1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 /* 54 * One thing we have to be careful of with a per-sb shrinker is that we don't 55 * drop the last active reference to the superblock from within the shrinker. 56 * If that happens we could trigger unregistering the shrinker from within the 57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 58 * take a passive reference to the superblock to avoid this from occurring. 59 */ 60 static unsigned long super_cache_scan(struct shrinker *shrink, 61 struct shrink_control *sc) 62 { 63 struct super_block *sb; 64 long fs_objects = 0; 65 long total_objects; 66 long freed = 0; 67 long dentries; 68 long inodes; 69 70 sb = container_of(shrink, struct super_block, s_shrink); 71 72 /* 73 * Deadlock avoidance. We may hold various FS locks, and we don't want 74 * to recurse into the FS that called us in clear_inode() and friends.. 75 */ 76 if (!(sc->gfp_mask & __GFP_FS)) 77 return SHRINK_STOP; 78 79 if (!trylock_super(sb)) 80 return SHRINK_STOP; 81 82 if (sb->s_op->nr_cached_objects) 83 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 84 85 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 86 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 87 total_objects = dentries + inodes + fs_objects + 1; 88 if (!total_objects) 89 total_objects = 1; 90 91 /* proportion the scan between the caches */ 92 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 93 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 94 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 95 96 /* 97 * prune the dcache first as the icache is pinned by it, then 98 * prune the icache, followed by the filesystem specific caches 99 * 100 * Ensure that we always scan at least one object - memcg kmem 101 * accounting uses this to fully empty the caches. 102 */ 103 sc->nr_to_scan = dentries + 1; 104 freed = prune_dcache_sb(sb, sc); 105 sc->nr_to_scan = inodes + 1; 106 freed += prune_icache_sb(sb, sc); 107 108 if (fs_objects) { 109 sc->nr_to_scan = fs_objects + 1; 110 freed += sb->s_op->free_cached_objects(sb, sc); 111 } 112 113 up_read(&sb->s_umount); 114 return freed; 115 } 116 117 static unsigned long super_cache_count(struct shrinker *shrink, 118 struct shrink_control *sc) 119 { 120 struct super_block *sb; 121 long total_objects = 0; 122 123 sb = container_of(shrink, struct super_block, s_shrink); 124 125 /* 126 * We don't call trylock_super() here as it is a scalability bottleneck, 127 * so we're exposed to partial setup state. The shrinker rwsem does not 128 * protect filesystem operations backing list_lru_shrink_count() or 129 * s_op->nr_cached_objects(). Counts can change between 130 * super_cache_count and super_cache_scan, so we really don't need locks 131 * here. 132 * 133 * However, if we are currently mounting the superblock, the underlying 134 * filesystem might be in a state of partial construction and hence it 135 * is dangerous to access it. trylock_super() uses a SB_BORN check to 136 * avoid this situation, so do the same here. The memory barrier is 137 * matched with the one in mount_fs() as we don't hold locks here. 138 */ 139 if (!(sb->s_flags & SB_BORN)) 140 return 0; 141 smp_rmb(); 142 143 if (sb->s_op && sb->s_op->nr_cached_objects) 144 total_objects = sb->s_op->nr_cached_objects(sb, sc); 145 146 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 147 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 148 149 if (!total_objects) 150 return SHRINK_EMPTY; 151 152 total_objects = vfs_pressure_ratio(total_objects); 153 return total_objects; 154 } 155 156 static void destroy_super_work(struct work_struct *work) 157 { 158 struct super_block *s = container_of(work, struct super_block, 159 destroy_work); 160 int i; 161 162 for (i = 0; i < SB_FREEZE_LEVELS; i++) 163 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 164 kfree(s); 165 } 166 167 static void destroy_super_rcu(struct rcu_head *head) 168 { 169 struct super_block *s = container_of(head, struct super_block, rcu); 170 INIT_WORK(&s->destroy_work, destroy_super_work); 171 schedule_work(&s->destroy_work); 172 } 173 174 /* Free a superblock that has never been seen by anyone */ 175 static void destroy_unused_super(struct super_block *s) 176 { 177 if (!s) 178 return; 179 up_write(&s->s_umount); 180 list_lru_destroy(&s->s_dentry_lru); 181 list_lru_destroy(&s->s_inode_lru); 182 security_sb_free(s); 183 put_user_ns(s->s_user_ns); 184 kfree(s->s_subtype); 185 free_prealloced_shrinker(&s->s_shrink); 186 /* no delays needed */ 187 destroy_super_work(&s->destroy_work); 188 } 189 190 /** 191 * alloc_super - create new superblock 192 * @type: filesystem type superblock should belong to 193 * @flags: the mount flags 194 * @user_ns: User namespace for the super_block 195 * 196 * Allocates and initializes a new &struct super_block. alloc_super() 197 * returns a pointer new superblock or %NULL if allocation had failed. 198 */ 199 static struct super_block *alloc_super(struct file_system_type *type, int flags, 200 struct user_namespace *user_ns) 201 { 202 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 203 static const struct super_operations default_op; 204 int i; 205 206 if (!s) 207 return NULL; 208 209 INIT_LIST_HEAD(&s->s_mounts); 210 s->s_user_ns = get_user_ns(user_ns); 211 init_rwsem(&s->s_umount); 212 lockdep_set_class(&s->s_umount, &type->s_umount_key); 213 /* 214 * sget() can have s_umount recursion. 215 * 216 * When it cannot find a suitable sb, it allocates a new 217 * one (this one), and tries again to find a suitable old 218 * one. 219 * 220 * In case that succeeds, it will acquire the s_umount 221 * lock of the old one. Since these are clearly distrinct 222 * locks, and this object isn't exposed yet, there's no 223 * risk of deadlocks. 224 * 225 * Annotate this by putting this lock in a different 226 * subclass. 227 */ 228 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 229 230 if (security_sb_alloc(s)) 231 goto fail; 232 233 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 234 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 235 sb_writers_name[i], 236 &type->s_writers_key[i])) 237 goto fail; 238 } 239 s->s_bdi = &noop_backing_dev_info; 240 s->s_flags = flags; 241 if (s->s_user_ns != &init_user_ns) 242 s->s_iflags |= SB_I_NODEV; 243 INIT_HLIST_NODE(&s->s_instances); 244 INIT_HLIST_BL_HEAD(&s->s_roots); 245 mutex_init(&s->s_sync_lock); 246 INIT_LIST_HEAD(&s->s_inodes); 247 spin_lock_init(&s->s_inode_list_lock); 248 INIT_LIST_HEAD(&s->s_inodes_wb); 249 spin_lock_init(&s->s_inode_wblist_lock); 250 251 s->s_count = 1; 252 atomic_set(&s->s_active, 1); 253 mutex_init(&s->s_vfs_rename_mutex); 254 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 255 init_rwsem(&s->s_dquot.dqio_sem); 256 s->s_maxbytes = MAX_NON_LFS; 257 s->s_op = &default_op; 258 s->s_time_gran = 1000000000; 259 s->s_time_min = TIME64_MIN; 260 s->s_time_max = TIME64_MAX; 261 262 s->s_shrink.seeks = DEFAULT_SEEKS; 263 s->s_shrink.scan_objects = super_cache_scan; 264 s->s_shrink.count_objects = super_cache_count; 265 s->s_shrink.batch = 1024; 266 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 267 if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name)) 268 goto fail; 269 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 270 goto fail; 271 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 272 goto fail; 273 return s; 274 275 fail: 276 destroy_unused_super(s); 277 return NULL; 278 } 279 280 /* Superblock refcounting */ 281 282 /* 283 * Drop a superblock's refcount. The caller must hold sb_lock. 284 */ 285 static void __put_super(struct super_block *s) 286 { 287 if (!--s->s_count) { 288 list_del_init(&s->s_list); 289 WARN_ON(s->s_dentry_lru.node); 290 WARN_ON(s->s_inode_lru.node); 291 WARN_ON(!list_empty(&s->s_mounts)); 292 security_sb_free(s); 293 put_user_ns(s->s_user_ns); 294 kfree(s->s_subtype); 295 call_rcu(&s->rcu, destroy_super_rcu); 296 } 297 } 298 299 /** 300 * put_super - drop a temporary reference to superblock 301 * @sb: superblock in question 302 * 303 * Drops a temporary reference, frees superblock if there's no 304 * references left. 305 */ 306 void put_super(struct super_block *sb) 307 { 308 spin_lock(&sb_lock); 309 __put_super(sb); 310 spin_unlock(&sb_lock); 311 } 312 313 314 /** 315 * deactivate_locked_super - drop an active reference to superblock 316 * @s: superblock to deactivate 317 * 318 * Drops an active reference to superblock, converting it into a temporary 319 * one if there is no other active references left. In that case we 320 * tell fs driver to shut it down and drop the temporary reference we 321 * had just acquired. 322 * 323 * Caller holds exclusive lock on superblock; that lock is released. 324 */ 325 void deactivate_locked_super(struct super_block *s) 326 { 327 struct file_system_type *fs = s->s_type; 328 if (atomic_dec_and_test(&s->s_active)) { 329 unregister_shrinker(&s->s_shrink); 330 fs->kill_sb(s); 331 332 /* 333 * Since list_lru_destroy() may sleep, we cannot call it from 334 * put_super(), where we hold the sb_lock. Therefore we destroy 335 * the lru lists right now. 336 */ 337 list_lru_destroy(&s->s_dentry_lru); 338 list_lru_destroy(&s->s_inode_lru); 339 340 put_filesystem(fs); 341 put_super(s); 342 } else { 343 up_write(&s->s_umount); 344 } 345 } 346 347 EXPORT_SYMBOL(deactivate_locked_super); 348 349 /** 350 * deactivate_super - drop an active reference to superblock 351 * @s: superblock to deactivate 352 * 353 * Variant of deactivate_locked_super(), except that superblock is *not* 354 * locked by caller. If we are going to drop the final active reference, 355 * lock will be acquired prior to that. 356 */ 357 void deactivate_super(struct super_block *s) 358 { 359 if (!atomic_add_unless(&s->s_active, -1, 1)) { 360 down_write(&s->s_umount); 361 deactivate_locked_super(s); 362 } 363 } 364 365 EXPORT_SYMBOL(deactivate_super); 366 367 /** 368 * grab_super - acquire an active reference 369 * @s: reference we are trying to make active 370 * 371 * Tries to acquire an active reference. grab_super() is used when we 372 * had just found a superblock in super_blocks or fs_type->fs_supers 373 * and want to turn it into a full-blown active reference. grab_super() 374 * is called with sb_lock held and drops it. Returns 1 in case of 375 * success, 0 if we had failed (superblock contents was already dead or 376 * dying when grab_super() had been called). Note that this is only 377 * called for superblocks not in rundown mode (== ones still on ->fs_supers 378 * of their type), so increment of ->s_count is OK here. 379 */ 380 static int grab_super(struct super_block *s) __releases(sb_lock) 381 { 382 s->s_count++; 383 spin_unlock(&sb_lock); 384 down_write(&s->s_umount); 385 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 386 put_super(s); 387 return 1; 388 } 389 up_write(&s->s_umount); 390 put_super(s); 391 return 0; 392 } 393 394 /* 395 * trylock_super - try to grab ->s_umount shared 396 * @sb: reference we are trying to grab 397 * 398 * Try to prevent fs shutdown. This is used in places where we 399 * cannot take an active reference but we need to ensure that the 400 * filesystem is not shut down while we are working on it. It returns 401 * false if we cannot acquire s_umount or if we lose the race and 402 * filesystem already got into shutdown, and returns true with the s_umount 403 * lock held in read mode in case of success. On successful return, 404 * the caller must drop the s_umount lock when done. 405 * 406 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 407 * The reason why it's safe is that we are OK with doing trylock instead 408 * of down_read(). There's a couple of places that are OK with that, but 409 * it's very much not a general-purpose interface. 410 */ 411 bool trylock_super(struct super_block *sb) 412 { 413 if (down_read_trylock(&sb->s_umount)) { 414 if (!hlist_unhashed(&sb->s_instances) && 415 sb->s_root && (sb->s_flags & SB_BORN)) 416 return true; 417 up_read(&sb->s_umount); 418 } 419 420 return false; 421 } 422 423 /** 424 * retire_super - prevents superblock from being reused 425 * @sb: superblock to retire 426 * 427 * The function marks superblock to be ignored in superblock test, which 428 * prevents it from being reused for any new mounts. If the superblock has 429 * a private bdi, it also unregisters it, but doesn't reduce the refcount 430 * of the superblock to prevent potential races. The refcount is reduced 431 * by generic_shutdown_super(). The function can not be called 432 * concurrently with generic_shutdown_super(). It is safe to call the 433 * function multiple times, subsequent calls have no effect. 434 * 435 * The marker will affect the re-use only for block-device-based 436 * superblocks. Other superblocks will still get marked if this function 437 * is used, but that will not affect their reusability. 438 */ 439 void retire_super(struct super_block *sb) 440 { 441 WARN_ON(!sb->s_bdev); 442 down_write(&sb->s_umount); 443 if (sb->s_iflags & SB_I_PERSB_BDI) { 444 bdi_unregister(sb->s_bdi); 445 sb->s_iflags &= ~SB_I_PERSB_BDI; 446 } 447 sb->s_iflags |= SB_I_RETIRED; 448 up_write(&sb->s_umount); 449 } 450 EXPORT_SYMBOL(retire_super); 451 452 /** 453 * generic_shutdown_super - common helper for ->kill_sb() 454 * @sb: superblock to kill 455 * 456 * generic_shutdown_super() does all fs-independent work on superblock 457 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 458 * that need destruction out of superblock, call generic_shutdown_super() 459 * and release aforementioned objects. Note: dentries and inodes _are_ 460 * taken care of and do not need specific handling. 461 * 462 * Upon calling this function, the filesystem may no longer alter or 463 * rearrange the set of dentries belonging to this super_block, nor may it 464 * change the attachments of dentries to inodes. 465 */ 466 void generic_shutdown_super(struct super_block *sb) 467 { 468 const struct super_operations *sop = sb->s_op; 469 470 if (sb->s_root) { 471 shrink_dcache_for_umount(sb); 472 sync_filesystem(sb); 473 sb->s_flags &= ~SB_ACTIVE; 474 475 cgroup_writeback_umount(); 476 477 /* Evict all inodes with zero refcount. */ 478 evict_inodes(sb); 479 480 /* 481 * Clean up and evict any inodes that still have references due 482 * to fsnotify or the security policy. 483 */ 484 fsnotify_sb_delete(sb); 485 security_sb_delete(sb); 486 487 /* 488 * Now that all potentially-encrypted inodes have been evicted, 489 * the fscrypt keyring can be destroyed. 490 */ 491 fscrypt_destroy_keyring(sb); 492 493 if (sb->s_dio_done_wq) { 494 destroy_workqueue(sb->s_dio_done_wq); 495 sb->s_dio_done_wq = NULL; 496 } 497 498 if (sop->put_super) 499 sop->put_super(sb); 500 501 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), 502 "VFS: Busy inodes after unmount of %s (%s)", 503 sb->s_id, sb->s_type->name)) { 504 /* 505 * Adding a proper bailout path here would be hard, but 506 * we can at least make it more likely that a later 507 * iput_final() or such crashes cleanly. 508 */ 509 struct inode *inode; 510 511 spin_lock(&sb->s_inode_list_lock); 512 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 513 inode->i_op = VFS_PTR_POISON; 514 inode->i_sb = VFS_PTR_POISON; 515 inode->i_mapping = VFS_PTR_POISON; 516 } 517 spin_unlock(&sb->s_inode_list_lock); 518 } 519 } 520 spin_lock(&sb_lock); 521 /* should be initialized for __put_super_and_need_restart() */ 522 hlist_del_init(&sb->s_instances); 523 spin_unlock(&sb_lock); 524 up_write(&sb->s_umount); 525 if (sb->s_bdi != &noop_backing_dev_info) { 526 if (sb->s_iflags & SB_I_PERSB_BDI) 527 bdi_unregister(sb->s_bdi); 528 bdi_put(sb->s_bdi); 529 sb->s_bdi = &noop_backing_dev_info; 530 } 531 } 532 533 EXPORT_SYMBOL(generic_shutdown_super); 534 535 bool mount_capable(struct fs_context *fc) 536 { 537 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 538 return capable(CAP_SYS_ADMIN); 539 else 540 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 541 } 542 543 /** 544 * sget_fc - Find or create a superblock 545 * @fc: Filesystem context. 546 * @test: Comparison callback 547 * @set: Setup callback 548 * 549 * Find or create a superblock using the parameters stored in the filesystem 550 * context and the two callback functions. 551 * 552 * If an extant superblock is matched, then that will be returned with an 553 * elevated reference count that the caller must transfer or discard. 554 * 555 * If no match is made, a new superblock will be allocated and basic 556 * initialisation will be performed (s_type, s_fs_info and s_id will be set and 557 * the set() callback will be invoked), the superblock will be published and it 558 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE 559 * as yet unset. 560 */ 561 struct super_block *sget_fc(struct fs_context *fc, 562 int (*test)(struct super_block *, struct fs_context *), 563 int (*set)(struct super_block *, struct fs_context *)) 564 { 565 struct super_block *s = NULL; 566 struct super_block *old; 567 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 568 int err; 569 570 retry: 571 spin_lock(&sb_lock); 572 if (test) { 573 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 574 if (test(old, fc)) 575 goto share_extant_sb; 576 } 577 } 578 if (!s) { 579 spin_unlock(&sb_lock); 580 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 581 if (!s) 582 return ERR_PTR(-ENOMEM); 583 goto retry; 584 } 585 586 s->s_fs_info = fc->s_fs_info; 587 err = set(s, fc); 588 if (err) { 589 s->s_fs_info = NULL; 590 spin_unlock(&sb_lock); 591 destroy_unused_super(s); 592 return ERR_PTR(err); 593 } 594 fc->s_fs_info = NULL; 595 s->s_type = fc->fs_type; 596 s->s_iflags |= fc->s_iflags; 597 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 598 list_add_tail(&s->s_list, &super_blocks); 599 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 600 spin_unlock(&sb_lock); 601 get_filesystem(s->s_type); 602 register_shrinker_prepared(&s->s_shrink); 603 return s; 604 605 share_extant_sb: 606 if (user_ns != old->s_user_ns) { 607 spin_unlock(&sb_lock); 608 destroy_unused_super(s); 609 return ERR_PTR(-EBUSY); 610 } 611 if (!grab_super(old)) 612 goto retry; 613 destroy_unused_super(s); 614 return old; 615 } 616 EXPORT_SYMBOL(sget_fc); 617 618 /** 619 * sget - find or create a superblock 620 * @type: filesystem type superblock should belong to 621 * @test: comparison callback 622 * @set: setup callback 623 * @flags: mount flags 624 * @data: argument to each of them 625 */ 626 struct super_block *sget(struct file_system_type *type, 627 int (*test)(struct super_block *,void *), 628 int (*set)(struct super_block *,void *), 629 int flags, 630 void *data) 631 { 632 struct user_namespace *user_ns = current_user_ns(); 633 struct super_block *s = NULL; 634 struct super_block *old; 635 int err; 636 637 /* We don't yet pass the user namespace of the parent 638 * mount through to here so always use &init_user_ns 639 * until that changes. 640 */ 641 if (flags & SB_SUBMOUNT) 642 user_ns = &init_user_ns; 643 644 retry: 645 spin_lock(&sb_lock); 646 if (test) { 647 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 648 if (!test(old, data)) 649 continue; 650 if (user_ns != old->s_user_ns) { 651 spin_unlock(&sb_lock); 652 destroy_unused_super(s); 653 return ERR_PTR(-EBUSY); 654 } 655 if (!grab_super(old)) 656 goto retry; 657 destroy_unused_super(s); 658 return old; 659 } 660 } 661 if (!s) { 662 spin_unlock(&sb_lock); 663 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 664 if (!s) 665 return ERR_PTR(-ENOMEM); 666 goto retry; 667 } 668 669 err = set(s, data); 670 if (err) { 671 spin_unlock(&sb_lock); 672 destroy_unused_super(s); 673 return ERR_PTR(err); 674 } 675 s->s_type = type; 676 strscpy(s->s_id, type->name, sizeof(s->s_id)); 677 list_add_tail(&s->s_list, &super_blocks); 678 hlist_add_head(&s->s_instances, &type->fs_supers); 679 spin_unlock(&sb_lock); 680 get_filesystem(type); 681 register_shrinker_prepared(&s->s_shrink); 682 return s; 683 } 684 EXPORT_SYMBOL(sget); 685 686 void drop_super(struct super_block *sb) 687 { 688 up_read(&sb->s_umount); 689 put_super(sb); 690 } 691 692 EXPORT_SYMBOL(drop_super); 693 694 void drop_super_exclusive(struct super_block *sb) 695 { 696 up_write(&sb->s_umount); 697 put_super(sb); 698 } 699 EXPORT_SYMBOL(drop_super_exclusive); 700 701 static void __iterate_supers(void (*f)(struct super_block *)) 702 { 703 struct super_block *sb, *p = NULL; 704 705 spin_lock(&sb_lock); 706 list_for_each_entry(sb, &super_blocks, s_list) { 707 if (hlist_unhashed(&sb->s_instances)) 708 continue; 709 sb->s_count++; 710 spin_unlock(&sb_lock); 711 712 f(sb); 713 714 spin_lock(&sb_lock); 715 if (p) 716 __put_super(p); 717 p = sb; 718 } 719 if (p) 720 __put_super(p); 721 spin_unlock(&sb_lock); 722 } 723 /** 724 * iterate_supers - call function for all active superblocks 725 * @f: function to call 726 * @arg: argument to pass to it 727 * 728 * Scans the superblock list and calls given function, passing it 729 * locked superblock and given argument. 730 */ 731 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 732 { 733 struct super_block *sb, *p = NULL; 734 735 spin_lock(&sb_lock); 736 list_for_each_entry(sb, &super_blocks, s_list) { 737 if (hlist_unhashed(&sb->s_instances)) 738 continue; 739 sb->s_count++; 740 spin_unlock(&sb_lock); 741 742 down_read(&sb->s_umount); 743 if (sb->s_root && (sb->s_flags & SB_BORN)) 744 f(sb, arg); 745 up_read(&sb->s_umount); 746 747 spin_lock(&sb_lock); 748 if (p) 749 __put_super(p); 750 p = sb; 751 } 752 if (p) 753 __put_super(p); 754 spin_unlock(&sb_lock); 755 } 756 757 /** 758 * iterate_supers_type - call function for superblocks of given type 759 * @type: fs type 760 * @f: function to call 761 * @arg: argument to pass to it 762 * 763 * Scans the superblock list and calls given function, passing it 764 * locked superblock and given argument. 765 */ 766 void iterate_supers_type(struct file_system_type *type, 767 void (*f)(struct super_block *, void *), void *arg) 768 { 769 struct super_block *sb, *p = NULL; 770 771 spin_lock(&sb_lock); 772 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 773 sb->s_count++; 774 spin_unlock(&sb_lock); 775 776 down_read(&sb->s_umount); 777 if (sb->s_root && (sb->s_flags & SB_BORN)) 778 f(sb, arg); 779 up_read(&sb->s_umount); 780 781 spin_lock(&sb_lock); 782 if (p) 783 __put_super(p); 784 p = sb; 785 } 786 if (p) 787 __put_super(p); 788 spin_unlock(&sb_lock); 789 } 790 791 EXPORT_SYMBOL(iterate_supers_type); 792 793 /** 794 * get_super - get the superblock of a device 795 * @bdev: device to get the superblock for 796 * 797 * Scans the superblock list and finds the superblock of the file system 798 * mounted on the device given. %NULL is returned if no match is found. 799 */ 800 struct super_block *get_super(struct block_device *bdev) 801 { 802 struct super_block *sb; 803 804 if (!bdev) 805 return NULL; 806 807 spin_lock(&sb_lock); 808 rescan: 809 list_for_each_entry(sb, &super_blocks, s_list) { 810 if (hlist_unhashed(&sb->s_instances)) 811 continue; 812 if (sb->s_bdev == bdev) { 813 sb->s_count++; 814 spin_unlock(&sb_lock); 815 down_read(&sb->s_umount); 816 /* still alive? */ 817 if (sb->s_root && (sb->s_flags & SB_BORN)) 818 return sb; 819 up_read(&sb->s_umount); 820 /* nope, got unmounted */ 821 spin_lock(&sb_lock); 822 __put_super(sb); 823 goto rescan; 824 } 825 } 826 spin_unlock(&sb_lock); 827 return NULL; 828 } 829 830 /** 831 * get_active_super - get an active reference to the superblock of a device 832 * @bdev: device to get the superblock for 833 * 834 * Scans the superblock list and finds the superblock of the file system 835 * mounted on the device given. Returns the superblock with an active 836 * reference or %NULL if none was found. 837 */ 838 struct super_block *get_active_super(struct block_device *bdev) 839 { 840 struct super_block *sb; 841 842 if (!bdev) 843 return NULL; 844 845 restart: 846 spin_lock(&sb_lock); 847 list_for_each_entry(sb, &super_blocks, s_list) { 848 if (hlist_unhashed(&sb->s_instances)) 849 continue; 850 if (sb->s_bdev == bdev) { 851 if (!grab_super(sb)) 852 goto restart; 853 up_write(&sb->s_umount); 854 return sb; 855 } 856 } 857 spin_unlock(&sb_lock); 858 return NULL; 859 } 860 861 struct super_block *user_get_super(dev_t dev, bool excl) 862 { 863 struct super_block *sb; 864 865 spin_lock(&sb_lock); 866 rescan: 867 list_for_each_entry(sb, &super_blocks, s_list) { 868 if (hlist_unhashed(&sb->s_instances)) 869 continue; 870 if (sb->s_dev == dev) { 871 sb->s_count++; 872 spin_unlock(&sb_lock); 873 if (excl) 874 down_write(&sb->s_umount); 875 else 876 down_read(&sb->s_umount); 877 /* still alive? */ 878 if (sb->s_root && (sb->s_flags & SB_BORN)) 879 return sb; 880 if (excl) 881 up_write(&sb->s_umount); 882 else 883 up_read(&sb->s_umount); 884 /* nope, got unmounted */ 885 spin_lock(&sb_lock); 886 __put_super(sb); 887 goto rescan; 888 } 889 } 890 spin_unlock(&sb_lock); 891 return NULL; 892 } 893 894 /** 895 * reconfigure_super - asks filesystem to change superblock parameters 896 * @fc: The superblock and configuration 897 * 898 * Alters the configuration parameters of a live superblock. 899 */ 900 int reconfigure_super(struct fs_context *fc) 901 { 902 struct super_block *sb = fc->root->d_sb; 903 int retval; 904 bool remount_ro = false; 905 bool remount_rw = false; 906 bool force = fc->sb_flags & SB_FORCE; 907 908 if (fc->sb_flags_mask & ~MS_RMT_MASK) 909 return -EINVAL; 910 if (sb->s_writers.frozen != SB_UNFROZEN) 911 return -EBUSY; 912 913 retval = security_sb_remount(sb, fc->security); 914 if (retval) 915 return retval; 916 917 if (fc->sb_flags_mask & SB_RDONLY) { 918 #ifdef CONFIG_BLOCK 919 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 920 bdev_read_only(sb->s_bdev)) 921 return -EACCES; 922 #endif 923 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb); 924 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 925 } 926 927 if (remount_ro) { 928 if (!hlist_empty(&sb->s_pins)) { 929 up_write(&sb->s_umount); 930 group_pin_kill(&sb->s_pins); 931 down_write(&sb->s_umount); 932 if (!sb->s_root) 933 return 0; 934 if (sb->s_writers.frozen != SB_UNFROZEN) 935 return -EBUSY; 936 remount_ro = !sb_rdonly(sb); 937 } 938 } 939 shrink_dcache_sb(sb); 940 941 /* If we are reconfiguring to RDONLY and current sb is read/write, 942 * make sure there are no files open for writing. 943 */ 944 if (remount_ro) { 945 if (force) { 946 sb_start_ro_state_change(sb); 947 } else { 948 retval = sb_prepare_remount_readonly(sb); 949 if (retval) 950 return retval; 951 } 952 } else if (remount_rw) { 953 /* 954 * Protect filesystem's reconfigure code from writes from 955 * userspace until reconfigure finishes. 956 */ 957 sb_start_ro_state_change(sb); 958 } 959 960 if (fc->ops->reconfigure) { 961 retval = fc->ops->reconfigure(fc); 962 if (retval) { 963 if (!force) 964 goto cancel_readonly; 965 /* If forced remount, go ahead despite any errors */ 966 WARN(1, "forced remount of a %s fs returned %i\n", 967 sb->s_type->name, retval); 968 } 969 } 970 971 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 972 (fc->sb_flags & fc->sb_flags_mask))); 973 sb_end_ro_state_change(sb); 974 975 /* 976 * Some filesystems modify their metadata via some other path than the 977 * bdev buffer cache (eg. use a private mapping, or directories in 978 * pagecache, etc). Also file data modifications go via their own 979 * mappings. So If we try to mount readonly then copy the filesystem 980 * from bdev, we could get stale data, so invalidate it to give a best 981 * effort at coherency. 982 */ 983 if (remount_ro && sb->s_bdev) 984 invalidate_bdev(sb->s_bdev); 985 return 0; 986 987 cancel_readonly: 988 sb_end_ro_state_change(sb); 989 return retval; 990 } 991 992 static void do_emergency_remount_callback(struct super_block *sb) 993 { 994 down_write(&sb->s_umount); 995 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 996 !sb_rdonly(sb)) { 997 struct fs_context *fc; 998 999 fc = fs_context_for_reconfigure(sb->s_root, 1000 SB_RDONLY | SB_FORCE, SB_RDONLY); 1001 if (!IS_ERR(fc)) { 1002 if (parse_monolithic_mount_data(fc, NULL) == 0) 1003 (void)reconfigure_super(fc); 1004 put_fs_context(fc); 1005 } 1006 } 1007 up_write(&sb->s_umount); 1008 } 1009 1010 static void do_emergency_remount(struct work_struct *work) 1011 { 1012 __iterate_supers(do_emergency_remount_callback); 1013 kfree(work); 1014 printk("Emergency Remount complete\n"); 1015 } 1016 1017 void emergency_remount(void) 1018 { 1019 struct work_struct *work; 1020 1021 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1022 if (work) { 1023 INIT_WORK(work, do_emergency_remount); 1024 schedule_work(work); 1025 } 1026 } 1027 1028 static void do_thaw_all_callback(struct super_block *sb) 1029 { 1030 down_write(&sb->s_umount); 1031 if (sb->s_root && sb->s_flags & SB_BORN) { 1032 if (IS_ENABLED(CONFIG_BLOCK)) 1033 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 1034 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev); 1035 thaw_super_locked(sb); 1036 } else { 1037 up_write(&sb->s_umount); 1038 } 1039 } 1040 1041 static void do_thaw_all(struct work_struct *work) 1042 { 1043 __iterate_supers(do_thaw_all_callback); 1044 kfree(work); 1045 printk(KERN_WARNING "Emergency Thaw complete\n"); 1046 } 1047 1048 /** 1049 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1050 * 1051 * Used for emergency unfreeze of all filesystems via SysRq 1052 */ 1053 void emergency_thaw_all(void) 1054 { 1055 struct work_struct *work; 1056 1057 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1058 if (work) { 1059 INIT_WORK(work, do_thaw_all); 1060 schedule_work(work); 1061 } 1062 } 1063 1064 static DEFINE_IDA(unnamed_dev_ida); 1065 1066 /** 1067 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1068 * @p: Pointer to a dev_t. 1069 * 1070 * Filesystems which don't use real block devices can call this function 1071 * to allocate a virtual block device. 1072 * 1073 * Context: Any context. Frequently called while holding sb_lock. 1074 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1075 * or -ENOMEM if memory allocation failed. 1076 */ 1077 int get_anon_bdev(dev_t *p) 1078 { 1079 int dev; 1080 1081 /* 1082 * Many userspace utilities consider an FSID of 0 invalid. 1083 * Always return at least 1 from get_anon_bdev. 1084 */ 1085 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1086 GFP_ATOMIC); 1087 if (dev == -ENOSPC) 1088 dev = -EMFILE; 1089 if (dev < 0) 1090 return dev; 1091 1092 *p = MKDEV(0, dev); 1093 return 0; 1094 } 1095 EXPORT_SYMBOL(get_anon_bdev); 1096 1097 void free_anon_bdev(dev_t dev) 1098 { 1099 ida_free(&unnamed_dev_ida, MINOR(dev)); 1100 } 1101 EXPORT_SYMBOL(free_anon_bdev); 1102 1103 int set_anon_super(struct super_block *s, void *data) 1104 { 1105 return get_anon_bdev(&s->s_dev); 1106 } 1107 EXPORT_SYMBOL(set_anon_super); 1108 1109 void kill_anon_super(struct super_block *sb) 1110 { 1111 dev_t dev = sb->s_dev; 1112 generic_shutdown_super(sb); 1113 free_anon_bdev(dev); 1114 } 1115 EXPORT_SYMBOL(kill_anon_super); 1116 1117 void kill_litter_super(struct super_block *sb) 1118 { 1119 if (sb->s_root) 1120 d_genocide(sb->s_root); 1121 kill_anon_super(sb); 1122 } 1123 EXPORT_SYMBOL(kill_litter_super); 1124 1125 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1126 { 1127 return set_anon_super(sb, NULL); 1128 } 1129 EXPORT_SYMBOL(set_anon_super_fc); 1130 1131 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1132 { 1133 return sb->s_fs_info == fc->s_fs_info; 1134 } 1135 1136 static int test_single_super(struct super_block *s, struct fs_context *fc) 1137 { 1138 return 1; 1139 } 1140 1141 static int vfs_get_super(struct fs_context *fc, bool reconf, 1142 int (*test)(struct super_block *, struct fs_context *), 1143 int (*fill_super)(struct super_block *sb, 1144 struct fs_context *fc)) 1145 { 1146 struct super_block *sb; 1147 int err; 1148 1149 sb = sget_fc(fc, test, set_anon_super_fc); 1150 if (IS_ERR(sb)) 1151 return PTR_ERR(sb); 1152 1153 if (!sb->s_root) { 1154 err = fill_super(sb, fc); 1155 if (err) 1156 goto error; 1157 1158 sb->s_flags |= SB_ACTIVE; 1159 fc->root = dget(sb->s_root); 1160 } else { 1161 fc->root = dget(sb->s_root); 1162 if (reconf) { 1163 err = reconfigure_super(fc); 1164 if (err < 0) { 1165 dput(fc->root); 1166 fc->root = NULL; 1167 goto error; 1168 } 1169 } 1170 } 1171 1172 return 0; 1173 1174 error: 1175 deactivate_locked_super(sb); 1176 return err; 1177 } 1178 1179 int get_tree_nodev(struct fs_context *fc, 1180 int (*fill_super)(struct super_block *sb, 1181 struct fs_context *fc)) 1182 { 1183 return vfs_get_super(fc, false, NULL, fill_super); 1184 } 1185 EXPORT_SYMBOL(get_tree_nodev); 1186 1187 int get_tree_single(struct fs_context *fc, 1188 int (*fill_super)(struct super_block *sb, 1189 struct fs_context *fc)) 1190 { 1191 return vfs_get_super(fc, false, test_single_super, fill_super); 1192 } 1193 EXPORT_SYMBOL(get_tree_single); 1194 1195 int get_tree_single_reconf(struct fs_context *fc, 1196 int (*fill_super)(struct super_block *sb, 1197 struct fs_context *fc)) 1198 { 1199 return vfs_get_super(fc, true, test_single_super, fill_super); 1200 } 1201 EXPORT_SYMBOL(get_tree_single_reconf); 1202 1203 int get_tree_keyed(struct fs_context *fc, 1204 int (*fill_super)(struct super_block *sb, 1205 struct fs_context *fc), 1206 void *key) 1207 { 1208 fc->s_fs_info = key; 1209 return vfs_get_super(fc, false, test_keyed_super, fill_super); 1210 } 1211 EXPORT_SYMBOL(get_tree_keyed); 1212 1213 #ifdef CONFIG_BLOCK 1214 static void fs_mark_dead(struct block_device *bdev) 1215 { 1216 struct super_block *sb; 1217 1218 sb = get_super(bdev); 1219 if (!sb) 1220 return; 1221 1222 if (sb->s_op->shutdown) 1223 sb->s_op->shutdown(sb); 1224 drop_super(sb); 1225 } 1226 1227 static const struct blk_holder_ops fs_holder_ops = { 1228 .mark_dead = fs_mark_dead, 1229 }; 1230 1231 static int set_bdev_super(struct super_block *s, void *data) 1232 { 1233 s->s_bdev = data; 1234 s->s_dev = s->s_bdev->bd_dev; 1235 s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi); 1236 1237 if (bdev_stable_writes(s->s_bdev)) 1238 s->s_iflags |= SB_I_STABLE_WRITES; 1239 return 0; 1240 } 1241 1242 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1243 { 1244 return set_bdev_super(s, fc->sget_key); 1245 } 1246 1247 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1248 { 1249 return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key; 1250 } 1251 1252 /** 1253 * get_tree_bdev - Get a superblock based on a single block device 1254 * @fc: The filesystem context holding the parameters 1255 * @fill_super: Helper to initialise a new superblock 1256 */ 1257 int get_tree_bdev(struct fs_context *fc, 1258 int (*fill_super)(struct super_block *, 1259 struct fs_context *)) 1260 { 1261 struct block_device *bdev; 1262 struct super_block *s; 1263 int error = 0; 1264 1265 if (!fc->source) 1266 return invalf(fc, "No source specified"); 1267 1268 bdev = blkdev_get_by_path(fc->source, sb_open_mode(fc->sb_flags), 1269 fc->fs_type, &fs_holder_ops); 1270 if (IS_ERR(bdev)) { 1271 errorf(fc, "%s: Can't open blockdev", fc->source); 1272 return PTR_ERR(bdev); 1273 } 1274 1275 /* Once the superblock is inserted into the list by sget_fc(), s_umount 1276 * will protect the lockfs code from trying to start a snapshot while 1277 * we are mounting 1278 */ 1279 mutex_lock(&bdev->bd_fsfreeze_mutex); 1280 if (bdev->bd_fsfreeze_count > 0) { 1281 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1282 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1283 blkdev_put(bdev, fc->fs_type); 1284 return -EBUSY; 1285 } 1286 1287 fc->sb_flags |= SB_NOSEC; 1288 fc->sget_key = bdev; 1289 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc); 1290 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1291 if (IS_ERR(s)) { 1292 blkdev_put(bdev, fc->fs_type); 1293 return PTR_ERR(s); 1294 } 1295 1296 if (s->s_root) { 1297 /* Don't summarily change the RO/RW state. */ 1298 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1299 warnf(fc, "%pg: Can't mount, would change RO state", bdev); 1300 deactivate_locked_super(s); 1301 blkdev_put(bdev, fc->fs_type); 1302 return -EBUSY; 1303 } 1304 1305 /* 1306 * s_umount nests inside open_mutex during 1307 * __invalidate_device(). blkdev_put() acquires 1308 * open_mutex and can't be called under s_umount. Drop 1309 * s_umount temporarily. This is safe as we're 1310 * holding an active reference. 1311 */ 1312 up_write(&s->s_umount); 1313 blkdev_put(bdev, fc->fs_type); 1314 down_write(&s->s_umount); 1315 } else { 1316 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1317 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", 1318 fc->fs_type->name, s->s_id); 1319 sb_set_blocksize(s, block_size(bdev)); 1320 error = fill_super(s, fc); 1321 if (error) { 1322 deactivate_locked_super(s); 1323 return error; 1324 } 1325 1326 s->s_flags |= SB_ACTIVE; 1327 bdev->bd_super = s; 1328 } 1329 1330 BUG_ON(fc->root); 1331 fc->root = dget(s->s_root); 1332 return 0; 1333 } 1334 EXPORT_SYMBOL(get_tree_bdev); 1335 1336 static int test_bdev_super(struct super_block *s, void *data) 1337 { 1338 return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data; 1339 } 1340 1341 struct dentry *mount_bdev(struct file_system_type *fs_type, 1342 int flags, const char *dev_name, void *data, 1343 int (*fill_super)(struct super_block *, void *, int)) 1344 { 1345 struct block_device *bdev; 1346 struct super_block *s; 1347 int error = 0; 1348 1349 bdev = blkdev_get_by_path(dev_name, sb_open_mode(flags), fs_type, 1350 &fs_holder_ops); 1351 if (IS_ERR(bdev)) 1352 return ERR_CAST(bdev); 1353 1354 /* 1355 * once the super is inserted into the list by sget, s_umount 1356 * will protect the lockfs code from trying to start a snapshot 1357 * while we are mounting 1358 */ 1359 mutex_lock(&bdev->bd_fsfreeze_mutex); 1360 if (bdev->bd_fsfreeze_count > 0) { 1361 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1362 error = -EBUSY; 1363 goto error_bdev; 1364 } 1365 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1366 bdev); 1367 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1368 if (IS_ERR(s)) 1369 goto error_s; 1370 1371 if (s->s_root) { 1372 if ((flags ^ s->s_flags) & SB_RDONLY) { 1373 deactivate_locked_super(s); 1374 error = -EBUSY; 1375 goto error_bdev; 1376 } 1377 1378 /* 1379 * s_umount nests inside open_mutex during 1380 * __invalidate_device(). blkdev_put() acquires 1381 * open_mutex and can't be called under s_umount. Drop 1382 * s_umount temporarily. This is safe as we're 1383 * holding an active reference. 1384 */ 1385 up_write(&s->s_umount); 1386 blkdev_put(bdev, fs_type); 1387 down_write(&s->s_umount); 1388 } else { 1389 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1390 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", 1391 fs_type->name, s->s_id); 1392 sb_set_blocksize(s, block_size(bdev)); 1393 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1394 if (error) { 1395 deactivate_locked_super(s); 1396 goto error; 1397 } 1398 1399 s->s_flags |= SB_ACTIVE; 1400 bdev->bd_super = s; 1401 } 1402 1403 return dget(s->s_root); 1404 1405 error_s: 1406 error = PTR_ERR(s); 1407 error_bdev: 1408 blkdev_put(bdev, fs_type); 1409 error: 1410 return ERR_PTR(error); 1411 } 1412 EXPORT_SYMBOL(mount_bdev); 1413 1414 void kill_block_super(struct super_block *sb) 1415 { 1416 struct block_device *bdev = sb->s_bdev; 1417 1418 bdev->bd_super = NULL; 1419 generic_shutdown_super(sb); 1420 sync_blockdev(bdev); 1421 blkdev_put(bdev, sb->s_type); 1422 } 1423 1424 EXPORT_SYMBOL(kill_block_super); 1425 #endif 1426 1427 struct dentry *mount_nodev(struct file_system_type *fs_type, 1428 int flags, void *data, 1429 int (*fill_super)(struct super_block *, void *, int)) 1430 { 1431 int error; 1432 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1433 1434 if (IS_ERR(s)) 1435 return ERR_CAST(s); 1436 1437 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1438 if (error) { 1439 deactivate_locked_super(s); 1440 return ERR_PTR(error); 1441 } 1442 s->s_flags |= SB_ACTIVE; 1443 return dget(s->s_root); 1444 } 1445 EXPORT_SYMBOL(mount_nodev); 1446 1447 int reconfigure_single(struct super_block *s, 1448 int flags, void *data) 1449 { 1450 struct fs_context *fc; 1451 int ret; 1452 1453 /* The caller really need to be passing fc down into mount_single(), 1454 * then a chunk of this can be removed. [Bollocks -- AV] 1455 * Better yet, reconfiguration shouldn't happen, but rather the second 1456 * mount should be rejected if the parameters are not compatible. 1457 */ 1458 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1459 if (IS_ERR(fc)) 1460 return PTR_ERR(fc); 1461 1462 ret = parse_monolithic_mount_data(fc, data); 1463 if (ret < 0) 1464 goto out; 1465 1466 ret = reconfigure_super(fc); 1467 out: 1468 put_fs_context(fc); 1469 return ret; 1470 } 1471 1472 static int compare_single(struct super_block *s, void *p) 1473 { 1474 return 1; 1475 } 1476 1477 struct dentry *mount_single(struct file_system_type *fs_type, 1478 int flags, void *data, 1479 int (*fill_super)(struct super_block *, void *, int)) 1480 { 1481 struct super_block *s; 1482 int error; 1483 1484 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1485 if (IS_ERR(s)) 1486 return ERR_CAST(s); 1487 if (!s->s_root) { 1488 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1489 if (!error) 1490 s->s_flags |= SB_ACTIVE; 1491 } else { 1492 error = reconfigure_single(s, flags, data); 1493 } 1494 if (unlikely(error)) { 1495 deactivate_locked_super(s); 1496 return ERR_PTR(error); 1497 } 1498 return dget(s->s_root); 1499 } 1500 EXPORT_SYMBOL(mount_single); 1501 1502 /** 1503 * vfs_get_tree - Get the mountable root 1504 * @fc: The superblock configuration context. 1505 * 1506 * The filesystem is invoked to get or create a superblock which can then later 1507 * be used for mounting. The filesystem places a pointer to the root to be 1508 * used for mounting in @fc->root. 1509 */ 1510 int vfs_get_tree(struct fs_context *fc) 1511 { 1512 struct super_block *sb; 1513 int error; 1514 1515 if (fc->root) 1516 return -EBUSY; 1517 1518 /* Get the mountable root in fc->root, with a ref on the root and a ref 1519 * on the superblock. 1520 */ 1521 error = fc->ops->get_tree(fc); 1522 if (error < 0) 1523 return error; 1524 1525 if (!fc->root) { 1526 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1527 fc->fs_type->name); 1528 /* We don't know what the locking state of the superblock is - 1529 * if there is a superblock. 1530 */ 1531 BUG(); 1532 } 1533 1534 sb = fc->root->d_sb; 1535 WARN_ON(!sb->s_bdi); 1536 1537 /* 1538 * Write barrier is for super_cache_count(). We place it before setting 1539 * SB_BORN as the data dependency between the two functions is the 1540 * superblock structure contents that we just set up, not the SB_BORN 1541 * flag. 1542 */ 1543 smp_wmb(); 1544 sb->s_flags |= SB_BORN; 1545 1546 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1547 if (unlikely(error)) { 1548 fc_drop_locked(fc); 1549 return error; 1550 } 1551 1552 /* 1553 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1554 * but s_maxbytes was an unsigned long long for many releases. Throw 1555 * this warning for a little while to try and catch filesystems that 1556 * violate this rule. 1557 */ 1558 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1559 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1560 1561 return 0; 1562 } 1563 EXPORT_SYMBOL(vfs_get_tree); 1564 1565 /* 1566 * Setup private BDI for given superblock. It gets automatically cleaned up 1567 * in generic_shutdown_super(). 1568 */ 1569 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1570 { 1571 struct backing_dev_info *bdi; 1572 int err; 1573 va_list args; 1574 1575 bdi = bdi_alloc(NUMA_NO_NODE); 1576 if (!bdi) 1577 return -ENOMEM; 1578 1579 va_start(args, fmt); 1580 err = bdi_register_va(bdi, fmt, args); 1581 va_end(args); 1582 if (err) { 1583 bdi_put(bdi); 1584 return err; 1585 } 1586 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1587 sb->s_bdi = bdi; 1588 sb->s_iflags |= SB_I_PERSB_BDI; 1589 1590 return 0; 1591 } 1592 EXPORT_SYMBOL(super_setup_bdi_name); 1593 1594 /* 1595 * Setup private BDI for given superblock. I gets automatically cleaned up 1596 * in generic_shutdown_super(). 1597 */ 1598 int super_setup_bdi(struct super_block *sb) 1599 { 1600 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1601 1602 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1603 atomic_long_inc_return(&bdi_seq)); 1604 } 1605 EXPORT_SYMBOL(super_setup_bdi); 1606 1607 /** 1608 * sb_wait_write - wait until all writers to given file system finish 1609 * @sb: the super for which we wait 1610 * @level: type of writers we wait for (normal vs page fault) 1611 * 1612 * This function waits until there are no writers of given type to given file 1613 * system. 1614 */ 1615 static void sb_wait_write(struct super_block *sb, int level) 1616 { 1617 percpu_down_write(sb->s_writers.rw_sem + level-1); 1618 } 1619 1620 /* 1621 * We are going to return to userspace and forget about these locks, the 1622 * ownership goes to the caller of thaw_super() which does unlock(). 1623 */ 1624 static void lockdep_sb_freeze_release(struct super_block *sb) 1625 { 1626 int level; 1627 1628 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1629 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1630 } 1631 1632 /* 1633 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1634 */ 1635 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1636 { 1637 int level; 1638 1639 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1640 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1641 } 1642 1643 static void sb_freeze_unlock(struct super_block *sb, int level) 1644 { 1645 for (level--; level >= 0; level--) 1646 percpu_up_write(sb->s_writers.rw_sem + level); 1647 } 1648 1649 /** 1650 * freeze_super - lock the filesystem and force it into a consistent state 1651 * @sb: the super to lock 1652 * 1653 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1654 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1655 * -EBUSY. 1656 * 1657 * During this function, sb->s_writers.frozen goes through these values: 1658 * 1659 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1660 * 1661 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1662 * writes should be blocked, though page faults are still allowed. We wait for 1663 * all writes to complete and then proceed to the next stage. 1664 * 1665 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1666 * but internal fs threads can still modify the filesystem (although they 1667 * should not dirty new pages or inodes), writeback can run etc. After waiting 1668 * for all running page faults we sync the filesystem which will clean all 1669 * dirty pages and inodes (no new dirty pages or inodes can be created when 1670 * sync is running). 1671 * 1672 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1673 * modification are blocked (e.g. XFS preallocation truncation on inode 1674 * reclaim). This is usually implemented by blocking new transactions for 1675 * filesystems that have them and need this additional guard. After all 1676 * internal writers are finished we call ->freeze_fs() to finish filesystem 1677 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1678 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1679 * 1680 * sb->s_writers.frozen is protected by sb->s_umount. 1681 */ 1682 int freeze_super(struct super_block *sb) 1683 { 1684 int ret; 1685 1686 atomic_inc(&sb->s_active); 1687 down_write(&sb->s_umount); 1688 if (sb->s_writers.frozen != SB_UNFROZEN) { 1689 deactivate_locked_super(sb); 1690 return -EBUSY; 1691 } 1692 1693 if (!(sb->s_flags & SB_BORN)) { 1694 up_write(&sb->s_umount); 1695 return 0; /* sic - it's "nothing to do" */ 1696 } 1697 1698 if (sb_rdonly(sb)) { 1699 /* Nothing to do really... */ 1700 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1701 up_write(&sb->s_umount); 1702 return 0; 1703 } 1704 1705 sb->s_writers.frozen = SB_FREEZE_WRITE; 1706 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1707 up_write(&sb->s_umount); 1708 sb_wait_write(sb, SB_FREEZE_WRITE); 1709 down_write(&sb->s_umount); 1710 1711 /* Now we go and block page faults... */ 1712 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1713 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1714 1715 /* All writers are done so after syncing there won't be dirty data */ 1716 ret = sync_filesystem(sb); 1717 if (ret) { 1718 sb->s_writers.frozen = SB_UNFROZEN; 1719 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 1720 deactivate_locked_super(sb); 1721 return ret; 1722 } 1723 1724 /* Now wait for internal filesystem counter */ 1725 sb->s_writers.frozen = SB_FREEZE_FS; 1726 sb_wait_write(sb, SB_FREEZE_FS); 1727 1728 if (sb->s_op->freeze_fs) { 1729 ret = sb->s_op->freeze_fs(sb); 1730 if (ret) { 1731 printk(KERN_ERR 1732 "VFS:Filesystem freeze failed\n"); 1733 sb->s_writers.frozen = SB_UNFROZEN; 1734 sb_freeze_unlock(sb, SB_FREEZE_FS); 1735 deactivate_locked_super(sb); 1736 return ret; 1737 } 1738 } 1739 /* 1740 * For debugging purposes so that fs can warn if it sees write activity 1741 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1742 */ 1743 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1744 lockdep_sb_freeze_release(sb); 1745 up_write(&sb->s_umount); 1746 return 0; 1747 } 1748 EXPORT_SYMBOL(freeze_super); 1749 1750 static int thaw_super_locked(struct super_block *sb) 1751 { 1752 int error; 1753 1754 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1755 up_write(&sb->s_umount); 1756 return -EINVAL; 1757 } 1758 1759 if (sb_rdonly(sb)) { 1760 sb->s_writers.frozen = SB_UNFROZEN; 1761 goto out; 1762 } 1763 1764 lockdep_sb_freeze_acquire(sb); 1765 1766 if (sb->s_op->unfreeze_fs) { 1767 error = sb->s_op->unfreeze_fs(sb); 1768 if (error) { 1769 printk(KERN_ERR 1770 "VFS:Filesystem thaw failed\n"); 1771 lockdep_sb_freeze_release(sb); 1772 up_write(&sb->s_umount); 1773 return error; 1774 } 1775 } 1776 1777 sb->s_writers.frozen = SB_UNFROZEN; 1778 sb_freeze_unlock(sb, SB_FREEZE_FS); 1779 out: 1780 deactivate_locked_super(sb); 1781 return 0; 1782 } 1783 1784 /** 1785 * thaw_super -- unlock filesystem 1786 * @sb: the super to thaw 1787 * 1788 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1789 */ 1790 int thaw_super(struct super_block *sb) 1791 { 1792 down_write(&sb->s_umount); 1793 return thaw_super_locked(sb); 1794 } 1795 EXPORT_SYMBOL(thaw_super); 1796 1797 /* 1798 * Create workqueue for deferred direct IO completions. We allocate the 1799 * workqueue when it's first needed. This avoids creating workqueue for 1800 * filesystems that don't need it and also allows us to create the workqueue 1801 * late enough so the we can include s_id in the name of the workqueue. 1802 */ 1803 int sb_init_dio_done_wq(struct super_block *sb) 1804 { 1805 struct workqueue_struct *old; 1806 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 1807 WQ_MEM_RECLAIM, 0, 1808 sb->s_id); 1809 if (!wq) 1810 return -ENOMEM; 1811 /* 1812 * This has to be atomic as more DIOs can race to create the workqueue 1813 */ 1814 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 1815 /* Someone created workqueue before us? Free ours... */ 1816 if (old) 1817 destroy_workqueue(wq); 1818 return 0; 1819 } 1820