xref: /linux/fs/super.c (revision 31af04cd60d3162a58213363fd740a2b0cf0a08e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <uapi/linux/mount.h>
39 #include "internal.h"
40 
41 static int thaw_super_locked(struct super_block *sb);
42 
43 static LIST_HEAD(super_blocks);
44 static DEFINE_SPINLOCK(sb_lock);
45 
46 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
47 	"sb_writers",
48 	"sb_pagefaults",
49 	"sb_internal",
50 };
51 
52 /*
53  * One thing we have to be careful of with a per-sb shrinker is that we don't
54  * drop the last active reference to the superblock from within the shrinker.
55  * If that happens we could trigger unregistering the shrinker from within the
56  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
57  * take a passive reference to the superblock to avoid this from occurring.
58  */
59 static unsigned long super_cache_scan(struct shrinker *shrink,
60 				      struct shrink_control *sc)
61 {
62 	struct super_block *sb;
63 	long	fs_objects = 0;
64 	long	total_objects;
65 	long	freed = 0;
66 	long	dentries;
67 	long	inodes;
68 
69 	sb = container_of(shrink, struct super_block, s_shrink);
70 
71 	/*
72 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
73 	 * to recurse into the FS that called us in clear_inode() and friends..
74 	 */
75 	if (!(sc->gfp_mask & __GFP_FS))
76 		return SHRINK_STOP;
77 
78 	if (!trylock_super(sb))
79 		return SHRINK_STOP;
80 
81 	if (sb->s_op->nr_cached_objects)
82 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
83 
84 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
85 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
86 	total_objects = dentries + inodes + fs_objects + 1;
87 	if (!total_objects)
88 		total_objects = 1;
89 
90 	/* proportion the scan between the caches */
91 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
92 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
93 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
94 
95 	/*
96 	 * prune the dcache first as the icache is pinned by it, then
97 	 * prune the icache, followed by the filesystem specific caches
98 	 *
99 	 * Ensure that we always scan at least one object - memcg kmem
100 	 * accounting uses this to fully empty the caches.
101 	 */
102 	sc->nr_to_scan = dentries + 1;
103 	freed = prune_dcache_sb(sb, sc);
104 	sc->nr_to_scan = inodes + 1;
105 	freed += prune_icache_sb(sb, sc);
106 
107 	if (fs_objects) {
108 		sc->nr_to_scan = fs_objects + 1;
109 		freed += sb->s_op->free_cached_objects(sb, sc);
110 	}
111 
112 	up_read(&sb->s_umount);
113 	return freed;
114 }
115 
116 static unsigned long super_cache_count(struct shrinker *shrink,
117 				       struct shrink_control *sc)
118 {
119 	struct super_block *sb;
120 	long	total_objects = 0;
121 
122 	sb = container_of(shrink, struct super_block, s_shrink);
123 
124 	/*
125 	 * We don't call trylock_super() here as it is a scalability bottleneck,
126 	 * so we're exposed to partial setup state. The shrinker rwsem does not
127 	 * protect filesystem operations backing list_lru_shrink_count() or
128 	 * s_op->nr_cached_objects(). Counts can change between
129 	 * super_cache_count and super_cache_scan, so we really don't need locks
130 	 * here.
131 	 *
132 	 * However, if we are currently mounting the superblock, the underlying
133 	 * filesystem might be in a state of partial construction and hence it
134 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
135 	 * avoid this situation, so do the same here. The memory barrier is
136 	 * matched with the one in mount_fs() as we don't hold locks here.
137 	 */
138 	if (!(sb->s_flags & SB_BORN))
139 		return 0;
140 	smp_rmb();
141 
142 	if (sb->s_op && sb->s_op->nr_cached_objects)
143 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
144 
145 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
146 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
147 
148 	if (!total_objects)
149 		return SHRINK_EMPTY;
150 
151 	total_objects = vfs_pressure_ratio(total_objects);
152 	return total_objects;
153 }
154 
155 static void destroy_super_work(struct work_struct *work)
156 {
157 	struct super_block *s = container_of(work, struct super_block,
158 							destroy_work);
159 	int i;
160 
161 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
162 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
163 	kfree(s);
164 }
165 
166 static void destroy_super_rcu(struct rcu_head *head)
167 {
168 	struct super_block *s = container_of(head, struct super_block, rcu);
169 	INIT_WORK(&s->destroy_work, destroy_super_work);
170 	schedule_work(&s->destroy_work);
171 }
172 
173 /* Free a superblock that has never been seen by anyone */
174 static void destroy_unused_super(struct super_block *s)
175 {
176 	if (!s)
177 		return;
178 	up_write(&s->s_umount);
179 	list_lru_destroy(&s->s_dentry_lru);
180 	list_lru_destroy(&s->s_inode_lru);
181 	security_sb_free(s);
182 	put_user_ns(s->s_user_ns);
183 	kfree(s->s_subtype);
184 	free_prealloced_shrinker(&s->s_shrink);
185 	/* no delays needed */
186 	destroy_super_work(&s->destroy_work);
187 }
188 
189 /**
190  *	alloc_super	-	create new superblock
191  *	@type:	filesystem type superblock should belong to
192  *	@flags: the mount flags
193  *	@user_ns: User namespace for the super_block
194  *
195  *	Allocates and initializes a new &struct super_block.  alloc_super()
196  *	returns a pointer new superblock or %NULL if allocation had failed.
197  */
198 static struct super_block *alloc_super(struct file_system_type *type, int flags,
199 				       struct user_namespace *user_ns)
200 {
201 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
202 	static const struct super_operations default_op;
203 	int i;
204 
205 	if (!s)
206 		return NULL;
207 
208 	INIT_LIST_HEAD(&s->s_mounts);
209 	s->s_user_ns = get_user_ns(user_ns);
210 	init_rwsem(&s->s_umount);
211 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
212 	/*
213 	 * sget() can have s_umount recursion.
214 	 *
215 	 * When it cannot find a suitable sb, it allocates a new
216 	 * one (this one), and tries again to find a suitable old
217 	 * one.
218 	 *
219 	 * In case that succeeds, it will acquire the s_umount
220 	 * lock of the old one. Since these are clearly distrinct
221 	 * locks, and this object isn't exposed yet, there's no
222 	 * risk of deadlocks.
223 	 *
224 	 * Annotate this by putting this lock in a different
225 	 * subclass.
226 	 */
227 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
228 
229 	if (security_sb_alloc(s))
230 		goto fail;
231 
232 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
233 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
234 					sb_writers_name[i],
235 					&type->s_writers_key[i]))
236 			goto fail;
237 	}
238 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
239 	s->s_bdi = &noop_backing_dev_info;
240 	s->s_flags = flags;
241 	if (s->s_user_ns != &init_user_ns)
242 		s->s_iflags |= SB_I_NODEV;
243 	INIT_HLIST_NODE(&s->s_instances);
244 	INIT_HLIST_BL_HEAD(&s->s_roots);
245 	mutex_init(&s->s_sync_lock);
246 	INIT_LIST_HEAD(&s->s_inodes);
247 	spin_lock_init(&s->s_inode_list_lock);
248 	INIT_LIST_HEAD(&s->s_inodes_wb);
249 	spin_lock_init(&s->s_inode_wblist_lock);
250 
251 	s->s_count = 1;
252 	atomic_set(&s->s_active, 1);
253 	mutex_init(&s->s_vfs_rename_mutex);
254 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
255 	init_rwsem(&s->s_dquot.dqio_sem);
256 	s->s_maxbytes = MAX_NON_LFS;
257 	s->s_op = &default_op;
258 	s->s_time_gran = 1000000000;
259 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
260 
261 	s->s_shrink.seeks = DEFAULT_SEEKS;
262 	s->s_shrink.scan_objects = super_cache_scan;
263 	s->s_shrink.count_objects = super_cache_count;
264 	s->s_shrink.batch = 1024;
265 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
266 	if (prealloc_shrinker(&s->s_shrink))
267 		goto fail;
268 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
269 		goto fail;
270 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
271 		goto fail;
272 	return s;
273 
274 fail:
275 	destroy_unused_super(s);
276 	return NULL;
277 }
278 
279 /* Superblock refcounting  */
280 
281 /*
282  * Drop a superblock's refcount.  The caller must hold sb_lock.
283  */
284 static void __put_super(struct super_block *s)
285 {
286 	if (!--s->s_count) {
287 		list_del_init(&s->s_list);
288 		WARN_ON(s->s_dentry_lru.node);
289 		WARN_ON(s->s_inode_lru.node);
290 		WARN_ON(!list_empty(&s->s_mounts));
291 		security_sb_free(s);
292 		put_user_ns(s->s_user_ns);
293 		kfree(s->s_subtype);
294 		call_rcu(&s->rcu, destroy_super_rcu);
295 	}
296 }
297 
298 /**
299  *	put_super	-	drop a temporary reference to superblock
300  *	@sb: superblock in question
301  *
302  *	Drops a temporary reference, frees superblock if there's no
303  *	references left.
304  */
305 static void put_super(struct super_block *sb)
306 {
307 	spin_lock(&sb_lock);
308 	__put_super(sb);
309 	spin_unlock(&sb_lock);
310 }
311 
312 
313 /**
314  *	deactivate_locked_super	-	drop an active reference to superblock
315  *	@s: superblock to deactivate
316  *
317  *	Drops an active reference to superblock, converting it into a temporary
318  *	one if there is no other active references left.  In that case we
319  *	tell fs driver to shut it down and drop the temporary reference we
320  *	had just acquired.
321  *
322  *	Caller holds exclusive lock on superblock; that lock is released.
323  */
324 void deactivate_locked_super(struct super_block *s)
325 {
326 	struct file_system_type *fs = s->s_type;
327 	if (atomic_dec_and_test(&s->s_active)) {
328 		cleancache_invalidate_fs(s);
329 		unregister_shrinker(&s->s_shrink);
330 		fs->kill_sb(s);
331 
332 		/*
333 		 * Since list_lru_destroy() may sleep, we cannot call it from
334 		 * put_super(), where we hold the sb_lock. Therefore we destroy
335 		 * the lru lists right now.
336 		 */
337 		list_lru_destroy(&s->s_dentry_lru);
338 		list_lru_destroy(&s->s_inode_lru);
339 
340 		put_filesystem(fs);
341 		put_super(s);
342 	} else {
343 		up_write(&s->s_umount);
344 	}
345 }
346 
347 EXPORT_SYMBOL(deactivate_locked_super);
348 
349 /**
350  *	deactivate_super	-	drop an active reference to superblock
351  *	@s: superblock to deactivate
352  *
353  *	Variant of deactivate_locked_super(), except that superblock is *not*
354  *	locked by caller.  If we are going to drop the final active reference,
355  *	lock will be acquired prior to that.
356  */
357 void deactivate_super(struct super_block *s)
358 {
359         if (!atomic_add_unless(&s->s_active, -1, 1)) {
360 		down_write(&s->s_umount);
361 		deactivate_locked_super(s);
362 	}
363 }
364 
365 EXPORT_SYMBOL(deactivate_super);
366 
367 /**
368  *	grab_super - acquire an active reference
369  *	@s: reference we are trying to make active
370  *
371  *	Tries to acquire an active reference.  grab_super() is used when we
372  * 	had just found a superblock in super_blocks or fs_type->fs_supers
373  *	and want to turn it into a full-blown active reference.  grab_super()
374  *	is called with sb_lock held and drops it.  Returns 1 in case of
375  *	success, 0 if we had failed (superblock contents was already dead or
376  *	dying when grab_super() had been called).  Note that this is only
377  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
378  *	of their type), so increment of ->s_count is OK here.
379  */
380 static int grab_super(struct super_block *s) __releases(sb_lock)
381 {
382 	s->s_count++;
383 	spin_unlock(&sb_lock);
384 	down_write(&s->s_umount);
385 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
386 		put_super(s);
387 		return 1;
388 	}
389 	up_write(&s->s_umount);
390 	put_super(s);
391 	return 0;
392 }
393 
394 /*
395  *	trylock_super - try to grab ->s_umount shared
396  *	@sb: reference we are trying to grab
397  *
398  *	Try to prevent fs shutdown.  This is used in places where we
399  *	cannot take an active reference but we need to ensure that the
400  *	filesystem is not shut down while we are working on it. It returns
401  *	false if we cannot acquire s_umount or if we lose the race and
402  *	filesystem already got into shutdown, and returns true with the s_umount
403  *	lock held in read mode in case of success. On successful return,
404  *	the caller must drop the s_umount lock when done.
405  *
406  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
407  *	The reason why it's safe is that we are OK with doing trylock instead
408  *	of down_read().  There's a couple of places that are OK with that, but
409  *	it's very much not a general-purpose interface.
410  */
411 bool trylock_super(struct super_block *sb)
412 {
413 	if (down_read_trylock(&sb->s_umount)) {
414 		if (!hlist_unhashed(&sb->s_instances) &&
415 		    sb->s_root && (sb->s_flags & SB_BORN))
416 			return true;
417 		up_read(&sb->s_umount);
418 	}
419 
420 	return false;
421 }
422 
423 /**
424  *	generic_shutdown_super	-	common helper for ->kill_sb()
425  *	@sb: superblock to kill
426  *
427  *	generic_shutdown_super() does all fs-independent work on superblock
428  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
429  *	that need destruction out of superblock, call generic_shutdown_super()
430  *	and release aforementioned objects.  Note: dentries and inodes _are_
431  *	taken care of and do not need specific handling.
432  *
433  *	Upon calling this function, the filesystem may no longer alter or
434  *	rearrange the set of dentries belonging to this super_block, nor may it
435  *	change the attachments of dentries to inodes.
436  */
437 void generic_shutdown_super(struct super_block *sb)
438 {
439 	const struct super_operations *sop = sb->s_op;
440 
441 	if (sb->s_root) {
442 		shrink_dcache_for_umount(sb);
443 		sync_filesystem(sb);
444 		sb->s_flags &= ~SB_ACTIVE;
445 
446 		fsnotify_sb_delete(sb);
447 		cgroup_writeback_umount();
448 
449 		evict_inodes(sb);
450 
451 		if (sb->s_dio_done_wq) {
452 			destroy_workqueue(sb->s_dio_done_wq);
453 			sb->s_dio_done_wq = NULL;
454 		}
455 
456 		if (sop->put_super)
457 			sop->put_super(sb);
458 
459 		if (!list_empty(&sb->s_inodes)) {
460 			printk("VFS: Busy inodes after unmount of %s. "
461 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
462 			   sb->s_id);
463 		}
464 	}
465 	spin_lock(&sb_lock);
466 	/* should be initialized for __put_super_and_need_restart() */
467 	hlist_del_init(&sb->s_instances);
468 	spin_unlock(&sb_lock);
469 	up_write(&sb->s_umount);
470 	if (sb->s_bdi != &noop_backing_dev_info) {
471 		bdi_put(sb->s_bdi);
472 		sb->s_bdi = &noop_backing_dev_info;
473 	}
474 }
475 
476 EXPORT_SYMBOL(generic_shutdown_super);
477 
478 /**
479  *	sget_userns -	find or create a superblock
480  *	@type:	filesystem type superblock should belong to
481  *	@test:	comparison callback
482  *	@set:	setup callback
483  *	@flags:	mount flags
484  *	@user_ns: User namespace for the super_block
485  *	@data:	argument to each of them
486  */
487 struct super_block *sget_userns(struct file_system_type *type,
488 			int (*test)(struct super_block *,void *),
489 			int (*set)(struct super_block *,void *),
490 			int flags, struct user_namespace *user_ns,
491 			void *data)
492 {
493 	struct super_block *s = NULL;
494 	struct super_block *old;
495 	int err;
496 
497 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
498 	    !(type->fs_flags & FS_USERNS_MOUNT) &&
499 	    !capable(CAP_SYS_ADMIN))
500 		return ERR_PTR(-EPERM);
501 retry:
502 	spin_lock(&sb_lock);
503 	if (test) {
504 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
505 			if (!test(old, data))
506 				continue;
507 			if (user_ns != old->s_user_ns) {
508 				spin_unlock(&sb_lock);
509 				destroy_unused_super(s);
510 				return ERR_PTR(-EBUSY);
511 			}
512 			if (!grab_super(old))
513 				goto retry;
514 			destroy_unused_super(s);
515 			return old;
516 		}
517 	}
518 	if (!s) {
519 		spin_unlock(&sb_lock);
520 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
521 		if (!s)
522 			return ERR_PTR(-ENOMEM);
523 		goto retry;
524 	}
525 
526 	err = set(s, data);
527 	if (err) {
528 		spin_unlock(&sb_lock);
529 		destroy_unused_super(s);
530 		return ERR_PTR(err);
531 	}
532 	s->s_type = type;
533 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
534 	list_add_tail(&s->s_list, &super_blocks);
535 	hlist_add_head(&s->s_instances, &type->fs_supers);
536 	spin_unlock(&sb_lock);
537 	get_filesystem(type);
538 	register_shrinker_prepared(&s->s_shrink);
539 	return s;
540 }
541 
542 EXPORT_SYMBOL(sget_userns);
543 
544 /**
545  *	sget	-	find or create a superblock
546  *	@type:	  filesystem type superblock should belong to
547  *	@test:	  comparison callback
548  *	@set:	  setup callback
549  *	@flags:	  mount flags
550  *	@data:	  argument to each of them
551  */
552 struct super_block *sget(struct file_system_type *type,
553 			int (*test)(struct super_block *,void *),
554 			int (*set)(struct super_block *,void *),
555 			int flags,
556 			void *data)
557 {
558 	struct user_namespace *user_ns = current_user_ns();
559 
560 	/* We don't yet pass the user namespace of the parent
561 	 * mount through to here so always use &init_user_ns
562 	 * until that changes.
563 	 */
564 	if (flags & SB_SUBMOUNT)
565 		user_ns = &init_user_ns;
566 
567 	/* Ensure the requestor has permissions over the target filesystem */
568 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
569 		return ERR_PTR(-EPERM);
570 
571 	return sget_userns(type, test, set, flags, user_ns, data);
572 }
573 
574 EXPORT_SYMBOL(sget);
575 
576 void drop_super(struct super_block *sb)
577 {
578 	up_read(&sb->s_umount);
579 	put_super(sb);
580 }
581 
582 EXPORT_SYMBOL(drop_super);
583 
584 void drop_super_exclusive(struct super_block *sb)
585 {
586 	up_write(&sb->s_umount);
587 	put_super(sb);
588 }
589 EXPORT_SYMBOL(drop_super_exclusive);
590 
591 static void __iterate_supers(void (*f)(struct super_block *))
592 {
593 	struct super_block *sb, *p = NULL;
594 
595 	spin_lock(&sb_lock);
596 	list_for_each_entry(sb, &super_blocks, s_list) {
597 		if (hlist_unhashed(&sb->s_instances))
598 			continue;
599 		sb->s_count++;
600 		spin_unlock(&sb_lock);
601 
602 		f(sb);
603 
604 		spin_lock(&sb_lock);
605 		if (p)
606 			__put_super(p);
607 		p = sb;
608 	}
609 	if (p)
610 		__put_super(p);
611 	spin_unlock(&sb_lock);
612 }
613 /**
614  *	iterate_supers - call function for all active superblocks
615  *	@f: function to call
616  *	@arg: argument to pass to it
617  *
618  *	Scans the superblock list and calls given function, passing it
619  *	locked superblock and given argument.
620  */
621 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
622 {
623 	struct super_block *sb, *p = NULL;
624 
625 	spin_lock(&sb_lock);
626 	list_for_each_entry(sb, &super_blocks, s_list) {
627 		if (hlist_unhashed(&sb->s_instances))
628 			continue;
629 		sb->s_count++;
630 		spin_unlock(&sb_lock);
631 
632 		down_read(&sb->s_umount);
633 		if (sb->s_root && (sb->s_flags & SB_BORN))
634 			f(sb, arg);
635 		up_read(&sb->s_umount);
636 
637 		spin_lock(&sb_lock);
638 		if (p)
639 			__put_super(p);
640 		p = sb;
641 	}
642 	if (p)
643 		__put_super(p);
644 	spin_unlock(&sb_lock);
645 }
646 
647 /**
648  *	iterate_supers_type - call function for superblocks of given type
649  *	@type: fs type
650  *	@f: function to call
651  *	@arg: argument to pass to it
652  *
653  *	Scans the superblock list and calls given function, passing it
654  *	locked superblock and given argument.
655  */
656 void iterate_supers_type(struct file_system_type *type,
657 	void (*f)(struct super_block *, void *), void *arg)
658 {
659 	struct super_block *sb, *p = NULL;
660 
661 	spin_lock(&sb_lock);
662 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
663 		sb->s_count++;
664 		spin_unlock(&sb_lock);
665 
666 		down_read(&sb->s_umount);
667 		if (sb->s_root && (sb->s_flags & SB_BORN))
668 			f(sb, arg);
669 		up_read(&sb->s_umount);
670 
671 		spin_lock(&sb_lock);
672 		if (p)
673 			__put_super(p);
674 		p = sb;
675 	}
676 	if (p)
677 		__put_super(p);
678 	spin_unlock(&sb_lock);
679 }
680 
681 EXPORT_SYMBOL(iterate_supers_type);
682 
683 static struct super_block *__get_super(struct block_device *bdev, bool excl)
684 {
685 	struct super_block *sb;
686 
687 	if (!bdev)
688 		return NULL;
689 
690 	spin_lock(&sb_lock);
691 rescan:
692 	list_for_each_entry(sb, &super_blocks, s_list) {
693 		if (hlist_unhashed(&sb->s_instances))
694 			continue;
695 		if (sb->s_bdev == bdev) {
696 			sb->s_count++;
697 			spin_unlock(&sb_lock);
698 			if (!excl)
699 				down_read(&sb->s_umount);
700 			else
701 				down_write(&sb->s_umount);
702 			/* still alive? */
703 			if (sb->s_root && (sb->s_flags & SB_BORN))
704 				return sb;
705 			if (!excl)
706 				up_read(&sb->s_umount);
707 			else
708 				up_write(&sb->s_umount);
709 			/* nope, got unmounted */
710 			spin_lock(&sb_lock);
711 			__put_super(sb);
712 			goto rescan;
713 		}
714 	}
715 	spin_unlock(&sb_lock);
716 	return NULL;
717 }
718 
719 /**
720  *	get_super - get the superblock of a device
721  *	@bdev: device to get the superblock for
722  *
723  *	Scans the superblock list and finds the superblock of the file system
724  *	mounted on the device given. %NULL is returned if no match is found.
725  */
726 struct super_block *get_super(struct block_device *bdev)
727 {
728 	return __get_super(bdev, false);
729 }
730 EXPORT_SYMBOL(get_super);
731 
732 static struct super_block *__get_super_thawed(struct block_device *bdev,
733 					      bool excl)
734 {
735 	while (1) {
736 		struct super_block *s = __get_super(bdev, excl);
737 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
738 			return s;
739 		if (!excl)
740 			up_read(&s->s_umount);
741 		else
742 			up_write(&s->s_umount);
743 		wait_event(s->s_writers.wait_unfrozen,
744 			   s->s_writers.frozen == SB_UNFROZEN);
745 		put_super(s);
746 	}
747 }
748 
749 /**
750  *	get_super_thawed - get thawed superblock of a device
751  *	@bdev: device to get the superblock for
752  *
753  *	Scans the superblock list and finds the superblock of the file system
754  *	mounted on the device. The superblock is returned once it is thawed
755  *	(or immediately if it was not frozen). %NULL is returned if no match
756  *	is found.
757  */
758 struct super_block *get_super_thawed(struct block_device *bdev)
759 {
760 	return __get_super_thawed(bdev, false);
761 }
762 EXPORT_SYMBOL(get_super_thawed);
763 
764 /**
765  *	get_super_exclusive_thawed - get thawed superblock of a device
766  *	@bdev: device to get the superblock for
767  *
768  *	Scans the superblock list and finds the superblock of the file system
769  *	mounted on the device. The superblock is returned once it is thawed
770  *	(or immediately if it was not frozen) and s_umount semaphore is held
771  *	in exclusive mode. %NULL is returned if no match is found.
772  */
773 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
774 {
775 	return __get_super_thawed(bdev, true);
776 }
777 EXPORT_SYMBOL(get_super_exclusive_thawed);
778 
779 /**
780  * get_active_super - get an active reference to the superblock of a device
781  * @bdev: device to get the superblock for
782  *
783  * Scans the superblock list and finds the superblock of the file system
784  * mounted on the device given.  Returns the superblock with an active
785  * reference or %NULL if none was found.
786  */
787 struct super_block *get_active_super(struct block_device *bdev)
788 {
789 	struct super_block *sb;
790 
791 	if (!bdev)
792 		return NULL;
793 
794 restart:
795 	spin_lock(&sb_lock);
796 	list_for_each_entry(sb, &super_blocks, s_list) {
797 		if (hlist_unhashed(&sb->s_instances))
798 			continue;
799 		if (sb->s_bdev == bdev) {
800 			if (!grab_super(sb))
801 				goto restart;
802 			up_write(&sb->s_umount);
803 			return sb;
804 		}
805 	}
806 	spin_unlock(&sb_lock);
807 	return NULL;
808 }
809 
810 struct super_block *user_get_super(dev_t dev)
811 {
812 	struct super_block *sb;
813 
814 	spin_lock(&sb_lock);
815 rescan:
816 	list_for_each_entry(sb, &super_blocks, s_list) {
817 		if (hlist_unhashed(&sb->s_instances))
818 			continue;
819 		if (sb->s_dev ==  dev) {
820 			sb->s_count++;
821 			spin_unlock(&sb_lock);
822 			down_read(&sb->s_umount);
823 			/* still alive? */
824 			if (sb->s_root && (sb->s_flags & SB_BORN))
825 				return sb;
826 			up_read(&sb->s_umount);
827 			/* nope, got unmounted */
828 			spin_lock(&sb_lock);
829 			__put_super(sb);
830 			goto rescan;
831 		}
832 	}
833 	spin_unlock(&sb_lock);
834 	return NULL;
835 }
836 
837 /**
838  *	do_remount_sb - asks filesystem to change mount options.
839  *	@sb:	superblock in question
840  *	@sb_flags: revised superblock flags
841  *	@data:	the rest of options
842  *      @force: whether or not to force the change
843  *
844  *	Alters the mount options of a mounted file system.
845  */
846 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
847 {
848 	int retval;
849 	int remount_ro;
850 
851 	if (sb->s_writers.frozen != SB_UNFROZEN)
852 		return -EBUSY;
853 
854 #ifdef CONFIG_BLOCK
855 	if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
856 		return -EACCES;
857 #endif
858 
859 	remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
860 
861 	if (remount_ro) {
862 		if (!hlist_empty(&sb->s_pins)) {
863 			up_write(&sb->s_umount);
864 			group_pin_kill(&sb->s_pins);
865 			down_write(&sb->s_umount);
866 			if (!sb->s_root)
867 				return 0;
868 			if (sb->s_writers.frozen != SB_UNFROZEN)
869 				return -EBUSY;
870 			remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
871 		}
872 	}
873 	shrink_dcache_sb(sb);
874 
875 	/* If we are remounting RDONLY and current sb is read/write,
876 	   make sure there are no rw files opened */
877 	if (remount_ro) {
878 		if (force) {
879 			sb->s_readonly_remount = 1;
880 			smp_wmb();
881 		} else {
882 			retval = sb_prepare_remount_readonly(sb);
883 			if (retval)
884 				return retval;
885 		}
886 	}
887 
888 	if (sb->s_op->remount_fs) {
889 		retval = sb->s_op->remount_fs(sb, &sb_flags, data);
890 		if (retval) {
891 			if (!force)
892 				goto cancel_readonly;
893 			/* If forced remount, go ahead despite any errors */
894 			WARN(1, "forced remount of a %s fs returned %i\n",
895 			     sb->s_type->name, retval);
896 		}
897 	}
898 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
899 	/* Needs to be ordered wrt mnt_is_readonly() */
900 	smp_wmb();
901 	sb->s_readonly_remount = 0;
902 
903 	/*
904 	 * Some filesystems modify their metadata via some other path than the
905 	 * bdev buffer cache (eg. use a private mapping, or directories in
906 	 * pagecache, etc). Also file data modifications go via their own
907 	 * mappings. So If we try to mount readonly then copy the filesystem
908 	 * from bdev, we could get stale data, so invalidate it to give a best
909 	 * effort at coherency.
910 	 */
911 	if (remount_ro && sb->s_bdev)
912 		invalidate_bdev(sb->s_bdev);
913 	return 0;
914 
915 cancel_readonly:
916 	sb->s_readonly_remount = 0;
917 	return retval;
918 }
919 
920 static void do_emergency_remount_callback(struct super_block *sb)
921 {
922 	down_write(&sb->s_umount);
923 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
924 	    !sb_rdonly(sb)) {
925 		/*
926 		 * What lock protects sb->s_flags??
927 		 */
928 		do_remount_sb(sb, SB_RDONLY, NULL, 1);
929 	}
930 	up_write(&sb->s_umount);
931 }
932 
933 static void do_emergency_remount(struct work_struct *work)
934 {
935 	__iterate_supers(do_emergency_remount_callback);
936 	kfree(work);
937 	printk("Emergency Remount complete\n");
938 }
939 
940 void emergency_remount(void)
941 {
942 	struct work_struct *work;
943 
944 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
945 	if (work) {
946 		INIT_WORK(work, do_emergency_remount);
947 		schedule_work(work);
948 	}
949 }
950 
951 static void do_thaw_all_callback(struct super_block *sb)
952 {
953 	down_write(&sb->s_umount);
954 	if (sb->s_root && sb->s_flags & SB_BORN) {
955 		emergency_thaw_bdev(sb);
956 		thaw_super_locked(sb);
957 	} else {
958 		up_write(&sb->s_umount);
959 	}
960 }
961 
962 static void do_thaw_all(struct work_struct *work)
963 {
964 	__iterate_supers(do_thaw_all_callback);
965 	kfree(work);
966 	printk(KERN_WARNING "Emergency Thaw complete\n");
967 }
968 
969 /**
970  * emergency_thaw_all -- forcibly thaw every frozen filesystem
971  *
972  * Used for emergency unfreeze of all filesystems via SysRq
973  */
974 void emergency_thaw_all(void)
975 {
976 	struct work_struct *work;
977 
978 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
979 	if (work) {
980 		INIT_WORK(work, do_thaw_all);
981 		schedule_work(work);
982 	}
983 }
984 
985 static DEFINE_IDA(unnamed_dev_ida);
986 
987 /**
988  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
989  * @p: Pointer to a dev_t.
990  *
991  * Filesystems which don't use real block devices can call this function
992  * to allocate a virtual block device.
993  *
994  * Context: Any context.  Frequently called while holding sb_lock.
995  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
996  * or -ENOMEM if memory allocation failed.
997  */
998 int get_anon_bdev(dev_t *p)
999 {
1000 	int dev;
1001 
1002 	/*
1003 	 * Many userspace utilities consider an FSID of 0 invalid.
1004 	 * Always return at least 1 from get_anon_bdev.
1005 	 */
1006 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1007 			GFP_ATOMIC);
1008 	if (dev == -ENOSPC)
1009 		dev = -EMFILE;
1010 	if (dev < 0)
1011 		return dev;
1012 
1013 	*p = MKDEV(0, dev);
1014 	return 0;
1015 }
1016 EXPORT_SYMBOL(get_anon_bdev);
1017 
1018 void free_anon_bdev(dev_t dev)
1019 {
1020 	ida_free(&unnamed_dev_ida, MINOR(dev));
1021 }
1022 EXPORT_SYMBOL(free_anon_bdev);
1023 
1024 int set_anon_super(struct super_block *s, void *data)
1025 {
1026 	return get_anon_bdev(&s->s_dev);
1027 }
1028 EXPORT_SYMBOL(set_anon_super);
1029 
1030 void kill_anon_super(struct super_block *sb)
1031 {
1032 	dev_t dev = sb->s_dev;
1033 	generic_shutdown_super(sb);
1034 	free_anon_bdev(dev);
1035 }
1036 EXPORT_SYMBOL(kill_anon_super);
1037 
1038 void kill_litter_super(struct super_block *sb)
1039 {
1040 	if (sb->s_root)
1041 		d_genocide(sb->s_root);
1042 	kill_anon_super(sb);
1043 }
1044 EXPORT_SYMBOL(kill_litter_super);
1045 
1046 static int ns_test_super(struct super_block *sb, void *data)
1047 {
1048 	return sb->s_fs_info == data;
1049 }
1050 
1051 static int ns_set_super(struct super_block *sb, void *data)
1052 {
1053 	sb->s_fs_info = data;
1054 	return set_anon_super(sb, NULL);
1055 }
1056 
1057 struct dentry *mount_ns(struct file_system_type *fs_type,
1058 	int flags, void *data, void *ns, struct user_namespace *user_ns,
1059 	int (*fill_super)(struct super_block *, void *, int))
1060 {
1061 	struct super_block *sb;
1062 
1063 	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1064 	 * over the namespace.
1065 	 */
1066 	if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1067 		return ERR_PTR(-EPERM);
1068 
1069 	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1070 			 user_ns, ns);
1071 	if (IS_ERR(sb))
1072 		return ERR_CAST(sb);
1073 
1074 	if (!sb->s_root) {
1075 		int err;
1076 		err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1077 		if (err) {
1078 			deactivate_locked_super(sb);
1079 			return ERR_PTR(err);
1080 		}
1081 
1082 		sb->s_flags |= SB_ACTIVE;
1083 	}
1084 
1085 	return dget(sb->s_root);
1086 }
1087 
1088 EXPORT_SYMBOL(mount_ns);
1089 
1090 #ifdef CONFIG_BLOCK
1091 static int set_bdev_super(struct super_block *s, void *data)
1092 {
1093 	s->s_bdev = data;
1094 	s->s_dev = s->s_bdev->bd_dev;
1095 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1096 
1097 	return 0;
1098 }
1099 
1100 static int test_bdev_super(struct super_block *s, void *data)
1101 {
1102 	return (void *)s->s_bdev == data;
1103 }
1104 
1105 struct dentry *mount_bdev(struct file_system_type *fs_type,
1106 	int flags, const char *dev_name, void *data,
1107 	int (*fill_super)(struct super_block *, void *, int))
1108 {
1109 	struct block_device *bdev;
1110 	struct super_block *s;
1111 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1112 	int error = 0;
1113 
1114 	if (!(flags & SB_RDONLY))
1115 		mode |= FMODE_WRITE;
1116 
1117 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1118 	if (IS_ERR(bdev))
1119 		return ERR_CAST(bdev);
1120 
1121 	/*
1122 	 * once the super is inserted into the list by sget, s_umount
1123 	 * will protect the lockfs code from trying to start a snapshot
1124 	 * while we are mounting
1125 	 */
1126 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1127 	if (bdev->bd_fsfreeze_count > 0) {
1128 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1129 		error = -EBUSY;
1130 		goto error_bdev;
1131 	}
1132 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1133 		 bdev);
1134 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1135 	if (IS_ERR(s))
1136 		goto error_s;
1137 
1138 	if (s->s_root) {
1139 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1140 			deactivate_locked_super(s);
1141 			error = -EBUSY;
1142 			goto error_bdev;
1143 		}
1144 
1145 		/*
1146 		 * s_umount nests inside bd_mutex during
1147 		 * __invalidate_device().  blkdev_put() acquires
1148 		 * bd_mutex and can't be called under s_umount.  Drop
1149 		 * s_umount temporarily.  This is safe as we're
1150 		 * holding an active reference.
1151 		 */
1152 		up_write(&s->s_umount);
1153 		blkdev_put(bdev, mode);
1154 		down_write(&s->s_umount);
1155 	} else {
1156 		s->s_mode = mode;
1157 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1158 		sb_set_blocksize(s, block_size(bdev));
1159 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1160 		if (error) {
1161 			deactivate_locked_super(s);
1162 			goto error;
1163 		}
1164 
1165 		s->s_flags |= SB_ACTIVE;
1166 		bdev->bd_super = s;
1167 	}
1168 
1169 	return dget(s->s_root);
1170 
1171 error_s:
1172 	error = PTR_ERR(s);
1173 error_bdev:
1174 	blkdev_put(bdev, mode);
1175 error:
1176 	return ERR_PTR(error);
1177 }
1178 EXPORT_SYMBOL(mount_bdev);
1179 
1180 void kill_block_super(struct super_block *sb)
1181 {
1182 	struct block_device *bdev = sb->s_bdev;
1183 	fmode_t mode = sb->s_mode;
1184 
1185 	bdev->bd_super = NULL;
1186 	generic_shutdown_super(sb);
1187 	sync_blockdev(bdev);
1188 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1189 	blkdev_put(bdev, mode | FMODE_EXCL);
1190 }
1191 
1192 EXPORT_SYMBOL(kill_block_super);
1193 #endif
1194 
1195 struct dentry *mount_nodev(struct file_system_type *fs_type,
1196 	int flags, void *data,
1197 	int (*fill_super)(struct super_block *, void *, int))
1198 {
1199 	int error;
1200 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1201 
1202 	if (IS_ERR(s))
1203 		return ERR_CAST(s);
1204 
1205 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1206 	if (error) {
1207 		deactivate_locked_super(s);
1208 		return ERR_PTR(error);
1209 	}
1210 	s->s_flags |= SB_ACTIVE;
1211 	return dget(s->s_root);
1212 }
1213 EXPORT_SYMBOL(mount_nodev);
1214 
1215 static int compare_single(struct super_block *s, void *p)
1216 {
1217 	return 1;
1218 }
1219 
1220 struct dentry *mount_single(struct file_system_type *fs_type,
1221 	int flags, void *data,
1222 	int (*fill_super)(struct super_block *, void *, int))
1223 {
1224 	struct super_block *s;
1225 	int error;
1226 
1227 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1228 	if (IS_ERR(s))
1229 		return ERR_CAST(s);
1230 	if (!s->s_root) {
1231 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1232 		if (error) {
1233 			deactivate_locked_super(s);
1234 			return ERR_PTR(error);
1235 		}
1236 		s->s_flags |= SB_ACTIVE;
1237 	} else {
1238 		do_remount_sb(s, flags, data, 0);
1239 	}
1240 	return dget(s->s_root);
1241 }
1242 EXPORT_SYMBOL(mount_single);
1243 
1244 struct dentry *
1245 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1246 {
1247 	struct dentry *root;
1248 	struct super_block *sb;
1249 	int error = -ENOMEM;
1250 	void *sec_opts = NULL;
1251 
1252 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1253 		error = security_sb_eat_lsm_opts(data, &sec_opts);
1254 		if (error)
1255 			return ERR_PTR(error);
1256 	}
1257 
1258 	root = type->mount(type, flags, name, data);
1259 	if (IS_ERR(root)) {
1260 		error = PTR_ERR(root);
1261 		goto out_free_secdata;
1262 	}
1263 	sb = root->d_sb;
1264 	BUG_ON(!sb);
1265 	WARN_ON(!sb->s_bdi);
1266 
1267 	/*
1268 	 * Write barrier is for super_cache_count(). We place it before setting
1269 	 * SB_BORN as the data dependency between the two functions is the
1270 	 * superblock structure contents that we just set up, not the SB_BORN
1271 	 * flag.
1272 	 */
1273 	smp_wmb();
1274 	sb->s_flags |= SB_BORN;
1275 
1276 	error = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1277 	if (error)
1278 		goto out_sb;
1279 
1280 	if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT))) {
1281 		error = security_sb_kern_mount(sb);
1282 		if (error)
1283 			goto out_sb;
1284 	}
1285 
1286 	/*
1287 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1288 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1289 	 * this warning for a little while to try and catch filesystems that
1290 	 * violate this rule.
1291 	 */
1292 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1293 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1294 
1295 	up_write(&sb->s_umount);
1296 	security_free_mnt_opts(&sec_opts);
1297 	return root;
1298 out_sb:
1299 	dput(root);
1300 	deactivate_locked_super(sb);
1301 out_free_secdata:
1302 	security_free_mnt_opts(&sec_opts);
1303 	return ERR_PTR(error);
1304 }
1305 
1306 /*
1307  * Setup private BDI for given superblock. It gets automatically cleaned up
1308  * in generic_shutdown_super().
1309  */
1310 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1311 {
1312 	struct backing_dev_info *bdi;
1313 	int err;
1314 	va_list args;
1315 
1316 	bdi = bdi_alloc(GFP_KERNEL);
1317 	if (!bdi)
1318 		return -ENOMEM;
1319 
1320 	bdi->name = sb->s_type->name;
1321 
1322 	va_start(args, fmt);
1323 	err = bdi_register_va(bdi, fmt, args);
1324 	va_end(args);
1325 	if (err) {
1326 		bdi_put(bdi);
1327 		return err;
1328 	}
1329 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1330 	sb->s_bdi = bdi;
1331 
1332 	return 0;
1333 }
1334 EXPORT_SYMBOL(super_setup_bdi_name);
1335 
1336 /*
1337  * Setup private BDI for given superblock. I gets automatically cleaned up
1338  * in generic_shutdown_super().
1339  */
1340 int super_setup_bdi(struct super_block *sb)
1341 {
1342 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1343 
1344 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1345 				    atomic_long_inc_return(&bdi_seq));
1346 }
1347 EXPORT_SYMBOL(super_setup_bdi);
1348 
1349 /*
1350  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1351  * instead.
1352  */
1353 void __sb_end_write(struct super_block *sb, int level)
1354 {
1355 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1356 }
1357 EXPORT_SYMBOL(__sb_end_write);
1358 
1359 /*
1360  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1361  * instead.
1362  */
1363 int __sb_start_write(struct super_block *sb, int level, bool wait)
1364 {
1365 	bool force_trylock = false;
1366 	int ret = 1;
1367 
1368 #ifdef CONFIG_LOCKDEP
1369 	/*
1370 	 * We want lockdep to tell us about possible deadlocks with freezing
1371 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1372 	 * protection works as getting a read lock but there are subtle
1373 	 * problems. XFS for example gets freeze protection on internal level
1374 	 * twice in some cases, which is OK only because we already hold a
1375 	 * freeze protection also on higher level. Due to these cases we have
1376 	 * to use wait == F (trylock mode) which must not fail.
1377 	 */
1378 	if (wait) {
1379 		int i;
1380 
1381 		for (i = 0; i < level - 1; i++)
1382 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1383 				force_trylock = true;
1384 				break;
1385 			}
1386 	}
1387 #endif
1388 	if (wait && !force_trylock)
1389 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1390 	else
1391 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1392 
1393 	WARN_ON(force_trylock && !ret);
1394 	return ret;
1395 }
1396 EXPORT_SYMBOL(__sb_start_write);
1397 
1398 /**
1399  * sb_wait_write - wait until all writers to given file system finish
1400  * @sb: the super for which we wait
1401  * @level: type of writers we wait for (normal vs page fault)
1402  *
1403  * This function waits until there are no writers of given type to given file
1404  * system.
1405  */
1406 static void sb_wait_write(struct super_block *sb, int level)
1407 {
1408 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1409 }
1410 
1411 /*
1412  * We are going to return to userspace and forget about these locks, the
1413  * ownership goes to the caller of thaw_super() which does unlock().
1414  */
1415 static void lockdep_sb_freeze_release(struct super_block *sb)
1416 {
1417 	int level;
1418 
1419 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1420 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1421 }
1422 
1423 /*
1424  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1425  */
1426 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1427 {
1428 	int level;
1429 
1430 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1431 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1432 }
1433 
1434 static void sb_freeze_unlock(struct super_block *sb)
1435 {
1436 	int level;
1437 
1438 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1439 		percpu_up_write(sb->s_writers.rw_sem + level);
1440 }
1441 
1442 /**
1443  * freeze_super - lock the filesystem and force it into a consistent state
1444  * @sb: the super to lock
1445  *
1446  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1447  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1448  * -EBUSY.
1449  *
1450  * During this function, sb->s_writers.frozen goes through these values:
1451  *
1452  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1453  *
1454  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1455  * writes should be blocked, though page faults are still allowed. We wait for
1456  * all writes to complete and then proceed to the next stage.
1457  *
1458  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1459  * but internal fs threads can still modify the filesystem (although they
1460  * should not dirty new pages or inodes), writeback can run etc. After waiting
1461  * for all running page faults we sync the filesystem which will clean all
1462  * dirty pages and inodes (no new dirty pages or inodes can be created when
1463  * sync is running).
1464  *
1465  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1466  * modification are blocked (e.g. XFS preallocation truncation on inode
1467  * reclaim). This is usually implemented by blocking new transactions for
1468  * filesystems that have them and need this additional guard. After all
1469  * internal writers are finished we call ->freeze_fs() to finish filesystem
1470  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1471  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1472  *
1473  * sb->s_writers.frozen is protected by sb->s_umount.
1474  */
1475 int freeze_super(struct super_block *sb)
1476 {
1477 	int ret;
1478 
1479 	atomic_inc(&sb->s_active);
1480 	down_write(&sb->s_umount);
1481 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1482 		deactivate_locked_super(sb);
1483 		return -EBUSY;
1484 	}
1485 
1486 	if (!(sb->s_flags & SB_BORN)) {
1487 		up_write(&sb->s_umount);
1488 		return 0;	/* sic - it's "nothing to do" */
1489 	}
1490 
1491 	if (sb_rdonly(sb)) {
1492 		/* Nothing to do really... */
1493 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1494 		up_write(&sb->s_umount);
1495 		return 0;
1496 	}
1497 
1498 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1499 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1500 	up_write(&sb->s_umount);
1501 	sb_wait_write(sb, SB_FREEZE_WRITE);
1502 	down_write(&sb->s_umount);
1503 
1504 	/* Now we go and block page faults... */
1505 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1506 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1507 
1508 	/* All writers are done so after syncing there won't be dirty data */
1509 	sync_filesystem(sb);
1510 
1511 	/* Now wait for internal filesystem counter */
1512 	sb->s_writers.frozen = SB_FREEZE_FS;
1513 	sb_wait_write(sb, SB_FREEZE_FS);
1514 
1515 	if (sb->s_op->freeze_fs) {
1516 		ret = sb->s_op->freeze_fs(sb);
1517 		if (ret) {
1518 			printk(KERN_ERR
1519 				"VFS:Filesystem freeze failed\n");
1520 			sb->s_writers.frozen = SB_UNFROZEN;
1521 			sb_freeze_unlock(sb);
1522 			wake_up(&sb->s_writers.wait_unfrozen);
1523 			deactivate_locked_super(sb);
1524 			return ret;
1525 		}
1526 	}
1527 	/*
1528 	 * For debugging purposes so that fs can warn if it sees write activity
1529 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1530 	 */
1531 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1532 	lockdep_sb_freeze_release(sb);
1533 	up_write(&sb->s_umount);
1534 	return 0;
1535 }
1536 EXPORT_SYMBOL(freeze_super);
1537 
1538 /**
1539  * thaw_super -- unlock filesystem
1540  * @sb: the super to thaw
1541  *
1542  * Unlocks the filesystem and marks it writeable again after freeze_super().
1543  */
1544 static int thaw_super_locked(struct super_block *sb)
1545 {
1546 	int error;
1547 
1548 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1549 		up_write(&sb->s_umount);
1550 		return -EINVAL;
1551 	}
1552 
1553 	if (sb_rdonly(sb)) {
1554 		sb->s_writers.frozen = SB_UNFROZEN;
1555 		goto out;
1556 	}
1557 
1558 	lockdep_sb_freeze_acquire(sb);
1559 
1560 	if (sb->s_op->unfreeze_fs) {
1561 		error = sb->s_op->unfreeze_fs(sb);
1562 		if (error) {
1563 			printk(KERN_ERR
1564 				"VFS:Filesystem thaw failed\n");
1565 			lockdep_sb_freeze_release(sb);
1566 			up_write(&sb->s_umount);
1567 			return error;
1568 		}
1569 	}
1570 
1571 	sb->s_writers.frozen = SB_UNFROZEN;
1572 	sb_freeze_unlock(sb);
1573 out:
1574 	wake_up(&sb->s_writers.wait_unfrozen);
1575 	deactivate_locked_super(sb);
1576 	return 0;
1577 }
1578 
1579 int thaw_super(struct super_block *sb)
1580 {
1581 	down_write(&sb->s_umount);
1582 	return thaw_super_locked(sb);
1583 }
1584 EXPORT_SYMBOL(thaw_super);
1585