1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include "internal.h" 38 39 40 LIST_HEAD(super_blocks); 41 DEFINE_SPINLOCK(sb_lock); 42 43 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 44 "sb_writers", 45 "sb_pagefaults", 46 "sb_internal", 47 }; 48 49 /* 50 * One thing we have to be careful of with a per-sb shrinker is that we don't 51 * drop the last active reference to the superblock from within the shrinker. 52 * If that happens we could trigger unregistering the shrinker from within the 53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 54 * take a passive reference to the superblock to avoid this from occurring. 55 */ 56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc) 57 { 58 struct super_block *sb; 59 int fs_objects = 0; 60 int total_objects; 61 62 sb = container_of(shrink, struct super_block, s_shrink); 63 64 /* 65 * Deadlock avoidance. We may hold various FS locks, and we don't want 66 * to recurse into the FS that called us in clear_inode() and friends.. 67 */ 68 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS)) 69 return -1; 70 71 if (!grab_super_passive(sb)) 72 return -1; 73 74 if (sb->s_op && sb->s_op->nr_cached_objects) 75 fs_objects = sb->s_op->nr_cached_objects(sb); 76 77 total_objects = sb->s_nr_dentry_unused + 78 sb->s_nr_inodes_unused + fs_objects + 1; 79 80 if (sc->nr_to_scan) { 81 int dentries; 82 int inodes; 83 84 /* proportion the scan between the caches */ 85 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) / 86 total_objects; 87 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) / 88 total_objects; 89 if (fs_objects) 90 fs_objects = (sc->nr_to_scan * fs_objects) / 91 total_objects; 92 /* 93 * prune the dcache first as the icache is pinned by it, then 94 * prune the icache, followed by the filesystem specific caches 95 */ 96 prune_dcache_sb(sb, dentries); 97 prune_icache_sb(sb, inodes); 98 99 if (fs_objects && sb->s_op->free_cached_objects) { 100 sb->s_op->free_cached_objects(sb, fs_objects); 101 fs_objects = sb->s_op->nr_cached_objects(sb); 102 } 103 total_objects = sb->s_nr_dentry_unused + 104 sb->s_nr_inodes_unused + fs_objects; 105 } 106 107 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure; 108 drop_super(sb); 109 return total_objects; 110 } 111 112 static int init_sb_writers(struct super_block *s, struct file_system_type *type) 113 { 114 int err; 115 int i; 116 117 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 118 err = percpu_counter_init(&s->s_writers.counter[i], 0); 119 if (err < 0) 120 goto err_out; 121 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i], 122 &type->s_writers_key[i], 0); 123 } 124 init_waitqueue_head(&s->s_writers.wait); 125 init_waitqueue_head(&s->s_writers.wait_unfrozen); 126 return 0; 127 err_out: 128 while (--i >= 0) 129 percpu_counter_destroy(&s->s_writers.counter[i]); 130 return err; 131 } 132 133 static void destroy_sb_writers(struct super_block *s) 134 { 135 int i; 136 137 for (i = 0; i < SB_FREEZE_LEVELS; i++) 138 percpu_counter_destroy(&s->s_writers.counter[i]); 139 } 140 141 /** 142 * alloc_super - create new superblock 143 * @type: filesystem type superblock should belong to 144 * @flags: the mount flags 145 * 146 * Allocates and initializes a new &struct super_block. alloc_super() 147 * returns a pointer new superblock or %NULL if allocation had failed. 148 */ 149 static struct super_block *alloc_super(struct file_system_type *type, int flags) 150 { 151 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 152 static const struct super_operations default_op; 153 154 if (s) { 155 if (security_sb_alloc(s)) { 156 /* 157 * We cannot call security_sb_free() without 158 * security_sb_alloc() succeeding. So bail out manually 159 */ 160 kfree(s); 161 s = NULL; 162 goto out; 163 } 164 #ifdef CONFIG_SMP 165 s->s_files = alloc_percpu(struct list_head); 166 if (!s->s_files) 167 goto err_out; 168 else { 169 int i; 170 171 for_each_possible_cpu(i) 172 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i)); 173 } 174 #else 175 INIT_LIST_HEAD(&s->s_files); 176 #endif 177 if (init_sb_writers(s, type)) 178 goto err_out; 179 s->s_flags = flags; 180 s->s_bdi = &default_backing_dev_info; 181 INIT_HLIST_NODE(&s->s_instances); 182 INIT_HLIST_BL_HEAD(&s->s_anon); 183 INIT_LIST_HEAD(&s->s_inodes); 184 INIT_LIST_HEAD(&s->s_dentry_lru); 185 INIT_LIST_HEAD(&s->s_inode_lru); 186 spin_lock_init(&s->s_inode_lru_lock); 187 INIT_LIST_HEAD(&s->s_mounts); 188 init_rwsem(&s->s_umount); 189 mutex_init(&s->s_lock); 190 lockdep_set_class(&s->s_umount, &type->s_umount_key); 191 /* 192 * The locking rules for s_lock are up to the 193 * filesystem. For example ext3fs has different 194 * lock ordering than usbfs: 195 */ 196 lockdep_set_class(&s->s_lock, &type->s_lock_key); 197 /* 198 * sget() can have s_umount recursion. 199 * 200 * When it cannot find a suitable sb, it allocates a new 201 * one (this one), and tries again to find a suitable old 202 * one. 203 * 204 * In case that succeeds, it will acquire the s_umount 205 * lock of the old one. Since these are clearly distrinct 206 * locks, and this object isn't exposed yet, there's no 207 * risk of deadlocks. 208 * 209 * Annotate this by putting this lock in a different 210 * subclass. 211 */ 212 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 213 s->s_count = 1; 214 atomic_set(&s->s_active, 1); 215 mutex_init(&s->s_vfs_rename_mutex); 216 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 217 mutex_init(&s->s_dquot.dqio_mutex); 218 mutex_init(&s->s_dquot.dqonoff_mutex); 219 init_rwsem(&s->s_dquot.dqptr_sem); 220 s->s_maxbytes = MAX_NON_LFS; 221 s->s_op = &default_op; 222 s->s_time_gran = 1000000000; 223 s->cleancache_poolid = -1; 224 225 s->s_shrink.seeks = DEFAULT_SEEKS; 226 s->s_shrink.shrink = prune_super; 227 s->s_shrink.batch = 1024; 228 } 229 out: 230 return s; 231 err_out: 232 security_sb_free(s); 233 #ifdef CONFIG_SMP 234 if (s->s_files) 235 free_percpu(s->s_files); 236 #endif 237 destroy_sb_writers(s); 238 kfree(s); 239 s = NULL; 240 goto out; 241 } 242 243 /** 244 * destroy_super - frees a superblock 245 * @s: superblock to free 246 * 247 * Frees a superblock. 248 */ 249 static inline void destroy_super(struct super_block *s) 250 { 251 #ifdef CONFIG_SMP 252 free_percpu(s->s_files); 253 #endif 254 destroy_sb_writers(s); 255 security_sb_free(s); 256 WARN_ON(!list_empty(&s->s_mounts)); 257 kfree(s->s_subtype); 258 kfree(s->s_options); 259 kfree(s); 260 } 261 262 /* Superblock refcounting */ 263 264 /* 265 * Drop a superblock's refcount. The caller must hold sb_lock. 266 */ 267 static void __put_super(struct super_block *sb) 268 { 269 if (!--sb->s_count) { 270 list_del_init(&sb->s_list); 271 destroy_super(sb); 272 } 273 } 274 275 /** 276 * put_super - drop a temporary reference to superblock 277 * @sb: superblock in question 278 * 279 * Drops a temporary reference, frees superblock if there's no 280 * references left. 281 */ 282 static void put_super(struct super_block *sb) 283 { 284 spin_lock(&sb_lock); 285 __put_super(sb); 286 spin_unlock(&sb_lock); 287 } 288 289 290 /** 291 * deactivate_locked_super - drop an active reference to superblock 292 * @s: superblock to deactivate 293 * 294 * Drops an active reference to superblock, converting it into a temprory 295 * one if there is no other active references left. In that case we 296 * tell fs driver to shut it down and drop the temporary reference we 297 * had just acquired. 298 * 299 * Caller holds exclusive lock on superblock; that lock is released. 300 */ 301 void deactivate_locked_super(struct super_block *s) 302 { 303 struct file_system_type *fs = s->s_type; 304 if (atomic_dec_and_test(&s->s_active)) { 305 cleancache_invalidate_fs(s); 306 fs->kill_sb(s); 307 308 /* caches are now gone, we can safely kill the shrinker now */ 309 unregister_shrinker(&s->s_shrink); 310 311 /* 312 * We need to call rcu_barrier so all the delayed rcu free 313 * inodes are flushed before we release the fs module. 314 */ 315 rcu_barrier(); 316 put_filesystem(fs); 317 put_super(s); 318 } else { 319 up_write(&s->s_umount); 320 } 321 } 322 323 EXPORT_SYMBOL(deactivate_locked_super); 324 325 /** 326 * deactivate_super - drop an active reference to superblock 327 * @s: superblock to deactivate 328 * 329 * Variant of deactivate_locked_super(), except that superblock is *not* 330 * locked by caller. If we are going to drop the final active reference, 331 * lock will be acquired prior to that. 332 */ 333 void deactivate_super(struct super_block *s) 334 { 335 if (!atomic_add_unless(&s->s_active, -1, 1)) { 336 down_write(&s->s_umount); 337 deactivate_locked_super(s); 338 } 339 } 340 341 EXPORT_SYMBOL(deactivate_super); 342 343 /** 344 * grab_super - acquire an active reference 345 * @s: reference we are trying to make active 346 * 347 * Tries to acquire an active reference. grab_super() is used when we 348 * had just found a superblock in super_blocks or fs_type->fs_supers 349 * and want to turn it into a full-blown active reference. grab_super() 350 * is called with sb_lock held and drops it. Returns 1 in case of 351 * success, 0 if we had failed (superblock contents was already dead or 352 * dying when grab_super() had been called). 353 */ 354 static int grab_super(struct super_block *s) __releases(sb_lock) 355 { 356 if (atomic_inc_not_zero(&s->s_active)) { 357 spin_unlock(&sb_lock); 358 return 1; 359 } 360 /* it's going away */ 361 s->s_count++; 362 spin_unlock(&sb_lock); 363 /* wait for it to die */ 364 down_write(&s->s_umount); 365 up_write(&s->s_umount); 366 put_super(s); 367 return 0; 368 } 369 370 /* 371 * grab_super_passive - acquire a passive reference 372 * @sb: reference we are trying to grab 373 * 374 * Tries to acquire a passive reference. This is used in places where we 375 * cannot take an active reference but we need to ensure that the 376 * superblock does not go away while we are working on it. It returns 377 * false if a reference was not gained, and returns true with the s_umount 378 * lock held in read mode if a reference is gained. On successful return, 379 * the caller must drop the s_umount lock and the passive reference when 380 * done. 381 */ 382 bool grab_super_passive(struct super_block *sb) 383 { 384 spin_lock(&sb_lock); 385 if (hlist_unhashed(&sb->s_instances)) { 386 spin_unlock(&sb_lock); 387 return false; 388 } 389 390 sb->s_count++; 391 spin_unlock(&sb_lock); 392 393 if (down_read_trylock(&sb->s_umount)) { 394 if (sb->s_root && (sb->s_flags & MS_BORN)) 395 return true; 396 up_read(&sb->s_umount); 397 } 398 399 put_super(sb); 400 return false; 401 } 402 403 /* 404 * Superblock locking. We really ought to get rid of these two. 405 */ 406 void lock_super(struct super_block * sb) 407 { 408 mutex_lock(&sb->s_lock); 409 } 410 411 void unlock_super(struct super_block * sb) 412 { 413 mutex_unlock(&sb->s_lock); 414 } 415 416 EXPORT_SYMBOL(lock_super); 417 EXPORT_SYMBOL(unlock_super); 418 419 /** 420 * generic_shutdown_super - common helper for ->kill_sb() 421 * @sb: superblock to kill 422 * 423 * generic_shutdown_super() does all fs-independent work on superblock 424 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 425 * that need destruction out of superblock, call generic_shutdown_super() 426 * and release aforementioned objects. Note: dentries and inodes _are_ 427 * taken care of and do not need specific handling. 428 * 429 * Upon calling this function, the filesystem may no longer alter or 430 * rearrange the set of dentries belonging to this super_block, nor may it 431 * change the attachments of dentries to inodes. 432 */ 433 void generic_shutdown_super(struct super_block *sb) 434 { 435 const struct super_operations *sop = sb->s_op; 436 437 if (sb->s_root) { 438 shrink_dcache_for_umount(sb); 439 sync_filesystem(sb); 440 sb->s_flags &= ~MS_ACTIVE; 441 442 fsnotify_unmount_inodes(&sb->s_inodes); 443 444 evict_inodes(sb); 445 446 if (sop->put_super) 447 sop->put_super(sb); 448 449 if (!list_empty(&sb->s_inodes)) { 450 printk("VFS: Busy inodes after unmount of %s. " 451 "Self-destruct in 5 seconds. Have a nice day...\n", 452 sb->s_id); 453 } 454 } 455 spin_lock(&sb_lock); 456 /* should be initialized for __put_super_and_need_restart() */ 457 hlist_del_init(&sb->s_instances); 458 spin_unlock(&sb_lock); 459 up_write(&sb->s_umount); 460 } 461 462 EXPORT_SYMBOL(generic_shutdown_super); 463 464 /** 465 * sget - find or create a superblock 466 * @type: filesystem type superblock should belong to 467 * @test: comparison callback 468 * @set: setup callback 469 * @flags: mount flags 470 * @data: argument to each of them 471 */ 472 struct super_block *sget(struct file_system_type *type, 473 int (*test)(struct super_block *,void *), 474 int (*set)(struct super_block *,void *), 475 int flags, 476 void *data) 477 { 478 struct super_block *s = NULL; 479 struct hlist_node *node; 480 struct super_block *old; 481 int err; 482 483 retry: 484 spin_lock(&sb_lock); 485 if (test) { 486 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) { 487 if (!test(old, data)) 488 continue; 489 if (!grab_super(old)) 490 goto retry; 491 if (s) { 492 up_write(&s->s_umount); 493 destroy_super(s); 494 s = NULL; 495 } 496 down_write(&old->s_umount); 497 if (unlikely(!(old->s_flags & MS_BORN))) { 498 deactivate_locked_super(old); 499 goto retry; 500 } 501 return old; 502 } 503 } 504 if (!s) { 505 spin_unlock(&sb_lock); 506 s = alloc_super(type, flags); 507 if (!s) 508 return ERR_PTR(-ENOMEM); 509 goto retry; 510 } 511 512 err = set(s, data); 513 if (err) { 514 spin_unlock(&sb_lock); 515 up_write(&s->s_umount); 516 destroy_super(s); 517 return ERR_PTR(err); 518 } 519 s->s_type = type; 520 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 521 list_add_tail(&s->s_list, &super_blocks); 522 hlist_add_head(&s->s_instances, &type->fs_supers); 523 spin_unlock(&sb_lock); 524 get_filesystem(type); 525 register_shrinker(&s->s_shrink); 526 return s; 527 } 528 529 EXPORT_SYMBOL(sget); 530 531 void drop_super(struct super_block *sb) 532 { 533 up_read(&sb->s_umount); 534 put_super(sb); 535 } 536 537 EXPORT_SYMBOL(drop_super); 538 539 /** 540 * sync_supers - helper for periodic superblock writeback 541 * 542 * Call the write_super method if present on all dirty superblocks in 543 * the system. This is for the periodic writeback used by most older 544 * filesystems. For data integrity superblock writeback use 545 * sync_filesystems() instead. 546 * 547 * Note: check the dirty flag before waiting, so we don't 548 * hold up the sync while mounting a device. (The newly 549 * mounted device won't need syncing.) 550 */ 551 void sync_supers(void) 552 { 553 struct super_block *sb, *p = NULL; 554 555 spin_lock(&sb_lock); 556 list_for_each_entry(sb, &super_blocks, s_list) { 557 if (hlist_unhashed(&sb->s_instances)) 558 continue; 559 if (sb->s_op->write_super && sb->s_dirt) { 560 sb->s_count++; 561 spin_unlock(&sb_lock); 562 563 down_read(&sb->s_umount); 564 if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN)) 565 sb->s_op->write_super(sb); 566 up_read(&sb->s_umount); 567 568 spin_lock(&sb_lock); 569 if (p) 570 __put_super(p); 571 p = sb; 572 } 573 } 574 if (p) 575 __put_super(p); 576 spin_unlock(&sb_lock); 577 } 578 579 /** 580 * iterate_supers - call function for all active superblocks 581 * @f: function to call 582 * @arg: argument to pass to it 583 * 584 * Scans the superblock list and calls given function, passing it 585 * locked superblock and given argument. 586 */ 587 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 588 { 589 struct super_block *sb, *p = NULL; 590 591 spin_lock(&sb_lock); 592 list_for_each_entry(sb, &super_blocks, s_list) { 593 if (hlist_unhashed(&sb->s_instances)) 594 continue; 595 sb->s_count++; 596 spin_unlock(&sb_lock); 597 598 down_read(&sb->s_umount); 599 if (sb->s_root && (sb->s_flags & MS_BORN)) 600 f(sb, arg); 601 up_read(&sb->s_umount); 602 603 spin_lock(&sb_lock); 604 if (p) 605 __put_super(p); 606 p = sb; 607 } 608 if (p) 609 __put_super(p); 610 spin_unlock(&sb_lock); 611 } 612 613 /** 614 * iterate_supers_type - call function for superblocks of given type 615 * @type: fs type 616 * @f: function to call 617 * @arg: argument to pass to it 618 * 619 * Scans the superblock list and calls given function, passing it 620 * locked superblock and given argument. 621 */ 622 void iterate_supers_type(struct file_system_type *type, 623 void (*f)(struct super_block *, void *), void *arg) 624 { 625 struct super_block *sb, *p = NULL; 626 struct hlist_node *node; 627 628 spin_lock(&sb_lock); 629 hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) { 630 sb->s_count++; 631 spin_unlock(&sb_lock); 632 633 down_read(&sb->s_umount); 634 if (sb->s_root && (sb->s_flags & MS_BORN)) 635 f(sb, arg); 636 up_read(&sb->s_umount); 637 638 spin_lock(&sb_lock); 639 if (p) 640 __put_super(p); 641 p = sb; 642 } 643 if (p) 644 __put_super(p); 645 spin_unlock(&sb_lock); 646 } 647 648 EXPORT_SYMBOL(iterate_supers_type); 649 650 /** 651 * get_super - get the superblock of a device 652 * @bdev: device to get the superblock for 653 * 654 * Scans the superblock list and finds the superblock of the file system 655 * mounted on the device given. %NULL is returned if no match is found. 656 */ 657 658 struct super_block *get_super(struct block_device *bdev) 659 { 660 struct super_block *sb; 661 662 if (!bdev) 663 return NULL; 664 665 spin_lock(&sb_lock); 666 rescan: 667 list_for_each_entry(sb, &super_blocks, s_list) { 668 if (hlist_unhashed(&sb->s_instances)) 669 continue; 670 if (sb->s_bdev == bdev) { 671 sb->s_count++; 672 spin_unlock(&sb_lock); 673 down_read(&sb->s_umount); 674 /* still alive? */ 675 if (sb->s_root && (sb->s_flags & MS_BORN)) 676 return sb; 677 up_read(&sb->s_umount); 678 /* nope, got unmounted */ 679 spin_lock(&sb_lock); 680 __put_super(sb); 681 goto rescan; 682 } 683 } 684 spin_unlock(&sb_lock); 685 return NULL; 686 } 687 688 EXPORT_SYMBOL(get_super); 689 690 /** 691 * get_super_thawed - get thawed superblock of a device 692 * @bdev: device to get the superblock for 693 * 694 * Scans the superblock list and finds the superblock of the file system 695 * mounted on the device. The superblock is returned once it is thawed 696 * (or immediately if it was not frozen). %NULL is returned if no match 697 * is found. 698 */ 699 struct super_block *get_super_thawed(struct block_device *bdev) 700 { 701 while (1) { 702 struct super_block *s = get_super(bdev); 703 if (!s || s->s_writers.frozen == SB_UNFROZEN) 704 return s; 705 up_read(&s->s_umount); 706 wait_event(s->s_writers.wait_unfrozen, 707 s->s_writers.frozen == SB_UNFROZEN); 708 put_super(s); 709 } 710 } 711 EXPORT_SYMBOL(get_super_thawed); 712 713 /** 714 * get_active_super - get an active reference to the superblock of a device 715 * @bdev: device to get the superblock for 716 * 717 * Scans the superblock list and finds the superblock of the file system 718 * mounted on the device given. Returns the superblock with an active 719 * reference or %NULL if none was found. 720 */ 721 struct super_block *get_active_super(struct block_device *bdev) 722 { 723 struct super_block *sb; 724 725 if (!bdev) 726 return NULL; 727 728 restart: 729 spin_lock(&sb_lock); 730 list_for_each_entry(sb, &super_blocks, s_list) { 731 if (hlist_unhashed(&sb->s_instances)) 732 continue; 733 if (sb->s_bdev == bdev) { 734 if (grab_super(sb)) /* drops sb_lock */ 735 return sb; 736 else 737 goto restart; 738 } 739 } 740 spin_unlock(&sb_lock); 741 return NULL; 742 } 743 744 struct super_block *user_get_super(dev_t dev) 745 { 746 struct super_block *sb; 747 748 spin_lock(&sb_lock); 749 rescan: 750 list_for_each_entry(sb, &super_blocks, s_list) { 751 if (hlist_unhashed(&sb->s_instances)) 752 continue; 753 if (sb->s_dev == dev) { 754 sb->s_count++; 755 spin_unlock(&sb_lock); 756 down_read(&sb->s_umount); 757 /* still alive? */ 758 if (sb->s_root && (sb->s_flags & MS_BORN)) 759 return sb; 760 up_read(&sb->s_umount); 761 /* nope, got unmounted */ 762 spin_lock(&sb_lock); 763 __put_super(sb); 764 goto rescan; 765 } 766 } 767 spin_unlock(&sb_lock); 768 return NULL; 769 } 770 771 /** 772 * do_remount_sb - asks filesystem to change mount options. 773 * @sb: superblock in question 774 * @flags: numeric part of options 775 * @data: the rest of options 776 * @force: whether or not to force the change 777 * 778 * Alters the mount options of a mounted file system. 779 */ 780 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 781 { 782 int retval; 783 int remount_ro; 784 785 if (sb->s_writers.frozen != SB_UNFROZEN) 786 return -EBUSY; 787 788 #ifdef CONFIG_BLOCK 789 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 790 return -EACCES; 791 #endif 792 793 if (flags & MS_RDONLY) 794 acct_auto_close(sb); 795 shrink_dcache_sb(sb); 796 sync_filesystem(sb); 797 798 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 799 800 /* If we are remounting RDONLY and current sb is read/write, 801 make sure there are no rw files opened */ 802 if (remount_ro) { 803 if (force) { 804 mark_files_ro(sb); 805 } else { 806 retval = sb_prepare_remount_readonly(sb); 807 if (retval) 808 return retval; 809 } 810 } 811 812 if (sb->s_op->remount_fs) { 813 retval = sb->s_op->remount_fs(sb, &flags, data); 814 if (retval) { 815 if (!force) 816 goto cancel_readonly; 817 /* If forced remount, go ahead despite any errors */ 818 WARN(1, "forced remount of a %s fs returned %i\n", 819 sb->s_type->name, retval); 820 } 821 } 822 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 823 /* Needs to be ordered wrt mnt_is_readonly() */ 824 smp_wmb(); 825 sb->s_readonly_remount = 0; 826 827 /* 828 * Some filesystems modify their metadata via some other path than the 829 * bdev buffer cache (eg. use a private mapping, or directories in 830 * pagecache, etc). Also file data modifications go via their own 831 * mappings. So If we try to mount readonly then copy the filesystem 832 * from bdev, we could get stale data, so invalidate it to give a best 833 * effort at coherency. 834 */ 835 if (remount_ro && sb->s_bdev) 836 invalidate_bdev(sb->s_bdev); 837 return 0; 838 839 cancel_readonly: 840 sb->s_readonly_remount = 0; 841 return retval; 842 } 843 844 static void do_emergency_remount(struct work_struct *work) 845 { 846 struct super_block *sb, *p = NULL; 847 848 spin_lock(&sb_lock); 849 list_for_each_entry(sb, &super_blocks, s_list) { 850 if (hlist_unhashed(&sb->s_instances)) 851 continue; 852 sb->s_count++; 853 spin_unlock(&sb_lock); 854 down_write(&sb->s_umount); 855 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 856 !(sb->s_flags & MS_RDONLY)) { 857 /* 858 * What lock protects sb->s_flags?? 859 */ 860 do_remount_sb(sb, MS_RDONLY, NULL, 1); 861 } 862 up_write(&sb->s_umount); 863 spin_lock(&sb_lock); 864 if (p) 865 __put_super(p); 866 p = sb; 867 } 868 if (p) 869 __put_super(p); 870 spin_unlock(&sb_lock); 871 kfree(work); 872 printk("Emergency Remount complete\n"); 873 } 874 875 void emergency_remount(void) 876 { 877 struct work_struct *work; 878 879 work = kmalloc(sizeof(*work), GFP_ATOMIC); 880 if (work) { 881 INIT_WORK(work, do_emergency_remount); 882 schedule_work(work); 883 } 884 } 885 886 /* 887 * Unnamed block devices are dummy devices used by virtual 888 * filesystems which don't use real block-devices. -- jrs 889 */ 890 891 static DEFINE_IDA(unnamed_dev_ida); 892 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 893 static int unnamed_dev_start = 0; /* don't bother trying below it */ 894 895 int get_anon_bdev(dev_t *p) 896 { 897 int dev; 898 int error; 899 900 retry: 901 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 902 return -ENOMEM; 903 spin_lock(&unnamed_dev_lock); 904 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 905 if (!error) 906 unnamed_dev_start = dev + 1; 907 spin_unlock(&unnamed_dev_lock); 908 if (error == -EAGAIN) 909 /* We raced and lost with another CPU. */ 910 goto retry; 911 else if (error) 912 return -EAGAIN; 913 914 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) { 915 spin_lock(&unnamed_dev_lock); 916 ida_remove(&unnamed_dev_ida, dev); 917 if (unnamed_dev_start > dev) 918 unnamed_dev_start = dev; 919 spin_unlock(&unnamed_dev_lock); 920 return -EMFILE; 921 } 922 *p = MKDEV(0, dev & MINORMASK); 923 return 0; 924 } 925 EXPORT_SYMBOL(get_anon_bdev); 926 927 void free_anon_bdev(dev_t dev) 928 { 929 int slot = MINOR(dev); 930 spin_lock(&unnamed_dev_lock); 931 ida_remove(&unnamed_dev_ida, slot); 932 if (slot < unnamed_dev_start) 933 unnamed_dev_start = slot; 934 spin_unlock(&unnamed_dev_lock); 935 } 936 EXPORT_SYMBOL(free_anon_bdev); 937 938 int set_anon_super(struct super_block *s, void *data) 939 { 940 int error = get_anon_bdev(&s->s_dev); 941 if (!error) 942 s->s_bdi = &noop_backing_dev_info; 943 return error; 944 } 945 946 EXPORT_SYMBOL(set_anon_super); 947 948 void kill_anon_super(struct super_block *sb) 949 { 950 dev_t dev = sb->s_dev; 951 generic_shutdown_super(sb); 952 free_anon_bdev(dev); 953 } 954 955 EXPORT_SYMBOL(kill_anon_super); 956 957 void kill_litter_super(struct super_block *sb) 958 { 959 if (sb->s_root) 960 d_genocide(sb->s_root); 961 kill_anon_super(sb); 962 } 963 964 EXPORT_SYMBOL(kill_litter_super); 965 966 static int ns_test_super(struct super_block *sb, void *data) 967 { 968 return sb->s_fs_info == data; 969 } 970 971 static int ns_set_super(struct super_block *sb, void *data) 972 { 973 sb->s_fs_info = data; 974 return set_anon_super(sb, NULL); 975 } 976 977 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 978 void *data, int (*fill_super)(struct super_block *, void *, int)) 979 { 980 struct super_block *sb; 981 982 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data); 983 if (IS_ERR(sb)) 984 return ERR_CAST(sb); 985 986 if (!sb->s_root) { 987 int err; 988 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 989 if (err) { 990 deactivate_locked_super(sb); 991 return ERR_PTR(err); 992 } 993 994 sb->s_flags |= MS_ACTIVE; 995 } 996 997 return dget(sb->s_root); 998 } 999 1000 EXPORT_SYMBOL(mount_ns); 1001 1002 #ifdef CONFIG_BLOCK 1003 static int set_bdev_super(struct super_block *s, void *data) 1004 { 1005 s->s_bdev = data; 1006 s->s_dev = s->s_bdev->bd_dev; 1007 1008 /* 1009 * We set the bdi here to the queue backing, file systems can 1010 * overwrite this in ->fill_super() 1011 */ 1012 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 1013 return 0; 1014 } 1015 1016 static int test_bdev_super(struct super_block *s, void *data) 1017 { 1018 return (void *)s->s_bdev == data; 1019 } 1020 1021 struct dentry *mount_bdev(struct file_system_type *fs_type, 1022 int flags, const char *dev_name, void *data, 1023 int (*fill_super)(struct super_block *, void *, int)) 1024 { 1025 struct block_device *bdev; 1026 struct super_block *s; 1027 fmode_t mode = FMODE_READ | FMODE_EXCL; 1028 int error = 0; 1029 1030 if (!(flags & MS_RDONLY)) 1031 mode |= FMODE_WRITE; 1032 1033 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1034 if (IS_ERR(bdev)) 1035 return ERR_CAST(bdev); 1036 1037 /* 1038 * once the super is inserted into the list by sget, s_umount 1039 * will protect the lockfs code from trying to start a snapshot 1040 * while we are mounting 1041 */ 1042 mutex_lock(&bdev->bd_fsfreeze_mutex); 1043 if (bdev->bd_fsfreeze_count > 0) { 1044 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1045 error = -EBUSY; 1046 goto error_bdev; 1047 } 1048 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, 1049 bdev); 1050 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1051 if (IS_ERR(s)) 1052 goto error_s; 1053 1054 if (s->s_root) { 1055 if ((flags ^ s->s_flags) & MS_RDONLY) { 1056 deactivate_locked_super(s); 1057 error = -EBUSY; 1058 goto error_bdev; 1059 } 1060 1061 /* 1062 * s_umount nests inside bd_mutex during 1063 * __invalidate_device(). blkdev_put() acquires 1064 * bd_mutex and can't be called under s_umount. Drop 1065 * s_umount temporarily. This is safe as we're 1066 * holding an active reference. 1067 */ 1068 up_write(&s->s_umount); 1069 blkdev_put(bdev, mode); 1070 down_write(&s->s_umount); 1071 } else { 1072 char b[BDEVNAME_SIZE]; 1073 1074 s->s_mode = mode; 1075 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1076 sb_set_blocksize(s, block_size(bdev)); 1077 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1078 if (error) { 1079 deactivate_locked_super(s); 1080 goto error; 1081 } 1082 1083 s->s_flags |= MS_ACTIVE; 1084 bdev->bd_super = s; 1085 } 1086 1087 return dget(s->s_root); 1088 1089 error_s: 1090 error = PTR_ERR(s); 1091 error_bdev: 1092 blkdev_put(bdev, mode); 1093 error: 1094 return ERR_PTR(error); 1095 } 1096 EXPORT_SYMBOL(mount_bdev); 1097 1098 void kill_block_super(struct super_block *sb) 1099 { 1100 struct block_device *bdev = sb->s_bdev; 1101 fmode_t mode = sb->s_mode; 1102 1103 bdev->bd_super = NULL; 1104 generic_shutdown_super(sb); 1105 sync_blockdev(bdev); 1106 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1107 blkdev_put(bdev, mode | FMODE_EXCL); 1108 } 1109 1110 EXPORT_SYMBOL(kill_block_super); 1111 #endif 1112 1113 struct dentry *mount_nodev(struct file_system_type *fs_type, 1114 int flags, void *data, 1115 int (*fill_super)(struct super_block *, void *, int)) 1116 { 1117 int error; 1118 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1119 1120 if (IS_ERR(s)) 1121 return ERR_CAST(s); 1122 1123 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1124 if (error) { 1125 deactivate_locked_super(s); 1126 return ERR_PTR(error); 1127 } 1128 s->s_flags |= MS_ACTIVE; 1129 return dget(s->s_root); 1130 } 1131 EXPORT_SYMBOL(mount_nodev); 1132 1133 static int compare_single(struct super_block *s, void *p) 1134 { 1135 return 1; 1136 } 1137 1138 struct dentry *mount_single(struct file_system_type *fs_type, 1139 int flags, void *data, 1140 int (*fill_super)(struct super_block *, void *, int)) 1141 { 1142 struct super_block *s; 1143 int error; 1144 1145 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1146 if (IS_ERR(s)) 1147 return ERR_CAST(s); 1148 if (!s->s_root) { 1149 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1150 if (error) { 1151 deactivate_locked_super(s); 1152 return ERR_PTR(error); 1153 } 1154 s->s_flags |= MS_ACTIVE; 1155 } else { 1156 do_remount_sb(s, flags, data, 0); 1157 } 1158 return dget(s->s_root); 1159 } 1160 EXPORT_SYMBOL(mount_single); 1161 1162 struct dentry * 1163 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1164 { 1165 struct dentry *root; 1166 struct super_block *sb; 1167 char *secdata = NULL; 1168 int error = -ENOMEM; 1169 1170 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1171 secdata = alloc_secdata(); 1172 if (!secdata) 1173 goto out; 1174 1175 error = security_sb_copy_data(data, secdata); 1176 if (error) 1177 goto out_free_secdata; 1178 } 1179 1180 root = type->mount(type, flags, name, data); 1181 if (IS_ERR(root)) { 1182 error = PTR_ERR(root); 1183 goto out_free_secdata; 1184 } 1185 sb = root->d_sb; 1186 BUG_ON(!sb); 1187 WARN_ON(!sb->s_bdi); 1188 WARN_ON(sb->s_bdi == &default_backing_dev_info); 1189 sb->s_flags |= MS_BORN; 1190 1191 error = security_sb_kern_mount(sb, flags, secdata); 1192 if (error) 1193 goto out_sb; 1194 1195 /* 1196 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1197 * but s_maxbytes was an unsigned long long for many releases. Throw 1198 * this warning for a little while to try and catch filesystems that 1199 * violate this rule. 1200 */ 1201 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1202 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1203 1204 up_write(&sb->s_umount); 1205 free_secdata(secdata); 1206 return root; 1207 out_sb: 1208 dput(root); 1209 deactivate_locked_super(sb); 1210 out_free_secdata: 1211 free_secdata(secdata); 1212 out: 1213 return ERR_PTR(error); 1214 } 1215 1216 /* 1217 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1218 * instead. 1219 */ 1220 void __sb_end_write(struct super_block *sb, int level) 1221 { 1222 percpu_counter_dec(&sb->s_writers.counter[level-1]); 1223 /* 1224 * Make sure s_writers are updated before we wake up waiters in 1225 * freeze_super(). 1226 */ 1227 smp_mb(); 1228 if (waitqueue_active(&sb->s_writers.wait)) 1229 wake_up(&sb->s_writers.wait); 1230 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_); 1231 } 1232 EXPORT_SYMBOL(__sb_end_write); 1233 1234 #ifdef CONFIG_LOCKDEP 1235 /* 1236 * We want lockdep to tell us about possible deadlocks with freezing but 1237 * it's it bit tricky to properly instrument it. Getting a freeze protection 1238 * works as getting a read lock but there are subtle problems. XFS for example 1239 * gets freeze protection on internal level twice in some cases, which is OK 1240 * only because we already hold a freeze protection also on higher level. Due 1241 * to these cases we have to tell lockdep we are doing trylock when we 1242 * already hold a freeze protection for a higher freeze level. 1243 */ 1244 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock, 1245 unsigned long ip) 1246 { 1247 int i; 1248 1249 if (!trylock) { 1250 for (i = 0; i < level - 1; i++) 1251 if (lock_is_held(&sb->s_writers.lock_map[i])) { 1252 trylock = true; 1253 break; 1254 } 1255 } 1256 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip); 1257 } 1258 #endif 1259 1260 /* 1261 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1262 * instead. 1263 */ 1264 int __sb_start_write(struct super_block *sb, int level, bool wait) 1265 { 1266 retry: 1267 if (unlikely(sb->s_writers.frozen >= level)) { 1268 if (!wait) 1269 return 0; 1270 wait_event(sb->s_writers.wait_unfrozen, 1271 sb->s_writers.frozen < level); 1272 } 1273 1274 #ifdef CONFIG_LOCKDEP 1275 acquire_freeze_lock(sb, level, !wait, _RET_IP_); 1276 #endif 1277 percpu_counter_inc(&sb->s_writers.counter[level-1]); 1278 /* 1279 * Make sure counter is updated before we check for frozen. 1280 * freeze_super() first sets frozen and then checks the counter. 1281 */ 1282 smp_mb(); 1283 if (unlikely(sb->s_writers.frozen >= level)) { 1284 __sb_end_write(sb, level); 1285 goto retry; 1286 } 1287 return 1; 1288 } 1289 EXPORT_SYMBOL(__sb_start_write); 1290 1291 /** 1292 * sb_wait_write - wait until all writers to given file system finish 1293 * @sb: the super for which we wait 1294 * @level: type of writers we wait for (normal vs page fault) 1295 * 1296 * This function waits until there are no writers of given type to given file 1297 * system. Caller of this function should make sure there can be no new writers 1298 * of type @level before calling this function. Otherwise this function can 1299 * livelock. 1300 */ 1301 static void sb_wait_write(struct super_block *sb, int level) 1302 { 1303 s64 writers; 1304 1305 /* 1306 * We just cycle-through lockdep here so that it does not complain 1307 * about returning with lock to userspace 1308 */ 1309 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_); 1310 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_); 1311 1312 do { 1313 DEFINE_WAIT(wait); 1314 1315 /* 1316 * We use a barrier in prepare_to_wait() to separate setting 1317 * of frozen and checking of the counter 1318 */ 1319 prepare_to_wait(&sb->s_writers.wait, &wait, 1320 TASK_UNINTERRUPTIBLE); 1321 1322 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]); 1323 if (writers) 1324 schedule(); 1325 1326 finish_wait(&sb->s_writers.wait, &wait); 1327 } while (writers); 1328 } 1329 1330 /** 1331 * freeze_super - lock the filesystem and force it into a consistent state 1332 * @sb: the super to lock 1333 * 1334 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1335 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1336 * -EBUSY. 1337 * 1338 * During this function, sb->s_writers.frozen goes through these values: 1339 * 1340 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1341 * 1342 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1343 * writes should be blocked, though page faults are still allowed. We wait for 1344 * all writes to complete and then proceed to the next stage. 1345 * 1346 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1347 * but internal fs threads can still modify the filesystem (although they 1348 * should not dirty new pages or inodes), writeback can run etc. After waiting 1349 * for all running page faults we sync the filesystem which will clean all 1350 * dirty pages and inodes (no new dirty pages or inodes can be created when 1351 * sync is running). 1352 * 1353 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1354 * modification are blocked (e.g. XFS preallocation truncation on inode 1355 * reclaim). This is usually implemented by blocking new transactions for 1356 * filesystems that have them and need this additional guard. After all 1357 * internal writers are finished we call ->freeze_fs() to finish filesystem 1358 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1359 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1360 * 1361 * sb->s_writers.frozen is protected by sb->s_umount. 1362 */ 1363 int freeze_super(struct super_block *sb) 1364 { 1365 int ret; 1366 1367 atomic_inc(&sb->s_active); 1368 down_write(&sb->s_umount); 1369 if (sb->s_writers.frozen != SB_UNFROZEN) { 1370 deactivate_locked_super(sb); 1371 return -EBUSY; 1372 } 1373 1374 if (!(sb->s_flags & MS_BORN)) { 1375 up_write(&sb->s_umount); 1376 return 0; /* sic - it's "nothing to do" */ 1377 } 1378 1379 if (sb->s_flags & MS_RDONLY) { 1380 /* Nothing to do really... */ 1381 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1382 up_write(&sb->s_umount); 1383 return 0; 1384 } 1385 1386 /* From now on, no new normal writers can start */ 1387 sb->s_writers.frozen = SB_FREEZE_WRITE; 1388 smp_wmb(); 1389 1390 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1391 up_write(&sb->s_umount); 1392 1393 sb_wait_write(sb, SB_FREEZE_WRITE); 1394 1395 /* Now we go and block page faults... */ 1396 down_write(&sb->s_umount); 1397 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1398 smp_wmb(); 1399 1400 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1401 1402 /* All writers are done so after syncing there won't be dirty data */ 1403 sync_filesystem(sb); 1404 1405 /* Now wait for internal filesystem counter */ 1406 sb->s_writers.frozen = SB_FREEZE_FS; 1407 smp_wmb(); 1408 sb_wait_write(sb, SB_FREEZE_FS); 1409 1410 if (sb->s_op->freeze_fs) { 1411 ret = sb->s_op->freeze_fs(sb); 1412 if (ret) { 1413 printk(KERN_ERR 1414 "VFS:Filesystem freeze failed\n"); 1415 sb->s_writers.frozen = SB_UNFROZEN; 1416 smp_wmb(); 1417 wake_up(&sb->s_writers.wait_unfrozen); 1418 deactivate_locked_super(sb); 1419 return ret; 1420 } 1421 } 1422 /* 1423 * This is just for debugging purposes so that fs can warn if it 1424 * sees write activity when frozen is set to SB_FREEZE_COMPLETE. 1425 */ 1426 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1427 up_write(&sb->s_umount); 1428 return 0; 1429 } 1430 EXPORT_SYMBOL(freeze_super); 1431 1432 /** 1433 * thaw_super -- unlock filesystem 1434 * @sb: the super to thaw 1435 * 1436 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1437 */ 1438 int thaw_super(struct super_block *sb) 1439 { 1440 int error; 1441 1442 down_write(&sb->s_umount); 1443 if (sb->s_writers.frozen == SB_UNFROZEN) { 1444 up_write(&sb->s_umount); 1445 return -EINVAL; 1446 } 1447 1448 if (sb->s_flags & MS_RDONLY) 1449 goto out; 1450 1451 if (sb->s_op->unfreeze_fs) { 1452 error = sb->s_op->unfreeze_fs(sb); 1453 if (error) { 1454 printk(KERN_ERR 1455 "VFS:Filesystem thaw failed\n"); 1456 up_write(&sb->s_umount); 1457 return error; 1458 } 1459 } 1460 1461 out: 1462 sb->s_writers.frozen = SB_UNFROZEN; 1463 smp_wmb(); 1464 wake_up(&sb->s_writers.wait_unfrozen); 1465 deactivate_locked_super(sb); 1466 1467 return 0; 1468 } 1469 EXPORT_SYMBOL(thaw_super); 1470