xref: /linux/fs/super.c (revision 1a0e2cd9c4243871e534f02459ecca0ddd6ff6d5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
43 
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46 
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 	"sb_writers",
49 	"sb_pagefaults",
50 	"sb_internal",
51 };
52 
53 static inline void __super_lock(struct super_block *sb, bool excl)
54 {
55 	if (excl)
56 		down_write(&sb->s_umount);
57 	else
58 		down_read(&sb->s_umount);
59 }
60 
61 static inline void super_unlock(struct super_block *sb, bool excl)
62 {
63 	if (excl)
64 		up_write(&sb->s_umount);
65 	else
66 		up_read(&sb->s_umount);
67 }
68 
69 static inline void __super_lock_excl(struct super_block *sb)
70 {
71 	__super_lock(sb, true);
72 }
73 
74 static inline void super_unlock_excl(struct super_block *sb)
75 {
76 	super_unlock(sb, true);
77 }
78 
79 static inline void super_unlock_shared(struct super_block *sb)
80 {
81 	super_unlock(sb, false);
82 }
83 
84 static bool super_flags(const struct super_block *sb, unsigned int flags)
85 {
86 	/*
87 	 * Pairs with smp_store_release() in super_wake() and ensures
88 	 * that we see @flags after we're woken.
89 	 */
90 	return smp_load_acquire(&sb->s_flags) & flags;
91 }
92 
93 /**
94  * super_lock - wait for superblock to become ready and lock it
95  * @sb: superblock to wait for
96  * @excl: whether exclusive access is required
97  *
98  * If the superblock has neither passed through vfs_get_tree() or
99  * generic_shutdown_super() yet wait for it to happen. Either superblock
100  * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
101  * woken and we'll see SB_DYING.
102  *
103  * The caller must have acquired a temporary reference on @sb->s_count.
104  *
105  * Return: The function returns true if SB_BORN was set and with
106  *         s_umount held. The function returns false if SB_DYING was
107  *         set and without s_umount held.
108  */
109 static __must_check bool super_lock(struct super_block *sb, bool excl)
110 {
111 	lockdep_assert_not_held(&sb->s_umount);
112 
113 	/* wait until the superblock is ready or dying */
114 	wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING));
115 
116 	/* Don't pointlessly acquire s_umount. */
117 	if (super_flags(sb, SB_DYING))
118 		return false;
119 
120 	__super_lock(sb, excl);
121 
122 	/*
123 	 * Has gone through generic_shutdown_super() in the meantime.
124 	 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
125 	 * grab a reference to this. Tell them so.
126 	 */
127 	if (sb->s_flags & SB_DYING) {
128 		super_unlock(sb, excl);
129 		return false;
130 	}
131 
132 	WARN_ON_ONCE(!(sb->s_flags & SB_BORN));
133 	return true;
134 }
135 
136 /* wait and try to acquire read-side of @sb->s_umount */
137 static inline bool super_lock_shared(struct super_block *sb)
138 {
139 	return super_lock(sb, false);
140 }
141 
142 /* wait and try to acquire write-side of @sb->s_umount */
143 static inline bool super_lock_excl(struct super_block *sb)
144 {
145 	return super_lock(sb, true);
146 }
147 
148 /* wake waiters */
149 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
150 static void super_wake(struct super_block *sb, unsigned int flag)
151 {
152 	WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
153 	WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
154 
155 	/*
156 	 * Pairs with smp_load_acquire() in super_lock() to make sure
157 	 * all initializations in the superblock are seen by the user
158 	 * seeing SB_BORN sent.
159 	 */
160 	smp_store_release(&sb->s_flags, sb->s_flags | flag);
161 	/*
162 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
163 	 * ___wait_var_event() either sees SB_BORN set or
164 	 * waitqueue_active() check in wake_up_var() sees the waiter.
165 	 */
166 	smp_mb();
167 	wake_up_var(&sb->s_flags);
168 }
169 
170 /*
171  * One thing we have to be careful of with a per-sb shrinker is that we don't
172  * drop the last active reference to the superblock from within the shrinker.
173  * If that happens we could trigger unregistering the shrinker from within the
174  * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
175  * take a passive reference to the superblock to avoid this from occurring.
176  */
177 static unsigned long super_cache_scan(struct shrinker *shrink,
178 				      struct shrink_control *sc)
179 {
180 	struct super_block *sb;
181 	long	fs_objects = 0;
182 	long	total_objects;
183 	long	freed = 0;
184 	long	dentries;
185 	long	inodes;
186 
187 	sb = shrink->private_data;
188 
189 	/*
190 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
191 	 * to recurse into the FS that called us in clear_inode() and friends..
192 	 */
193 	if (!(sc->gfp_mask & __GFP_FS))
194 		return SHRINK_STOP;
195 
196 	if (!super_trylock_shared(sb))
197 		return SHRINK_STOP;
198 
199 	if (sb->s_op->nr_cached_objects)
200 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
201 
202 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
203 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
204 	total_objects = dentries + inodes + fs_objects + 1;
205 	if (!total_objects)
206 		total_objects = 1;
207 
208 	/* proportion the scan between the caches */
209 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
210 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
211 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
212 
213 	/*
214 	 * prune the dcache first as the icache is pinned by it, then
215 	 * prune the icache, followed by the filesystem specific caches
216 	 *
217 	 * Ensure that we always scan at least one object - memcg kmem
218 	 * accounting uses this to fully empty the caches.
219 	 */
220 	sc->nr_to_scan = dentries + 1;
221 	freed = prune_dcache_sb(sb, sc);
222 	sc->nr_to_scan = inodes + 1;
223 	freed += prune_icache_sb(sb, sc);
224 
225 	if (fs_objects) {
226 		sc->nr_to_scan = fs_objects + 1;
227 		freed += sb->s_op->free_cached_objects(sb, sc);
228 	}
229 
230 	super_unlock_shared(sb);
231 	return freed;
232 }
233 
234 static unsigned long super_cache_count(struct shrinker *shrink,
235 				       struct shrink_control *sc)
236 {
237 	struct super_block *sb;
238 	long	total_objects = 0;
239 
240 	sb = shrink->private_data;
241 
242 	/*
243 	 * We don't call super_trylock_shared() here as it is a scalability
244 	 * bottleneck, so we're exposed to partial setup state. The shrinker
245 	 * rwsem does not protect filesystem operations backing
246 	 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
247 	 * change between super_cache_count and super_cache_scan, so we really
248 	 * don't need locks here.
249 	 *
250 	 * However, if we are currently mounting the superblock, the underlying
251 	 * filesystem might be in a state of partial construction and hence it
252 	 * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
253 	 * to avoid this situation, so do the same here. The memory barrier is
254 	 * matched with the one in mount_fs() as we don't hold locks here.
255 	 */
256 	if (!(sb->s_flags & SB_BORN))
257 		return 0;
258 	smp_rmb();
259 
260 	if (sb->s_op && sb->s_op->nr_cached_objects)
261 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
262 
263 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
264 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
265 
266 	if (!total_objects)
267 		return SHRINK_EMPTY;
268 
269 	total_objects = vfs_pressure_ratio(total_objects);
270 	return total_objects;
271 }
272 
273 static void destroy_super_work(struct work_struct *work)
274 {
275 	struct super_block *s = container_of(work, struct super_block,
276 							destroy_work);
277 	fsnotify_sb_free(s);
278 	security_sb_free(s);
279 	put_user_ns(s->s_user_ns);
280 	kfree(s->s_subtype);
281 	for (int i = 0; i < SB_FREEZE_LEVELS; i++)
282 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
283 	kfree(s);
284 }
285 
286 static void destroy_super_rcu(struct rcu_head *head)
287 {
288 	struct super_block *s = container_of(head, struct super_block, rcu);
289 	INIT_WORK(&s->destroy_work, destroy_super_work);
290 	schedule_work(&s->destroy_work);
291 }
292 
293 /* Free a superblock that has never been seen by anyone */
294 static void destroy_unused_super(struct super_block *s)
295 {
296 	if (!s)
297 		return;
298 	super_unlock_excl(s);
299 	list_lru_destroy(&s->s_dentry_lru);
300 	list_lru_destroy(&s->s_inode_lru);
301 	shrinker_free(s->s_shrink);
302 	/* no delays needed */
303 	destroy_super_work(&s->destroy_work);
304 }
305 
306 /**
307  *	alloc_super	-	create new superblock
308  *	@type:	filesystem type superblock should belong to
309  *	@flags: the mount flags
310  *	@user_ns: User namespace for the super_block
311  *
312  *	Allocates and initializes a new &struct super_block.  alloc_super()
313  *	returns a pointer new superblock or %NULL if allocation had failed.
314  */
315 static struct super_block *alloc_super(struct file_system_type *type, int flags,
316 				       struct user_namespace *user_ns)
317 {
318 	struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL);
319 	static const struct super_operations default_op;
320 	int i;
321 
322 	if (!s)
323 		return NULL;
324 
325 	INIT_LIST_HEAD(&s->s_mounts);
326 	s->s_user_ns = get_user_ns(user_ns);
327 	init_rwsem(&s->s_umount);
328 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
329 	/*
330 	 * sget() can have s_umount recursion.
331 	 *
332 	 * When it cannot find a suitable sb, it allocates a new
333 	 * one (this one), and tries again to find a suitable old
334 	 * one.
335 	 *
336 	 * In case that succeeds, it will acquire the s_umount
337 	 * lock of the old one. Since these are clearly distrinct
338 	 * locks, and this object isn't exposed yet, there's no
339 	 * risk of deadlocks.
340 	 *
341 	 * Annotate this by putting this lock in a different
342 	 * subclass.
343 	 */
344 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
345 
346 	if (security_sb_alloc(s))
347 		goto fail;
348 
349 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
350 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
351 					sb_writers_name[i],
352 					&type->s_writers_key[i]))
353 			goto fail;
354 	}
355 	s->s_bdi = &noop_backing_dev_info;
356 	s->s_flags = flags;
357 	if (s->s_user_ns != &init_user_ns)
358 		s->s_iflags |= SB_I_NODEV;
359 	INIT_HLIST_NODE(&s->s_instances);
360 	INIT_HLIST_BL_HEAD(&s->s_roots);
361 	mutex_init(&s->s_sync_lock);
362 	INIT_LIST_HEAD(&s->s_inodes);
363 	spin_lock_init(&s->s_inode_list_lock);
364 	INIT_LIST_HEAD(&s->s_inodes_wb);
365 	spin_lock_init(&s->s_inode_wblist_lock);
366 
367 	s->s_count = 1;
368 	atomic_set(&s->s_active, 1);
369 	mutex_init(&s->s_vfs_rename_mutex);
370 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
371 	init_rwsem(&s->s_dquot.dqio_sem);
372 	s->s_maxbytes = MAX_NON_LFS;
373 	s->s_op = &default_op;
374 	s->s_time_gran = 1000000000;
375 	s->s_time_min = TIME64_MIN;
376 	s->s_time_max = TIME64_MAX;
377 
378 	s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
379 				     "sb-%s", type->name);
380 	if (!s->s_shrink)
381 		goto fail;
382 
383 	s->s_shrink->scan_objects = super_cache_scan;
384 	s->s_shrink->count_objects = super_cache_count;
385 	s->s_shrink->batch = 1024;
386 	s->s_shrink->private_data = s;
387 
388 	if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
389 		goto fail;
390 	if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
391 		goto fail;
392 	return s;
393 
394 fail:
395 	destroy_unused_super(s);
396 	return NULL;
397 }
398 
399 /* Superblock refcounting  */
400 
401 /*
402  * Drop a superblock's refcount.  The caller must hold sb_lock.
403  */
404 static void __put_super(struct super_block *s)
405 {
406 	if (!--s->s_count) {
407 		list_del_init(&s->s_list);
408 		WARN_ON(s->s_dentry_lru.node);
409 		WARN_ON(s->s_inode_lru.node);
410 		WARN_ON(!list_empty(&s->s_mounts));
411 		call_rcu(&s->rcu, destroy_super_rcu);
412 	}
413 }
414 
415 /**
416  *	put_super	-	drop a temporary reference to superblock
417  *	@sb: superblock in question
418  *
419  *	Drops a temporary reference, frees superblock if there's no
420  *	references left.
421  */
422 void put_super(struct super_block *sb)
423 {
424 	spin_lock(&sb_lock);
425 	__put_super(sb);
426 	spin_unlock(&sb_lock);
427 }
428 
429 static void kill_super_notify(struct super_block *sb)
430 {
431 	lockdep_assert_not_held(&sb->s_umount);
432 
433 	/* already notified earlier */
434 	if (sb->s_flags & SB_DEAD)
435 		return;
436 
437 	/*
438 	 * Remove it from @fs_supers so it isn't found by new
439 	 * sget{_fc}() walkers anymore. Any concurrent mounter still
440 	 * managing to grab a temporary reference is guaranteed to
441 	 * already see SB_DYING and will wait until we notify them about
442 	 * SB_DEAD.
443 	 */
444 	spin_lock(&sb_lock);
445 	hlist_del_init(&sb->s_instances);
446 	spin_unlock(&sb_lock);
447 
448 	/*
449 	 * Let concurrent mounts know that this thing is really dead.
450 	 * We don't need @sb->s_umount here as every concurrent caller
451 	 * will see SB_DYING and either discard the superblock or wait
452 	 * for SB_DEAD.
453 	 */
454 	super_wake(sb, SB_DEAD);
455 }
456 
457 /**
458  *	deactivate_locked_super	-	drop an active reference to superblock
459  *	@s: superblock to deactivate
460  *
461  *	Drops an active reference to superblock, converting it into a temporary
462  *	one if there is no other active references left.  In that case we
463  *	tell fs driver to shut it down and drop the temporary reference we
464  *	had just acquired.
465  *
466  *	Caller holds exclusive lock on superblock; that lock is released.
467  */
468 void deactivate_locked_super(struct super_block *s)
469 {
470 	struct file_system_type *fs = s->s_type;
471 	if (atomic_dec_and_test(&s->s_active)) {
472 		shrinker_free(s->s_shrink);
473 		fs->kill_sb(s);
474 
475 		kill_super_notify(s);
476 
477 		/*
478 		 * Since list_lru_destroy() may sleep, we cannot call it from
479 		 * put_super(), where we hold the sb_lock. Therefore we destroy
480 		 * the lru lists right now.
481 		 */
482 		list_lru_destroy(&s->s_dentry_lru);
483 		list_lru_destroy(&s->s_inode_lru);
484 
485 		put_filesystem(fs);
486 		put_super(s);
487 	} else {
488 		super_unlock_excl(s);
489 	}
490 }
491 
492 EXPORT_SYMBOL(deactivate_locked_super);
493 
494 /**
495  *	deactivate_super	-	drop an active reference to superblock
496  *	@s: superblock to deactivate
497  *
498  *	Variant of deactivate_locked_super(), except that superblock is *not*
499  *	locked by caller.  If we are going to drop the final active reference,
500  *	lock will be acquired prior to that.
501  */
502 void deactivate_super(struct super_block *s)
503 {
504 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
505 		__super_lock_excl(s);
506 		deactivate_locked_super(s);
507 	}
508 }
509 
510 EXPORT_SYMBOL(deactivate_super);
511 
512 /**
513  * grab_super - acquire an active reference to a superblock
514  * @sb: superblock to acquire
515  *
516  * Acquire a temporary reference on a superblock and try to trade it for
517  * an active reference. This is used in sget{_fc}() to wait for a
518  * superblock to either become SB_BORN or for it to pass through
519  * sb->kill() and be marked as SB_DEAD.
520  *
521  * Return: This returns true if an active reference could be acquired,
522  *         false if not.
523  */
524 static bool grab_super(struct super_block *sb)
525 {
526 	bool locked;
527 
528 	sb->s_count++;
529 	spin_unlock(&sb_lock);
530 	locked = super_lock_excl(sb);
531 	if (locked) {
532 		if (atomic_inc_not_zero(&sb->s_active)) {
533 			put_super(sb);
534 			return true;
535 		}
536 		super_unlock_excl(sb);
537 	}
538 	wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD));
539 	put_super(sb);
540 	return false;
541 }
542 
543 /*
544  *	super_trylock_shared - try to grab ->s_umount shared
545  *	@sb: reference we are trying to grab
546  *
547  *	Try to prevent fs shutdown.  This is used in places where we
548  *	cannot take an active reference but we need to ensure that the
549  *	filesystem is not shut down while we are working on it. It returns
550  *	false if we cannot acquire s_umount or if we lose the race and
551  *	filesystem already got into shutdown, and returns true with the s_umount
552  *	lock held in read mode in case of success. On successful return,
553  *	the caller must drop the s_umount lock when done.
554  *
555  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
556  *	The reason why it's safe is that we are OK with doing trylock instead
557  *	of down_read().  There's a couple of places that are OK with that, but
558  *	it's very much not a general-purpose interface.
559  */
560 bool super_trylock_shared(struct super_block *sb)
561 {
562 	if (down_read_trylock(&sb->s_umount)) {
563 		if (!(sb->s_flags & SB_DYING) && sb->s_root &&
564 		    (sb->s_flags & SB_BORN))
565 			return true;
566 		super_unlock_shared(sb);
567 	}
568 
569 	return false;
570 }
571 
572 /**
573  *	retire_super	-	prevents superblock from being reused
574  *	@sb: superblock to retire
575  *
576  *	The function marks superblock to be ignored in superblock test, which
577  *	prevents it from being reused for any new mounts.  If the superblock has
578  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
579  *	of the superblock to prevent potential races.  The refcount is reduced
580  *	by generic_shutdown_super().  The function can not be called
581  *	concurrently with generic_shutdown_super().  It is safe to call the
582  *	function multiple times, subsequent calls have no effect.
583  *
584  *	The marker will affect the re-use only for block-device-based
585  *	superblocks.  Other superblocks will still get marked if this function
586  *	is used, but that will not affect their reusability.
587  */
588 void retire_super(struct super_block *sb)
589 {
590 	WARN_ON(!sb->s_bdev);
591 	__super_lock_excl(sb);
592 	if (sb->s_iflags & SB_I_PERSB_BDI) {
593 		bdi_unregister(sb->s_bdi);
594 		sb->s_iflags &= ~SB_I_PERSB_BDI;
595 	}
596 	sb->s_iflags |= SB_I_RETIRED;
597 	super_unlock_excl(sb);
598 }
599 EXPORT_SYMBOL(retire_super);
600 
601 /**
602  *	generic_shutdown_super	-	common helper for ->kill_sb()
603  *	@sb: superblock to kill
604  *
605  *	generic_shutdown_super() does all fs-independent work on superblock
606  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
607  *	that need destruction out of superblock, call generic_shutdown_super()
608  *	and release aforementioned objects.  Note: dentries and inodes _are_
609  *	taken care of and do not need specific handling.
610  *
611  *	Upon calling this function, the filesystem may no longer alter or
612  *	rearrange the set of dentries belonging to this super_block, nor may it
613  *	change the attachments of dentries to inodes.
614  */
615 void generic_shutdown_super(struct super_block *sb)
616 {
617 	const struct super_operations *sop = sb->s_op;
618 
619 	if (sb->s_root) {
620 		shrink_dcache_for_umount(sb);
621 		sync_filesystem(sb);
622 		sb->s_flags &= ~SB_ACTIVE;
623 
624 		cgroup_writeback_umount();
625 
626 		/* Evict all inodes with zero refcount. */
627 		evict_inodes(sb);
628 
629 		/*
630 		 * Clean up and evict any inodes that still have references due
631 		 * to fsnotify or the security policy.
632 		 */
633 		fsnotify_sb_delete(sb);
634 		security_sb_delete(sb);
635 
636 		if (sb->s_dio_done_wq) {
637 			destroy_workqueue(sb->s_dio_done_wq);
638 			sb->s_dio_done_wq = NULL;
639 		}
640 
641 		if (sop->put_super)
642 			sop->put_super(sb);
643 
644 		/*
645 		 * Now that all potentially-encrypted inodes have been evicted,
646 		 * the fscrypt keyring can be destroyed.
647 		 */
648 		fscrypt_destroy_keyring(sb);
649 
650 		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
651 				"VFS: Busy inodes after unmount of %s (%s)",
652 				sb->s_id, sb->s_type->name)) {
653 			/*
654 			 * Adding a proper bailout path here would be hard, but
655 			 * we can at least make it more likely that a later
656 			 * iput_final() or such crashes cleanly.
657 			 */
658 			struct inode *inode;
659 
660 			spin_lock(&sb->s_inode_list_lock);
661 			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
662 				inode->i_op = VFS_PTR_POISON;
663 				inode->i_sb = VFS_PTR_POISON;
664 				inode->i_mapping = VFS_PTR_POISON;
665 			}
666 			spin_unlock(&sb->s_inode_list_lock);
667 		}
668 	}
669 	/*
670 	 * Broadcast to everyone that grabbed a temporary reference to this
671 	 * superblock before we removed it from @fs_supers that the superblock
672 	 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
673 	 * discard this superblock and treat it as dead.
674 	 *
675 	 * We leave the superblock on @fs_supers so it can be found by
676 	 * sget{_fc}() until we passed sb->kill_sb().
677 	 */
678 	super_wake(sb, SB_DYING);
679 	super_unlock_excl(sb);
680 	if (sb->s_bdi != &noop_backing_dev_info) {
681 		if (sb->s_iflags & SB_I_PERSB_BDI)
682 			bdi_unregister(sb->s_bdi);
683 		bdi_put(sb->s_bdi);
684 		sb->s_bdi = &noop_backing_dev_info;
685 	}
686 }
687 
688 EXPORT_SYMBOL(generic_shutdown_super);
689 
690 bool mount_capable(struct fs_context *fc)
691 {
692 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
693 		return capable(CAP_SYS_ADMIN);
694 	else
695 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
696 }
697 
698 /**
699  * sget_fc - Find or create a superblock
700  * @fc:	Filesystem context.
701  * @test: Comparison callback
702  * @set: Setup callback
703  *
704  * Create a new superblock or find an existing one.
705  *
706  * The @test callback is used to find a matching existing superblock.
707  * Whether or not the requested parameters in @fc are taken into account
708  * is specific to the @test callback that is used. They may even be
709  * completely ignored.
710  *
711  * If an extant superblock is matched, it will be returned unless:
712  *
713  * (1) the namespace the filesystem context @fc and the extant
714  *     superblock's namespace differ
715  *
716  * (2) the filesystem context @fc has requested that reusing an extant
717  *     superblock is not allowed
718  *
719  * In both cases EBUSY will be returned.
720  *
721  * If no match is made, a new superblock will be allocated and basic
722  * initialisation will be performed (s_type, s_fs_info and s_id will be
723  * set and the @set callback will be invoked), the superblock will be
724  * published and it will be returned in a partially constructed state
725  * with SB_BORN and SB_ACTIVE as yet unset.
726  *
727  * Return: On success, an extant or newly created superblock is
728  *         returned. On failure an error pointer is returned.
729  */
730 struct super_block *sget_fc(struct fs_context *fc,
731 			    int (*test)(struct super_block *, struct fs_context *),
732 			    int (*set)(struct super_block *, struct fs_context *))
733 {
734 	struct super_block *s = NULL;
735 	struct super_block *old;
736 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
737 	int err;
738 
739 retry:
740 	spin_lock(&sb_lock);
741 	if (test) {
742 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
743 			if (test(old, fc))
744 				goto share_extant_sb;
745 		}
746 	}
747 	if (!s) {
748 		spin_unlock(&sb_lock);
749 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
750 		if (!s)
751 			return ERR_PTR(-ENOMEM);
752 		goto retry;
753 	}
754 
755 	s->s_fs_info = fc->s_fs_info;
756 	err = set(s, fc);
757 	if (err) {
758 		s->s_fs_info = NULL;
759 		spin_unlock(&sb_lock);
760 		destroy_unused_super(s);
761 		return ERR_PTR(err);
762 	}
763 	fc->s_fs_info = NULL;
764 	s->s_type = fc->fs_type;
765 	s->s_iflags |= fc->s_iflags;
766 	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
767 	/*
768 	 * Make the superblock visible on @super_blocks and @fs_supers.
769 	 * It's in a nascent state and users should wait on SB_BORN or
770 	 * SB_DYING to be set.
771 	 */
772 	list_add_tail(&s->s_list, &super_blocks);
773 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
774 	spin_unlock(&sb_lock);
775 	get_filesystem(s->s_type);
776 	shrinker_register(s->s_shrink);
777 	return s;
778 
779 share_extant_sb:
780 	if (user_ns != old->s_user_ns || fc->exclusive) {
781 		spin_unlock(&sb_lock);
782 		destroy_unused_super(s);
783 		if (fc->exclusive)
784 			warnfc(fc, "reusing existing filesystem not allowed");
785 		else
786 			warnfc(fc, "reusing existing filesystem in another namespace not allowed");
787 		return ERR_PTR(-EBUSY);
788 	}
789 	if (!grab_super(old))
790 		goto retry;
791 	destroy_unused_super(s);
792 	return old;
793 }
794 EXPORT_SYMBOL(sget_fc);
795 
796 /**
797  *	sget	-	find or create a superblock
798  *	@type:	  filesystem type superblock should belong to
799  *	@test:	  comparison callback
800  *	@set:	  setup callback
801  *	@flags:	  mount flags
802  *	@data:	  argument to each of them
803  */
804 struct super_block *sget(struct file_system_type *type,
805 			int (*test)(struct super_block *,void *),
806 			int (*set)(struct super_block *,void *),
807 			int flags,
808 			void *data)
809 {
810 	struct user_namespace *user_ns = current_user_ns();
811 	struct super_block *s = NULL;
812 	struct super_block *old;
813 	int err;
814 
815 	/* We don't yet pass the user namespace of the parent
816 	 * mount through to here so always use &init_user_ns
817 	 * until that changes.
818 	 */
819 	if (flags & SB_SUBMOUNT)
820 		user_ns = &init_user_ns;
821 
822 retry:
823 	spin_lock(&sb_lock);
824 	if (test) {
825 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
826 			if (!test(old, data))
827 				continue;
828 			if (user_ns != old->s_user_ns) {
829 				spin_unlock(&sb_lock);
830 				destroy_unused_super(s);
831 				return ERR_PTR(-EBUSY);
832 			}
833 			if (!grab_super(old))
834 				goto retry;
835 			destroy_unused_super(s);
836 			return old;
837 		}
838 	}
839 	if (!s) {
840 		spin_unlock(&sb_lock);
841 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
842 		if (!s)
843 			return ERR_PTR(-ENOMEM);
844 		goto retry;
845 	}
846 
847 	err = set(s, data);
848 	if (err) {
849 		spin_unlock(&sb_lock);
850 		destroy_unused_super(s);
851 		return ERR_PTR(err);
852 	}
853 	s->s_type = type;
854 	strscpy(s->s_id, type->name, sizeof(s->s_id));
855 	list_add_tail(&s->s_list, &super_blocks);
856 	hlist_add_head(&s->s_instances, &type->fs_supers);
857 	spin_unlock(&sb_lock);
858 	get_filesystem(type);
859 	shrinker_register(s->s_shrink);
860 	return s;
861 }
862 EXPORT_SYMBOL(sget);
863 
864 void drop_super(struct super_block *sb)
865 {
866 	super_unlock_shared(sb);
867 	put_super(sb);
868 }
869 
870 EXPORT_SYMBOL(drop_super);
871 
872 void drop_super_exclusive(struct super_block *sb)
873 {
874 	super_unlock_excl(sb);
875 	put_super(sb);
876 }
877 EXPORT_SYMBOL(drop_super_exclusive);
878 
879 static void __iterate_supers(void (*f)(struct super_block *))
880 {
881 	struct super_block *sb, *p = NULL;
882 
883 	spin_lock(&sb_lock);
884 	list_for_each_entry(sb, &super_blocks, s_list) {
885 		if (super_flags(sb, SB_DYING))
886 			continue;
887 		sb->s_count++;
888 		spin_unlock(&sb_lock);
889 
890 		f(sb);
891 
892 		spin_lock(&sb_lock);
893 		if (p)
894 			__put_super(p);
895 		p = sb;
896 	}
897 	if (p)
898 		__put_super(p);
899 	spin_unlock(&sb_lock);
900 }
901 /**
902  *	iterate_supers - call function for all active superblocks
903  *	@f: function to call
904  *	@arg: argument to pass to it
905  *
906  *	Scans the superblock list and calls given function, passing it
907  *	locked superblock and given argument.
908  */
909 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
910 {
911 	struct super_block *sb, *p = NULL;
912 
913 	spin_lock(&sb_lock);
914 	list_for_each_entry(sb, &super_blocks, s_list) {
915 		bool locked;
916 
917 		sb->s_count++;
918 		spin_unlock(&sb_lock);
919 
920 		locked = super_lock_shared(sb);
921 		if (locked) {
922 			if (sb->s_root)
923 				f(sb, arg);
924 			super_unlock_shared(sb);
925 		}
926 
927 		spin_lock(&sb_lock);
928 		if (p)
929 			__put_super(p);
930 		p = sb;
931 	}
932 	if (p)
933 		__put_super(p);
934 	spin_unlock(&sb_lock);
935 }
936 
937 /**
938  *	iterate_supers_type - call function for superblocks of given type
939  *	@type: fs type
940  *	@f: function to call
941  *	@arg: argument to pass to it
942  *
943  *	Scans the superblock list and calls given function, passing it
944  *	locked superblock and given argument.
945  */
946 void iterate_supers_type(struct file_system_type *type,
947 	void (*f)(struct super_block *, void *), void *arg)
948 {
949 	struct super_block *sb, *p = NULL;
950 
951 	spin_lock(&sb_lock);
952 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
953 		bool locked;
954 
955 		sb->s_count++;
956 		spin_unlock(&sb_lock);
957 
958 		locked = super_lock_shared(sb);
959 		if (locked) {
960 			if (sb->s_root)
961 				f(sb, arg);
962 			super_unlock_shared(sb);
963 		}
964 
965 		spin_lock(&sb_lock);
966 		if (p)
967 			__put_super(p);
968 		p = sb;
969 	}
970 	if (p)
971 		__put_super(p);
972 	spin_unlock(&sb_lock);
973 }
974 
975 EXPORT_SYMBOL(iterate_supers_type);
976 
977 struct super_block *user_get_super(dev_t dev, bool excl)
978 {
979 	struct super_block *sb;
980 
981 	spin_lock(&sb_lock);
982 	list_for_each_entry(sb, &super_blocks, s_list) {
983 		if (sb->s_dev ==  dev) {
984 			bool locked;
985 
986 			sb->s_count++;
987 			spin_unlock(&sb_lock);
988 			/* still alive? */
989 			locked = super_lock(sb, excl);
990 			if (locked) {
991 				if (sb->s_root)
992 					return sb;
993 				super_unlock(sb, excl);
994 			}
995 			/* nope, got unmounted */
996 			spin_lock(&sb_lock);
997 			__put_super(sb);
998 			break;
999 		}
1000 	}
1001 	spin_unlock(&sb_lock);
1002 	return NULL;
1003 }
1004 
1005 /**
1006  * reconfigure_super - asks filesystem to change superblock parameters
1007  * @fc: The superblock and configuration
1008  *
1009  * Alters the configuration parameters of a live superblock.
1010  */
1011 int reconfigure_super(struct fs_context *fc)
1012 {
1013 	struct super_block *sb = fc->root->d_sb;
1014 	int retval;
1015 	bool remount_ro = false;
1016 	bool remount_rw = false;
1017 	bool force = fc->sb_flags & SB_FORCE;
1018 
1019 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
1020 		return -EINVAL;
1021 	if (sb->s_writers.frozen != SB_UNFROZEN)
1022 		return -EBUSY;
1023 
1024 	retval = security_sb_remount(sb, fc->security);
1025 	if (retval)
1026 		return retval;
1027 
1028 	if (fc->sb_flags_mask & SB_RDONLY) {
1029 #ifdef CONFIG_BLOCK
1030 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1031 		    bdev_read_only(sb->s_bdev))
1032 			return -EACCES;
1033 #endif
1034 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1035 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1036 	}
1037 
1038 	if (remount_ro) {
1039 		if (!hlist_empty(&sb->s_pins)) {
1040 			super_unlock_excl(sb);
1041 			group_pin_kill(&sb->s_pins);
1042 			__super_lock_excl(sb);
1043 			if (!sb->s_root)
1044 				return 0;
1045 			if (sb->s_writers.frozen != SB_UNFROZEN)
1046 				return -EBUSY;
1047 			remount_ro = !sb_rdonly(sb);
1048 		}
1049 	}
1050 	shrink_dcache_sb(sb);
1051 
1052 	/* If we are reconfiguring to RDONLY and current sb is read/write,
1053 	 * make sure there are no files open for writing.
1054 	 */
1055 	if (remount_ro) {
1056 		if (force) {
1057 			sb_start_ro_state_change(sb);
1058 		} else {
1059 			retval = sb_prepare_remount_readonly(sb);
1060 			if (retval)
1061 				return retval;
1062 		}
1063 	} else if (remount_rw) {
1064 		/*
1065 		 * Protect filesystem's reconfigure code from writes from
1066 		 * userspace until reconfigure finishes.
1067 		 */
1068 		sb_start_ro_state_change(sb);
1069 	}
1070 
1071 	if (fc->ops->reconfigure) {
1072 		retval = fc->ops->reconfigure(fc);
1073 		if (retval) {
1074 			if (!force)
1075 				goto cancel_readonly;
1076 			/* If forced remount, go ahead despite any errors */
1077 			WARN(1, "forced remount of a %s fs returned %i\n",
1078 			     sb->s_type->name, retval);
1079 		}
1080 	}
1081 
1082 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1083 				 (fc->sb_flags & fc->sb_flags_mask)));
1084 	sb_end_ro_state_change(sb);
1085 
1086 	/*
1087 	 * Some filesystems modify their metadata via some other path than the
1088 	 * bdev buffer cache (eg. use a private mapping, or directories in
1089 	 * pagecache, etc). Also file data modifications go via their own
1090 	 * mappings. So If we try to mount readonly then copy the filesystem
1091 	 * from bdev, we could get stale data, so invalidate it to give a best
1092 	 * effort at coherency.
1093 	 */
1094 	if (remount_ro && sb->s_bdev)
1095 		invalidate_bdev(sb->s_bdev);
1096 	return 0;
1097 
1098 cancel_readonly:
1099 	sb_end_ro_state_change(sb);
1100 	return retval;
1101 }
1102 
1103 static void do_emergency_remount_callback(struct super_block *sb)
1104 {
1105 	bool locked = super_lock_excl(sb);
1106 
1107 	if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
1108 		struct fs_context *fc;
1109 
1110 		fc = fs_context_for_reconfigure(sb->s_root,
1111 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1112 		if (!IS_ERR(fc)) {
1113 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1114 				(void)reconfigure_super(fc);
1115 			put_fs_context(fc);
1116 		}
1117 	}
1118 	if (locked)
1119 		super_unlock_excl(sb);
1120 }
1121 
1122 static void do_emergency_remount(struct work_struct *work)
1123 {
1124 	__iterate_supers(do_emergency_remount_callback);
1125 	kfree(work);
1126 	printk("Emergency Remount complete\n");
1127 }
1128 
1129 void emergency_remount(void)
1130 {
1131 	struct work_struct *work;
1132 
1133 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1134 	if (work) {
1135 		INIT_WORK(work, do_emergency_remount);
1136 		schedule_work(work);
1137 	}
1138 }
1139 
1140 static void do_thaw_all_callback(struct super_block *sb)
1141 {
1142 	bool locked = super_lock_excl(sb);
1143 
1144 	if (locked && sb->s_root) {
1145 		if (IS_ENABLED(CONFIG_BLOCK))
1146 			while (sb->s_bdev && !bdev_thaw(sb->s_bdev))
1147 				pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1148 		thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
1149 		return;
1150 	}
1151 	if (locked)
1152 		super_unlock_excl(sb);
1153 }
1154 
1155 static void do_thaw_all(struct work_struct *work)
1156 {
1157 	__iterate_supers(do_thaw_all_callback);
1158 	kfree(work);
1159 	printk(KERN_WARNING "Emergency Thaw complete\n");
1160 }
1161 
1162 /**
1163  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1164  *
1165  * Used for emergency unfreeze of all filesystems via SysRq
1166  */
1167 void emergency_thaw_all(void)
1168 {
1169 	struct work_struct *work;
1170 
1171 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1172 	if (work) {
1173 		INIT_WORK(work, do_thaw_all);
1174 		schedule_work(work);
1175 	}
1176 }
1177 
1178 static DEFINE_IDA(unnamed_dev_ida);
1179 
1180 /**
1181  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1182  * @p: Pointer to a dev_t.
1183  *
1184  * Filesystems which don't use real block devices can call this function
1185  * to allocate a virtual block device.
1186  *
1187  * Context: Any context.  Frequently called while holding sb_lock.
1188  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1189  * or -ENOMEM if memory allocation failed.
1190  */
1191 int get_anon_bdev(dev_t *p)
1192 {
1193 	int dev;
1194 
1195 	/*
1196 	 * Many userspace utilities consider an FSID of 0 invalid.
1197 	 * Always return at least 1 from get_anon_bdev.
1198 	 */
1199 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1200 			GFP_ATOMIC);
1201 	if (dev == -ENOSPC)
1202 		dev = -EMFILE;
1203 	if (dev < 0)
1204 		return dev;
1205 
1206 	*p = MKDEV(0, dev);
1207 	return 0;
1208 }
1209 EXPORT_SYMBOL(get_anon_bdev);
1210 
1211 void free_anon_bdev(dev_t dev)
1212 {
1213 	ida_free(&unnamed_dev_ida, MINOR(dev));
1214 }
1215 EXPORT_SYMBOL(free_anon_bdev);
1216 
1217 int set_anon_super(struct super_block *s, void *data)
1218 {
1219 	return get_anon_bdev(&s->s_dev);
1220 }
1221 EXPORT_SYMBOL(set_anon_super);
1222 
1223 void kill_anon_super(struct super_block *sb)
1224 {
1225 	dev_t dev = sb->s_dev;
1226 	generic_shutdown_super(sb);
1227 	kill_super_notify(sb);
1228 	free_anon_bdev(dev);
1229 }
1230 EXPORT_SYMBOL(kill_anon_super);
1231 
1232 void kill_litter_super(struct super_block *sb)
1233 {
1234 	if (sb->s_root)
1235 		d_genocide(sb->s_root);
1236 	kill_anon_super(sb);
1237 }
1238 EXPORT_SYMBOL(kill_litter_super);
1239 
1240 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1241 {
1242 	return set_anon_super(sb, NULL);
1243 }
1244 EXPORT_SYMBOL(set_anon_super_fc);
1245 
1246 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1247 {
1248 	return sb->s_fs_info == fc->s_fs_info;
1249 }
1250 
1251 static int test_single_super(struct super_block *s, struct fs_context *fc)
1252 {
1253 	return 1;
1254 }
1255 
1256 static int vfs_get_super(struct fs_context *fc,
1257 		int (*test)(struct super_block *, struct fs_context *),
1258 		int (*fill_super)(struct super_block *sb,
1259 				  struct fs_context *fc))
1260 {
1261 	struct super_block *sb;
1262 	int err;
1263 
1264 	sb = sget_fc(fc, test, set_anon_super_fc);
1265 	if (IS_ERR(sb))
1266 		return PTR_ERR(sb);
1267 
1268 	if (!sb->s_root) {
1269 		err = fill_super(sb, fc);
1270 		if (err)
1271 			goto error;
1272 
1273 		sb->s_flags |= SB_ACTIVE;
1274 	}
1275 
1276 	fc->root = dget(sb->s_root);
1277 	return 0;
1278 
1279 error:
1280 	deactivate_locked_super(sb);
1281 	return err;
1282 }
1283 
1284 int get_tree_nodev(struct fs_context *fc,
1285 		  int (*fill_super)(struct super_block *sb,
1286 				    struct fs_context *fc))
1287 {
1288 	return vfs_get_super(fc, NULL, fill_super);
1289 }
1290 EXPORT_SYMBOL(get_tree_nodev);
1291 
1292 int get_tree_single(struct fs_context *fc,
1293 		  int (*fill_super)(struct super_block *sb,
1294 				    struct fs_context *fc))
1295 {
1296 	return vfs_get_super(fc, test_single_super, fill_super);
1297 }
1298 EXPORT_SYMBOL(get_tree_single);
1299 
1300 int get_tree_keyed(struct fs_context *fc,
1301 		  int (*fill_super)(struct super_block *sb,
1302 				    struct fs_context *fc),
1303 		void *key)
1304 {
1305 	fc->s_fs_info = key;
1306 	return vfs_get_super(fc, test_keyed_super, fill_super);
1307 }
1308 EXPORT_SYMBOL(get_tree_keyed);
1309 
1310 static int set_bdev_super(struct super_block *s, void *data)
1311 {
1312 	s->s_dev = *(dev_t *)data;
1313 	return 0;
1314 }
1315 
1316 static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1317 {
1318 	return set_bdev_super(s, fc->sget_key);
1319 }
1320 
1321 static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1322 {
1323 	return !(s->s_iflags & SB_I_RETIRED) &&
1324 		s->s_dev == *(dev_t *)fc->sget_key;
1325 }
1326 
1327 /**
1328  * sget_dev - Find or create a superblock by device number
1329  * @fc: Filesystem context.
1330  * @dev: device number
1331  *
1332  * Find or create a superblock using the provided device number that
1333  * will be stored in fc->sget_key.
1334  *
1335  * If an extant superblock is matched, then that will be returned with
1336  * an elevated reference count that the caller must transfer or discard.
1337  *
1338  * If no match is made, a new superblock will be allocated and basic
1339  * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1340  * be set). The superblock will be published and it will be returned in
1341  * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1342  * unset.
1343  *
1344  * Return: an existing or newly created superblock on success, an error
1345  *         pointer on failure.
1346  */
1347 struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1348 {
1349 	fc->sget_key = &dev;
1350 	return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1351 }
1352 EXPORT_SYMBOL(sget_dev);
1353 
1354 #ifdef CONFIG_BLOCK
1355 /*
1356  * Lock the superblock that is holder of the bdev. Returns the superblock
1357  * pointer if we successfully locked the superblock and it is alive. Otherwise
1358  * we return NULL and just unlock bdev->bd_holder_lock.
1359  *
1360  * The function must be called with bdev->bd_holder_lock and releases it.
1361  */
1362 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl)
1363 	__releases(&bdev->bd_holder_lock)
1364 {
1365 	struct super_block *sb = bdev->bd_holder;
1366 	bool locked;
1367 
1368 	lockdep_assert_held(&bdev->bd_holder_lock);
1369 	lockdep_assert_not_held(&sb->s_umount);
1370 	lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
1371 
1372 	/* Make sure sb doesn't go away from under us */
1373 	spin_lock(&sb_lock);
1374 	sb->s_count++;
1375 	spin_unlock(&sb_lock);
1376 
1377 	mutex_unlock(&bdev->bd_holder_lock);
1378 
1379 	locked = super_lock(sb, excl);
1380 
1381 	/*
1382 	 * If the superblock wasn't already SB_DYING then we hold
1383 	 * s_umount and can safely drop our temporary reference.
1384          */
1385 	put_super(sb);
1386 
1387 	if (!locked)
1388 		return NULL;
1389 
1390 	if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1391 		super_unlock(sb, excl);
1392 		return NULL;
1393 	}
1394 
1395 	return sb;
1396 }
1397 
1398 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1399 {
1400 	struct super_block *sb;
1401 
1402 	sb = bdev_super_lock(bdev, false);
1403 	if (!sb)
1404 		return;
1405 
1406 	if (!surprise)
1407 		sync_filesystem(sb);
1408 	shrink_dcache_sb(sb);
1409 	invalidate_inodes(sb);
1410 	if (sb->s_op->shutdown)
1411 		sb->s_op->shutdown(sb);
1412 
1413 	super_unlock_shared(sb);
1414 }
1415 
1416 static void fs_bdev_sync(struct block_device *bdev)
1417 {
1418 	struct super_block *sb;
1419 
1420 	sb = bdev_super_lock(bdev, false);
1421 	if (!sb)
1422 		return;
1423 
1424 	sync_filesystem(sb);
1425 	super_unlock_shared(sb);
1426 }
1427 
1428 static struct super_block *get_bdev_super(struct block_device *bdev)
1429 {
1430 	bool active = false;
1431 	struct super_block *sb;
1432 
1433 	sb = bdev_super_lock(bdev, true);
1434 	if (sb) {
1435 		active = atomic_inc_not_zero(&sb->s_active);
1436 		super_unlock_excl(sb);
1437 	}
1438 	if (!active)
1439 		return NULL;
1440 	return sb;
1441 }
1442 
1443 /**
1444  * fs_bdev_freeze - freeze owning filesystem of block device
1445  * @bdev: block device
1446  *
1447  * Freeze the filesystem that owns this block device if it is still
1448  * active.
1449  *
1450  * A filesystem that owns multiple block devices may be frozen from each
1451  * block device and won't be unfrozen until all block devices are
1452  * unfrozen. Each block device can only freeze the filesystem once as we
1453  * nest freezes for block devices in the block layer.
1454  *
1455  * Return: If the freeze was successful zero is returned. If the freeze
1456  *         failed a negative error code is returned.
1457  */
1458 static int fs_bdev_freeze(struct block_device *bdev)
1459 {
1460 	struct super_block *sb;
1461 	int error = 0;
1462 
1463 	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1464 
1465 	sb = get_bdev_super(bdev);
1466 	if (!sb)
1467 		return -EINVAL;
1468 
1469 	if (sb->s_op->freeze_super)
1470 		error = sb->s_op->freeze_super(sb,
1471 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1472 	else
1473 		error = freeze_super(sb,
1474 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1475 	if (!error)
1476 		error = sync_blockdev(bdev);
1477 	deactivate_super(sb);
1478 	return error;
1479 }
1480 
1481 /**
1482  * fs_bdev_thaw - thaw owning filesystem of block device
1483  * @bdev: block device
1484  *
1485  * Thaw the filesystem that owns this block device.
1486  *
1487  * A filesystem that owns multiple block devices may be frozen from each
1488  * block device and won't be unfrozen until all block devices are
1489  * unfrozen. Each block device can only freeze the filesystem once as we
1490  * nest freezes for block devices in the block layer.
1491  *
1492  * Return: If the thaw was successful zero is returned. If the thaw
1493  *         failed a negative error code is returned. If this function
1494  *         returns zero it doesn't mean that the filesystem is unfrozen
1495  *         as it may have been frozen multiple times (kernel may hold a
1496  *         freeze or might be frozen from other block devices).
1497  */
1498 static int fs_bdev_thaw(struct block_device *bdev)
1499 {
1500 	struct super_block *sb;
1501 	int error;
1502 
1503 	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1504 
1505 	sb = get_bdev_super(bdev);
1506 	if (WARN_ON_ONCE(!sb))
1507 		return -EINVAL;
1508 
1509 	if (sb->s_op->thaw_super)
1510 		error = sb->s_op->thaw_super(sb,
1511 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1512 	else
1513 		error = thaw_super(sb,
1514 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1515 	deactivate_super(sb);
1516 	return error;
1517 }
1518 
1519 const struct blk_holder_ops fs_holder_ops = {
1520 	.mark_dead		= fs_bdev_mark_dead,
1521 	.sync			= fs_bdev_sync,
1522 	.freeze			= fs_bdev_freeze,
1523 	.thaw			= fs_bdev_thaw,
1524 };
1525 EXPORT_SYMBOL_GPL(fs_holder_ops);
1526 
1527 int setup_bdev_super(struct super_block *sb, int sb_flags,
1528 		struct fs_context *fc)
1529 {
1530 	blk_mode_t mode = sb_open_mode(sb_flags);
1531 	struct file *bdev_file;
1532 	struct block_device *bdev;
1533 
1534 	bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1535 	if (IS_ERR(bdev_file)) {
1536 		if (fc)
1537 			errorf(fc, "%s: Can't open blockdev", fc->source);
1538 		return PTR_ERR(bdev_file);
1539 	}
1540 	bdev = file_bdev(bdev_file);
1541 
1542 	/*
1543 	 * This really should be in blkdev_get_by_dev, but right now can't due
1544 	 * to legacy issues that require us to allow opening a block device node
1545 	 * writable from userspace even for a read-only block device.
1546 	 */
1547 	if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1548 		bdev_fput(bdev_file);
1549 		return -EACCES;
1550 	}
1551 
1552 	/*
1553 	 * It is enough to check bdev was not frozen before we set
1554 	 * s_bdev as freezing will wait until SB_BORN is set.
1555 	 */
1556 	if (atomic_read(&bdev->bd_fsfreeze_count) > 0) {
1557 		if (fc)
1558 			warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1559 		bdev_fput(bdev_file);
1560 		return -EBUSY;
1561 	}
1562 	spin_lock(&sb_lock);
1563 	sb->s_bdev_file = bdev_file;
1564 	sb->s_bdev = bdev;
1565 	sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1566 	if (bdev_stable_writes(bdev))
1567 		sb->s_iflags |= SB_I_STABLE_WRITES;
1568 	spin_unlock(&sb_lock);
1569 
1570 	snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1571 	shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1572 				sb->s_id);
1573 	sb_set_blocksize(sb, block_size(bdev));
1574 	return 0;
1575 }
1576 EXPORT_SYMBOL_GPL(setup_bdev_super);
1577 
1578 /**
1579  * get_tree_bdev - Get a superblock based on a single block device
1580  * @fc: The filesystem context holding the parameters
1581  * @fill_super: Helper to initialise a new superblock
1582  */
1583 int get_tree_bdev(struct fs_context *fc,
1584 		int (*fill_super)(struct super_block *,
1585 				  struct fs_context *))
1586 {
1587 	struct super_block *s;
1588 	int error = 0;
1589 	dev_t dev;
1590 
1591 	if (!fc->source)
1592 		return invalf(fc, "No source specified");
1593 
1594 	error = lookup_bdev(fc->source, &dev);
1595 	if (error) {
1596 		errorf(fc, "%s: Can't lookup blockdev", fc->source);
1597 		return error;
1598 	}
1599 
1600 	fc->sb_flags |= SB_NOSEC;
1601 	s = sget_dev(fc, dev);
1602 	if (IS_ERR(s))
1603 		return PTR_ERR(s);
1604 
1605 	if (s->s_root) {
1606 		/* Don't summarily change the RO/RW state. */
1607 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1608 			warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1609 			deactivate_locked_super(s);
1610 			return -EBUSY;
1611 		}
1612 	} else {
1613 		error = setup_bdev_super(s, fc->sb_flags, fc);
1614 		if (!error)
1615 			error = fill_super(s, fc);
1616 		if (error) {
1617 			deactivate_locked_super(s);
1618 			return error;
1619 		}
1620 		s->s_flags |= SB_ACTIVE;
1621 	}
1622 
1623 	BUG_ON(fc->root);
1624 	fc->root = dget(s->s_root);
1625 	return 0;
1626 }
1627 EXPORT_SYMBOL(get_tree_bdev);
1628 
1629 static int test_bdev_super(struct super_block *s, void *data)
1630 {
1631 	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1632 }
1633 
1634 struct dentry *mount_bdev(struct file_system_type *fs_type,
1635 	int flags, const char *dev_name, void *data,
1636 	int (*fill_super)(struct super_block *, void *, int))
1637 {
1638 	struct super_block *s;
1639 	int error;
1640 	dev_t dev;
1641 
1642 	error = lookup_bdev(dev_name, &dev);
1643 	if (error)
1644 		return ERR_PTR(error);
1645 
1646 	flags |= SB_NOSEC;
1647 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
1648 	if (IS_ERR(s))
1649 		return ERR_CAST(s);
1650 
1651 	if (s->s_root) {
1652 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1653 			deactivate_locked_super(s);
1654 			return ERR_PTR(-EBUSY);
1655 		}
1656 	} else {
1657 		error = setup_bdev_super(s, flags, NULL);
1658 		if (!error)
1659 			error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1660 		if (error) {
1661 			deactivate_locked_super(s);
1662 			return ERR_PTR(error);
1663 		}
1664 
1665 		s->s_flags |= SB_ACTIVE;
1666 	}
1667 
1668 	return dget(s->s_root);
1669 }
1670 EXPORT_SYMBOL(mount_bdev);
1671 
1672 void kill_block_super(struct super_block *sb)
1673 {
1674 	struct block_device *bdev = sb->s_bdev;
1675 
1676 	generic_shutdown_super(sb);
1677 	if (bdev) {
1678 		sync_blockdev(bdev);
1679 		bdev_fput(sb->s_bdev_file);
1680 	}
1681 }
1682 
1683 EXPORT_SYMBOL(kill_block_super);
1684 #endif
1685 
1686 struct dentry *mount_nodev(struct file_system_type *fs_type,
1687 	int flags, void *data,
1688 	int (*fill_super)(struct super_block *, void *, int))
1689 {
1690 	int error;
1691 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1692 
1693 	if (IS_ERR(s))
1694 		return ERR_CAST(s);
1695 
1696 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1697 	if (error) {
1698 		deactivate_locked_super(s);
1699 		return ERR_PTR(error);
1700 	}
1701 	s->s_flags |= SB_ACTIVE;
1702 	return dget(s->s_root);
1703 }
1704 EXPORT_SYMBOL(mount_nodev);
1705 
1706 int reconfigure_single(struct super_block *s,
1707 		       int flags, void *data)
1708 {
1709 	struct fs_context *fc;
1710 	int ret;
1711 
1712 	/* The caller really need to be passing fc down into mount_single(),
1713 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1714 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1715 	 * mount should be rejected if the parameters are not compatible.
1716 	 */
1717 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1718 	if (IS_ERR(fc))
1719 		return PTR_ERR(fc);
1720 
1721 	ret = parse_monolithic_mount_data(fc, data);
1722 	if (ret < 0)
1723 		goto out;
1724 
1725 	ret = reconfigure_super(fc);
1726 out:
1727 	put_fs_context(fc);
1728 	return ret;
1729 }
1730 
1731 static int compare_single(struct super_block *s, void *p)
1732 {
1733 	return 1;
1734 }
1735 
1736 struct dentry *mount_single(struct file_system_type *fs_type,
1737 	int flags, void *data,
1738 	int (*fill_super)(struct super_block *, void *, int))
1739 {
1740 	struct super_block *s;
1741 	int error;
1742 
1743 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1744 	if (IS_ERR(s))
1745 		return ERR_CAST(s);
1746 	if (!s->s_root) {
1747 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1748 		if (!error)
1749 			s->s_flags |= SB_ACTIVE;
1750 	} else {
1751 		error = reconfigure_single(s, flags, data);
1752 	}
1753 	if (unlikely(error)) {
1754 		deactivate_locked_super(s);
1755 		return ERR_PTR(error);
1756 	}
1757 	return dget(s->s_root);
1758 }
1759 EXPORT_SYMBOL(mount_single);
1760 
1761 /**
1762  * vfs_get_tree - Get the mountable root
1763  * @fc: The superblock configuration context.
1764  *
1765  * The filesystem is invoked to get or create a superblock which can then later
1766  * be used for mounting.  The filesystem places a pointer to the root to be
1767  * used for mounting in @fc->root.
1768  */
1769 int vfs_get_tree(struct fs_context *fc)
1770 {
1771 	struct super_block *sb;
1772 	int error;
1773 
1774 	if (fc->root)
1775 		return -EBUSY;
1776 
1777 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1778 	 * on the superblock.
1779 	 */
1780 	error = fc->ops->get_tree(fc);
1781 	if (error < 0)
1782 		return error;
1783 
1784 	if (!fc->root) {
1785 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1786 		       fc->fs_type->name);
1787 		/* We don't know what the locking state of the superblock is -
1788 		 * if there is a superblock.
1789 		 */
1790 		BUG();
1791 	}
1792 
1793 	sb = fc->root->d_sb;
1794 	WARN_ON(!sb->s_bdi);
1795 
1796 	/*
1797 	 * super_wake() contains a memory barrier which also care of
1798 	 * ordering for super_cache_count(). We place it before setting
1799 	 * SB_BORN as the data dependency between the two functions is
1800 	 * the superblock structure contents that we just set up, not
1801 	 * the SB_BORN flag.
1802 	 */
1803 	super_wake(sb, SB_BORN);
1804 
1805 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1806 	if (unlikely(error)) {
1807 		fc_drop_locked(fc);
1808 		return error;
1809 	}
1810 
1811 	/*
1812 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1813 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1814 	 * this warning for a little while to try and catch filesystems that
1815 	 * violate this rule.
1816 	 */
1817 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1818 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1819 
1820 	return 0;
1821 }
1822 EXPORT_SYMBOL(vfs_get_tree);
1823 
1824 /*
1825  * Setup private BDI for given superblock. It gets automatically cleaned up
1826  * in generic_shutdown_super().
1827  */
1828 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1829 {
1830 	struct backing_dev_info *bdi;
1831 	int err;
1832 	va_list args;
1833 
1834 	bdi = bdi_alloc(NUMA_NO_NODE);
1835 	if (!bdi)
1836 		return -ENOMEM;
1837 
1838 	va_start(args, fmt);
1839 	err = bdi_register_va(bdi, fmt, args);
1840 	va_end(args);
1841 	if (err) {
1842 		bdi_put(bdi);
1843 		return err;
1844 	}
1845 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1846 	sb->s_bdi = bdi;
1847 	sb->s_iflags |= SB_I_PERSB_BDI;
1848 
1849 	return 0;
1850 }
1851 EXPORT_SYMBOL(super_setup_bdi_name);
1852 
1853 /*
1854  * Setup private BDI for given superblock. I gets automatically cleaned up
1855  * in generic_shutdown_super().
1856  */
1857 int super_setup_bdi(struct super_block *sb)
1858 {
1859 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1860 
1861 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1862 				    atomic_long_inc_return(&bdi_seq));
1863 }
1864 EXPORT_SYMBOL(super_setup_bdi);
1865 
1866 /**
1867  * sb_wait_write - wait until all writers to given file system finish
1868  * @sb: the super for which we wait
1869  * @level: type of writers we wait for (normal vs page fault)
1870  *
1871  * This function waits until there are no writers of given type to given file
1872  * system.
1873  */
1874 static void sb_wait_write(struct super_block *sb, int level)
1875 {
1876 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1877 }
1878 
1879 /*
1880  * We are going to return to userspace and forget about these locks, the
1881  * ownership goes to the caller of thaw_super() which does unlock().
1882  */
1883 static void lockdep_sb_freeze_release(struct super_block *sb)
1884 {
1885 	int level;
1886 
1887 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1888 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1889 }
1890 
1891 /*
1892  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1893  */
1894 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1895 {
1896 	int level;
1897 
1898 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1899 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1900 }
1901 
1902 static void sb_freeze_unlock(struct super_block *sb, int level)
1903 {
1904 	for (level--; level >= 0; level--)
1905 		percpu_up_write(sb->s_writers.rw_sem + level);
1906 }
1907 
1908 static int wait_for_partially_frozen(struct super_block *sb)
1909 {
1910 	int ret = 0;
1911 
1912 	do {
1913 		unsigned short old = sb->s_writers.frozen;
1914 
1915 		up_write(&sb->s_umount);
1916 		ret = wait_var_event_killable(&sb->s_writers.frozen,
1917 					       sb->s_writers.frozen != old);
1918 		down_write(&sb->s_umount);
1919 	} while (ret == 0 &&
1920 		 sb->s_writers.frozen != SB_UNFROZEN &&
1921 		 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1922 
1923 	return ret;
1924 }
1925 
1926 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE)
1927 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST)
1928 
1929 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who)
1930 {
1931 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1932 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1933 
1934 	if (who & FREEZE_HOLDER_KERNEL)
1935 		++sb->s_writers.freeze_kcount;
1936 	if (who & FREEZE_HOLDER_USERSPACE)
1937 		++sb->s_writers.freeze_ucount;
1938 	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1939 }
1940 
1941 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who)
1942 {
1943 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1944 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1945 
1946 	if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount)
1947 		--sb->s_writers.freeze_kcount;
1948 	if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount)
1949 		--sb->s_writers.freeze_ucount;
1950 	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1951 }
1952 
1953 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who)
1954 {
1955 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1956 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1957 
1958 	if (who & FREEZE_HOLDER_KERNEL)
1959 		return (who & FREEZE_MAY_NEST) ||
1960 		       sb->s_writers.freeze_kcount == 0;
1961 	if (who & FREEZE_HOLDER_USERSPACE)
1962 		return (who & FREEZE_MAY_NEST) ||
1963 		       sb->s_writers.freeze_ucount == 0;
1964 	return false;
1965 }
1966 
1967 /**
1968  * freeze_super - lock the filesystem and force it into a consistent state
1969  * @sb: the super to lock
1970  * @who: context that wants to freeze
1971  *
1972  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1973  * freeze_fs.  Subsequent calls to this without first thawing the fs may return
1974  * -EBUSY.
1975  *
1976  * @who should be:
1977  * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
1978  * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
1979  * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed.
1980  *
1981  * The @who argument distinguishes between the kernel and userspace trying to
1982  * freeze the filesystem.  Although there cannot be multiple kernel freezes or
1983  * multiple userspace freezes in effect at any given time, the kernel and
1984  * userspace can both hold a filesystem frozen.  The filesystem remains frozen
1985  * until there are no kernel or userspace freezes in effect.
1986  *
1987  * A filesystem may hold multiple devices and thus a filesystems may be
1988  * frozen through the block layer via multiple block devices. In this
1989  * case the request is marked as being allowed to nest by passing
1990  * FREEZE_MAY_NEST. The filesystem remains frozen until all block
1991  * devices are unfrozen. If multiple freezes are attempted without
1992  * FREEZE_MAY_NEST -EBUSY will be returned.
1993  *
1994  * During this function, sb->s_writers.frozen goes through these values:
1995  *
1996  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1997  *
1998  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1999  * writes should be blocked, though page faults are still allowed. We wait for
2000  * all writes to complete and then proceed to the next stage.
2001  *
2002  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
2003  * but internal fs threads can still modify the filesystem (although they
2004  * should not dirty new pages or inodes), writeback can run etc. After waiting
2005  * for all running page faults we sync the filesystem which will clean all
2006  * dirty pages and inodes (no new dirty pages or inodes can be created when
2007  * sync is running).
2008  *
2009  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
2010  * modification are blocked (e.g. XFS preallocation truncation on inode
2011  * reclaim). This is usually implemented by blocking new transactions for
2012  * filesystems that have them and need this additional guard. After all
2013  * internal writers are finished we call ->freeze_fs() to finish filesystem
2014  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
2015  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
2016  *
2017  * sb->s_writers.frozen is protected by sb->s_umount.
2018  *
2019  * Return: If the freeze was successful zero is returned. If the freeze
2020  *         failed a negative error code is returned.
2021  */
2022 int freeze_super(struct super_block *sb, enum freeze_holder who)
2023 {
2024 	int ret;
2025 
2026 	if (!super_lock_excl(sb)) {
2027 		WARN_ON_ONCE("Dying superblock while freezing!");
2028 		return -EINVAL;
2029 	}
2030 	atomic_inc(&sb->s_active);
2031 
2032 retry:
2033 	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2034 		if (may_freeze(sb, who))
2035 			ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1);
2036 		else
2037 			ret = -EBUSY;
2038 		/* All freezers share a single active reference. */
2039 		deactivate_locked_super(sb);
2040 		return ret;
2041 	}
2042 
2043 	if (sb->s_writers.frozen != SB_UNFROZEN) {
2044 		ret = wait_for_partially_frozen(sb);
2045 		if (ret) {
2046 			deactivate_locked_super(sb);
2047 			return ret;
2048 		}
2049 
2050 		goto retry;
2051 	}
2052 
2053 	if (sb_rdonly(sb)) {
2054 		/* Nothing to do really... */
2055 		WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2056 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2057 		wake_up_var(&sb->s_writers.frozen);
2058 		super_unlock_excl(sb);
2059 		return 0;
2060 	}
2061 
2062 	sb->s_writers.frozen = SB_FREEZE_WRITE;
2063 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
2064 	super_unlock_excl(sb);
2065 	sb_wait_write(sb, SB_FREEZE_WRITE);
2066 	__super_lock_excl(sb);
2067 
2068 	/* Now we go and block page faults... */
2069 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2070 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2071 
2072 	/* All writers are done so after syncing there won't be dirty data */
2073 	ret = sync_filesystem(sb);
2074 	if (ret) {
2075 		sb->s_writers.frozen = SB_UNFROZEN;
2076 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2077 		wake_up_var(&sb->s_writers.frozen);
2078 		deactivate_locked_super(sb);
2079 		return ret;
2080 	}
2081 
2082 	/* Now wait for internal filesystem counter */
2083 	sb->s_writers.frozen = SB_FREEZE_FS;
2084 	sb_wait_write(sb, SB_FREEZE_FS);
2085 
2086 	if (sb->s_op->freeze_fs) {
2087 		ret = sb->s_op->freeze_fs(sb);
2088 		if (ret) {
2089 			printk(KERN_ERR
2090 				"VFS:Filesystem freeze failed\n");
2091 			sb->s_writers.frozen = SB_UNFROZEN;
2092 			sb_freeze_unlock(sb, SB_FREEZE_FS);
2093 			wake_up_var(&sb->s_writers.frozen);
2094 			deactivate_locked_super(sb);
2095 			return ret;
2096 		}
2097 	}
2098 	/*
2099 	 * For debugging purposes so that fs can warn if it sees write activity
2100 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2101 	 */
2102 	WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2103 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2104 	wake_up_var(&sb->s_writers.frozen);
2105 	lockdep_sb_freeze_release(sb);
2106 	super_unlock_excl(sb);
2107 	return 0;
2108 }
2109 EXPORT_SYMBOL(freeze_super);
2110 
2111 /*
2112  * Undoes the effect of a freeze_super_locked call.  If the filesystem is
2113  * frozen both by userspace and the kernel, a thaw call from either source
2114  * removes that state without releasing the other state or unlocking the
2115  * filesystem.
2116  */
2117 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
2118 {
2119 	int error = -EINVAL;
2120 
2121 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE)
2122 		goto out_unlock;
2123 
2124 	/*
2125 	 * All freezers share a single active reference.
2126 	 * So just unlock in case there are any left.
2127 	 */
2128 	if (freeze_dec(sb, who))
2129 		goto out_unlock;
2130 
2131 	if (sb_rdonly(sb)) {
2132 		sb->s_writers.frozen = SB_UNFROZEN;
2133 		wake_up_var(&sb->s_writers.frozen);
2134 		goto out_deactivate;
2135 	}
2136 
2137 	lockdep_sb_freeze_acquire(sb);
2138 
2139 	if (sb->s_op->unfreeze_fs) {
2140 		error = sb->s_op->unfreeze_fs(sb);
2141 		if (error) {
2142 			pr_err("VFS: Filesystem thaw failed\n");
2143 			freeze_inc(sb, who);
2144 			lockdep_sb_freeze_release(sb);
2145 			goto out_unlock;
2146 		}
2147 	}
2148 
2149 	sb->s_writers.frozen = SB_UNFROZEN;
2150 	wake_up_var(&sb->s_writers.frozen);
2151 	sb_freeze_unlock(sb, SB_FREEZE_FS);
2152 out_deactivate:
2153 	deactivate_locked_super(sb);
2154 	return 0;
2155 
2156 out_unlock:
2157 	super_unlock_excl(sb);
2158 	return error;
2159 }
2160 
2161 /**
2162  * thaw_super -- unlock filesystem
2163  * @sb: the super to thaw
2164  * @who: context that wants to freeze
2165  *
2166  * Unlocks the filesystem and marks it writeable again after freeze_super()
2167  * if there are no remaining freezes on the filesystem.
2168  *
2169  * @who should be:
2170  * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2171  * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2172  * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed
2173  *
2174  * A filesystem may hold multiple devices and thus a filesystems may
2175  * have been frozen through the block layer via multiple block devices.
2176  * The filesystem remains frozen until all block devices are unfrozen.
2177  */
2178 int thaw_super(struct super_block *sb, enum freeze_holder who)
2179 {
2180 	if (!super_lock_excl(sb)) {
2181 		WARN_ON_ONCE("Dying superblock while thawing!");
2182 		return -EINVAL;
2183 	}
2184 	return thaw_super_locked(sb, who);
2185 }
2186 EXPORT_SYMBOL(thaw_super);
2187 
2188 /*
2189  * Create workqueue for deferred direct IO completions. We allocate the
2190  * workqueue when it's first needed. This avoids creating workqueue for
2191  * filesystems that don't need it and also allows us to create the workqueue
2192  * late enough so the we can include s_id in the name of the workqueue.
2193  */
2194 int sb_init_dio_done_wq(struct super_block *sb)
2195 {
2196 	struct workqueue_struct *old;
2197 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2198 						      WQ_MEM_RECLAIM, 0,
2199 						      sb->s_id);
2200 	if (!wq)
2201 		return -ENOMEM;
2202 	/*
2203 	 * This has to be atomic as more DIOs can race to create the workqueue
2204 	 */
2205 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2206 	/* Someone created workqueue before us? Free ours... */
2207 	if (old)
2208 		destroy_workqueue(wq);
2209 	return 0;
2210 }
2211 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);
2212