1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 static inline void __super_lock(struct super_block *sb, bool excl) 54 { 55 if (excl) 56 down_write(&sb->s_umount); 57 else 58 down_read(&sb->s_umount); 59 } 60 61 static inline void super_unlock(struct super_block *sb, bool excl) 62 { 63 if (excl) 64 up_write(&sb->s_umount); 65 else 66 up_read(&sb->s_umount); 67 } 68 69 static inline void __super_lock_excl(struct super_block *sb) 70 { 71 __super_lock(sb, true); 72 } 73 74 static inline void super_unlock_excl(struct super_block *sb) 75 { 76 super_unlock(sb, true); 77 } 78 79 static inline void super_unlock_shared(struct super_block *sb) 80 { 81 super_unlock(sb, false); 82 } 83 84 static bool super_flags(const struct super_block *sb, unsigned int flags) 85 { 86 /* 87 * Pairs with smp_store_release() in super_wake() and ensures 88 * that we see @flags after we're woken. 89 */ 90 return smp_load_acquire(&sb->s_flags) & flags; 91 } 92 93 /** 94 * super_lock - wait for superblock to become ready and lock it 95 * @sb: superblock to wait for 96 * @excl: whether exclusive access is required 97 * 98 * If the superblock has neither passed through vfs_get_tree() or 99 * generic_shutdown_super() yet wait for it to happen. Either superblock 100 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're 101 * woken and we'll see SB_DYING. 102 * 103 * The caller must have acquired a temporary reference on @sb->s_count. 104 * 105 * Return: The function returns true if SB_BORN was set and with 106 * s_umount held. The function returns false if SB_DYING was 107 * set and without s_umount held. 108 */ 109 static __must_check bool super_lock(struct super_block *sb, bool excl) 110 { 111 lockdep_assert_not_held(&sb->s_umount); 112 113 /* wait until the superblock is ready or dying */ 114 wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING)); 115 116 /* Don't pointlessly acquire s_umount. */ 117 if (super_flags(sb, SB_DYING)) 118 return false; 119 120 __super_lock(sb, excl); 121 122 /* 123 * Has gone through generic_shutdown_super() in the meantime. 124 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to 125 * grab a reference to this. Tell them so. 126 */ 127 if (sb->s_flags & SB_DYING) { 128 super_unlock(sb, excl); 129 return false; 130 } 131 132 WARN_ON_ONCE(!(sb->s_flags & SB_BORN)); 133 return true; 134 } 135 136 /* wait and try to acquire read-side of @sb->s_umount */ 137 static inline bool super_lock_shared(struct super_block *sb) 138 { 139 return super_lock(sb, false); 140 } 141 142 /* wait and try to acquire write-side of @sb->s_umount */ 143 static inline bool super_lock_excl(struct super_block *sb) 144 { 145 return super_lock(sb, true); 146 } 147 148 /* wake waiters */ 149 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD) 150 static void super_wake(struct super_block *sb, unsigned int flag) 151 { 152 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS)); 153 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1); 154 155 /* 156 * Pairs with smp_load_acquire() in super_lock() to make sure 157 * all initializations in the superblock are seen by the user 158 * seeing SB_BORN sent. 159 */ 160 smp_store_release(&sb->s_flags, sb->s_flags | flag); 161 /* 162 * Pairs with the barrier in prepare_to_wait_event() to make sure 163 * ___wait_var_event() either sees SB_BORN set or 164 * waitqueue_active() check in wake_up_var() sees the waiter. 165 */ 166 smp_mb(); 167 wake_up_var(&sb->s_flags); 168 } 169 170 /* 171 * One thing we have to be careful of with a per-sb shrinker is that we don't 172 * drop the last active reference to the superblock from within the shrinker. 173 * If that happens we could trigger unregistering the shrinker from within the 174 * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we 175 * take a passive reference to the superblock to avoid this from occurring. 176 */ 177 static unsigned long super_cache_scan(struct shrinker *shrink, 178 struct shrink_control *sc) 179 { 180 struct super_block *sb; 181 long fs_objects = 0; 182 long total_objects; 183 long freed = 0; 184 long dentries; 185 long inodes; 186 187 sb = shrink->private_data; 188 189 /* 190 * Deadlock avoidance. We may hold various FS locks, and we don't want 191 * to recurse into the FS that called us in clear_inode() and friends.. 192 */ 193 if (!(sc->gfp_mask & __GFP_FS)) 194 return SHRINK_STOP; 195 196 if (!super_trylock_shared(sb)) 197 return SHRINK_STOP; 198 199 if (sb->s_op->nr_cached_objects) 200 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 201 202 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 203 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 204 total_objects = dentries + inodes + fs_objects + 1; 205 if (!total_objects) 206 total_objects = 1; 207 208 /* proportion the scan between the caches */ 209 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 210 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 211 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 212 213 /* 214 * prune the dcache first as the icache is pinned by it, then 215 * prune the icache, followed by the filesystem specific caches 216 * 217 * Ensure that we always scan at least one object - memcg kmem 218 * accounting uses this to fully empty the caches. 219 */ 220 sc->nr_to_scan = dentries + 1; 221 freed = prune_dcache_sb(sb, sc); 222 sc->nr_to_scan = inodes + 1; 223 freed += prune_icache_sb(sb, sc); 224 225 if (fs_objects) { 226 sc->nr_to_scan = fs_objects + 1; 227 freed += sb->s_op->free_cached_objects(sb, sc); 228 } 229 230 super_unlock_shared(sb); 231 return freed; 232 } 233 234 static unsigned long super_cache_count(struct shrinker *shrink, 235 struct shrink_control *sc) 236 { 237 struct super_block *sb; 238 long total_objects = 0; 239 240 sb = shrink->private_data; 241 242 /* 243 * We don't call super_trylock_shared() here as it is a scalability 244 * bottleneck, so we're exposed to partial setup state. The shrinker 245 * rwsem does not protect filesystem operations backing 246 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can 247 * change between super_cache_count and super_cache_scan, so we really 248 * don't need locks here. 249 * 250 * However, if we are currently mounting the superblock, the underlying 251 * filesystem might be in a state of partial construction and hence it 252 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check 253 * to avoid this situation, so do the same here. The memory barrier is 254 * matched with the one in mount_fs() as we don't hold locks here. 255 */ 256 if (!(sb->s_flags & SB_BORN)) 257 return 0; 258 smp_rmb(); 259 260 if (sb->s_op && sb->s_op->nr_cached_objects) 261 total_objects = sb->s_op->nr_cached_objects(sb, sc); 262 263 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 264 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 265 266 if (!total_objects) 267 return SHRINK_EMPTY; 268 269 total_objects = vfs_pressure_ratio(total_objects); 270 return total_objects; 271 } 272 273 static void destroy_super_work(struct work_struct *work) 274 { 275 struct super_block *s = container_of(work, struct super_block, 276 destroy_work); 277 int i; 278 279 for (i = 0; i < SB_FREEZE_LEVELS; i++) 280 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 281 kfree(s); 282 } 283 284 static void destroy_super_rcu(struct rcu_head *head) 285 { 286 struct super_block *s = container_of(head, struct super_block, rcu); 287 INIT_WORK(&s->destroy_work, destroy_super_work); 288 schedule_work(&s->destroy_work); 289 } 290 291 /* Free a superblock that has never been seen by anyone */ 292 static void destroy_unused_super(struct super_block *s) 293 { 294 if (!s) 295 return; 296 super_unlock_excl(s); 297 list_lru_destroy(&s->s_dentry_lru); 298 list_lru_destroy(&s->s_inode_lru); 299 security_sb_free(s); 300 put_user_ns(s->s_user_ns); 301 kfree(s->s_subtype); 302 shrinker_free(s->s_shrink); 303 /* no delays needed */ 304 destroy_super_work(&s->destroy_work); 305 } 306 307 /** 308 * alloc_super - create new superblock 309 * @type: filesystem type superblock should belong to 310 * @flags: the mount flags 311 * @user_ns: User namespace for the super_block 312 * 313 * Allocates and initializes a new &struct super_block. alloc_super() 314 * returns a pointer new superblock or %NULL if allocation had failed. 315 */ 316 static struct super_block *alloc_super(struct file_system_type *type, int flags, 317 struct user_namespace *user_ns) 318 { 319 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL); 320 static const struct super_operations default_op; 321 int i; 322 323 if (!s) 324 return NULL; 325 326 INIT_LIST_HEAD(&s->s_mounts); 327 s->s_user_ns = get_user_ns(user_ns); 328 init_rwsem(&s->s_umount); 329 lockdep_set_class(&s->s_umount, &type->s_umount_key); 330 /* 331 * sget() can have s_umount recursion. 332 * 333 * When it cannot find a suitable sb, it allocates a new 334 * one (this one), and tries again to find a suitable old 335 * one. 336 * 337 * In case that succeeds, it will acquire the s_umount 338 * lock of the old one. Since these are clearly distrinct 339 * locks, and this object isn't exposed yet, there's no 340 * risk of deadlocks. 341 * 342 * Annotate this by putting this lock in a different 343 * subclass. 344 */ 345 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 346 347 if (security_sb_alloc(s)) 348 goto fail; 349 350 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 351 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 352 sb_writers_name[i], 353 &type->s_writers_key[i])) 354 goto fail; 355 } 356 s->s_bdi = &noop_backing_dev_info; 357 s->s_flags = flags; 358 if (s->s_user_ns != &init_user_ns) 359 s->s_iflags |= SB_I_NODEV; 360 INIT_HLIST_NODE(&s->s_instances); 361 INIT_HLIST_BL_HEAD(&s->s_roots); 362 mutex_init(&s->s_sync_lock); 363 INIT_LIST_HEAD(&s->s_inodes); 364 spin_lock_init(&s->s_inode_list_lock); 365 INIT_LIST_HEAD(&s->s_inodes_wb); 366 spin_lock_init(&s->s_inode_wblist_lock); 367 368 s->s_count = 1; 369 atomic_set(&s->s_active, 1); 370 mutex_init(&s->s_vfs_rename_mutex); 371 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 372 init_rwsem(&s->s_dquot.dqio_sem); 373 s->s_maxbytes = MAX_NON_LFS; 374 s->s_op = &default_op; 375 s->s_time_gran = 1000000000; 376 s->s_time_min = TIME64_MIN; 377 s->s_time_max = TIME64_MAX; 378 379 s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, 380 "sb-%s", type->name); 381 if (!s->s_shrink) 382 goto fail; 383 384 s->s_shrink->scan_objects = super_cache_scan; 385 s->s_shrink->count_objects = super_cache_count; 386 s->s_shrink->batch = 1024; 387 s->s_shrink->private_data = s; 388 389 if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink)) 390 goto fail; 391 if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink)) 392 goto fail; 393 return s; 394 395 fail: 396 destroy_unused_super(s); 397 return NULL; 398 } 399 400 /* Superblock refcounting */ 401 402 /* 403 * Drop a superblock's refcount. The caller must hold sb_lock. 404 */ 405 static void __put_super(struct super_block *s) 406 { 407 if (!--s->s_count) { 408 list_del_init(&s->s_list); 409 WARN_ON(s->s_dentry_lru.node); 410 WARN_ON(s->s_inode_lru.node); 411 WARN_ON(!list_empty(&s->s_mounts)); 412 security_sb_free(s); 413 put_user_ns(s->s_user_ns); 414 kfree(s->s_subtype); 415 call_rcu(&s->rcu, destroy_super_rcu); 416 } 417 } 418 419 /** 420 * put_super - drop a temporary reference to superblock 421 * @sb: superblock in question 422 * 423 * Drops a temporary reference, frees superblock if there's no 424 * references left. 425 */ 426 void put_super(struct super_block *sb) 427 { 428 spin_lock(&sb_lock); 429 __put_super(sb); 430 spin_unlock(&sb_lock); 431 } 432 433 static void kill_super_notify(struct super_block *sb) 434 { 435 lockdep_assert_not_held(&sb->s_umount); 436 437 /* already notified earlier */ 438 if (sb->s_flags & SB_DEAD) 439 return; 440 441 /* 442 * Remove it from @fs_supers so it isn't found by new 443 * sget{_fc}() walkers anymore. Any concurrent mounter still 444 * managing to grab a temporary reference is guaranteed to 445 * already see SB_DYING and will wait until we notify them about 446 * SB_DEAD. 447 */ 448 spin_lock(&sb_lock); 449 hlist_del_init(&sb->s_instances); 450 spin_unlock(&sb_lock); 451 452 /* 453 * Let concurrent mounts know that this thing is really dead. 454 * We don't need @sb->s_umount here as every concurrent caller 455 * will see SB_DYING and either discard the superblock or wait 456 * for SB_DEAD. 457 */ 458 super_wake(sb, SB_DEAD); 459 } 460 461 /** 462 * deactivate_locked_super - drop an active reference to superblock 463 * @s: superblock to deactivate 464 * 465 * Drops an active reference to superblock, converting it into a temporary 466 * one if there is no other active references left. In that case we 467 * tell fs driver to shut it down and drop the temporary reference we 468 * had just acquired. 469 * 470 * Caller holds exclusive lock on superblock; that lock is released. 471 */ 472 void deactivate_locked_super(struct super_block *s) 473 { 474 struct file_system_type *fs = s->s_type; 475 if (atomic_dec_and_test(&s->s_active)) { 476 shrinker_free(s->s_shrink); 477 fs->kill_sb(s); 478 479 kill_super_notify(s); 480 481 /* 482 * Since list_lru_destroy() may sleep, we cannot call it from 483 * put_super(), where we hold the sb_lock. Therefore we destroy 484 * the lru lists right now. 485 */ 486 list_lru_destroy(&s->s_dentry_lru); 487 list_lru_destroy(&s->s_inode_lru); 488 489 put_filesystem(fs); 490 put_super(s); 491 } else { 492 super_unlock_excl(s); 493 } 494 } 495 496 EXPORT_SYMBOL(deactivate_locked_super); 497 498 /** 499 * deactivate_super - drop an active reference to superblock 500 * @s: superblock to deactivate 501 * 502 * Variant of deactivate_locked_super(), except that superblock is *not* 503 * locked by caller. If we are going to drop the final active reference, 504 * lock will be acquired prior to that. 505 */ 506 void deactivate_super(struct super_block *s) 507 { 508 if (!atomic_add_unless(&s->s_active, -1, 1)) { 509 __super_lock_excl(s); 510 deactivate_locked_super(s); 511 } 512 } 513 514 EXPORT_SYMBOL(deactivate_super); 515 516 /** 517 * grab_super - acquire an active reference to a superblock 518 * @sb: superblock to acquire 519 * 520 * Acquire a temporary reference on a superblock and try to trade it for 521 * an active reference. This is used in sget{_fc}() to wait for a 522 * superblock to either become SB_BORN or for it to pass through 523 * sb->kill() and be marked as SB_DEAD. 524 * 525 * Return: This returns true if an active reference could be acquired, 526 * false if not. 527 */ 528 static bool grab_super(struct super_block *sb) 529 { 530 bool locked; 531 532 sb->s_count++; 533 spin_unlock(&sb_lock); 534 locked = super_lock_excl(sb); 535 if (locked) { 536 if (atomic_inc_not_zero(&sb->s_active)) { 537 put_super(sb); 538 return true; 539 } 540 super_unlock_excl(sb); 541 } 542 wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD)); 543 put_super(sb); 544 return false; 545 } 546 547 /* 548 * super_trylock_shared - try to grab ->s_umount shared 549 * @sb: reference we are trying to grab 550 * 551 * Try to prevent fs shutdown. This is used in places where we 552 * cannot take an active reference but we need to ensure that the 553 * filesystem is not shut down while we are working on it. It returns 554 * false if we cannot acquire s_umount or if we lose the race and 555 * filesystem already got into shutdown, and returns true with the s_umount 556 * lock held in read mode in case of success. On successful return, 557 * the caller must drop the s_umount lock when done. 558 * 559 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 560 * The reason why it's safe is that we are OK with doing trylock instead 561 * of down_read(). There's a couple of places that are OK with that, but 562 * it's very much not a general-purpose interface. 563 */ 564 bool super_trylock_shared(struct super_block *sb) 565 { 566 if (down_read_trylock(&sb->s_umount)) { 567 if (!(sb->s_flags & SB_DYING) && sb->s_root && 568 (sb->s_flags & SB_BORN)) 569 return true; 570 super_unlock_shared(sb); 571 } 572 573 return false; 574 } 575 576 /** 577 * retire_super - prevents superblock from being reused 578 * @sb: superblock to retire 579 * 580 * The function marks superblock to be ignored in superblock test, which 581 * prevents it from being reused for any new mounts. If the superblock has 582 * a private bdi, it also unregisters it, but doesn't reduce the refcount 583 * of the superblock to prevent potential races. The refcount is reduced 584 * by generic_shutdown_super(). The function can not be called 585 * concurrently with generic_shutdown_super(). It is safe to call the 586 * function multiple times, subsequent calls have no effect. 587 * 588 * The marker will affect the re-use only for block-device-based 589 * superblocks. Other superblocks will still get marked if this function 590 * is used, but that will not affect their reusability. 591 */ 592 void retire_super(struct super_block *sb) 593 { 594 WARN_ON(!sb->s_bdev); 595 __super_lock_excl(sb); 596 if (sb->s_iflags & SB_I_PERSB_BDI) { 597 bdi_unregister(sb->s_bdi); 598 sb->s_iflags &= ~SB_I_PERSB_BDI; 599 } 600 sb->s_iflags |= SB_I_RETIRED; 601 super_unlock_excl(sb); 602 } 603 EXPORT_SYMBOL(retire_super); 604 605 /** 606 * generic_shutdown_super - common helper for ->kill_sb() 607 * @sb: superblock to kill 608 * 609 * generic_shutdown_super() does all fs-independent work on superblock 610 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 611 * that need destruction out of superblock, call generic_shutdown_super() 612 * and release aforementioned objects. Note: dentries and inodes _are_ 613 * taken care of and do not need specific handling. 614 * 615 * Upon calling this function, the filesystem may no longer alter or 616 * rearrange the set of dentries belonging to this super_block, nor may it 617 * change the attachments of dentries to inodes. 618 */ 619 void generic_shutdown_super(struct super_block *sb) 620 { 621 const struct super_operations *sop = sb->s_op; 622 623 if (sb->s_root) { 624 shrink_dcache_for_umount(sb); 625 sync_filesystem(sb); 626 sb->s_flags &= ~SB_ACTIVE; 627 628 cgroup_writeback_umount(); 629 630 /* Evict all inodes with zero refcount. */ 631 evict_inodes(sb); 632 633 /* 634 * Clean up and evict any inodes that still have references due 635 * to fsnotify or the security policy. 636 */ 637 fsnotify_sb_delete(sb); 638 security_sb_delete(sb); 639 640 if (sb->s_dio_done_wq) { 641 destroy_workqueue(sb->s_dio_done_wq); 642 sb->s_dio_done_wq = NULL; 643 } 644 645 if (sop->put_super) 646 sop->put_super(sb); 647 648 /* 649 * Now that all potentially-encrypted inodes have been evicted, 650 * the fscrypt keyring can be destroyed. 651 */ 652 fscrypt_destroy_keyring(sb); 653 654 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), 655 "VFS: Busy inodes after unmount of %s (%s)", 656 sb->s_id, sb->s_type->name)) { 657 /* 658 * Adding a proper bailout path here would be hard, but 659 * we can at least make it more likely that a later 660 * iput_final() or such crashes cleanly. 661 */ 662 struct inode *inode; 663 664 spin_lock(&sb->s_inode_list_lock); 665 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 666 inode->i_op = VFS_PTR_POISON; 667 inode->i_sb = VFS_PTR_POISON; 668 inode->i_mapping = VFS_PTR_POISON; 669 } 670 spin_unlock(&sb->s_inode_list_lock); 671 } 672 } 673 /* 674 * Broadcast to everyone that grabbed a temporary reference to this 675 * superblock before we removed it from @fs_supers that the superblock 676 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now 677 * discard this superblock and treat it as dead. 678 * 679 * We leave the superblock on @fs_supers so it can be found by 680 * sget{_fc}() until we passed sb->kill_sb(). 681 */ 682 super_wake(sb, SB_DYING); 683 super_unlock_excl(sb); 684 if (sb->s_bdi != &noop_backing_dev_info) { 685 if (sb->s_iflags & SB_I_PERSB_BDI) 686 bdi_unregister(sb->s_bdi); 687 bdi_put(sb->s_bdi); 688 sb->s_bdi = &noop_backing_dev_info; 689 } 690 } 691 692 EXPORT_SYMBOL(generic_shutdown_super); 693 694 bool mount_capable(struct fs_context *fc) 695 { 696 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 697 return capable(CAP_SYS_ADMIN); 698 else 699 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 700 } 701 702 /** 703 * sget_fc - Find or create a superblock 704 * @fc: Filesystem context. 705 * @test: Comparison callback 706 * @set: Setup callback 707 * 708 * Create a new superblock or find an existing one. 709 * 710 * The @test callback is used to find a matching existing superblock. 711 * Whether or not the requested parameters in @fc are taken into account 712 * is specific to the @test callback that is used. They may even be 713 * completely ignored. 714 * 715 * If an extant superblock is matched, it will be returned unless: 716 * 717 * (1) the namespace the filesystem context @fc and the extant 718 * superblock's namespace differ 719 * 720 * (2) the filesystem context @fc has requested that reusing an extant 721 * superblock is not allowed 722 * 723 * In both cases EBUSY will be returned. 724 * 725 * If no match is made, a new superblock will be allocated and basic 726 * initialisation will be performed (s_type, s_fs_info and s_id will be 727 * set and the @set callback will be invoked), the superblock will be 728 * published and it will be returned in a partially constructed state 729 * with SB_BORN and SB_ACTIVE as yet unset. 730 * 731 * Return: On success, an extant or newly created superblock is 732 * returned. On failure an error pointer is returned. 733 */ 734 struct super_block *sget_fc(struct fs_context *fc, 735 int (*test)(struct super_block *, struct fs_context *), 736 int (*set)(struct super_block *, struct fs_context *)) 737 { 738 struct super_block *s = NULL; 739 struct super_block *old; 740 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 741 int err; 742 743 retry: 744 spin_lock(&sb_lock); 745 if (test) { 746 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 747 if (test(old, fc)) 748 goto share_extant_sb; 749 } 750 } 751 if (!s) { 752 spin_unlock(&sb_lock); 753 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 754 if (!s) 755 return ERR_PTR(-ENOMEM); 756 goto retry; 757 } 758 759 s->s_fs_info = fc->s_fs_info; 760 err = set(s, fc); 761 if (err) { 762 s->s_fs_info = NULL; 763 spin_unlock(&sb_lock); 764 destroy_unused_super(s); 765 return ERR_PTR(err); 766 } 767 fc->s_fs_info = NULL; 768 s->s_type = fc->fs_type; 769 s->s_iflags |= fc->s_iflags; 770 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 771 /* 772 * Make the superblock visible on @super_blocks and @fs_supers. 773 * It's in a nascent state and users should wait on SB_BORN or 774 * SB_DYING to be set. 775 */ 776 list_add_tail(&s->s_list, &super_blocks); 777 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 778 spin_unlock(&sb_lock); 779 get_filesystem(s->s_type); 780 shrinker_register(s->s_shrink); 781 return s; 782 783 share_extant_sb: 784 if (user_ns != old->s_user_ns || fc->exclusive) { 785 spin_unlock(&sb_lock); 786 destroy_unused_super(s); 787 if (fc->exclusive) 788 warnfc(fc, "reusing existing filesystem not allowed"); 789 else 790 warnfc(fc, "reusing existing filesystem in another namespace not allowed"); 791 return ERR_PTR(-EBUSY); 792 } 793 if (!grab_super(old)) 794 goto retry; 795 destroy_unused_super(s); 796 return old; 797 } 798 EXPORT_SYMBOL(sget_fc); 799 800 /** 801 * sget - find or create a superblock 802 * @type: filesystem type superblock should belong to 803 * @test: comparison callback 804 * @set: setup callback 805 * @flags: mount flags 806 * @data: argument to each of them 807 */ 808 struct super_block *sget(struct file_system_type *type, 809 int (*test)(struct super_block *,void *), 810 int (*set)(struct super_block *,void *), 811 int flags, 812 void *data) 813 { 814 struct user_namespace *user_ns = current_user_ns(); 815 struct super_block *s = NULL; 816 struct super_block *old; 817 int err; 818 819 /* We don't yet pass the user namespace of the parent 820 * mount through to here so always use &init_user_ns 821 * until that changes. 822 */ 823 if (flags & SB_SUBMOUNT) 824 user_ns = &init_user_ns; 825 826 retry: 827 spin_lock(&sb_lock); 828 if (test) { 829 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 830 if (!test(old, data)) 831 continue; 832 if (user_ns != old->s_user_ns) { 833 spin_unlock(&sb_lock); 834 destroy_unused_super(s); 835 return ERR_PTR(-EBUSY); 836 } 837 if (!grab_super(old)) 838 goto retry; 839 destroy_unused_super(s); 840 return old; 841 } 842 } 843 if (!s) { 844 spin_unlock(&sb_lock); 845 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 846 if (!s) 847 return ERR_PTR(-ENOMEM); 848 goto retry; 849 } 850 851 err = set(s, data); 852 if (err) { 853 spin_unlock(&sb_lock); 854 destroy_unused_super(s); 855 return ERR_PTR(err); 856 } 857 s->s_type = type; 858 strscpy(s->s_id, type->name, sizeof(s->s_id)); 859 list_add_tail(&s->s_list, &super_blocks); 860 hlist_add_head(&s->s_instances, &type->fs_supers); 861 spin_unlock(&sb_lock); 862 get_filesystem(type); 863 shrinker_register(s->s_shrink); 864 return s; 865 } 866 EXPORT_SYMBOL(sget); 867 868 void drop_super(struct super_block *sb) 869 { 870 super_unlock_shared(sb); 871 put_super(sb); 872 } 873 874 EXPORT_SYMBOL(drop_super); 875 876 void drop_super_exclusive(struct super_block *sb) 877 { 878 super_unlock_excl(sb); 879 put_super(sb); 880 } 881 EXPORT_SYMBOL(drop_super_exclusive); 882 883 static void __iterate_supers(void (*f)(struct super_block *)) 884 { 885 struct super_block *sb, *p = NULL; 886 887 spin_lock(&sb_lock); 888 list_for_each_entry(sb, &super_blocks, s_list) { 889 if (super_flags(sb, SB_DYING)) 890 continue; 891 sb->s_count++; 892 spin_unlock(&sb_lock); 893 894 f(sb); 895 896 spin_lock(&sb_lock); 897 if (p) 898 __put_super(p); 899 p = sb; 900 } 901 if (p) 902 __put_super(p); 903 spin_unlock(&sb_lock); 904 } 905 /** 906 * iterate_supers - call function for all active superblocks 907 * @f: function to call 908 * @arg: argument to pass to it 909 * 910 * Scans the superblock list and calls given function, passing it 911 * locked superblock and given argument. 912 */ 913 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 914 { 915 struct super_block *sb, *p = NULL; 916 917 spin_lock(&sb_lock); 918 list_for_each_entry(sb, &super_blocks, s_list) { 919 bool locked; 920 921 sb->s_count++; 922 spin_unlock(&sb_lock); 923 924 locked = super_lock_shared(sb); 925 if (locked) { 926 if (sb->s_root) 927 f(sb, arg); 928 super_unlock_shared(sb); 929 } 930 931 spin_lock(&sb_lock); 932 if (p) 933 __put_super(p); 934 p = sb; 935 } 936 if (p) 937 __put_super(p); 938 spin_unlock(&sb_lock); 939 } 940 941 /** 942 * iterate_supers_type - call function for superblocks of given type 943 * @type: fs type 944 * @f: function to call 945 * @arg: argument to pass to it 946 * 947 * Scans the superblock list and calls given function, passing it 948 * locked superblock and given argument. 949 */ 950 void iterate_supers_type(struct file_system_type *type, 951 void (*f)(struct super_block *, void *), void *arg) 952 { 953 struct super_block *sb, *p = NULL; 954 955 spin_lock(&sb_lock); 956 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 957 bool locked; 958 959 sb->s_count++; 960 spin_unlock(&sb_lock); 961 962 locked = super_lock_shared(sb); 963 if (locked) { 964 if (sb->s_root) 965 f(sb, arg); 966 super_unlock_shared(sb); 967 } 968 969 spin_lock(&sb_lock); 970 if (p) 971 __put_super(p); 972 p = sb; 973 } 974 if (p) 975 __put_super(p); 976 spin_unlock(&sb_lock); 977 } 978 979 EXPORT_SYMBOL(iterate_supers_type); 980 981 struct super_block *user_get_super(dev_t dev, bool excl) 982 { 983 struct super_block *sb; 984 985 spin_lock(&sb_lock); 986 list_for_each_entry(sb, &super_blocks, s_list) { 987 if (sb->s_dev == dev) { 988 bool locked; 989 990 sb->s_count++; 991 spin_unlock(&sb_lock); 992 /* still alive? */ 993 locked = super_lock(sb, excl); 994 if (locked) { 995 if (sb->s_root) 996 return sb; 997 super_unlock(sb, excl); 998 } 999 /* nope, got unmounted */ 1000 spin_lock(&sb_lock); 1001 __put_super(sb); 1002 break; 1003 } 1004 } 1005 spin_unlock(&sb_lock); 1006 return NULL; 1007 } 1008 1009 /** 1010 * reconfigure_super - asks filesystem to change superblock parameters 1011 * @fc: The superblock and configuration 1012 * 1013 * Alters the configuration parameters of a live superblock. 1014 */ 1015 int reconfigure_super(struct fs_context *fc) 1016 { 1017 struct super_block *sb = fc->root->d_sb; 1018 int retval; 1019 bool remount_ro = false; 1020 bool remount_rw = false; 1021 bool force = fc->sb_flags & SB_FORCE; 1022 1023 if (fc->sb_flags_mask & ~MS_RMT_MASK) 1024 return -EINVAL; 1025 if (sb->s_writers.frozen != SB_UNFROZEN) 1026 return -EBUSY; 1027 1028 retval = security_sb_remount(sb, fc->security); 1029 if (retval) 1030 return retval; 1031 1032 if (fc->sb_flags_mask & SB_RDONLY) { 1033 #ifdef CONFIG_BLOCK 1034 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 1035 bdev_read_only(sb->s_bdev)) 1036 return -EACCES; 1037 #endif 1038 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb); 1039 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 1040 } 1041 1042 if (remount_ro) { 1043 if (!hlist_empty(&sb->s_pins)) { 1044 super_unlock_excl(sb); 1045 group_pin_kill(&sb->s_pins); 1046 __super_lock_excl(sb); 1047 if (!sb->s_root) 1048 return 0; 1049 if (sb->s_writers.frozen != SB_UNFROZEN) 1050 return -EBUSY; 1051 remount_ro = !sb_rdonly(sb); 1052 } 1053 } 1054 shrink_dcache_sb(sb); 1055 1056 /* If we are reconfiguring to RDONLY and current sb is read/write, 1057 * make sure there are no files open for writing. 1058 */ 1059 if (remount_ro) { 1060 if (force) { 1061 sb_start_ro_state_change(sb); 1062 } else { 1063 retval = sb_prepare_remount_readonly(sb); 1064 if (retval) 1065 return retval; 1066 } 1067 } else if (remount_rw) { 1068 /* 1069 * Protect filesystem's reconfigure code from writes from 1070 * userspace until reconfigure finishes. 1071 */ 1072 sb_start_ro_state_change(sb); 1073 } 1074 1075 if (fc->ops->reconfigure) { 1076 retval = fc->ops->reconfigure(fc); 1077 if (retval) { 1078 if (!force) 1079 goto cancel_readonly; 1080 /* If forced remount, go ahead despite any errors */ 1081 WARN(1, "forced remount of a %s fs returned %i\n", 1082 sb->s_type->name, retval); 1083 } 1084 } 1085 1086 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 1087 (fc->sb_flags & fc->sb_flags_mask))); 1088 sb_end_ro_state_change(sb); 1089 1090 /* 1091 * Some filesystems modify their metadata via some other path than the 1092 * bdev buffer cache (eg. use a private mapping, or directories in 1093 * pagecache, etc). Also file data modifications go via their own 1094 * mappings. So If we try to mount readonly then copy the filesystem 1095 * from bdev, we could get stale data, so invalidate it to give a best 1096 * effort at coherency. 1097 */ 1098 if (remount_ro && sb->s_bdev) 1099 invalidate_bdev(sb->s_bdev); 1100 return 0; 1101 1102 cancel_readonly: 1103 sb_end_ro_state_change(sb); 1104 return retval; 1105 } 1106 1107 static void do_emergency_remount_callback(struct super_block *sb) 1108 { 1109 bool locked = super_lock_excl(sb); 1110 1111 if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) { 1112 struct fs_context *fc; 1113 1114 fc = fs_context_for_reconfigure(sb->s_root, 1115 SB_RDONLY | SB_FORCE, SB_RDONLY); 1116 if (!IS_ERR(fc)) { 1117 if (parse_monolithic_mount_data(fc, NULL) == 0) 1118 (void)reconfigure_super(fc); 1119 put_fs_context(fc); 1120 } 1121 } 1122 if (locked) 1123 super_unlock_excl(sb); 1124 } 1125 1126 static void do_emergency_remount(struct work_struct *work) 1127 { 1128 __iterate_supers(do_emergency_remount_callback); 1129 kfree(work); 1130 printk("Emergency Remount complete\n"); 1131 } 1132 1133 void emergency_remount(void) 1134 { 1135 struct work_struct *work; 1136 1137 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1138 if (work) { 1139 INIT_WORK(work, do_emergency_remount); 1140 schedule_work(work); 1141 } 1142 } 1143 1144 static void do_thaw_all_callback(struct super_block *sb) 1145 { 1146 bool locked = super_lock_excl(sb); 1147 1148 if (locked && sb->s_root) { 1149 if (IS_ENABLED(CONFIG_BLOCK)) 1150 while (sb->s_bdev && !bdev_thaw(sb->s_bdev)) 1151 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev); 1152 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE); 1153 return; 1154 } 1155 if (locked) 1156 super_unlock_excl(sb); 1157 } 1158 1159 static void do_thaw_all(struct work_struct *work) 1160 { 1161 __iterate_supers(do_thaw_all_callback); 1162 kfree(work); 1163 printk(KERN_WARNING "Emergency Thaw complete\n"); 1164 } 1165 1166 /** 1167 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1168 * 1169 * Used for emergency unfreeze of all filesystems via SysRq 1170 */ 1171 void emergency_thaw_all(void) 1172 { 1173 struct work_struct *work; 1174 1175 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1176 if (work) { 1177 INIT_WORK(work, do_thaw_all); 1178 schedule_work(work); 1179 } 1180 } 1181 1182 static DEFINE_IDA(unnamed_dev_ida); 1183 1184 /** 1185 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1186 * @p: Pointer to a dev_t. 1187 * 1188 * Filesystems which don't use real block devices can call this function 1189 * to allocate a virtual block device. 1190 * 1191 * Context: Any context. Frequently called while holding sb_lock. 1192 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1193 * or -ENOMEM if memory allocation failed. 1194 */ 1195 int get_anon_bdev(dev_t *p) 1196 { 1197 int dev; 1198 1199 /* 1200 * Many userspace utilities consider an FSID of 0 invalid. 1201 * Always return at least 1 from get_anon_bdev. 1202 */ 1203 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1204 GFP_ATOMIC); 1205 if (dev == -ENOSPC) 1206 dev = -EMFILE; 1207 if (dev < 0) 1208 return dev; 1209 1210 *p = MKDEV(0, dev); 1211 return 0; 1212 } 1213 EXPORT_SYMBOL(get_anon_bdev); 1214 1215 void free_anon_bdev(dev_t dev) 1216 { 1217 ida_free(&unnamed_dev_ida, MINOR(dev)); 1218 } 1219 EXPORT_SYMBOL(free_anon_bdev); 1220 1221 int set_anon_super(struct super_block *s, void *data) 1222 { 1223 return get_anon_bdev(&s->s_dev); 1224 } 1225 EXPORT_SYMBOL(set_anon_super); 1226 1227 void kill_anon_super(struct super_block *sb) 1228 { 1229 dev_t dev = sb->s_dev; 1230 generic_shutdown_super(sb); 1231 kill_super_notify(sb); 1232 free_anon_bdev(dev); 1233 } 1234 EXPORT_SYMBOL(kill_anon_super); 1235 1236 void kill_litter_super(struct super_block *sb) 1237 { 1238 if (sb->s_root) 1239 d_genocide(sb->s_root); 1240 kill_anon_super(sb); 1241 } 1242 EXPORT_SYMBOL(kill_litter_super); 1243 1244 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1245 { 1246 return set_anon_super(sb, NULL); 1247 } 1248 EXPORT_SYMBOL(set_anon_super_fc); 1249 1250 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1251 { 1252 return sb->s_fs_info == fc->s_fs_info; 1253 } 1254 1255 static int test_single_super(struct super_block *s, struct fs_context *fc) 1256 { 1257 return 1; 1258 } 1259 1260 static int vfs_get_super(struct fs_context *fc, 1261 int (*test)(struct super_block *, struct fs_context *), 1262 int (*fill_super)(struct super_block *sb, 1263 struct fs_context *fc)) 1264 { 1265 struct super_block *sb; 1266 int err; 1267 1268 sb = sget_fc(fc, test, set_anon_super_fc); 1269 if (IS_ERR(sb)) 1270 return PTR_ERR(sb); 1271 1272 if (!sb->s_root) { 1273 err = fill_super(sb, fc); 1274 if (err) 1275 goto error; 1276 1277 sb->s_flags |= SB_ACTIVE; 1278 } 1279 1280 fc->root = dget(sb->s_root); 1281 return 0; 1282 1283 error: 1284 deactivate_locked_super(sb); 1285 return err; 1286 } 1287 1288 int get_tree_nodev(struct fs_context *fc, 1289 int (*fill_super)(struct super_block *sb, 1290 struct fs_context *fc)) 1291 { 1292 return vfs_get_super(fc, NULL, fill_super); 1293 } 1294 EXPORT_SYMBOL(get_tree_nodev); 1295 1296 int get_tree_single(struct fs_context *fc, 1297 int (*fill_super)(struct super_block *sb, 1298 struct fs_context *fc)) 1299 { 1300 return vfs_get_super(fc, test_single_super, fill_super); 1301 } 1302 EXPORT_SYMBOL(get_tree_single); 1303 1304 int get_tree_keyed(struct fs_context *fc, 1305 int (*fill_super)(struct super_block *sb, 1306 struct fs_context *fc), 1307 void *key) 1308 { 1309 fc->s_fs_info = key; 1310 return vfs_get_super(fc, test_keyed_super, fill_super); 1311 } 1312 EXPORT_SYMBOL(get_tree_keyed); 1313 1314 static int set_bdev_super(struct super_block *s, void *data) 1315 { 1316 s->s_dev = *(dev_t *)data; 1317 return 0; 1318 } 1319 1320 static int super_s_dev_set(struct super_block *s, struct fs_context *fc) 1321 { 1322 return set_bdev_super(s, fc->sget_key); 1323 } 1324 1325 static int super_s_dev_test(struct super_block *s, struct fs_context *fc) 1326 { 1327 return !(s->s_iflags & SB_I_RETIRED) && 1328 s->s_dev == *(dev_t *)fc->sget_key; 1329 } 1330 1331 /** 1332 * sget_dev - Find or create a superblock by device number 1333 * @fc: Filesystem context. 1334 * @dev: device number 1335 * 1336 * Find or create a superblock using the provided device number that 1337 * will be stored in fc->sget_key. 1338 * 1339 * If an extant superblock is matched, then that will be returned with 1340 * an elevated reference count that the caller must transfer or discard. 1341 * 1342 * If no match is made, a new superblock will be allocated and basic 1343 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will 1344 * be set). The superblock will be published and it will be returned in 1345 * a partially constructed state with SB_BORN and SB_ACTIVE as yet 1346 * unset. 1347 * 1348 * Return: an existing or newly created superblock on success, an error 1349 * pointer on failure. 1350 */ 1351 struct super_block *sget_dev(struct fs_context *fc, dev_t dev) 1352 { 1353 fc->sget_key = &dev; 1354 return sget_fc(fc, super_s_dev_test, super_s_dev_set); 1355 } 1356 EXPORT_SYMBOL(sget_dev); 1357 1358 #ifdef CONFIG_BLOCK 1359 /* 1360 * Lock the superblock that is holder of the bdev. Returns the superblock 1361 * pointer if we successfully locked the superblock and it is alive. Otherwise 1362 * we return NULL and just unlock bdev->bd_holder_lock. 1363 * 1364 * The function must be called with bdev->bd_holder_lock and releases it. 1365 */ 1366 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl) 1367 __releases(&bdev->bd_holder_lock) 1368 { 1369 struct super_block *sb = bdev->bd_holder; 1370 bool locked; 1371 1372 lockdep_assert_held(&bdev->bd_holder_lock); 1373 lockdep_assert_not_held(&sb->s_umount); 1374 lockdep_assert_not_held(&bdev->bd_disk->open_mutex); 1375 1376 /* Make sure sb doesn't go away from under us */ 1377 spin_lock(&sb_lock); 1378 sb->s_count++; 1379 spin_unlock(&sb_lock); 1380 1381 mutex_unlock(&bdev->bd_holder_lock); 1382 1383 locked = super_lock(sb, excl); 1384 1385 /* 1386 * If the superblock wasn't already SB_DYING then we hold 1387 * s_umount and can safely drop our temporary reference. 1388 */ 1389 put_super(sb); 1390 1391 if (!locked) 1392 return NULL; 1393 1394 if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) { 1395 super_unlock(sb, excl); 1396 return NULL; 1397 } 1398 1399 return sb; 1400 } 1401 1402 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise) 1403 { 1404 struct super_block *sb; 1405 1406 sb = bdev_super_lock(bdev, false); 1407 if (!sb) 1408 return; 1409 1410 if (!surprise) 1411 sync_filesystem(sb); 1412 shrink_dcache_sb(sb); 1413 invalidate_inodes(sb); 1414 if (sb->s_op->shutdown) 1415 sb->s_op->shutdown(sb); 1416 1417 super_unlock_shared(sb); 1418 } 1419 1420 static void fs_bdev_sync(struct block_device *bdev) 1421 { 1422 struct super_block *sb; 1423 1424 sb = bdev_super_lock(bdev, false); 1425 if (!sb) 1426 return; 1427 1428 sync_filesystem(sb); 1429 super_unlock_shared(sb); 1430 } 1431 1432 static struct super_block *get_bdev_super(struct block_device *bdev) 1433 { 1434 bool active = false; 1435 struct super_block *sb; 1436 1437 sb = bdev_super_lock(bdev, true); 1438 if (sb) { 1439 active = atomic_inc_not_zero(&sb->s_active); 1440 super_unlock_excl(sb); 1441 } 1442 if (!active) 1443 return NULL; 1444 return sb; 1445 } 1446 1447 /** 1448 * fs_bdev_freeze - freeze owning filesystem of block device 1449 * @bdev: block device 1450 * 1451 * Freeze the filesystem that owns this block device if it is still 1452 * active. 1453 * 1454 * A filesystem that owns multiple block devices may be frozen from each 1455 * block device and won't be unfrozen until all block devices are 1456 * unfrozen. Each block device can only freeze the filesystem once as we 1457 * nest freezes for block devices in the block layer. 1458 * 1459 * Return: If the freeze was successful zero is returned. If the freeze 1460 * failed a negative error code is returned. 1461 */ 1462 static int fs_bdev_freeze(struct block_device *bdev) 1463 { 1464 struct super_block *sb; 1465 int error = 0; 1466 1467 lockdep_assert_held(&bdev->bd_fsfreeze_mutex); 1468 1469 sb = get_bdev_super(bdev); 1470 if (!sb) 1471 return -EINVAL; 1472 1473 if (sb->s_op->freeze_super) 1474 error = sb->s_op->freeze_super(sb, 1475 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1476 else 1477 error = freeze_super(sb, 1478 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1479 if (!error) 1480 error = sync_blockdev(bdev); 1481 deactivate_super(sb); 1482 return error; 1483 } 1484 1485 /** 1486 * fs_bdev_thaw - thaw owning filesystem of block device 1487 * @bdev: block device 1488 * 1489 * Thaw the filesystem that owns this block device. 1490 * 1491 * A filesystem that owns multiple block devices may be frozen from each 1492 * block device and won't be unfrozen until all block devices are 1493 * unfrozen. Each block device can only freeze the filesystem once as we 1494 * nest freezes for block devices in the block layer. 1495 * 1496 * Return: If the thaw was successful zero is returned. If the thaw 1497 * failed a negative error code is returned. If this function 1498 * returns zero it doesn't mean that the filesystem is unfrozen 1499 * as it may have been frozen multiple times (kernel may hold a 1500 * freeze or might be frozen from other block devices). 1501 */ 1502 static int fs_bdev_thaw(struct block_device *bdev) 1503 { 1504 struct super_block *sb; 1505 int error; 1506 1507 lockdep_assert_held(&bdev->bd_fsfreeze_mutex); 1508 1509 sb = get_bdev_super(bdev); 1510 if (WARN_ON_ONCE(!sb)) 1511 return -EINVAL; 1512 1513 if (sb->s_op->thaw_super) 1514 error = sb->s_op->thaw_super(sb, 1515 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1516 else 1517 error = thaw_super(sb, 1518 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); 1519 deactivate_super(sb); 1520 return error; 1521 } 1522 1523 const struct blk_holder_ops fs_holder_ops = { 1524 .mark_dead = fs_bdev_mark_dead, 1525 .sync = fs_bdev_sync, 1526 .freeze = fs_bdev_freeze, 1527 .thaw = fs_bdev_thaw, 1528 }; 1529 EXPORT_SYMBOL_GPL(fs_holder_ops); 1530 1531 int setup_bdev_super(struct super_block *sb, int sb_flags, 1532 struct fs_context *fc) 1533 { 1534 blk_mode_t mode = sb_open_mode(sb_flags); 1535 struct bdev_handle *bdev_handle; 1536 struct block_device *bdev; 1537 1538 bdev_handle = bdev_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops); 1539 if (IS_ERR(bdev_handle)) { 1540 if (fc) 1541 errorf(fc, "%s: Can't open blockdev", fc->source); 1542 return PTR_ERR(bdev_handle); 1543 } 1544 bdev = bdev_handle->bdev; 1545 1546 /* 1547 * This really should be in blkdev_get_by_dev, but right now can't due 1548 * to legacy issues that require us to allow opening a block device node 1549 * writable from userspace even for a read-only block device. 1550 */ 1551 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) { 1552 bdev_release(bdev_handle); 1553 return -EACCES; 1554 } 1555 1556 /* 1557 * It is enough to check bdev was not frozen before we set 1558 * s_bdev as freezing will wait until SB_BORN is set. 1559 */ 1560 if (atomic_read(&bdev->bd_fsfreeze_count) > 0) { 1561 if (fc) 1562 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1563 bdev_release(bdev_handle); 1564 return -EBUSY; 1565 } 1566 spin_lock(&sb_lock); 1567 sb->s_bdev_handle = bdev_handle; 1568 sb->s_bdev = bdev; 1569 sb->s_bdi = bdi_get(bdev->bd_disk->bdi); 1570 if (bdev_stable_writes(bdev)) 1571 sb->s_iflags |= SB_I_STABLE_WRITES; 1572 spin_unlock(&sb_lock); 1573 1574 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1575 shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name, 1576 sb->s_id); 1577 sb_set_blocksize(sb, block_size(bdev)); 1578 return 0; 1579 } 1580 EXPORT_SYMBOL_GPL(setup_bdev_super); 1581 1582 /** 1583 * get_tree_bdev - Get a superblock based on a single block device 1584 * @fc: The filesystem context holding the parameters 1585 * @fill_super: Helper to initialise a new superblock 1586 */ 1587 int get_tree_bdev(struct fs_context *fc, 1588 int (*fill_super)(struct super_block *, 1589 struct fs_context *)) 1590 { 1591 struct super_block *s; 1592 int error = 0; 1593 dev_t dev; 1594 1595 if (!fc->source) 1596 return invalf(fc, "No source specified"); 1597 1598 error = lookup_bdev(fc->source, &dev); 1599 if (error) { 1600 errorf(fc, "%s: Can't lookup blockdev", fc->source); 1601 return error; 1602 } 1603 1604 fc->sb_flags |= SB_NOSEC; 1605 s = sget_dev(fc, dev); 1606 if (IS_ERR(s)) 1607 return PTR_ERR(s); 1608 1609 if (s->s_root) { 1610 /* Don't summarily change the RO/RW state. */ 1611 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1612 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev); 1613 deactivate_locked_super(s); 1614 return -EBUSY; 1615 } 1616 } else { 1617 error = setup_bdev_super(s, fc->sb_flags, fc); 1618 if (!error) 1619 error = fill_super(s, fc); 1620 if (error) { 1621 deactivate_locked_super(s); 1622 return error; 1623 } 1624 s->s_flags |= SB_ACTIVE; 1625 } 1626 1627 BUG_ON(fc->root); 1628 fc->root = dget(s->s_root); 1629 return 0; 1630 } 1631 EXPORT_SYMBOL(get_tree_bdev); 1632 1633 static int test_bdev_super(struct super_block *s, void *data) 1634 { 1635 return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data; 1636 } 1637 1638 struct dentry *mount_bdev(struct file_system_type *fs_type, 1639 int flags, const char *dev_name, void *data, 1640 int (*fill_super)(struct super_block *, void *, int)) 1641 { 1642 struct super_block *s; 1643 int error; 1644 dev_t dev; 1645 1646 error = lookup_bdev(dev_name, &dev); 1647 if (error) 1648 return ERR_PTR(error); 1649 1650 flags |= SB_NOSEC; 1651 s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev); 1652 if (IS_ERR(s)) 1653 return ERR_CAST(s); 1654 1655 if (s->s_root) { 1656 if ((flags ^ s->s_flags) & SB_RDONLY) { 1657 deactivate_locked_super(s); 1658 return ERR_PTR(-EBUSY); 1659 } 1660 } else { 1661 error = setup_bdev_super(s, flags, NULL); 1662 if (!error) 1663 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1664 if (error) { 1665 deactivate_locked_super(s); 1666 return ERR_PTR(error); 1667 } 1668 1669 s->s_flags |= SB_ACTIVE; 1670 } 1671 1672 return dget(s->s_root); 1673 } 1674 EXPORT_SYMBOL(mount_bdev); 1675 1676 void kill_block_super(struct super_block *sb) 1677 { 1678 struct block_device *bdev = sb->s_bdev; 1679 1680 generic_shutdown_super(sb); 1681 if (bdev) { 1682 sync_blockdev(bdev); 1683 bdev_release(sb->s_bdev_handle); 1684 } 1685 } 1686 1687 EXPORT_SYMBOL(kill_block_super); 1688 #endif 1689 1690 struct dentry *mount_nodev(struct file_system_type *fs_type, 1691 int flags, void *data, 1692 int (*fill_super)(struct super_block *, void *, int)) 1693 { 1694 int error; 1695 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1696 1697 if (IS_ERR(s)) 1698 return ERR_CAST(s); 1699 1700 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1701 if (error) { 1702 deactivate_locked_super(s); 1703 return ERR_PTR(error); 1704 } 1705 s->s_flags |= SB_ACTIVE; 1706 return dget(s->s_root); 1707 } 1708 EXPORT_SYMBOL(mount_nodev); 1709 1710 int reconfigure_single(struct super_block *s, 1711 int flags, void *data) 1712 { 1713 struct fs_context *fc; 1714 int ret; 1715 1716 /* The caller really need to be passing fc down into mount_single(), 1717 * then a chunk of this can be removed. [Bollocks -- AV] 1718 * Better yet, reconfiguration shouldn't happen, but rather the second 1719 * mount should be rejected if the parameters are not compatible. 1720 */ 1721 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1722 if (IS_ERR(fc)) 1723 return PTR_ERR(fc); 1724 1725 ret = parse_monolithic_mount_data(fc, data); 1726 if (ret < 0) 1727 goto out; 1728 1729 ret = reconfigure_super(fc); 1730 out: 1731 put_fs_context(fc); 1732 return ret; 1733 } 1734 1735 static int compare_single(struct super_block *s, void *p) 1736 { 1737 return 1; 1738 } 1739 1740 struct dentry *mount_single(struct file_system_type *fs_type, 1741 int flags, void *data, 1742 int (*fill_super)(struct super_block *, void *, int)) 1743 { 1744 struct super_block *s; 1745 int error; 1746 1747 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1748 if (IS_ERR(s)) 1749 return ERR_CAST(s); 1750 if (!s->s_root) { 1751 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1752 if (!error) 1753 s->s_flags |= SB_ACTIVE; 1754 } else { 1755 error = reconfigure_single(s, flags, data); 1756 } 1757 if (unlikely(error)) { 1758 deactivate_locked_super(s); 1759 return ERR_PTR(error); 1760 } 1761 return dget(s->s_root); 1762 } 1763 EXPORT_SYMBOL(mount_single); 1764 1765 /** 1766 * vfs_get_tree - Get the mountable root 1767 * @fc: The superblock configuration context. 1768 * 1769 * The filesystem is invoked to get or create a superblock which can then later 1770 * be used for mounting. The filesystem places a pointer to the root to be 1771 * used for mounting in @fc->root. 1772 */ 1773 int vfs_get_tree(struct fs_context *fc) 1774 { 1775 struct super_block *sb; 1776 int error; 1777 1778 if (fc->root) 1779 return -EBUSY; 1780 1781 /* Get the mountable root in fc->root, with a ref on the root and a ref 1782 * on the superblock. 1783 */ 1784 error = fc->ops->get_tree(fc); 1785 if (error < 0) 1786 return error; 1787 1788 if (!fc->root) { 1789 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1790 fc->fs_type->name); 1791 /* We don't know what the locking state of the superblock is - 1792 * if there is a superblock. 1793 */ 1794 BUG(); 1795 } 1796 1797 sb = fc->root->d_sb; 1798 WARN_ON(!sb->s_bdi); 1799 1800 /* 1801 * super_wake() contains a memory barrier which also care of 1802 * ordering for super_cache_count(). We place it before setting 1803 * SB_BORN as the data dependency between the two functions is 1804 * the superblock structure contents that we just set up, not 1805 * the SB_BORN flag. 1806 */ 1807 super_wake(sb, SB_BORN); 1808 1809 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1810 if (unlikely(error)) { 1811 fc_drop_locked(fc); 1812 return error; 1813 } 1814 1815 /* 1816 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1817 * but s_maxbytes was an unsigned long long for many releases. Throw 1818 * this warning for a little while to try and catch filesystems that 1819 * violate this rule. 1820 */ 1821 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1822 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1823 1824 return 0; 1825 } 1826 EXPORT_SYMBOL(vfs_get_tree); 1827 1828 /* 1829 * Setup private BDI for given superblock. It gets automatically cleaned up 1830 * in generic_shutdown_super(). 1831 */ 1832 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1833 { 1834 struct backing_dev_info *bdi; 1835 int err; 1836 va_list args; 1837 1838 bdi = bdi_alloc(NUMA_NO_NODE); 1839 if (!bdi) 1840 return -ENOMEM; 1841 1842 va_start(args, fmt); 1843 err = bdi_register_va(bdi, fmt, args); 1844 va_end(args); 1845 if (err) { 1846 bdi_put(bdi); 1847 return err; 1848 } 1849 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1850 sb->s_bdi = bdi; 1851 sb->s_iflags |= SB_I_PERSB_BDI; 1852 1853 return 0; 1854 } 1855 EXPORT_SYMBOL(super_setup_bdi_name); 1856 1857 /* 1858 * Setup private BDI for given superblock. I gets automatically cleaned up 1859 * in generic_shutdown_super(). 1860 */ 1861 int super_setup_bdi(struct super_block *sb) 1862 { 1863 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1864 1865 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1866 atomic_long_inc_return(&bdi_seq)); 1867 } 1868 EXPORT_SYMBOL(super_setup_bdi); 1869 1870 /** 1871 * sb_wait_write - wait until all writers to given file system finish 1872 * @sb: the super for which we wait 1873 * @level: type of writers we wait for (normal vs page fault) 1874 * 1875 * This function waits until there are no writers of given type to given file 1876 * system. 1877 */ 1878 static void sb_wait_write(struct super_block *sb, int level) 1879 { 1880 percpu_down_write(sb->s_writers.rw_sem + level-1); 1881 } 1882 1883 /* 1884 * We are going to return to userspace and forget about these locks, the 1885 * ownership goes to the caller of thaw_super() which does unlock(). 1886 */ 1887 static void lockdep_sb_freeze_release(struct super_block *sb) 1888 { 1889 int level; 1890 1891 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1892 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1893 } 1894 1895 /* 1896 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1897 */ 1898 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1899 { 1900 int level; 1901 1902 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1903 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1904 } 1905 1906 static void sb_freeze_unlock(struct super_block *sb, int level) 1907 { 1908 for (level--; level >= 0; level--) 1909 percpu_up_write(sb->s_writers.rw_sem + level); 1910 } 1911 1912 static int wait_for_partially_frozen(struct super_block *sb) 1913 { 1914 int ret = 0; 1915 1916 do { 1917 unsigned short old = sb->s_writers.frozen; 1918 1919 up_write(&sb->s_umount); 1920 ret = wait_var_event_killable(&sb->s_writers.frozen, 1921 sb->s_writers.frozen != old); 1922 down_write(&sb->s_umount); 1923 } while (ret == 0 && 1924 sb->s_writers.frozen != SB_UNFROZEN && 1925 sb->s_writers.frozen != SB_FREEZE_COMPLETE); 1926 1927 return ret; 1928 } 1929 1930 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE) 1931 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST) 1932 1933 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who) 1934 { 1935 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1936 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1937 1938 if (who & FREEZE_HOLDER_KERNEL) 1939 ++sb->s_writers.freeze_kcount; 1940 if (who & FREEZE_HOLDER_USERSPACE) 1941 ++sb->s_writers.freeze_ucount; 1942 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; 1943 } 1944 1945 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who) 1946 { 1947 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1948 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1949 1950 if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount) 1951 --sb->s_writers.freeze_kcount; 1952 if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount) 1953 --sb->s_writers.freeze_ucount; 1954 return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; 1955 } 1956 1957 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who) 1958 { 1959 WARN_ON_ONCE((who & ~FREEZE_FLAGS)); 1960 WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); 1961 1962 if (who & FREEZE_HOLDER_KERNEL) 1963 return (who & FREEZE_MAY_NEST) || 1964 sb->s_writers.freeze_kcount == 0; 1965 if (who & FREEZE_HOLDER_USERSPACE) 1966 return (who & FREEZE_MAY_NEST) || 1967 sb->s_writers.freeze_ucount == 0; 1968 return false; 1969 } 1970 1971 /** 1972 * freeze_super - lock the filesystem and force it into a consistent state 1973 * @sb: the super to lock 1974 * @who: context that wants to freeze 1975 * 1976 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1977 * freeze_fs. Subsequent calls to this without first thawing the fs may return 1978 * -EBUSY. 1979 * 1980 * @who should be: 1981 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs; 1982 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs. 1983 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed. 1984 * 1985 * The @who argument distinguishes between the kernel and userspace trying to 1986 * freeze the filesystem. Although there cannot be multiple kernel freezes or 1987 * multiple userspace freezes in effect at any given time, the kernel and 1988 * userspace can both hold a filesystem frozen. The filesystem remains frozen 1989 * until there are no kernel or userspace freezes in effect. 1990 * 1991 * A filesystem may hold multiple devices and thus a filesystems may be 1992 * frozen through the block layer via multiple block devices. In this 1993 * case the request is marked as being allowed to nest by passing 1994 * FREEZE_MAY_NEST. The filesystem remains frozen until all block 1995 * devices are unfrozen. If multiple freezes are attempted without 1996 * FREEZE_MAY_NEST -EBUSY will be returned. 1997 * 1998 * During this function, sb->s_writers.frozen goes through these values: 1999 * 2000 * SB_UNFROZEN: File system is normal, all writes progress as usual. 2001 * 2002 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 2003 * writes should be blocked, though page faults are still allowed. We wait for 2004 * all writes to complete and then proceed to the next stage. 2005 * 2006 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 2007 * but internal fs threads can still modify the filesystem (although they 2008 * should not dirty new pages or inodes), writeback can run etc. After waiting 2009 * for all running page faults we sync the filesystem which will clean all 2010 * dirty pages and inodes (no new dirty pages or inodes can be created when 2011 * sync is running). 2012 * 2013 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 2014 * modification are blocked (e.g. XFS preallocation truncation on inode 2015 * reclaim). This is usually implemented by blocking new transactions for 2016 * filesystems that have them and need this additional guard. After all 2017 * internal writers are finished we call ->freeze_fs() to finish filesystem 2018 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 2019 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 2020 * 2021 * sb->s_writers.frozen is protected by sb->s_umount. 2022 * 2023 * Return: If the freeze was successful zero is returned. If the freeze 2024 * failed a negative error code is returned. 2025 */ 2026 int freeze_super(struct super_block *sb, enum freeze_holder who) 2027 { 2028 int ret; 2029 2030 if (!super_lock_excl(sb)) { 2031 WARN_ON_ONCE("Dying superblock while freezing!"); 2032 return -EINVAL; 2033 } 2034 atomic_inc(&sb->s_active); 2035 2036 retry: 2037 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { 2038 if (may_freeze(sb, who)) 2039 ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1); 2040 else 2041 ret = -EBUSY; 2042 /* All freezers share a single active reference. */ 2043 deactivate_locked_super(sb); 2044 return ret; 2045 } 2046 2047 if (sb->s_writers.frozen != SB_UNFROZEN) { 2048 ret = wait_for_partially_frozen(sb); 2049 if (ret) { 2050 deactivate_locked_super(sb); 2051 return ret; 2052 } 2053 2054 goto retry; 2055 } 2056 2057 if (sb_rdonly(sb)) { 2058 /* Nothing to do really... */ 2059 WARN_ON_ONCE(freeze_inc(sb, who) > 1); 2060 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2061 wake_up_var(&sb->s_writers.frozen); 2062 super_unlock_excl(sb); 2063 return 0; 2064 } 2065 2066 sb->s_writers.frozen = SB_FREEZE_WRITE; 2067 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 2068 super_unlock_excl(sb); 2069 sb_wait_write(sb, SB_FREEZE_WRITE); 2070 __super_lock_excl(sb); 2071 2072 /* Now we go and block page faults... */ 2073 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 2074 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 2075 2076 /* All writers are done so after syncing there won't be dirty data */ 2077 ret = sync_filesystem(sb); 2078 if (ret) { 2079 sb->s_writers.frozen = SB_UNFROZEN; 2080 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 2081 wake_up_var(&sb->s_writers.frozen); 2082 deactivate_locked_super(sb); 2083 return ret; 2084 } 2085 2086 /* Now wait for internal filesystem counter */ 2087 sb->s_writers.frozen = SB_FREEZE_FS; 2088 sb_wait_write(sb, SB_FREEZE_FS); 2089 2090 if (sb->s_op->freeze_fs) { 2091 ret = sb->s_op->freeze_fs(sb); 2092 if (ret) { 2093 printk(KERN_ERR 2094 "VFS:Filesystem freeze failed\n"); 2095 sb->s_writers.frozen = SB_UNFROZEN; 2096 sb_freeze_unlock(sb, SB_FREEZE_FS); 2097 wake_up_var(&sb->s_writers.frozen); 2098 deactivate_locked_super(sb); 2099 return ret; 2100 } 2101 } 2102 /* 2103 * For debugging purposes so that fs can warn if it sees write activity 2104 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 2105 */ 2106 WARN_ON_ONCE(freeze_inc(sb, who) > 1); 2107 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2108 wake_up_var(&sb->s_writers.frozen); 2109 lockdep_sb_freeze_release(sb); 2110 super_unlock_excl(sb); 2111 return 0; 2112 } 2113 EXPORT_SYMBOL(freeze_super); 2114 2115 /* 2116 * Undoes the effect of a freeze_super_locked call. If the filesystem is 2117 * frozen both by userspace and the kernel, a thaw call from either source 2118 * removes that state without releasing the other state or unlocking the 2119 * filesystem. 2120 */ 2121 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who) 2122 { 2123 int error = -EINVAL; 2124 2125 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) 2126 goto out_unlock; 2127 2128 /* 2129 * All freezers share a single active reference. 2130 * So just unlock in case there are any left. 2131 */ 2132 if (freeze_dec(sb, who)) 2133 goto out_unlock; 2134 2135 if (sb_rdonly(sb)) { 2136 sb->s_writers.frozen = SB_UNFROZEN; 2137 wake_up_var(&sb->s_writers.frozen); 2138 goto out_deactivate; 2139 } 2140 2141 lockdep_sb_freeze_acquire(sb); 2142 2143 if (sb->s_op->unfreeze_fs) { 2144 error = sb->s_op->unfreeze_fs(sb); 2145 if (error) { 2146 pr_err("VFS: Filesystem thaw failed\n"); 2147 freeze_inc(sb, who); 2148 lockdep_sb_freeze_release(sb); 2149 goto out_unlock; 2150 } 2151 } 2152 2153 sb->s_writers.frozen = SB_UNFROZEN; 2154 wake_up_var(&sb->s_writers.frozen); 2155 sb_freeze_unlock(sb, SB_FREEZE_FS); 2156 out_deactivate: 2157 deactivate_locked_super(sb); 2158 return 0; 2159 2160 out_unlock: 2161 super_unlock_excl(sb); 2162 return error; 2163 } 2164 2165 /** 2166 * thaw_super -- unlock filesystem 2167 * @sb: the super to thaw 2168 * @who: context that wants to freeze 2169 * 2170 * Unlocks the filesystem and marks it writeable again after freeze_super() 2171 * if there are no remaining freezes on the filesystem. 2172 * 2173 * @who should be: 2174 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs; 2175 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs. 2176 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed 2177 * 2178 * A filesystem may hold multiple devices and thus a filesystems may 2179 * have been frozen through the block layer via multiple block devices. 2180 * The filesystem remains frozen until all block devices are unfrozen. 2181 */ 2182 int thaw_super(struct super_block *sb, enum freeze_holder who) 2183 { 2184 if (!super_lock_excl(sb)) { 2185 WARN_ON_ONCE("Dying superblock while thawing!"); 2186 return -EINVAL; 2187 } 2188 return thaw_super_locked(sb, who); 2189 } 2190 EXPORT_SYMBOL(thaw_super); 2191 2192 /* 2193 * Create workqueue for deferred direct IO completions. We allocate the 2194 * workqueue when it's first needed. This avoids creating workqueue for 2195 * filesystems that don't need it and also allows us to create the workqueue 2196 * late enough so the we can include s_id in the name of the workqueue. 2197 */ 2198 int sb_init_dio_done_wq(struct super_block *sb) 2199 { 2200 struct workqueue_struct *old; 2201 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 2202 WQ_MEM_RECLAIM, 0, 2203 sb->s_id); 2204 if (!wq) 2205 return -ENOMEM; 2206 /* 2207 * This has to be atomic as more DIOs can race to create the workqueue 2208 */ 2209 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 2210 /* Someone created workqueue before us? Free ours... */ 2211 if (old) 2212 destroy_workqueue(wq); 2213 return 0; 2214 } 2215 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq); 2216