->s_flags &= ~MS_ACTIVE;
257 
258 		/* bad name - it should be evict_inodes() */
259 		invalidate_inodes(sb);
260 
261 		if (sop->put_super)
262 			sop->put_super(sb);
263 
264 		/* Forget any remaining inodes */
265 		if (invalidate_inodes(sb)) {
266 			printk("VFS: Busy inodes after unmount of %s. "
267 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
268 			   sb->s_id);
269 		}
270 		put_fs_excl();
271 	}
272 	spin_lock(&sb_lock);
273 	/* should be initialized for __put_super_and_need_restart() */
274 	list_del_init(&sb->s_instances);
275 	spin_unlock(&sb_lock);
276 	up_write(&sb->s_umount);
277 }
278 
279 EXPORT_SYMBOL(generic_shutdown_super);
280 
281 /**
282  *	sget	-	find or create a superblock
283  *	@type:	filesystem type superblock should belong to
284  *	@test:	comparison callback
285  *	@set:	setup callback
286  *	@data:	argument to each of them
287  */
288 struct super_block *sget(struct file_system_type *type,
289 			int (*test)(struct super_block *,void *),
290 			int (*set)(struct super_block *,void *),
291 			void *data)
292 {
293 	struct super_block *s = NULL;
294 	struct super_block *old;
295 	int err;
296 
297 retry:
298 	spin_lock(&sb_lock);
299 	if (test) {
300 		list_for_each_entry(old, &type->fs_supers, s_instances) {
301 			if (!test(old, data))
302 				continue;
303 			if (!grab_super(old))
304 				goto retry;
305 			if (s) {
306 				up_write(&s->s_umount);
307 				destroy_super(s);
308 			}
309 			down_write(&old->s_umount);
310 			return old;
311 		}
312 	}
313 	if (!s) {
314 		spin_unlock(&sb_lock);
315 		s = alloc_super(type);
316 		if (!s)
317 			return ERR_PTR(-ENOMEM);
318 		goto retry;
319 	}
320 
321 	err = set(s, data);
322 	if (err) {
323 		spin_unlock(&sb_lock);
324 		up_write(&s->s_umount);
325 		destroy_super(s);
326 		return ERR_PTR(err);
327 	}
328 	s->s_type = type;
329 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
330 	list_add_tail(&s->s_list, &super_blocks);
331 	list_add(&s->s_instances, &type->fs_supers);
332 	spin_unlock(&sb_lock);
333 	get_filesystem(type);
334 	return s;
335 }
336 
337 EXPORT_SYMBOL(sget);
338 
339 void drop_super(struct super_block *sb)
340 {
341 	up_read(&sb->s_umount);
342 	put_super(sb);
343 }
344 
345 EXPORT_SYMBOL(drop_super);
346 
347 /**
348  * sync_supers - helper for periodic superblock writeback
349  *
350  * Call the write_super method if present on all dirty superblocks in
351  * the system.  This is for the periodic writeback used by most older
352  * filesystems.  For data integrity superblock writeback use
353  * sync_filesystems() instead.
354  *
355  * Note: check the dirty flag before waiting, so we don't
356  * hold up the sync while mounting a device. (The newly
357  * mounted device won't need syncing.)
358  */
359 void sync_supers(void)
360 {
361 	struct super_block *sb, *n;
362 
363 	spin_lock(&sb_lock);
364 	list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
365 		if (list_empty(&sb->s_instances))
366 			continue;
367 		if (sb->s_op->write_super && sb->s_dirt) {
368 			sb->s_count++;
369 			spin_unlock(&sb_lock);
370 
371 			down_read(&sb->s_umount);
372 			if (sb->s_root && sb->s_dirt)
373 				sb->s_op->write_super(sb);
374 			up_read(&sb->s_umount);
375 
376 			spin_lock(&sb_lock);
377 			/* lock was dropped, must reset next */
378 			list_safe_reset_next(sb, n, s_list);
379 			__put_super(sb);
380 		}
381 	}
382 	spin_unlock(&sb_lock);
383 }
384 
385 /**
386  *	iterate_supers - call function for all active superblocks
387  *	@f: function to call
388  *	@arg: argument to pass to it
389  *
390  *	Scans the superblock list and calls given function, passing it
391  *	locked superblock and given argument.
392  */
393 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
394 {
395 	struct super_block *sb, *n;
396 
397 	spin_lock(&sb_lock);
398 	list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
399 		if (list_empty(&sb->s_instances))
400 			continue;
401 		sb->s_count++;
402 		spin_unlock(&sb_lock);
403 
404 		down_read(&sb->s_umount);
405 		if (sb->s_root)
406 			f(sb, arg);
407 		up_read(&sb->s_umount);
408 
409 		spin_lock(&sb_lock);
410 		/* lock was dropped, must reset next */
411 		list_safe_reset_next(sb, n, s_list);
412 		__put_super(sb);
413 	}
414 	spin_unlock(&sb_lock);
415 }
416 
417 /**
418  *	get_super - get the superblock of a device
419  *	@bdev: device to get the superblock for
420  *
421  *	Scans the superblock list and finds the superblock of the file system
422  *	mounted on the device given. %NULL is returned if no match is found.
423  */
424 
425 struct super_block *get_super(struct block_device *bdev)
426 {
427 	struct super_block *sb;
428 
429 	if (!bdev)
430 		return NULL;
431 
432 	spin_lock(&sb_lock);
433 rescan:
434 	list_for_each_entry(sb, &super_blocks, s_list) {
435 		if (list_empty(&sb->s_instances))
436 			continue;
437 		if (sb->s_bdev == bdev) {
438 			sb->s_count++;
439 			spin_unlock(&sb_lock);
440 			down_read(&sb->s_umount);
441 			/* still alive? */
442 			if (sb->s_root)
443 				return sb;
444 			up_read(&sb->s_umount);
445 			/* nope, got unmounted */
446 			spin_lock(&sb_lock);
447 			__put_super(sb);
448 			goto rescan;
449 		}
450 	}
451 	spin_unlock(&sb_lock);
452 	return NULL;
453 }
454 
455 EXPORT_SYMBOL(get_super);
456 
457 /**
458  * get_active_super - get an active reference to the superblock of a device
459  * @bdev: device to get the superblock for
460  *
461  * Scans the superblock list and finds the superblock of the file system
462  * mounted on the device given.  Returns the superblock with an active
463  * reference or %NULL if none was found.
464  */
465 struct super_block *get_active_super(struct block_device *bdev)
466 {
467 	struct super_block *sb;
468 
469 	if (!bdev)
470 		return NULL;
471 
472 restart:
473 	spin_lock(&sb_lock);
474 	list_for_each_entry(sb, &super_blocks, s_list) {
475 		if (list_empty(&sb->s_instances))
476 			continue;
477 		if (sb->s_bdev == bdev) {
478 			if (grab_super(sb)) /* drops sb_lock */
479 				return sb;
480 			else
481 				goto restart;
482 		}
483 	}
484 	spin_unlock(&sb_lock);
485 	return NULL;
486 }
487 
488 struct super_block *user_get_super(dev_t dev)
489 {
490 	struct super_block *sb;
491 
492 	spin_lock(&sb_lock);
493 rescan:
494 	list_for_each_entry(sb, &super_blocks, s_list) {
495 		if (list_empty(&sb->s_instances))
496 			continue;
497 		if (sb->s_dev ==  dev) {
498 			sb->s_count++;
499 			spin_unlock(&sb_lock);
500 			down_read(&sb->s_umount);
501 			/* still alive? */
502 			if (sb->s_root)
503 				return sb;
504 			up_read(&sb->s_umount);
505 			/* nope, got unmounted */
506 			spin_lock(&sb_lock);
507 			__put_super(sb);
508 			goto rescan;
509 		}
510 	}
511 	spin_unlock(&sb_lock);
512 	return NULL;
513 }
514 
515 /**
516  *	do_remount_sb - asks filesystem to change mount options.
517  *	@sb:	superblock in question
518  *	@flags:	numeric part of options
519  *	@data:	the rest of options
520  *      @force: whether or not to force the change
521  *
522  *	Alters the mount options of a mounted file system.
523  */
524 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
525 {
526 	int retval;
527 	int remount_ro;
528 
529 	if (sb->s_frozen != SB_UNFROZEN)
530 		return -EBUSY;
531 
532 #ifdef CONFIG_BLOCK
533 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
534 		return -EACCES;
535 #endif
536 
537 	if (flags & MS_RDONLY)
538 		acct_auto_close(sb);
539 	shrink_dcache_sb(sb);
540 	sync_filesystem(sb);
541 
542 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
543 
544 	/* If we are remounting RDONLY and current sb is read/write,
545 	   make sure there are no rw files opened */
546 	if (remount_ro) {
547 		if (force)
548 			mark_files_ro(sb);
549 		else if (!fs_may_remount_ro(sb))
550 			return -EBUSY;
551 	}
552 
553 	if (sb->s_op->remount_fs) {
554 		retval = sb->s_op->remount_fs(sb, &flags, data);
555 		if (retval)
556 			return retval;
557 	}
558 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
559 
560 	/*
561 	 * Some filesystems modify their metadata via some other path than the
562 	 * bdev buffer cache (eg. use a private mapping, or directories in
563 	 * pagecache, etc). Also file data modifications go via their own
564 	 * mappings. So If we try to mount readonly then copy the filesystem
565 	 * from bdev, we could get stale data, so invalidate it to give a best
566 	 * effort at coherency.
567 	 */
568 	if (remount_ro && sb->s_bdev)
569 		invalidate_bdev(sb->s_bdev);
570 	return 0;
571 }
572 
573 static void do_emergency_remount(struct work_struct *work)
574 {
575 	struct super_block *sb, *n;
576 
577 	spin_lock(&sb_lock);
578 	list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
579 		if (list_empty(&sb->s_instances))
580 			continue;
581 		sb->s_count++;
582 		spin_unlock(&sb_lock);
583 		down_write(&sb->s_umount);
584 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
585 			/*
586 			 * What lock protects sb->s_flags??
587 			 */
588 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
589 		}
590 		up_write(&sb->s_umount);
591 		spin_lock(&sb_lock);
592 		/* lock was dropped, must reset next */
593 		list_safe_reset_next(sb, n, s_list);
594 		__put_super(sb);
595 	}
596 	spin_unlock(&sb_lock);
597 	kfree(work);
598 	printk("Emergency Remount complete\n");
599 }
600 
601 void emergency_remount(void)
602 {
603 	struct work_struct *work;
604 
605 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
606 	if (work) {
607 		INIT_WORK(work, do_emergency_remount);
608 		schedule_work(work);
609 	}
610 }
611 
612 /*
613  * Unnamed block devices are dummy devices used by virtual
614  * filesystems which don't use real block-devices.  -- jrs
615  */
616 
617 static DEFINE_IDA(unnamed_dev_ida);
618 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
619 static int unnamed_dev_start = 0; /* don't bother trying below it */
620 
621 int set_anon_super(struct super_block *s, void *data)
622 {
623 	int dev;
624 	int error;
625 
626  retry:
627 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
628 		return -ENOMEM;
629 	spin_lock(&unnamed_dev_lock);
630 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
631 	if (!error)
632 		unnamed_dev_start = dev + 1;
633 	spin_unlock(&unnamed_dev_lock);
634 	if (error == -EAGAIN)
635 		/* We raced and lost with another CPU. */
636 		goto retry;
637 	else if (error)
638 		return -EAGAIN;
639 
640 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
641 		spin_lock(&unnamed_dev_lock);
642 		ida_remove(&unnamed_dev_ida, dev);
643 		if (unnamed_dev_start > dev)
644 			unnamed_dev_start = dev;
645 		spin_unlock(&unnamed_dev_lock);
646 		return -EMFILE;
647 	}
648 	s->s_dev = MKDEV(0, dev & MINORMASK);
649 	s->s_bdi = &noop_backing_dev_info;
650 	return 0;
651 }
652 
653 EXPORT_SYMBOL(set_anon_super);
654 
655 void kill_anon_super(struct super_block *sb)
656 {
657 	int slot = MINOR(sb->s_dev);
658 
659 	generic_shutdown_super(sb);
660 	spin_lock(&unnamed_dev_lock);
661 	ida_remove(&unnamed_dev_ida, slot);
662 	if (slot < unnamed_dev_start)
663 		unnamed_dev_start = slot;
664 	spin_unlock(&unnamed_dev_lock);
665 }
666 
667 EXPORT_SYMBOL(kill_anon_super);
668 
669 void kill_litter_super(struct super_block *sb)
670 {
671 	if (sb->s_root)
672 		d_genocide(sb->s_root);
673 	kill_anon_super(sb);
674 }
675 
676 EXPORT_SYMBOL(kill_litter_super);
677 
678 static int ns_test_super(struct super_block *sb, void *data)
679 {
680 	return sb->s_fs_info == data;
681 }
682 
683 static int ns_set_super(struct super_block *sb, void *data)
684 {
685 	sb->s_fs_info = data;
686 	return set_anon_super(sb, NULL);
687 }
688 
689 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
690 	int (*fill_super)(struct super_block *, void *, int),
691 	struct vfsmount *mnt)
692 {
693 	struct super_block *sb;
694 
695 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
696 	if (IS_ERR(sb))
697 		return PTR_ERR(sb);
698 
699 	if (!sb->s_root) {
700 		int err;
701 		sb->s_flags = flags;
702 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
703 		if (err) {
704 			deactivate_locked_super(sb);
705 			return err;
706 		}
707 
708 		sb->s_flags |= MS_ACTIVE;
709 	}
710 
711 	simple_set_mnt(mnt, sb);
712 	return 0;
713 }
714 
715 EXPORT_SYMBOL(get_sb_ns);
716 
717 #ifdef CONFIG_BLOCK
718 static int set_bdev_super(struct super_block *s, void *data)
719 {
720 	s->s_bdev = data;
721 	s->s_dev = s->s_bdev->bd_dev;
722 
723 	/*
724 	 * We set the bdi here to the queue backing, file systems can
725 	 * overwrite this in ->fill_super()
726 	 */
727 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
728 	return 0;
729 }
730 
731 static int test_bdev_super(struct super_block *s, void *data)
732 {
733 	return (void *)s->s_bdev == data;
734 }
735 
736 int get_sb_bdev(struct file_system_type *fs_type,
737 	int flags, const char *dev_name, void *data,
738 	int (*fill_super)(struct super_block *, void *, int),
739 	struct vfsmount *mnt)
740 {
741 	struct block_device *bdev;
742 	struct super_block *s;
743 	fmode_t mode = FMODE_READ;
744 	int error = 0;
745 
746 	if (!(flags & MS_RDONLY))
747 		mode |= FMODE_WRITE;
748 
749 	bdev = open_bdev_exclusive(dev_name, mode, fs_type);
750 	if (IS_ERR(bdev))
751 		return PTR_ERR(bdev);
752 
753 	/*
754 	 * once the super is inserted into the list by sget, s_umount
755 	 * will protect the lockfs code from trying to start a snapshot
756 	 * while we are mounting
757 	 */
758 	mutex_lock(&bdev->bd_fsfreeze_mutex);
759 	if (bdev->bd_fsfreeze_count > 0) {
760 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
761 		error = -EBUSY;
762 		goto error_bdev;
763 	}
764 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
765 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
766 	if (IS_ERR(s))
767 		goto error_s;
768 
769 	if (s->s_root) {
770 		if ((flags ^ s->s_flags) & MS_RDONLY) {
771 			deactivate_locked_super(s);
772 			error = -EBUSY;
773 			goto error_bdev;
774 		}
775 
776 		close_bdev_exclusive(bdev, mode);
777 	} else {
778 		char b[BDEVNAME_SIZE];
779 
780 		s->s_flags = flags;
781 		s->s_mode = mode;
782 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
783 		sb_set_blocksize(s, block_size(bdev));
784 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
785 		if (error) {
786 			deactivate_locked_super(s);
787 			goto error;
788 		}
789 
790 		s->s_flags |= MS_ACTIVE;
791 		bdev->bd_super = s;
792 	}
793 
794 	simple_set_mnt(mnt, s);
795 	return 0;
796 
797 error_s:
798 	error = PTR_ERR(s);
799 error_bdev:
800 	close_bdev_exclusive(bdev, mode);
801 error:
802 	return error;
803 }
804 
805 EXPORT_SYMBOL(get_sb_bdev);
806 
807 void kill_block_super(struct super_block *sb)
808 {
809 	struct block_device *bdev = sb->s_bdev;
810 	fmode_t mode = sb->s_mode;
811 
812 	bdev->bd_super = NULL;
813 	generic_shutdown_super(sb);
814 	sync_blockdev(bdev);
815 	close_bdev_exclusive(bdev, mode);
816 }
817 
818 EXPORT_SYMBOL(kill_block_super);
819 #endif
820 
821 int get_sb_nodev(struct file_system_type *fs_type,
822 	int flags, void *data,
823 	int (*fill_super)(struct super_block *, void *, int),
824 	struct vfsmount *mnt)
825 {
826 	int error;
827 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
828 
829 	if (IS_ERR(s))
830 		return PTR_ERR(s);
831 
832 	s->s_flags = flags;
833 
834 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
835 	if (error) {
836 		deactivate_locked_super(s);
837 		return error;
838 	}
839 	s->s_flags |= MS_ACTIVE;
840 	simple_set_mnt(mnt, s);
841 	return 0;
842 }
843 
844 EXPORT_SYMBOL(get_sb_nodev);
845 
846 static int compare_single(struct super_block *s, void *p)
847 {
848 	return 1;
849 }
850 
851 int get_sb_single(struct file_system_type *fs_type,
852 	int flags, void *data,
853 	int (*fill_super)(struct super_block *, void *, int),
854 	struct vfsmount *mnt)
855 {
856 	struct super_block *s;
857 	int error;
858 
859 	s = sget(fs_type, compare_single, set_anon_super, NULL);
860 	if (IS_ERR(s))
861 		return PTR_ERR(s);
862 	if (!s->s_root) {
863 		s->s_flags = flags;
864 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
865 		if (error) {
866 			deactivate_locked_super(s);
867 			return error;
868 		}
869 		s->s_flags |= MS_ACTIVE;
870 	} else {
871 		do_remount_sb(s, flags, data, 0);
872 	}
873 	simple_set_mnt(mnt, s);
874 	return 0;
875 }
876 
877 EXPORT_SYMBOL(get_sb_single);
878 
879 struct vfsmount *
880 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
881 {
882 	struct vfsmount *mnt;
883 	char *secdata = NULL;
884 	int error;
885 
886 	if (!type)
887 		return ERR_PTR(-ENODEV);
888 
889 	error = -ENOMEM;
890 	mnt = alloc_vfsmnt(name);
891 	if (!mnt)
892 		goto out;
893 
894 	if (flags & MS_KERNMOUNT)
895 		mnt->mnt_flags = MNT_INTERNAL;
896 
897 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
898 		secdata = alloc_secdata();
899 		if (!secdata)
900 			goto out_mnt;
901 
902 		error = security_sb_copy_data(data, secdata);
903 		if (error)
904 			goto out_free_secdata;
905 	}
906 
907 	error = type->get_sb(type, flags, name, data, mnt);
908 	if (error < 0)
909 		goto out_free_secdata;
910 	BUG_ON(!mnt->mnt_sb);
911 	WARN_ON(!mnt->mnt_sb->s_bdi);
912 
913 	error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
914 	if (error)
915 		goto out_sb;
916 
917 	/*
918 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
919 	 * but s_maxbytes was an unsigned long long for many releases. Throw
920 	 * this warning for a little while to try and catch filesystems that
921 	 * violate this rule. This warning should be either removed or
922 	 * converted to a BUG() in 2.6.34.
923 	 */
924 	WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
925 		"negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes);
926 
927 	mnt->mnt_mountpoint = mnt->mnt_root;
928 	mnt->mnt_parent = mnt;
929 	up_write(&mnt->mnt_sb->s_umount);
930 	free_secdata(secdata);
931 	return mnt;
932 out_sb:
933 	dput(mnt->mnt_root);
934 	deactivate_locked_super(mnt->mnt_sb);
935 out_free_secdata:
936 	free_secdata(secdata);
937 out_mnt:
938 	free_vfsmnt(mnt);
939 out:
940 	return ERR_PTR(error);
941 }
942 
943 EXPORT_SYMBOL_GPL(vfs_kern_mount);
944 
945 /**
946  * freeze_super - lock the filesystem and force it into a consistent state
947  * @sb: the super to lock
948  *
949  * Syncs the super to make sure the filesystem is consistent and calls the fs's
950  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
951  * -EBUSY.
952  */
953 int freeze_super(struct super_block *sb)
954 {
955 	int ret;
956 
957 	atomic_inc(&sb->s_active);
958 	down_write(&sb->s_umount);
959 	if (sb->s_frozen) {
960 		deactivate_locked_super(sb);
961 		return -EBUSY;
962 	}
963 
964 	if (sb->s_flags & MS_RDONLY) {
965 		sb->s_frozen = SB_FREEZE_TRANS;
966 		smp_wmb();
967 		up_write(&sb->s_umount);
968 		return 0;
969 	}
970 
971 	sb->s_frozen = SB_FREEZE_WRITE;
972 	smp_wmb();
973 
974 	sync_filesystem(sb);
975 
976 	sb->s_frozen = SB_FREEZE_TRANS;
977 	smp_wmb();
978 
979 	sync_blockdev(sb->s_bdev);
980 	if (sb->s_op->freeze_fs) {
981 		ret = sb->s_op->freeze_fs(sb);
982 		if (ret) {
983 			printk(KERN_ERR
984 				"VFS:Filesystem freeze failed\n");
985 			sb->s_frozen = SB_UNFROZEN;
986 			deactivate_locked_super(sb);
987 			return ret;
988 		}
989 	}
990 	up_write(&sb->s_umount);
991 	return 0;
992 }
993 EXPORT_SYMBOL(freeze_super);
994 
995 /**
996  * thaw_super -- unlock filesystem
997  * @sb: the super to thaw
998  *
999  * Unlocks the filesystem and marks it writeable again after freeze_super().
1000  */
1001 int thaw_super(struct super_block *sb)
1002 {
1003 	int error;
1004 
1005 	down_write(&sb->s_umount);
1006 	if (sb->s_frozen == SB_UNFROZEN) {
1007 		up_write(&sb->s_umount);
1008 		return -EINVAL;
1009 	}
1010 
1011 	if (sb->s_flags & MS_RDONLY)
1012 		goto out;
1013 
1014 	if (sb->s_op->unfreeze_fs) {
1015 		error = sb->s_op->unfreeze_fs(sb);
1016 		if (error) {
1017 			printk(KERN_ERR
1018 				"VFS:Filesystem thaw failed\n");
1019 			sb->s_frozen = SB_FREEZE_TRANS;
1020 			up_write(&sb->s_umount);
1021 			return error;
1022 		}
1023 	}
1024 
1025 out:
1026 	sb->s_frozen = SB_UNFROZEN;
1027 	smp_wmb();
1028 	wake_up(&sb->s_wait_unfrozen);
1029 	deactivate_locked_super(sb);
1030 
1031 	return 0;
1032 }
1033 EXPORT_SYMBOL(thaw_super);
1034 
1035 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1036 {
1037 	int err;
1038 	const char *subtype = strchr(fstype, '.');
1039 	if (subtype) {
1040 		subtype++;
1041 		err = -EINVAL;
1042 		if (!subtype[0])
1043 			goto err;
1044 	} else
1045 		subtype = "";
1046 
1047 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1048 	err = -ENOMEM;
1049 	if (!mnt->mnt_sb->s_subtype)
1050 		goto err;
1051 	return mnt;
1052 
1053  err:
1054 	mntput(mnt);
1055 	return ERR_PTR(err);
1056 }
1057 
1058 struct vfsmount *
1059 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1060 {
1061 	struct file_system_type *type = get_fs_type(fstype);
1062 	struct vfsmount *mnt;
1063 	if (!type)
1064 		return ERR_PTR(-ENODEV);
1065 	mnt = vfs_kern_mount(type, flags, name, data);
1066 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1067 	    !mnt->mnt_sb->s_subtype)
1068 		mnt = fs_set_subtype(mnt, fstype);
1069 	put_filesystem(type);
1070 	return mnt;
1071 }
1072 EXPORT_SYMBOL_GPL(do_kern_mount);
1073 
1074 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1075 {
1076 	return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1077 }
1078 
1079 EXPORT_SYMBOL_GPL(kern_mount_data);
1080