xref: /linux/fs/super.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38 
39 
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
42 
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 	"sb_writers",
45 	"sb_pagefaults",
46 	"sb_internal",
47 };
48 
49 /*
50  * One thing we have to be careful of with a per-sb shrinker is that we don't
51  * drop the last active reference to the superblock from within the shrinker.
52  * If that happens we could trigger unregistering the shrinker from within the
53  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54  * take a passive reference to the superblock to avoid this from occurring.
55  */
56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
57 {
58 	struct super_block *sb;
59 	int	fs_objects = 0;
60 	int	total_objects;
61 
62 	sb = container_of(shrink, struct super_block, s_shrink);
63 
64 	/*
65 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
66 	 * to recurse into the FS that called us in clear_inode() and friends..
67 	 */
68 	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
69 		return -1;
70 
71 	if (!grab_super_passive(sb))
72 		return -1;
73 
74 	if (sb->s_op && sb->s_op->nr_cached_objects)
75 		fs_objects = sb->s_op->nr_cached_objects(sb);
76 
77 	total_objects = sb->s_nr_dentry_unused +
78 			sb->s_nr_inodes_unused + fs_objects + 1;
79 
80 	if (sc->nr_to_scan) {
81 		int	dentries;
82 		int	inodes;
83 
84 		/* proportion the scan between the caches */
85 		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
86 							total_objects;
87 		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
88 							total_objects;
89 		if (fs_objects)
90 			fs_objects = (sc->nr_to_scan * fs_objects) /
91 							total_objects;
92 		/*
93 		 * prune the dcache first as the icache is pinned by it, then
94 		 * prune the icache, followed by the filesystem specific caches
95 		 */
96 		prune_dcache_sb(sb, dentries);
97 		prune_icache_sb(sb, inodes);
98 
99 		if (fs_objects && sb->s_op->free_cached_objects) {
100 			sb->s_op->free_cached_objects(sb, fs_objects);
101 			fs_objects = sb->s_op->nr_cached_objects(sb);
102 		}
103 		total_objects = sb->s_nr_dentry_unused +
104 				sb->s_nr_inodes_unused + fs_objects;
105 	}
106 
107 	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
108 	drop_super(sb);
109 	return total_objects;
110 }
111 
112 static int init_sb_writers(struct super_block *s, struct file_system_type *type)
113 {
114 	int err;
115 	int i;
116 
117 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
118 		err = percpu_counter_init(&s->s_writers.counter[i], 0);
119 		if (err < 0)
120 			goto err_out;
121 		lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
122 				 &type->s_writers_key[i], 0);
123 	}
124 	init_waitqueue_head(&s->s_writers.wait);
125 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
126 	return 0;
127 err_out:
128 	while (--i >= 0)
129 		percpu_counter_destroy(&s->s_writers.counter[i]);
130 	return err;
131 }
132 
133 static void destroy_sb_writers(struct super_block *s)
134 {
135 	int i;
136 
137 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
138 		percpu_counter_destroy(&s->s_writers.counter[i]);
139 }
140 
141 /**
142  *	alloc_super	-	create new superblock
143  *	@type:	filesystem type superblock should belong to
144  *	@flags: the mount flags
145  *
146  *	Allocates and initializes a new &struct super_block.  alloc_super()
147  *	returns a pointer new superblock or %NULL if allocation had failed.
148  */
149 static struct super_block *alloc_super(struct file_system_type *type, int flags)
150 {
151 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
152 	static const struct super_operations default_op;
153 
154 	if (s) {
155 		if (security_sb_alloc(s)) {
156 			/*
157 			 * We cannot call security_sb_free() without
158 			 * security_sb_alloc() succeeding. So bail out manually
159 			 */
160 			kfree(s);
161 			s = NULL;
162 			goto out;
163 		}
164 #ifdef CONFIG_SMP
165 		s->s_files = alloc_percpu(struct list_head);
166 		if (!s->s_files)
167 			goto err_out;
168 		else {
169 			int i;
170 
171 			for_each_possible_cpu(i)
172 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
173 		}
174 #else
175 		INIT_LIST_HEAD(&s->s_files);
176 #endif
177 		if (init_sb_writers(s, type))
178 			goto err_out;
179 		s->s_flags = flags;
180 		s->s_bdi = &default_backing_dev_info;
181 		INIT_HLIST_NODE(&s->s_instances);
182 		INIT_HLIST_BL_HEAD(&s->s_anon);
183 		INIT_LIST_HEAD(&s->s_inodes);
184 		INIT_LIST_HEAD(&s->s_dentry_lru);
185 		INIT_LIST_HEAD(&s->s_inode_lru);
186 		spin_lock_init(&s->s_inode_lru_lock);
187 		INIT_LIST_HEAD(&s->s_mounts);
188 		init_rwsem(&s->s_umount);
189 		mutex_init(&s->s_lock);
190 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
191 		/*
192 		 * The locking rules for s_lock are up to the
193 		 * filesystem. For example ext3fs has different
194 		 * lock ordering than usbfs:
195 		 */
196 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
197 		/*
198 		 * sget() can have s_umount recursion.
199 		 *
200 		 * When it cannot find a suitable sb, it allocates a new
201 		 * one (this one), and tries again to find a suitable old
202 		 * one.
203 		 *
204 		 * In case that succeeds, it will acquire the s_umount
205 		 * lock of the old one. Since these are clearly distrinct
206 		 * locks, and this object isn't exposed yet, there's no
207 		 * risk of deadlocks.
208 		 *
209 		 * Annotate this by putting this lock in a different
210 		 * subclass.
211 		 */
212 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
213 		s->s_count = 1;
214 		atomic_set(&s->s_active, 1);
215 		mutex_init(&s->s_vfs_rename_mutex);
216 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
217 		mutex_init(&s->s_dquot.dqio_mutex);
218 		mutex_init(&s->s_dquot.dqonoff_mutex);
219 		init_rwsem(&s->s_dquot.dqptr_sem);
220 		s->s_maxbytes = MAX_NON_LFS;
221 		s->s_op = &default_op;
222 		s->s_time_gran = 1000000000;
223 		s->cleancache_poolid = -1;
224 
225 		s->s_shrink.seeks = DEFAULT_SEEKS;
226 		s->s_shrink.shrink = prune_super;
227 		s->s_shrink.batch = 1024;
228 	}
229 out:
230 	return s;
231 err_out:
232 	security_sb_free(s);
233 #ifdef CONFIG_SMP
234 	if (s->s_files)
235 		free_percpu(s->s_files);
236 #endif
237 	destroy_sb_writers(s);
238 	kfree(s);
239 	s = NULL;
240 	goto out;
241 }
242 
243 /**
244  *	destroy_super	-	frees a superblock
245  *	@s: superblock to free
246  *
247  *	Frees a superblock.
248  */
249 static inline void destroy_super(struct super_block *s)
250 {
251 #ifdef CONFIG_SMP
252 	free_percpu(s->s_files);
253 #endif
254 	destroy_sb_writers(s);
255 	security_sb_free(s);
256 	WARN_ON(!list_empty(&s->s_mounts));
257 	kfree(s->s_subtype);
258 	kfree(s->s_options);
259 	kfree(s);
260 }
261 
262 /* Superblock refcounting  */
263 
264 /*
265  * Drop a superblock's refcount.  The caller must hold sb_lock.
266  */
267 static void __put_super(struct super_block *sb)
268 {
269 	if (!--sb->s_count) {
270 		list_del_init(&sb->s_list);
271 		destroy_super(sb);
272 	}
273 }
274 
275 /**
276  *	put_super	-	drop a temporary reference to superblock
277  *	@sb: superblock in question
278  *
279  *	Drops a temporary reference, frees superblock if there's no
280  *	references left.
281  */
282 static void put_super(struct super_block *sb)
283 {
284 	spin_lock(&sb_lock);
285 	__put_super(sb);
286 	spin_unlock(&sb_lock);
287 }
288 
289 
290 /**
291  *	deactivate_locked_super	-	drop an active reference to superblock
292  *	@s: superblock to deactivate
293  *
294  *	Drops an active reference to superblock, converting it into a temprory
295  *	one if there is no other active references left.  In that case we
296  *	tell fs driver to shut it down and drop the temporary reference we
297  *	had just acquired.
298  *
299  *	Caller holds exclusive lock on superblock; that lock is released.
300  */
301 void deactivate_locked_super(struct super_block *s)
302 {
303 	struct file_system_type *fs = s->s_type;
304 	if (atomic_dec_and_test(&s->s_active)) {
305 		cleancache_invalidate_fs(s);
306 		fs->kill_sb(s);
307 
308 		/* caches are now gone, we can safely kill the shrinker now */
309 		unregister_shrinker(&s->s_shrink);
310 
311 		/*
312 		 * We need to call rcu_barrier so all the delayed rcu free
313 		 * inodes are flushed before we release the fs module.
314 		 */
315 		rcu_barrier();
316 		put_filesystem(fs);
317 		put_super(s);
318 	} else {
319 		up_write(&s->s_umount);
320 	}
321 }
322 
323 EXPORT_SYMBOL(deactivate_locked_super);
324 
325 /**
326  *	deactivate_super	-	drop an active reference to superblock
327  *	@s: superblock to deactivate
328  *
329  *	Variant of deactivate_locked_super(), except that superblock is *not*
330  *	locked by caller.  If we are going to drop the final active reference,
331  *	lock will be acquired prior to that.
332  */
333 void deactivate_super(struct super_block *s)
334 {
335         if (!atomic_add_unless(&s->s_active, -1, 1)) {
336 		down_write(&s->s_umount);
337 		deactivate_locked_super(s);
338 	}
339 }
340 
341 EXPORT_SYMBOL(deactivate_super);
342 
343 /**
344  *	grab_super - acquire an active reference
345  *	@s: reference we are trying to make active
346  *
347  *	Tries to acquire an active reference.  grab_super() is used when we
348  * 	had just found a superblock in super_blocks or fs_type->fs_supers
349  *	and want to turn it into a full-blown active reference.  grab_super()
350  *	is called with sb_lock held and drops it.  Returns 1 in case of
351  *	success, 0 if we had failed (superblock contents was already dead or
352  *	dying when grab_super() had been called).
353  */
354 static int grab_super(struct super_block *s) __releases(sb_lock)
355 {
356 	if (atomic_inc_not_zero(&s->s_active)) {
357 		spin_unlock(&sb_lock);
358 		return 1;
359 	}
360 	/* it's going away */
361 	s->s_count++;
362 	spin_unlock(&sb_lock);
363 	/* wait for it to die */
364 	down_write(&s->s_umount);
365 	up_write(&s->s_umount);
366 	put_super(s);
367 	return 0;
368 }
369 
370 /*
371  *	grab_super_passive - acquire a passive reference
372  *	@sb: reference we are trying to grab
373  *
374  *	Tries to acquire a passive reference. This is used in places where we
375  *	cannot take an active reference but we need to ensure that the
376  *	superblock does not go away while we are working on it. It returns
377  *	false if a reference was not gained, and returns true with the s_umount
378  *	lock held in read mode if a reference is gained. On successful return,
379  *	the caller must drop the s_umount lock and the passive reference when
380  *	done.
381  */
382 bool grab_super_passive(struct super_block *sb)
383 {
384 	spin_lock(&sb_lock);
385 	if (hlist_unhashed(&sb->s_instances)) {
386 		spin_unlock(&sb_lock);
387 		return false;
388 	}
389 
390 	sb->s_count++;
391 	spin_unlock(&sb_lock);
392 
393 	if (down_read_trylock(&sb->s_umount)) {
394 		if (sb->s_root && (sb->s_flags & MS_BORN))
395 			return true;
396 		up_read(&sb->s_umount);
397 	}
398 
399 	put_super(sb);
400 	return false;
401 }
402 
403 /*
404  * Superblock locking.  We really ought to get rid of these two.
405  */
406 void lock_super(struct super_block * sb)
407 {
408 	mutex_lock(&sb->s_lock);
409 }
410 
411 void unlock_super(struct super_block * sb)
412 {
413 	mutex_unlock(&sb->s_lock);
414 }
415 
416 EXPORT_SYMBOL(lock_super);
417 EXPORT_SYMBOL(unlock_super);
418 
419 /**
420  *	generic_shutdown_super	-	common helper for ->kill_sb()
421  *	@sb: superblock to kill
422  *
423  *	generic_shutdown_super() does all fs-independent work on superblock
424  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
425  *	that need destruction out of superblock, call generic_shutdown_super()
426  *	and release aforementioned objects.  Note: dentries and inodes _are_
427  *	taken care of and do not need specific handling.
428  *
429  *	Upon calling this function, the filesystem may no longer alter or
430  *	rearrange the set of dentries belonging to this super_block, nor may it
431  *	change the attachments of dentries to inodes.
432  */
433 void generic_shutdown_super(struct super_block *sb)
434 {
435 	const struct super_operations *sop = sb->s_op;
436 
437 	if (sb->s_root) {
438 		shrink_dcache_for_umount(sb);
439 		sync_filesystem(sb);
440 		sb->s_flags &= ~MS_ACTIVE;
441 
442 		fsnotify_unmount_inodes(&sb->s_inodes);
443 
444 		evict_inodes(sb);
445 
446 		if (sop->put_super)
447 			sop->put_super(sb);
448 
449 		if (!list_empty(&sb->s_inodes)) {
450 			printk("VFS: Busy inodes after unmount of %s. "
451 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
452 			   sb->s_id);
453 		}
454 	}
455 	spin_lock(&sb_lock);
456 	/* should be initialized for __put_super_and_need_restart() */
457 	hlist_del_init(&sb->s_instances);
458 	spin_unlock(&sb_lock);
459 	up_write(&sb->s_umount);
460 }
461 
462 EXPORT_SYMBOL(generic_shutdown_super);
463 
464 /**
465  *	sget	-	find or create a superblock
466  *	@type:	filesystem type superblock should belong to
467  *	@test:	comparison callback
468  *	@set:	setup callback
469  *	@flags:	mount flags
470  *	@data:	argument to each of them
471  */
472 struct super_block *sget(struct file_system_type *type,
473 			int (*test)(struct super_block *,void *),
474 			int (*set)(struct super_block *,void *),
475 			int flags,
476 			void *data)
477 {
478 	struct super_block *s = NULL;
479 	struct hlist_node *node;
480 	struct super_block *old;
481 	int err;
482 
483 retry:
484 	spin_lock(&sb_lock);
485 	if (test) {
486 		hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
487 			if (!test(old, data))
488 				continue;
489 			if (!grab_super(old))
490 				goto retry;
491 			if (s) {
492 				up_write(&s->s_umount);
493 				destroy_super(s);
494 				s = NULL;
495 			}
496 			down_write(&old->s_umount);
497 			if (unlikely(!(old->s_flags & MS_BORN))) {
498 				deactivate_locked_super(old);
499 				goto retry;
500 			}
501 			return old;
502 		}
503 	}
504 	if (!s) {
505 		spin_unlock(&sb_lock);
506 		s = alloc_super(type, flags);
507 		if (!s)
508 			return ERR_PTR(-ENOMEM);
509 		goto retry;
510 	}
511 
512 	err = set(s, data);
513 	if (err) {
514 		spin_unlock(&sb_lock);
515 		up_write(&s->s_umount);
516 		destroy_super(s);
517 		return ERR_PTR(err);
518 	}
519 	s->s_type = type;
520 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
521 	list_add_tail(&s->s_list, &super_blocks);
522 	hlist_add_head(&s->s_instances, &type->fs_supers);
523 	spin_unlock(&sb_lock);
524 	get_filesystem(type);
525 	register_shrinker(&s->s_shrink);
526 	return s;
527 }
528 
529 EXPORT_SYMBOL(sget);
530 
531 void drop_super(struct super_block *sb)
532 {
533 	up_read(&sb->s_umount);
534 	put_super(sb);
535 }
536 
537 EXPORT_SYMBOL(drop_super);
538 
539 /**
540  * sync_supers - helper for periodic superblock writeback
541  *
542  * Call the write_super method if present on all dirty superblocks in
543  * the system.  This is for the periodic writeback used by most older
544  * filesystems.  For data integrity superblock writeback use
545  * sync_filesystems() instead.
546  *
547  * Note: check the dirty flag before waiting, so we don't
548  * hold up the sync while mounting a device. (The newly
549  * mounted device won't need syncing.)
550  */
551 void sync_supers(void)
552 {
553 	struct super_block *sb, *p = NULL;
554 
555 	spin_lock(&sb_lock);
556 	list_for_each_entry(sb, &super_blocks, s_list) {
557 		if (hlist_unhashed(&sb->s_instances))
558 			continue;
559 		if (sb->s_op->write_super && sb->s_dirt) {
560 			sb->s_count++;
561 			spin_unlock(&sb_lock);
562 
563 			down_read(&sb->s_umount);
564 			if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN))
565 				sb->s_op->write_super(sb);
566 			up_read(&sb->s_umount);
567 
568 			spin_lock(&sb_lock);
569 			if (p)
570 				__put_super(p);
571 			p = sb;
572 		}
573 	}
574 	if (p)
575 		__put_super(p);
576 	spin_unlock(&sb_lock);
577 }
578 
579 /**
580  *	iterate_supers - call function for all active superblocks
581  *	@f: function to call
582  *	@arg: argument to pass to it
583  *
584  *	Scans the superblock list and calls given function, passing it
585  *	locked superblock and given argument.
586  */
587 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
588 {
589 	struct super_block *sb, *p = NULL;
590 
591 	spin_lock(&sb_lock);
592 	list_for_each_entry(sb, &super_blocks, s_list) {
593 		if (hlist_unhashed(&sb->s_instances))
594 			continue;
595 		sb->s_count++;
596 		spin_unlock(&sb_lock);
597 
598 		down_read(&sb->s_umount);
599 		if (sb->s_root && (sb->s_flags & MS_BORN))
600 			f(sb, arg);
601 		up_read(&sb->s_umount);
602 
603 		spin_lock(&sb_lock);
604 		if (p)
605 			__put_super(p);
606 		p = sb;
607 	}
608 	if (p)
609 		__put_super(p);
610 	spin_unlock(&sb_lock);
611 }
612 
613 /**
614  *	iterate_supers_type - call function for superblocks of given type
615  *	@type: fs type
616  *	@f: function to call
617  *	@arg: argument to pass to it
618  *
619  *	Scans the superblock list and calls given function, passing it
620  *	locked superblock and given argument.
621  */
622 void iterate_supers_type(struct file_system_type *type,
623 	void (*f)(struct super_block *, void *), void *arg)
624 {
625 	struct super_block *sb, *p = NULL;
626 	struct hlist_node *node;
627 
628 	spin_lock(&sb_lock);
629 	hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
630 		sb->s_count++;
631 		spin_unlock(&sb_lock);
632 
633 		down_read(&sb->s_umount);
634 		if (sb->s_root && (sb->s_flags & MS_BORN))
635 			f(sb, arg);
636 		up_read(&sb->s_umount);
637 
638 		spin_lock(&sb_lock);
639 		if (p)
640 			__put_super(p);
641 		p = sb;
642 	}
643 	if (p)
644 		__put_super(p);
645 	spin_unlock(&sb_lock);
646 }
647 
648 EXPORT_SYMBOL(iterate_supers_type);
649 
650 /**
651  *	get_super - get the superblock of a device
652  *	@bdev: device to get the superblock for
653  *
654  *	Scans the superblock list and finds the superblock of the file system
655  *	mounted on the device given. %NULL is returned if no match is found.
656  */
657 
658 struct super_block *get_super(struct block_device *bdev)
659 {
660 	struct super_block *sb;
661 
662 	if (!bdev)
663 		return NULL;
664 
665 	spin_lock(&sb_lock);
666 rescan:
667 	list_for_each_entry(sb, &super_blocks, s_list) {
668 		if (hlist_unhashed(&sb->s_instances))
669 			continue;
670 		if (sb->s_bdev == bdev) {
671 			sb->s_count++;
672 			spin_unlock(&sb_lock);
673 			down_read(&sb->s_umount);
674 			/* still alive? */
675 			if (sb->s_root && (sb->s_flags & MS_BORN))
676 				return sb;
677 			up_read(&sb->s_umount);
678 			/* nope, got unmounted */
679 			spin_lock(&sb_lock);
680 			__put_super(sb);
681 			goto rescan;
682 		}
683 	}
684 	spin_unlock(&sb_lock);
685 	return NULL;
686 }
687 
688 EXPORT_SYMBOL(get_super);
689 
690 /**
691  *	get_super_thawed - get thawed superblock of a device
692  *	@bdev: device to get the superblock for
693  *
694  *	Scans the superblock list and finds the superblock of the file system
695  *	mounted on the device. The superblock is returned once it is thawed
696  *	(or immediately if it was not frozen). %NULL is returned if no match
697  *	is found.
698  */
699 struct super_block *get_super_thawed(struct block_device *bdev)
700 {
701 	while (1) {
702 		struct super_block *s = get_super(bdev);
703 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
704 			return s;
705 		up_read(&s->s_umount);
706 		wait_event(s->s_writers.wait_unfrozen,
707 			   s->s_writers.frozen == SB_UNFROZEN);
708 		put_super(s);
709 	}
710 }
711 EXPORT_SYMBOL(get_super_thawed);
712 
713 /**
714  * get_active_super - get an active reference to the superblock of a device
715  * @bdev: device to get the superblock for
716  *
717  * Scans the superblock list and finds the superblock of the file system
718  * mounted on the device given.  Returns the superblock with an active
719  * reference or %NULL if none was found.
720  */
721 struct super_block *get_active_super(struct block_device *bdev)
722 {
723 	struct super_block *sb;
724 
725 	if (!bdev)
726 		return NULL;
727 
728 restart:
729 	spin_lock(&sb_lock);
730 	list_for_each_entry(sb, &super_blocks, s_list) {
731 		if (hlist_unhashed(&sb->s_instances))
732 			continue;
733 		if (sb->s_bdev == bdev) {
734 			if (grab_super(sb)) /* drops sb_lock */
735 				return sb;
736 			else
737 				goto restart;
738 		}
739 	}
740 	spin_unlock(&sb_lock);
741 	return NULL;
742 }
743 
744 struct super_block *user_get_super(dev_t dev)
745 {
746 	struct super_block *sb;
747 
748 	spin_lock(&sb_lock);
749 rescan:
750 	list_for_each_entry(sb, &super_blocks, s_list) {
751 		if (hlist_unhashed(&sb->s_instances))
752 			continue;
753 		if (sb->s_dev ==  dev) {
754 			sb->s_count++;
755 			spin_unlock(&sb_lock);
756 			down_read(&sb->s_umount);
757 			/* still alive? */
758 			if (sb->s_root && (sb->s_flags & MS_BORN))
759 				return sb;
760 			up_read(&sb->s_umount);
761 			/* nope, got unmounted */
762 			spin_lock(&sb_lock);
763 			__put_super(sb);
764 			goto rescan;
765 		}
766 	}
767 	spin_unlock(&sb_lock);
768 	return NULL;
769 }
770 
771 /**
772  *	do_remount_sb - asks filesystem to change mount options.
773  *	@sb:	superblock in question
774  *	@flags:	numeric part of options
775  *	@data:	the rest of options
776  *      @force: whether or not to force the change
777  *
778  *	Alters the mount options of a mounted file system.
779  */
780 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
781 {
782 	int retval;
783 	int remount_ro;
784 
785 	if (sb->s_writers.frozen != SB_UNFROZEN)
786 		return -EBUSY;
787 
788 #ifdef CONFIG_BLOCK
789 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
790 		return -EACCES;
791 #endif
792 
793 	if (flags & MS_RDONLY)
794 		acct_auto_close(sb);
795 	shrink_dcache_sb(sb);
796 	sync_filesystem(sb);
797 
798 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
799 
800 	/* If we are remounting RDONLY and current sb is read/write,
801 	   make sure there are no rw files opened */
802 	if (remount_ro) {
803 		if (force) {
804 			mark_files_ro(sb);
805 		} else {
806 			retval = sb_prepare_remount_readonly(sb);
807 			if (retval)
808 				return retval;
809 		}
810 	}
811 
812 	if (sb->s_op->remount_fs) {
813 		retval = sb->s_op->remount_fs(sb, &flags, data);
814 		if (retval) {
815 			if (!force)
816 				goto cancel_readonly;
817 			/* If forced remount, go ahead despite any errors */
818 			WARN(1, "forced remount of a %s fs returned %i\n",
819 			     sb->s_type->name, retval);
820 		}
821 	}
822 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
823 	/* Needs to be ordered wrt mnt_is_readonly() */
824 	smp_wmb();
825 	sb->s_readonly_remount = 0;
826 
827 	/*
828 	 * Some filesystems modify their metadata via some other path than the
829 	 * bdev buffer cache (eg. use a private mapping, or directories in
830 	 * pagecache, etc). Also file data modifications go via their own
831 	 * mappings. So If we try to mount readonly then copy the filesystem
832 	 * from bdev, we could get stale data, so invalidate it to give a best
833 	 * effort at coherency.
834 	 */
835 	if (remount_ro && sb->s_bdev)
836 		invalidate_bdev(sb->s_bdev);
837 	return 0;
838 
839 cancel_readonly:
840 	sb->s_readonly_remount = 0;
841 	return retval;
842 }
843 
844 static void do_emergency_remount(struct work_struct *work)
845 {
846 	struct super_block *sb, *p = NULL;
847 
848 	spin_lock(&sb_lock);
849 	list_for_each_entry(sb, &super_blocks, s_list) {
850 		if (hlist_unhashed(&sb->s_instances))
851 			continue;
852 		sb->s_count++;
853 		spin_unlock(&sb_lock);
854 		down_write(&sb->s_umount);
855 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
856 		    !(sb->s_flags & MS_RDONLY)) {
857 			/*
858 			 * What lock protects sb->s_flags??
859 			 */
860 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
861 		}
862 		up_write(&sb->s_umount);
863 		spin_lock(&sb_lock);
864 		if (p)
865 			__put_super(p);
866 		p = sb;
867 	}
868 	if (p)
869 		__put_super(p);
870 	spin_unlock(&sb_lock);
871 	kfree(work);
872 	printk("Emergency Remount complete\n");
873 }
874 
875 void emergency_remount(void)
876 {
877 	struct work_struct *work;
878 
879 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
880 	if (work) {
881 		INIT_WORK(work, do_emergency_remount);
882 		schedule_work(work);
883 	}
884 }
885 
886 /*
887  * Unnamed block devices are dummy devices used by virtual
888  * filesystems which don't use real block-devices.  -- jrs
889  */
890 
891 static DEFINE_IDA(unnamed_dev_ida);
892 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
893 static int unnamed_dev_start = 0; /* don't bother trying below it */
894 
895 int get_anon_bdev(dev_t *p)
896 {
897 	int dev;
898 	int error;
899 
900  retry:
901 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
902 		return -ENOMEM;
903 	spin_lock(&unnamed_dev_lock);
904 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
905 	if (!error)
906 		unnamed_dev_start = dev + 1;
907 	spin_unlock(&unnamed_dev_lock);
908 	if (error == -EAGAIN)
909 		/* We raced and lost with another CPU. */
910 		goto retry;
911 	else if (error)
912 		return -EAGAIN;
913 
914 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
915 		spin_lock(&unnamed_dev_lock);
916 		ida_remove(&unnamed_dev_ida, dev);
917 		if (unnamed_dev_start > dev)
918 			unnamed_dev_start = dev;
919 		spin_unlock(&unnamed_dev_lock);
920 		return -EMFILE;
921 	}
922 	*p = MKDEV(0, dev & MINORMASK);
923 	return 0;
924 }
925 EXPORT_SYMBOL(get_anon_bdev);
926 
927 void free_anon_bdev(dev_t dev)
928 {
929 	int slot = MINOR(dev);
930 	spin_lock(&unnamed_dev_lock);
931 	ida_remove(&unnamed_dev_ida, slot);
932 	if (slot < unnamed_dev_start)
933 		unnamed_dev_start = slot;
934 	spin_unlock(&unnamed_dev_lock);
935 }
936 EXPORT_SYMBOL(free_anon_bdev);
937 
938 int set_anon_super(struct super_block *s, void *data)
939 {
940 	int error = get_anon_bdev(&s->s_dev);
941 	if (!error)
942 		s->s_bdi = &noop_backing_dev_info;
943 	return error;
944 }
945 
946 EXPORT_SYMBOL(set_anon_super);
947 
948 void kill_anon_super(struct super_block *sb)
949 {
950 	dev_t dev = sb->s_dev;
951 	generic_shutdown_super(sb);
952 	free_anon_bdev(dev);
953 }
954 
955 EXPORT_SYMBOL(kill_anon_super);
956 
957 void kill_litter_super(struct super_block *sb)
958 {
959 	if (sb->s_root)
960 		d_genocide(sb->s_root);
961 	kill_anon_super(sb);
962 }
963 
964 EXPORT_SYMBOL(kill_litter_super);
965 
966 static int ns_test_super(struct super_block *sb, void *data)
967 {
968 	return sb->s_fs_info == data;
969 }
970 
971 static int ns_set_super(struct super_block *sb, void *data)
972 {
973 	sb->s_fs_info = data;
974 	return set_anon_super(sb, NULL);
975 }
976 
977 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
978 	void *data, int (*fill_super)(struct super_block *, void *, int))
979 {
980 	struct super_block *sb;
981 
982 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
983 	if (IS_ERR(sb))
984 		return ERR_CAST(sb);
985 
986 	if (!sb->s_root) {
987 		int err;
988 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
989 		if (err) {
990 			deactivate_locked_super(sb);
991 			return ERR_PTR(err);
992 		}
993 
994 		sb->s_flags |= MS_ACTIVE;
995 	}
996 
997 	return dget(sb->s_root);
998 }
999 
1000 EXPORT_SYMBOL(mount_ns);
1001 
1002 #ifdef CONFIG_BLOCK
1003 static int set_bdev_super(struct super_block *s, void *data)
1004 {
1005 	s->s_bdev = data;
1006 	s->s_dev = s->s_bdev->bd_dev;
1007 
1008 	/*
1009 	 * We set the bdi here to the queue backing, file systems can
1010 	 * overwrite this in ->fill_super()
1011 	 */
1012 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
1013 	return 0;
1014 }
1015 
1016 static int test_bdev_super(struct super_block *s, void *data)
1017 {
1018 	return (void *)s->s_bdev == data;
1019 }
1020 
1021 struct dentry *mount_bdev(struct file_system_type *fs_type,
1022 	int flags, const char *dev_name, void *data,
1023 	int (*fill_super)(struct super_block *, void *, int))
1024 {
1025 	struct block_device *bdev;
1026 	struct super_block *s;
1027 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1028 	int error = 0;
1029 
1030 	if (!(flags & MS_RDONLY))
1031 		mode |= FMODE_WRITE;
1032 
1033 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1034 	if (IS_ERR(bdev))
1035 		return ERR_CAST(bdev);
1036 
1037 	/*
1038 	 * once the super is inserted into the list by sget, s_umount
1039 	 * will protect the lockfs code from trying to start a snapshot
1040 	 * while we are mounting
1041 	 */
1042 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1043 	if (bdev->bd_fsfreeze_count > 0) {
1044 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1045 		error = -EBUSY;
1046 		goto error_bdev;
1047 	}
1048 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1049 		 bdev);
1050 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1051 	if (IS_ERR(s))
1052 		goto error_s;
1053 
1054 	if (s->s_root) {
1055 		if ((flags ^ s->s_flags) & MS_RDONLY) {
1056 			deactivate_locked_super(s);
1057 			error = -EBUSY;
1058 			goto error_bdev;
1059 		}
1060 
1061 		/*
1062 		 * s_umount nests inside bd_mutex during
1063 		 * __invalidate_device().  blkdev_put() acquires
1064 		 * bd_mutex and can't be called under s_umount.  Drop
1065 		 * s_umount temporarily.  This is safe as we're
1066 		 * holding an active reference.
1067 		 */
1068 		up_write(&s->s_umount);
1069 		blkdev_put(bdev, mode);
1070 		down_write(&s->s_umount);
1071 	} else {
1072 		char b[BDEVNAME_SIZE];
1073 
1074 		s->s_mode = mode;
1075 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1076 		sb_set_blocksize(s, block_size(bdev));
1077 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1078 		if (error) {
1079 			deactivate_locked_super(s);
1080 			goto error;
1081 		}
1082 
1083 		s->s_flags |= MS_ACTIVE;
1084 		bdev->bd_super = s;
1085 	}
1086 
1087 	return dget(s->s_root);
1088 
1089 error_s:
1090 	error = PTR_ERR(s);
1091 error_bdev:
1092 	blkdev_put(bdev, mode);
1093 error:
1094 	return ERR_PTR(error);
1095 }
1096 EXPORT_SYMBOL(mount_bdev);
1097 
1098 void kill_block_super(struct super_block *sb)
1099 {
1100 	struct block_device *bdev = sb->s_bdev;
1101 	fmode_t mode = sb->s_mode;
1102 
1103 	bdev->bd_super = NULL;
1104 	generic_shutdown_super(sb);
1105 	sync_blockdev(bdev);
1106 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1107 	blkdev_put(bdev, mode | FMODE_EXCL);
1108 }
1109 
1110 EXPORT_SYMBOL(kill_block_super);
1111 #endif
1112 
1113 struct dentry *mount_nodev(struct file_system_type *fs_type,
1114 	int flags, void *data,
1115 	int (*fill_super)(struct super_block *, void *, int))
1116 {
1117 	int error;
1118 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1119 
1120 	if (IS_ERR(s))
1121 		return ERR_CAST(s);
1122 
1123 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1124 	if (error) {
1125 		deactivate_locked_super(s);
1126 		return ERR_PTR(error);
1127 	}
1128 	s->s_flags |= MS_ACTIVE;
1129 	return dget(s->s_root);
1130 }
1131 EXPORT_SYMBOL(mount_nodev);
1132 
1133 static int compare_single(struct super_block *s, void *p)
1134 {
1135 	return 1;
1136 }
1137 
1138 struct dentry *mount_single(struct file_system_type *fs_type,
1139 	int flags, void *data,
1140 	int (*fill_super)(struct super_block *, void *, int))
1141 {
1142 	struct super_block *s;
1143 	int error;
1144 
1145 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1146 	if (IS_ERR(s))
1147 		return ERR_CAST(s);
1148 	if (!s->s_root) {
1149 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1150 		if (error) {
1151 			deactivate_locked_super(s);
1152 			return ERR_PTR(error);
1153 		}
1154 		s->s_flags |= MS_ACTIVE;
1155 	} else {
1156 		do_remount_sb(s, flags, data, 0);
1157 	}
1158 	return dget(s->s_root);
1159 }
1160 EXPORT_SYMBOL(mount_single);
1161 
1162 struct dentry *
1163 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1164 {
1165 	struct dentry *root;
1166 	struct super_block *sb;
1167 	char *secdata = NULL;
1168 	int error = -ENOMEM;
1169 
1170 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1171 		secdata = alloc_secdata();
1172 		if (!secdata)
1173 			goto out;
1174 
1175 		error = security_sb_copy_data(data, secdata);
1176 		if (error)
1177 			goto out_free_secdata;
1178 	}
1179 
1180 	root = type->mount(type, flags, name, data);
1181 	if (IS_ERR(root)) {
1182 		error = PTR_ERR(root);
1183 		goto out_free_secdata;
1184 	}
1185 	sb = root->d_sb;
1186 	BUG_ON(!sb);
1187 	WARN_ON(!sb->s_bdi);
1188 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1189 	sb->s_flags |= MS_BORN;
1190 
1191 	error = security_sb_kern_mount(sb, flags, secdata);
1192 	if (error)
1193 		goto out_sb;
1194 
1195 	/*
1196 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1197 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1198 	 * this warning for a little while to try and catch filesystems that
1199 	 * violate this rule.
1200 	 */
1201 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1202 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1203 
1204 	up_write(&sb->s_umount);
1205 	free_secdata(secdata);
1206 	return root;
1207 out_sb:
1208 	dput(root);
1209 	deactivate_locked_super(sb);
1210 out_free_secdata:
1211 	free_secdata(secdata);
1212 out:
1213 	return ERR_PTR(error);
1214 }
1215 
1216 /*
1217  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1218  * instead.
1219  */
1220 void __sb_end_write(struct super_block *sb, int level)
1221 {
1222 	percpu_counter_dec(&sb->s_writers.counter[level-1]);
1223 	/*
1224 	 * Make sure s_writers are updated before we wake up waiters in
1225 	 * freeze_super().
1226 	 */
1227 	smp_mb();
1228 	if (waitqueue_active(&sb->s_writers.wait))
1229 		wake_up(&sb->s_writers.wait);
1230 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1231 }
1232 EXPORT_SYMBOL(__sb_end_write);
1233 
1234 #ifdef CONFIG_LOCKDEP
1235 /*
1236  * We want lockdep to tell us about possible deadlocks with freezing but
1237  * it's it bit tricky to properly instrument it. Getting a freeze protection
1238  * works as getting a read lock but there are subtle problems. XFS for example
1239  * gets freeze protection on internal level twice in some cases, which is OK
1240  * only because we already hold a freeze protection also on higher level. Due
1241  * to these cases we have to tell lockdep we are doing trylock when we
1242  * already hold a freeze protection for a higher freeze level.
1243  */
1244 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1245 				unsigned long ip)
1246 {
1247 	int i;
1248 
1249 	if (!trylock) {
1250 		for (i = 0; i < level - 1; i++)
1251 			if (lock_is_held(&sb->s_writers.lock_map[i])) {
1252 				trylock = true;
1253 				break;
1254 			}
1255 	}
1256 	rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1257 }
1258 #endif
1259 
1260 /*
1261  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1262  * instead.
1263  */
1264 int __sb_start_write(struct super_block *sb, int level, bool wait)
1265 {
1266 retry:
1267 	if (unlikely(sb->s_writers.frozen >= level)) {
1268 		if (!wait)
1269 			return 0;
1270 		wait_event(sb->s_writers.wait_unfrozen,
1271 			   sb->s_writers.frozen < level);
1272 	}
1273 
1274 #ifdef CONFIG_LOCKDEP
1275 	acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1276 #endif
1277 	percpu_counter_inc(&sb->s_writers.counter[level-1]);
1278 	/*
1279 	 * Make sure counter is updated before we check for frozen.
1280 	 * freeze_super() first sets frozen and then checks the counter.
1281 	 */
1282 	smp_mb();
1283 	if (unlikely(sb->s_writers.frozen >= level)) {
1284 		__sb_end_write(sb, level);
1285 		goto retry;
1286 	}
1287 	return 1;
1288 }
1289 EXPORT_SYMBOL(__sb_start_write);
1290 
1291 /**
1292  * sb_wait_write - wait until all writers to given file system finish
1293  * @sb: the super for which we wait
1294  * @level: type of writers we wait for (normal vs page fault)
1295  *
1296  * This function waits until there are no writers of given type to given file
1297  * system. Caller of this function should make sure there can be no new writers
1298  * of type @level before calling this function. Otherwise this function can
1299  * livelock.
1300  */
1301 static void sb_wait_write(struct super_block *sb, int level)
1302 {
1303 	s64 writers;
1304 
1305 	/*
1306 	 * We just cycle-through lockdep here so that it does not complain
1307 	 * about returning with lock to userspace
1308 	 */
1309 	rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1310 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1311 
1312 	do {
1313 		DEFINE_WAIT(wait);
1314 
1315 		/*
1316 		 * We use a barrier in prepare_to_wait() to separate setting
1317 		 * of frozen and checking of the counter
1318 		 */
1319 		prepare_to_wait(&sb->s_writers.wait, &wait,
1320 				TASK_UNINTERRUPTIBLE);
1321 
1322 		writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1323 		if (writers)
1324 			schedule();
1325 
1326 		finish_wait(&sb->s_writers.wait, &wait);
1327 	} while (writers);
1328 }
1329 
1330 /**
1331  * freeze_super - lock the filesystem and force it into a consistent state
1332  * @sb: the super to lock
1333  *
1334  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1335  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1336  * -EBUSY.
1337  *
1338  * During this function, sb->s_writers.frozen goes through these values:
1339  *
1340  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1341  *
1342  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1343  * writes should be blocked, though page faults are still allowed. We wait for
1344  * all writes to complete and then proceed to the next stage.
1345  *
1346  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1347  * but internal fs threads can still modify the filesystem (although they
1348  * should not dirty new pages or inodes), writeback can run etc. After waiting
1349  * for all running page faults we sync the filesystem which will clean all
1350  * dirty pages and inodes (no new dirty pages or inodes can be created when
1351  * sync is running).
1352  *
1353  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1354  * modification are blocked (e.g. XFS preallocation truncation on inode
1355  * reclaim). This is usually implemented by blocking new transactions for
1356  * filesystems that have them and need this additional guard. After all
1357  * internal writers are finished we call ->freeze_fs() to finish filesystem
1358  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1359  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1360  *
1361  * sb->s_writers.frozen is protected by sb->s_umount.
1362  */
1363 int freeze_super(struct super_block *sb)
1364 {
1365 	int ret;
1366 
1367 	atomic_inc(&sb->s_active);
1368 	down_write(&sb->s_umount);
1369 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1370 		deactivate_locked_super(sb);
1371 		return -EBUSY;
1372 	}
1373 
1374 	if (!(sb->s_flags & MS_BORN)) {
1375 		up_write(&sb->s_umount);
1376 		return 0;	/* sic - it's "nothing to do" */
1377 	}
1378 
1379 	if (sb->s_flags & MS_RDONLY) {
1380 		/* Nothing to do really... */
1381 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1382 		up_write(&sb->s_umount);
1383 		return 0;
1384 	}
1385 
1386 	/* From now on, no new normal writers can start */
1387 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1388 	smp_wmb();
1389 
1390 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1391 	up_write(&sb->s_umount);
1392 
1393 	sb_wait_write(sb, SB_FREEZE_WRITE);
1394 
1395 	/* Now we go and block page faults... */
1396 	down_write(&sb->s_umount);
1397 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1398 	smp_wmb();
1399 
1400 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1401 
1402 	/* All writers are done so after syncing there won't be dirty data */
1403 	sync_filesystem(sb);
1404 
1405 	/* Now wait for internal filesystem counter */
1406 	sb->s_writers.frozen = SB_FREEZE_FS;
1407 	smp_wmb();
1408 	sb_wait_write(sb, SB_FREEZE_FS);
1409 
1410 	if (sb->s_op->freeze_fs) {
1411 		ret = sb->s_op->freeze_fs(sb);
1412 		if (ret) {
1413 			printk(KERN_ERR
1414 				"VFS:Filesystem freeze failed\n");
1415 			sb->s_writers.frozen = SB_UNFROZEN;
1416 			smp_wmb();
1417 			wake_up(&sb->s_writers.wait_unfrozen);
1418 			deactivate_locked_super(sb);
1419 			return ret;
1420 		}
1421 	}
1422 	/*
1423 	 * This is just for debugging purposes so that fs can warn if it
1424 	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1425 	 */
1426 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1427 	up_write(&sb->s_umount);
1428 	return 0;
1429 }
1430 EXPORT_SYMBOL(freeze_super);
1431 
1432 /**
1433  * thaw_super -- unlock filesystem
1434  * @sb: the super to thaw
1435  *
1436  * Unlocks the filesystem and marks it writeable again after freeze_super().
1437  */
1438 int thaw_super(struct super_block *sb)
1439 {
1440 	int error;
1441 
1442 	down_write(&sb->s_umount);
1443 	if (sb->s_writers.frozen == SB_UNFROZEN) {
1444 		up_write(&sb->s_umount);
1445 		return -EINVAL;
1446 	}
1447 
1448 	if (sb->s_flags & MS_RDONLY)
1449 		goto out;
1450 
1451 	if (sb->s_op->unfreeze_fs) {
1452 		error = sb->s_op->unfreeze_fs(sb);
1453 		if (error) {
1454 			printk(KERN_ERR
1455 				"VFS:Filesystem thaw failed\n");
1456 			up_write(&sb->s_umount);
1457 			return error;
1458 		}
1459 	}
1460 
1461 out:
1462 	sb->s_writers.frozen = SB_UNFROZEN;
1463 	smp_wmb();
1464 	wake_up(&sb->s_writers.wait_unfrozen);
1465 	deactivate_locked_super(sb);
1466 
1467 	return 0;
1468 }
1469 EXPORT_SYMBOL(thaw_super);
1470