xref: /linux/fs/super.c (revision 32910e2c52cae552f2651c5360bae8033adb8aac)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h>		/* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h>		/* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <linux/file.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43 #include "internal.h"
44 
45 
46 LIST_HEAD(super_blocks);
47 DEFINE_SPINLOCK(sb_lock);
48 
49 /**
50  *	alloc_super	-	create new superblock
51  *	@type:	filesystem type superblock should belong to
52  *
53  *	Allocates and initializes a new &struct super_block.  alloc_super()
54  *	returns a pointer new superblock or %NULL if allocation had failed.
55  */
56 static struct super_block *alloc_super(struct file_system_type *type)
57 {
58 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
59 	static struct super_operations default_op;
60 
61 	if (s) {
62 		if (security_sb_alloc(s)) {
63 			kfree(s);
64 			s = NULL;
65 			goto out;
66 		}
67 		INIT_LIST_HEAD(&s->s_dirty);
68 		INIT_LIST_HEAD(&s->s_io);
69 		INIT_LIST_HEAD(&s->s_more_io);
70 		INIT_LIST_HEAD(&s->s_files);
71 		INIT_LIST_HEAD(&s->s_instances);
72 		INIT_HLIST_HEAD(&s->s_anon);
73 		INIT_LIST_HEAD(&s->s_inodes);
74 		INIT_LIST_HEAD(&s->s_dentry_lru);
75 		INIT_LIST_HEAD(&s->s_async_list);
76 		init_rwsem(&s->s_umount);
77 		mutex_init(&s->s_lock);
78 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
79 		/*
80 		 * The locking rules for s_lock are up to the
81 		 * filesystem. For example ext3fs has different
82 		 * lock ordering than usbfs:
83 		 */
84 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
85 		/*
86 		 * sget() can have s_umount recursion.
87 		 *
88 		 * When it cannot find a suitable sb, it allocates a new
89 		 * one (this one), and tries again to find a suitable old
90 		 * one.
91 		 *
92 		 * In case that succeeds, it will acquire the s_umount
93 		 * lock of the old one. Since these are clearly distrinct
94 		 * locks, and this object isn't exposed yet, there's no
95 		 * risk of deadlocks.
96 		 *
97 		 * Annotate this by putting this lock in a different
98 		 * subclass.
99 		 */
100 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
101 		s->s_count = S_BIAS;
102 		atomic_set(&s->s_active, 1);
103 		mutex_init(&s->s_vfs_rename_mutex);
104 		mutex_init(&s->s_dquot.dqio_mutex);
105 		mutex_init(&s->s_dquot.dqonoff_mutex);
106 		init_rwsem(&s->s_dquot.dqptr_sem);
107 		init_waitqueue_head(&s->s_wait_unfrozen);
108 		s->s_maxbytes = MAX_NON_LFS;
109 		s->dq_op = sb_dquot_ops;
110 		s->s_qcop = sb_quotactl_ops;
111 		s->s_op = &default_op;
112 		s->s_time_gran = 1000000000;
113 	}
114 out:
115 	return s;
116 }
117 
118 /**
119  *	destroy_super	-	frees a superblock
120  *	@s: superblock to free
121  *
122  *	Frees a superblock.
123  */
124 static inline void destroy_super(struct super_block *s)
125 {
126 	security_sb_free(s);
127 	kfree(s->s_subtype);
128 	kfree(s->s_options);
129 	kfree(s);
130 }
131 
132 /* Superblock refcounting  */
133 
134 /*
135  * Drop a superblock's refcount.  Returns non-zero if the superblock was
136  * destroyed.  The caller must hold sb_lock.
137  */
138 static int __put_super(struct super_block *sb)
139 {
140 	int ret = 0;
141 
142 	if (!--sb->s_count) {
143 		destroy_super(sb);
144 		ret = 1;
145 	}
146 	return ret;
147 }
148 
149 /*
150  * Drop a superblock's refcount.
151  * Returns non-zero if the superblock is about to be destroyed and
152  * at least is already removed from super_blocks list, so if we are
153  * making a loop through super blocks then we need to restart.
154  * The caller must hold sb_lock.
155  */
156 int __put_super_and_need_restart(struct super_block *sb)
157 {
158 	/* check for race with generic_shutdown_super() */
159 	if (list_empty(&sb->s_list)) {
160 		/* super block is removed, need to restart... */
161 		__put_super(sb);
162 		return 1;
163 	}
164 	/* can't be the last, since s_list is still in use */
165 	sb->s_count--;
166 	BUG_ON(sb->s_count == 0);
167 	return 0;
168 }
169 
170 /**
171  *	put_super	-	drop a temporary reference to superblock
172  *	@sb: superblock in question
173  *
174  *	Drops a temporary reference, frees superblock if there's no
175  *	references left.
176  */
177 static void put_super(struct super_block *sb)
178 {
179 	spin_lock(&sb_lock);
180 	__put_super(sb);
181 	spin_unlock(&sb_lock);
182 }
183 
184 
185 /**
186  *	deactivate_super	-	drop an active reference to superblock
187  *	@s: superblock to deactivate
188  *
189  *	Drops an active reference to superblock, acquiring a temprory one if
190  *	there is no active references left.  In that case we lock superblock,
191  *	tell fs driver to shut it down and drop the temporary reference we
192  *	had just acquired.
193  */
194 void deactivate_super(struct super_block *s)
195 {
196 	struct file_system_type *fs = s->s_type;
197 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
198 		s->s_count -= S_BIAS-1;
199 		spin_unlock(&sb_lock);
200 		DQUOT_OFF(s, 0);
201 		down_write(&s->s_umount);
202 		fs->kill_sb(s);
203 		put_filesystem(fs);
204 		put_super(s);
205 	}
206 }
207 
208 EXPORT_SYMBOL(deactivate_super);
209 
210 /**
211  *	grab_super - acquire an active reference
212  *	@s: reference we are trying to make active
213  *
214  *	Tries to acquire an active reference.  grab_super() is used when we
215  * 	had just found a superblock in super_blocks or fs_type->fs_supers
216  *	and want to turn it into a full-blown active reference.  grab_super()
217  *	is called with sb_lock held and drops it.  Returns 1 in case of
218  *	success, 0 if we had failed (superblock contents was already dead or
219  *	dying when grab_super() had been called).
220  */
221 static int grab_super(struct super_block *s) __releases(sb_lock)
222 {
223 	s->s_count++;
224 	spin_unlock(&sb_lock);
225 	down_write(&s->s_umount);
226 	if (s->s_root) {
227 		spin_lock(&sb_lock);
228 		if (s->s_count > S_BIAS) {
229 			atomic_inc(&s->s_active);
230 			s->s_count--;
231 			spin_unlock(&sb_lock);
232 			return 1;
233 		}
234 		spin_unlock(&sb_lock);
235 	}
236 	up_write(&s->s_umount);
237 	put_super(s);
238 	yield();
239 	return 0;
240 }
241 
242 /*
243  * Superblock locking.  We really ought to get rid of these two.
244  */
245 void lock_super(struct super_block * sb)
246 {
247 	get_fs_excl();
248 	mutex_lock(&sb->s_lock);
249 }
250 
251 void unlock_super(struct super_block * sb)
252 {
253 	put_fs_excl();
254 	mutex_unlock(&sb->s_lock);
255 }
256 
257 EXPORT_SYMBOL(lock_super);
258 EXPORT_SYMBOL(unlock_super);
259 
260 /*
261  * Write out and wait upon all dirty data associated with this
262  * superblock.  Filesystem data as well as the underlying block
263  * device.  Takes the superblock lock.  Requires a second blkdev
264  * flush by the caller to complete the operation.
265  */
266 void __fsync_super(struct super_block *sb)
267 {
268 	sync_inodes_sb(sb, 0);
269 	DQUOT_SYNC(sb);
270 	lock_super(sb);
271 	if (sb->s_dirt && sb->s_op->write_super)
272 		sb->s_op->write_super(sb);
273 	unlock_super(sb);
274 	if (sb->s_op->sync_fs)
275 		sb->s_op->sync_fs(sb, 1);
276 	sync_blockdev(sb->s_bdev);
277 	sync_inodes_sb(sb, 1);
278 }
279 
280 /*
281  * Write out and wait upon all dirty data associated with this
282  * superblock.  Filesystem data as well as the underlying block
283  * device.  Takes the superblock lock.
284  */
285 int fsync_super(struct super_block *sb)
286 {
287 	__fsync_super(sb);
288 	return sync_blockdev(sb->s_bdev);
289 }
290 
291 /**
292  *	generic_shutdown_super	-	common helper for ->kill_sb()
293  *	@sb: superblock to kill
294  *
295  *	generic_shutdown_super() does all fs-independent work on superblock
296  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
297  *	that need destruction out of superblock, call generic_shutdown_super()
298  *	and release aforementioned objects.  Note: dentries and inodes _are_
299  *	taken care of and do not need specific handling.
300  *
301  *	Upon calling this function, the filesystem may no longer alter or
302  *	rearrange the set of dentries belonging to this super_block, nor may it
303  *	change the attachments of dentries to inodes.
304  */
305 void generic_shutdown_super(struct super_block *sb)
306 {
307 	const struct super_operations *sop = sb->s_op;
308 
309 
310 	if (sb->s_root) {
311 		shrink_dcache_for_umount(sb);
312 		fsync_super(sb);
313 		lock_super(sb);
314 		sb->s_flags &= ~MS_ACTIVE;
315 
316 		/*
317 		 * wait for asynchronous fs operations to finish before going further
318 		 */
319 		async_synchronize_full_domain(&sb->s_async_list);
320 
321 		/* bad name - it should be evict_inodes() */
322 		invalidate_inodes(sb);
323 		lock_kernel();
324 
325 		if (sop->write_super && sb->s_dirt)
326 			sop->write_super(sb);
327 		if (sop->put_super)
328 			sop->put_super(sb);
329 
330 		/* Forget any remaining inodes */
331 		if (invalidate_inodes(sb)) {
332 			printk("VFS: Busy inodes after unmount of %s. "
333 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
334 			   sb->s_id);
335 		}
336 
337 		unlock_kernel();
338 		unlock_super(sb);
339 	}
340 	spin_lock(&sb_lock);
341 	/* should be initialized for __put_super_and_need_restart() */
342 	list_del_init(&sb->s_list);
343 	list_del(&sb->s_instances);
344 	spin_unlock(&sb_lock);
345 	up_write(&sb->s_umount);
346 }
347 
348 EXPORT_SYMBOL(generic_shutdown_super);
349 
350 /**
351  *	sget	-	find or create a superblock
352  *	@type:	filesystem type superblock should belong to
353  *	@test:	comparison callback
354  *	@set:	setup callback
355  *	@data:	argument to each of them
356  */
357 struct super_block *sget(struct file_system_type *type,
358 			int (*test)(struct super_block *,void *),
359 			int (*set)(struct super_block *,void *),
360 			void *data)
361 {
362 	struct super_block *s = NULL;
363 	struct super_block *old;
364 	int err;
365 
366 retry:
367 	spin_lock(&sb_lock);
368 	if (test) {
369 		list_for_each_entry(old, &type->fs_supers, s_instances) {
370 			if (!test(old, data))
371 				continue;
372 			if (!grab_super(old))
373 				goto retry;
374 			if (s)
375 				destroy_super(s);
376 			return old;
377 		}
378 	}
379 	if (!s) {
380 		spin_unlock(&sb_lock);
381 		s = alloc_super(type);
382 		if (!s)
383 			return ERR_PTR(-ENOMEM);
384 		goto retry;
385 	}
386 
387 	err = set(s, data);
388 	if (err) {
389 		spin_unlock(&sb_lock);
390 		destroy_super(s);
391 		return ERR_PTR(err);
392 	}
393 	s->s_type = type;
394 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
395 	list_add_tail(&s->s_list, &super_blocks);
396 	list_add(&s->s_instances, &type->fs_supers);
397 	spin_unlock(&sb_lock);
398 	get_filesystem(type);
399 	return s;
400 }
401 
402 EXPORT_SYMBOL(sget);
403 
404 void drop_super(struct super_block *sb)
405 {
406 	up_read(&sb->s_umount);
407 	put_super(sb);
408 }
409 
410 EXPORT_SYMBOL(drop_super);
411 
412 static inline void write_super(struct super_block *sb)
413 {
414 	lock_super(sb);
415 	if (sb->s_root && sb->s_dirt)
416 		if (sb->s_op->write_super)
417 			sb->s_op->write_super(sb);
418 	unlock_super(sb);
419 }
420 
421 /*
422  * Note: check the dirty flag before waiting, so we don't
423  * hold up the sync while mounting a device. (The newly
424  * mounted device won't need syncing.)
425  */
426 void sync_supers(void)
427 {
428 	struct super_block *sb;
429 
430 	spin_lock(&sb_lock);
431 restart:
432 	list_for_each_entry(sb, &super_blocks, s_list) {
433 		if (sb->s_dirt) {
434 			sb->s_count++;
435 			spin_unlock(&sb_lock);
436 			down_read(&sb->s_umount);
437 			write_super(sb);
438 			up_read(&sb->s_umount);
439 			spin_lock(&sb_lock);
440 			if (__put_super_and_need_restart(sb))
441 				goto restart;
442 		}
443 	}
444 	spin_unlock(&sb_lock);
445 }
446 
447 /*
448  * Call the ->sync_fs super_op against all filesystems which are r/w and
449  * which implement it.
450  *
451  * This operation is careful to avoid the livelock which could easily happen
452  * if two or more filesystems are being continuously dirtied.  s_need_sync_fs
453  * is used only here.  We set it against all filesystems and then clear it as
454  * we sync them.  So redirtied filesystems are skipped.
455  *
456  * But if process A is currently running sync_filesystems and then process B
457  * calls sync_filesystems as well, process B will set all the s_need_sync_fs
458  * flags again, which will cause process A to resync everything.  Fix that with
459  * a local mutex.
460  *
461  * (Fabian) Avoid sync_fs with clean fs & wait mode 0
462  */
463 void sync_filesystems(int wait)
464 {
465 	struct super_block *sb;
466 	static DEFINE_MUTEX(mutex);
467 
468 	mutex_lock(&mutex);		/* Could be down_interruptible */
469 	spin_lock(&sb_lock);
470 	list_for_each_entry(sb, &super_blocks, s_list) {
471 		if (!sb->s_op->sync_fs)
472 			continue;
473 		if (sb->s_flags & MS_RDONLY)
474 			continue;
475 		sb->s_need_sync_fs = 1;
476 	}
477 
478 restart:
479 	list_for_each_entry(sb, &super_blocks, s_list) {
480 		if (!sb->s_need_sync_fs)
481 			continue;
482 		sb->s_need_sync_fs = 0;
483 		if (sb->s_flags & MS_RDONLY)
484 			continue;	/* hm.  Was remounted r/o meanwhile */
485 		sb->s_count++;
486 		spin_unlock(&sb_lock);
487 		down_read(&sb->s_umount);
488 		async_synchronize_full_domain(&sb->s_async_list);
489 		if (sb->s_root && (wait || sb->s_dirt))
490 			sb->s_op->sync_fs(sb, wait);
491 		up_read(&sb->s_umount);
492 		/* restart only when sb is no longer on the list */
493 		spin_lock(&sb_lock);
494 		if (__put_super_and_need_restart(sb))
495 			goto restart;
496 	}
497 	spin_unlock(&sb_lock);
498 	mutex_unlock(&mutex);
499 }
500 
501 /**
502  *	get_super - get the superblock of a device
503  *	@bdev: device to get the superblock for
504  *
505  *	Scans the superblock list and finds the superblock of the file system
506  *	mounted on the device given. %NULL is returned if no match is found.
507  */
508 
509 struct super_block * get_super(struct block_device *bdev)
510 {
511 	struct super_block *sb;
512 
513 	if (!bdev)
514 		return NULL;
515 
516 	spin_lock(&sb_lock);
517 rescan:
518 	list_for_each_entry(sb, &super_blocks, s_list) {
519 		if (sb->s_bdev == bdev) {
520 			sb->s_count++;
521 			spin_unlock(&sb_lock);
522 			down_read(&sb->s_umount);
523 			if (sb->s_root)
524 				return sb;
525 			up_read(&sb->s_umount);
526 			/* restart only when sb is no longer on the list */
527 			spin_lock(&sb_lock);
528 			if (__put_super_and_need_restart(sb))
529 				goto rescan;
530 		}
531 	}
532 	spin_unlock(&sb_lock);
533 	return NULL;
534 }
535 
536 EXPORT_SYMBOL(get_super);
537 
538 struct super_block * user_get_super(dev_t dev)
539 {
540 	struct super_block *sb;
541 
542 	spin_lock(&sb_lock);
543 rescan:
544 	list_for_each_entry(sb, &super_blocks, s_list) {
545 		if (sb->s_dev ==  dev) {
546 			sb->s_count++;
547 			spin_unlock(&sb_lock);
548 			down_read(&sb->s_umount);
549 			if (sb->s_root)
550 				return sb;
551 			up_read(&sb->s_umount);
552 			/* restart only when sb is no longer on the list */
553 			spin_lock(&sb_lock);
554 			if (__put_super_and_need_restart(sb))
555 				goto rescan;
556 		}
557 	}
558 	spin_unlock(&sb_lock);
559 	return NULL;
560 }
561 
562 SYSCALL_DEFINE2(ustat, unsigned, dev, struct ustat __user *, ubuf)
563 {
564         struct super_block *s;
565         struct ustat tmp;
566         struct kstatfs sbuf;
567 	int err = -EINVAL;
568 
569         s = user_get_super(new_decode_dev(dev));
570         if (s == NULL)
571                 goto out;
572 	err = vfs_statfs(s->s_root, &sbuf);
573 	drop_super(s);
574 	if (err)
575 		goto out;
576 
577         memset(&tmp,0,sizeof(struct ustat));
578         tmp.f_tfree = sbuf.f_bfree;
579         tmp.f_tinode = sbuf.f_ffree;
580 
581         err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
582 out:
583 	return err;
584 }
585 
586 /**
587  *	mark_files_ro - mark all files read-only
588  *	@sb: superblock in question
589  *
590  *	All files are marked read-only.  We don't care about pending
591  *	delete files so this should be used in 'force' mode only.
592  */
593 
594 static void mark_files_ro(struct super_block *sb)
595 {
596 	struct file *f;
597 
598 retry:
599 	file_list_lock();
600 	list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
601 		struct vfsmount *mnt;
602 		if (!S_ISREG(f->f_path.dentry->d_inode->i_mode))
603 		       continue;
604 		if (!file_count(f))
605 			continue;
606 		if (!(f->f_mode & FMODE_WRITE))
607 			continue;
608 		f->f_mode &= ~FMODE_WRITE;
609 		if (file_check_writeable(f) != 0)
610 			continue;
611 		file_release_write(f);
612 		mnt = mntget(f->f_path.mnt);
613 		file_list_unlock();
614 		/*
615 		 * This can sleep, so we can't hold
616 		 * the file_list_lock() spinlock.
617 		 */
618 		mnt_drop_write(mnt);
619 		mntput(mnt);
620 		goto retry;
621 	}
622 	file_list_unlock();
623 }
624 
625 /**
626  *	do_remount_sb - asks filesystem to change mount options.
627  *	@sb:	superblock in question
628  *	@flags:	numeric part of options
629  *	@data:	the rest of options
630  *      @force: whether or not to force the change
631  *
632  *	Alters the mount options of a mounted file system.
633  */
634 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
635 {
636 	int retval;
637 	int remount_rw;
638 
639 #ifdef CONFIG_BLOCK
640 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
641 		return -EACCES;
642 #endif
643 	if (flags & MS_RDONLY)
644 		acct_auto_close(sb);
645 	shrink_dcache_sb(sb);
646 	fsync_super(sb);
647 
648 	/* If we are remounting RDONLY and current sb is read/write,
649 	   make sure there are no rw files opened */
650 	if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
651 		if (force)
652 			mark_files_ro(sb);
653 		else if (!fs_may_remount_ro(sb))
654 			return -EBUSY;
655 		retval = DQUOT_OFF(sb, 1);
656 		if (retval < 0 && retval != -ENOSYS)
657 			return -EBUSY;
658 	}
659 	remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY);
660 
661 	if (sb->s_op->remount_fs) {
662 		lock_super(sb);
663 		retval = sb->s_op->remount_fs(sb, &flags, data);
664 		unlock_super(sb);
665 		if (retval)
666 			return retval;
667 	}
668 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
669 	if (remount_rw)
670 		DQUOT_ON_REMOUNT(sb);
671 	return 0;
672 }
673 
674 static void do_emergency_remount(unsigned long foo)
675 {
676 	struct super_block *sb;
677 
678 	spin_lock(&sb_lock);
679 	list_for_each_entry(sb, &super_blocks, s_list) {
680 		sb->s_count++;
681 		spin_unlock(&sb_lock);
682 		down_read(&sb->s_umount);
683 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
684 			/*
685 			 * ->remount_fs needs lock_kernel().
686 			 *
687 			 * What lock protects sb->s_flags??
688 			 */
689 			lock_kernel();
690 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
691 			unlock_kernel();
692 		}
693 		drop_super(sb);
694 		spin_lock(&sb_lock);
695 	}
696 	spin_unlock(&sb_lock);
697 	printk("Emergency Remount complete\n");
698 }
699 
700 void emergency_remount(void)
701 {
702 	pdflush_operation(do_emergency_remount, 0);
703 }
704 
705 /*
706  * Unnamed block devices are dummy devices used by virtual
707  * filesystems which don't use real block-devices.  -- jrs
708  */
709 
710 static DEFINE_IDA(unnamed_dev_ida);
711 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
712 
713 int set_anon_super(struct super_block *s, void *data)
714 {
715 	int dev;
716 	int error;
717 
718  retry:
719 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
720 		return -ENOMEM;
721 	spin_lock(&unnamed_dev_lock);
722 	error = ida_get_new(&unnamed_dev_ida, &dev);
723 	spin_unlock(&unnamed_dev_lock);
724 	if (error == -EAGAIN)
725 		/* We raced and lost with another CPU. */
726 		goto retry;
727 	else if (error)
728 		return -EAGAIN;
729 
730 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
731 		spin_lock(&unnamed_dev_lock);
732 		ida_remove(&unnamed_dev_ida, dev);
733 		spin_unlock(&unnamed_dev_lock);
734 		return -EMFILE;
735 	}
736 	s->s_dev = MKDEV(0, dev & MINORMASK);
737 	return 0;
738 }
739 
740 EXPORT_SYMBOL(set_anon_super);
741 
742 void kill_anon_super(struct super_block *sb)
743 {
744 	int slot = MINOR(sb->s_dev);
745 
746 	generic_shutdown_super(sb);
747 	spin_lock(&unnamed_dev_lock);
748 	ida_remove(&unnamed_dev_ida, slot);
749 	spin_unlock(&unnamed_dev_lock);
750 }
751 
752 EXPORT_SYMBOL(kill_anon_super);
753 
754 void kill_litter_super(struct super_block *sb)
755 {
756 	if (sb->s_root)
757 		d_genocide(sb->s_root);
758 	kill_anon_super(sb);
759 }
760 
761 EXPORT_SYMBOL(kill_litter_super);
762 
763 #ifdef CONFIG_BLOCK
764 static int set_bdev_super(struct super_block *s, void *data)
765 {
766 	s->s_bdev = data;
767 	s->s_dev = s->s_bdev->bd_dev;
768 	return 0;
769 }
770 
771 static int test_bdev_super(struct super_block *s, void *data)
772 {
773 	return (void *)s->s_bdev == data;
774 }
775 
776 int get_sb_bdev(struct file_system_type *fs_type,
777 	int flags, const char *dev_name, void *data,
778 	int (*fill_super)(struct super_block *, void *, int),
779 	struct vfsmount *mnt)
780 {
781 	struct block_device *bdev;
782 	struct super_block *s;
783 	fmode_t mode = FMODE_READ;
784 	int error = 0;
785 
786 	if (!(flags & MS_RDONLY))
787 		mode |= FMODE_WRITE;
788 
789 	bdev = open_bdev_exclusive(dev_name, mode, fs_type);
790 	if (IS_ERR(bdev))
791 		return PTR_ERR(bdev);
792 
793 	/*
794 	 * once the super is inserted into the list by sget, s_umount
795 	 * will protect the lockfs code from trying to start a snapshot
796 	 * while we are mounting
797 	 */
798 	down(&bdev->bd_mount_sem);
799 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
800 	up(&bdev->bd_mount_sem);
801 	if (IS_ERR(s))
802 		goto error_s;
803 
804 	if (s->s_root) {
805 		if ((flags ^ s->s_flags) & MS_RDONLY) {
806 			up_write(&s->s_umount);
807 			deactivate_super(s);
808 			error = -EBUSY;
809 			goto error_bdev;
810 		}
811 
812 		close_bdev_exclusive(bdev, mode);
813 	} else {
814 		char b[BDEVNAME_SIZE];
815 
816 		s->s_flags = flags;
817 		s->s_mode = mode;
818 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
819 		sb_set_blocksize(s, block_size(bdev));
820 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
821 		if (error) {
822 			up_write(&s->s_umount);
823 			deactivate_super(s);
824 			goto error;
825 		}
826 
827 		s->s_flags |= MS_ACTIVE;
828 		bdev->bd_super = s;
829 	}
830 
831 	return simple_set_mnt(mnt, s);
832 
833 error_s:
834 	error = PTR_ERR(s);
835 error_bdev:
836 	close_bdev_exclusive(bdev, mode);
837 error:
838 	return error;
839 }
840 
841 EXPORT_SYMBOL(get_sb_bdev);
842 
843 void kill_block_super(struct super_block *sb)
844 {
845 	struct block_device *bdev = sb->s_bdev;
846 	fmode_t mode = sb->s_mode;
847 
848 	bdev->bd_super = 0;
849 	generic_shutdown_super(sb);
850 	sync_blockdev(bdev);
851 	close_bdev_exclusive(bdev, mode);
852 }
853 
854 EXPORT_SYMBOL(kill_block_super);
855 #endif
856 
857 int get_sb_nodev(struct file_system_type *fs_type,
858 	int flags, void *data,
859 	int (*fill_super)(struct super_block *, void *, int),
860 	struct vfsmount *mnt)
861 {
862 	int error;
863 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
864 
865 	if (IS_ERR(s))
866 		return PTR_ERR(s);
867 
868 	s->s_flags = flags;
869 
870 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
871 	if (error) {
872 		up_write(&s->s_umount);
873 		deactivate_super(s);
874 		return error;
875 	}
876 	s->s_flags |= MS_ACTIVE;
877 	return simple_set_mnt(mnt, s);
878 }
879 
880 EXPORT_SYMBOL(get_sb_nodev);
881 
882 static int compare_single(struct super_block *s, void *p)
883 {
884 	return 1;
885 }
886 
887 int get_sb_single(struct file_system_type *fs_type,
888 	int flags, void *data,
889 	int (*fill_super)(struct super_block *, void *, int),
890 	struct vfsmount *mnt)
891 {
892 	struct super_block *s;
893 	int error;
894 
895 	s = sget(fs_type, compare_single, set_anon_super, NULL);
896 	if (IS_ERR(s))
897 		return PTR_ERR(s);
898 	if (!s->s_root) {
899 		s->s_flags = flags;
900 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
901 		if (error) {
902 			up_write(&s->s_umount);
903 			deactivate_super(s);
904 			return error;
905 		}
906 		s->s_flags |= MS_ACTIVE;
907 	}
908 	do_remount_sb(s, flags, data, 0);
909 	return simple_set_mnt(mnt, s);
910 }
911 
912 EXPORT_SYMBOL(get_sb_single);
913 
914 struct vfsmount *
915 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
916 {
917 	struct vfsmount *mnt;
918 	char *secdata = NULL;
919 	int error;
920 
921 	if (!type)
922 		return ERR_PTR(-ENODEV);
923 
924 	error = -ENOMEM;
925 	mnt = alloc_vfsmnt(name);
926 	if (!mnt)
927 		goto out;
928 
929 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
930 		secdata = alloc_secdata();
931 		if (!secdata)
932 			goto out_mnt;
933 
934 		error = security_sb_copy_data(data, secdata);
935 		if (error)
936 			goto out_free_secdata;
937 	}
938 
939 	error = type->get_sb(type, flags, name, data, mnt);
940 	if (error < 0)
941 		goto out_free_secdata;
942 	BUG_ON(!mnt->mnt_sb);
943 
944  	error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
945  	if (error)
946  		goto out_sb;
947 
948 	mnt->mnt_mountpoint = mnt->mnt_root;
949 	mnt->mnt_parent = mnt;
950 	up_write(&mnt->mnt_sb->s_umount);
951 	free_secdata(secdata);
952 	return mnt;
953 out_sb:
954 	dput(mnt->mnt_root);
955 	up_write(&mnt->mnt_sb->s_umount);
956 	deactivate_super(mnt->mnt_sb);
957 out_free_secdata:
958 	free_secdata(secdata);
959 out_mnt:
960 	free_vfsmnt(mnt);
961 out:
962 	return ERR_PTR(error);
963 }
964 
965 EXPORT_SYMBOL_GPL(vfs_kern_mount);
966 
967 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
968 {
969 	int err;
970 	const char *subtype = strchr(fstype, '.');
971 	if (subtype) {
972 		subtype++;
973 		err = -EINVAL;
974 		if (!subtype[0])
975 			goto err;
976 	} else
977 		subtype = "";
978 
979 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
980 	err = -ENOMEM;
981 	if (!mnt->mnt_sb->s_subtype)
982 		goto err;
983 	return mnt;
984 
985  err:
986 	mntput(mnt);
987 	return ERR_PTR(err);
988 }
989 
990 struct vfsmount *
991 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
992 {
993 	struct file_system_type *type = get_fs_type(fstype);
994 	struct vfsmount *mnt;
995 	if (!type)
996 		return ERR_PTR(-ENODEV);
997 	mnt = vfs_kern_mount(type, flags, name, data);
998 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
999 	    !mnt->mnt_sb->s_subtype)
1000 		mnt = fs_set_subtype(mnt, fstype);
1001 	put_filesystem(type);
1002 	return mnt;
1003 }
1004 EXPORT_SYMBOL_GPL(do_kern_mount);
1005 
1006 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1007 {
1008 	return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1009 }
1010 
1011 EXPORT_SYMBOL_GPL(kern_mount_data);
1012