xref: /linux/fs/super.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbj�rn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h>		/* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h>		/* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <asm/uaccess.h>
41 
42 
43 void get_filesystem(struct file_system_type *fs);
44 void put_filesystem(struct file_system_type *fs);
45 struct file_system_type *get_fs_type(const char *name);
46 
47 LIST_HEAD(super_blocks);
48 DEFINE_SPINLOCK(sb_lock);
49 
50 /**
51  *	alloc_super	-	create new superblock
52  *
53  *	Allocates and initializes a new &struct super_block.  alloc_super()
54  *	returns a pointer new superblock or %NULL if allocation had failed.
55  */
56 static struct super_block *alloc_super(struct file_system_type *type)
57 {
58 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
59 	static struct super_operations default_op;
60 
61 	if (s) {
62 		if (security_sb_alloc(s)) {
63 			kfree(s);
64 			s = NULL;
65 			goto out;
66 		}
67 		INIT_LIST_HEAD(&s->s_dirty);
68 		INIT_LIST_HEAD(&s->s_io);
69 		INIT_LIST_HEAD(&s->s_files);
70 		INIT_LIST_HEAD(&s->s_instances);
71 		INIT_HLIST_HEAD(&s->s_anon);
72 		INIT_LIST_HEAD(&s->s_inodes);
73 		init_rwsem(&s->s_umount);
74 		mutex_init(&s->s_lock);
75 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
76 		/*
77 		 * The locking rules for s_lock are up to the
78 		 * filesystem. For example ext3fs has different
79 		 * lock ordering than usbfs:
80 		 */
81 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
82 		down_write(&s->s_umount);
83 		s->s_count = S_BIAS;
84 		atomic_set(&s->s_active, 1);
85 		mutex_init(&s->s_vfs_rename_mutex);
86 		mutex_init(&s->s_dquot.dqio_mutex);
87 		mutex_init(&s->s_dquot.dqonoff_mutex);
88 		init_rwsem(&s->s_dquot.dqptr_sem);
89 		init_waitqueue_head(&s->s_wait_unfrozen);
90 		s->s_maxbytes = MAX_NON_LFS;
91 		s->dq_op = sb_dquot_ops;
92 		s->s_qcop = sb_quotactl_ops;
93 		s->s_op = &default_op;
94 		s->s_time_gran = 1000000000;
95 	}
96 out:
97 	return s;
98 }
99 
100 /**
101  *	destroy_super	-	frees a superblock
102  *	@s: superblock to free
103  *
104  *	Frees a superblock.
105  */
106 static inline void destroy_super(struct super_block *s)
107 {
108 	security_sb_free(s);
109 	kfree(s);
110 }
111 
112 /* Superblock refcounting  */
113 
114 /*
115  * Drop a superblock's refcount.  Returns non-zero if the superblock was
116  * destroyed.  The caller must hold sb_lock.
117  */
118 int __put_super(struct super_block *sb)
119 {
120 	int ret = 0;
121 
122 	if (!--sb->s_count) {
123 		destroy_super(sb);
124 		ret = 1;
125 	}
126 	return ret;
127 }
128 
129 /*
130  * Drop a superblock's refcount.
131  * Returns non-zero if the superblock is about to be destroyed and
132  * at least is already removed from super_blocks list, so if we are
133  * making a loop through super blocks then we need to restart.
134  * The caller must hold sb_lock.
135  */
136 int __put_super_and_need_restart(struct super_block *sb)
137 {
138 	/* check for race with generic_shutdown_super() */
139 	if (list_empty(&sb->s_list)) {
140 		/* super block is removed, need to restart... */
141 		__put_super(sb);
142 		return 1;
143 	}
144 	/* can't be the last, since s_list is still in use */
145 	sb->s_count--;
146 	BUG_ON(sb->s_count == 0);
147 	return 0;
148 }
149 
150 /**
151  *	put_super	-	drop a temporary reference to superblock
152  *	@sb: superblock in question
153  *
154  *	Drops a temporary reference, frees superblock if there's no
155  *	references left.
156  */
157 static void put_super(struct super_block *sb)
158 {
159 	spin_lock(&sb_lock);
160 	__put_super(sb);
161 	spin_unlock(&sb_lock);
162 }
163 
164 
165 /**
166  *	deactivate_super	-	drop an active reference to superblock
167  *	@s: superblock to deactivate
168  *
169  *	Drops an active reference to superblock, acquiring a temprory one if
170  *	there is no active references left.  In that case we lock superblock,
171  *	tell fs driver to shut it down and drop the temporary reference we
172  *	had just acquired.
173  */
174 void deactivate_super(struct super_block *s)
175 {
176 	struct file_system_type *fs = s->s_type;
177 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
178 		s->s_count -= S_BIAS-1;
179 		spin_unlock(&sb_lock);
180 		DQUOT_OFF(s);
181 		down_write(&s->s_umount);
182 		fs->kill_sb(s);
183 		put_filesystem(fs);
184 		put_super(s);
185 	}
186 }
187 
188 EXPORT_SYMBOL(deactivate_super);
189 
190 /**
191  *	grab_super - acquire an active reference
192  *	@s: reference we are trying to make active
193  *
194  *	Tries to acquire an active reference.  grab_super() is used when we
195  * 	had just found a superblock in super_blocks or fs_type->fs_supers
196  *	and want to turn it into a full-blown active reference.  grab_super()
197  *	is called with sb_lock held and drops it.  Returns 1 in case of
198  *	success, 0 if we had failed (superblock contents was already dead or
199  *	dying when grab_super() had been called).
200  */
201 static int grab_super(struct super_block *s)
202 {
203 	s->s_count++;
204 	spin_unlock(&sb_lock);
205 	down_write(&s->s_umount);
206 	if (s->s_root) {
207 		spin_lock(&sb_lock);
208 		if (s->s_count > S_BIAS) {
209 			atomic_inc(&s->s_active);
210 			s->s_count--;
211 			spin_unlock(&sb_lock);
212 			return 1;
213 		}
214 		spin_unlock(&sb_lock);
215 	}
216 	up_write(&s->s_umount);
217 	put_super(s);
218 	yield();
219 	return 0;
220 }
221 
222 /**
223  *	generic_shutdown_super	-	common helper for ->kill_sb()
224  *	@sb: superblock to kill
225  *
226  *	generic_shutdown_super() does all fs-independent work on superblock
227  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
228  *	that need destruction out of superblock, call generic_shutdown_super()
229  *	and release aforementioned objects.  Note: dentries and inodes _are_
230  *	taken care of and do not need specific handling.
231  */
232 void generic_shutdown_super(struct super_block *sb)
233 {
234 	struct dentry *root = sb->s_root;
235 	struct super_operations *sop = sb->s_op;
236 
237 	if (root) {
238 		sb->s_root = NULL;
239 		shrink_dcache_parent(root);
240 		shrink_dcache_sb(sb);
241 		dput(root);
242 		fsync_super(sb);
243 		lock_super(sb);
244 		sb->s_flags &= ~MS_ACTIVE;
245 		/* bad name - it should be evict_inodes() */
246 		invalidate_inodes(sb);
247 		lock_kernel();
248 
249 		if (sop->write_super && sb->s_dirt)
250 			sop->write_super(sb);
251 		if (sop->put_super)
252 			sop->put_super(sb);
253 
254 		/* Forget any remaining inodes */
255 		if (invalidate_inodes(sb)) {
256 			printk("VFS: Busy inodes after unmount of %s. "
257 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
258 			   sb->s_id);
259 		}
260 
261 		unlock_kernel();
262 		unlock_super(sb);
263 	}
264 	spin_lock(&sb_lock);
265 	/* should be initialized for __put_super_and_need_restart() */
266 	list_del_init(&sb->s_list);
267 	list_del(&sb->s_instances);
268 	spin_unlock(&sb_lock);
269 	up_write(&sb->s_umount);
270 }
271 
272 EXPORT_SYMBOL(generic_shutdown_super);
273 
274 /**
275  *	sget	-	find or create a superblock
276  *	@type:	filesystem type superblock should belong to
277  *	@test:	comparison callback
278  *	@set:	setup callback
279  *	@data:	argument to each of them
280  */
281 struct super_block *sget(struct file_system_type *type,
282 			int (*test)(struct super_block *,void *),
283 			int (*set)(struct super_block *,void *),
284 			void *data)
285 {
286 	struct super_block *s = NULL;
287 	struct list_head *p;
288 	int err;
289 
290 retry:
291 	spin_lock(&sb_lock);
292 	if (test) list_for_each(p, &type->fs_supers) {
293 		struct super_block *old;
294 		old = list_entry(p, struct super_block, s_instances);
295 		if (!test(old, data))
296 			continue;
297 		if (!grab_super(old))
298 			goto retry;
299 		if (s)
300 			destroy_super(s);
301 		return old;
302 	}
303 	if (!s) {
304 		spin_unlock(&sb_lock);
305 		s = alloc_super(type);
306 		if (!s)
307 			return ERR_PTR(-ENOMEM);
308 		goto retry;
309 	}
310 
311 	err = set(s, data);
312 	if (err) {
313 		spin_unlock(&sb_lock);
314 		destroy_super(s);
315 		return ERR_PTR(err);
316 	}
317 	s->s_type = type;
318 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
319 	list_add_tail(&s->s_list, &super_blocks);
320 	list_add(&s->s_instances, &type->fs_supers);
321 	spin_unlock(&sb_lock);
322 	get_filesystem(type);
323 	return s;
324 }
325 
326 EXPORT_SYMBOL(sget);
327 
328 void drop_super(struct super_block *sb)
329 {
330 	up_read(&sb->s_umount);
331 	put_super(sb);
332 }
333 
334 EXPORT_SYMBOL(drop_super);
335 
336 static inline void write_super(struct super_block *sb)
337 {
338 	lock_super(sb);
339 	if (sb->s_root && sb->s_dirt)
340 		if (sb->s_op->write_super)
341 			sb->s_op->write_super(sb);
342 	unlock_super(sb);
343 }
344 
345 /*
346  * Note: check the dirty flag before waiting, so we don't
347  * hold up the sync while mounting a device. (The newly
348  * mounted device won't need syncing.)
349  */
350 void sync_supers(void)
351 {
352 	struct super_block *sb;
353 
354 	spin_lock(&sb_lock);
355 restart:
356 	list_for_each_entry(sb, &super_blocks, s_list) {
357 		if (sb->s_dirt) {
358 			sb->s_count++;
359 			spin_unlock(&sb_lock);
360 			down_read(&sb->s_umount);
361 			write_super(sb);
362 			up_read(&sb->s_umount);
363 			spin_lock(&sb_lock);
364 			if (__put_super_and_need_restart(sb))
365 				goto restart;
366 		}
367 	}
368 	spin_unlock(&sb_lock);
369 }
370 
371 /*
372  * Call the ->sync_fs super_op against all filesytems which are r/w and
373  * which implement it.
374  *
375  * This operation is careful to avoid the livelock which could easily happen
376  * if two or more filesystems are being continuously dirtied.  s_need_sync_fs
377  * is used only here.  We set it against all filesystems and then clear it as
378  * we sync them.  So redirtied filesystems are skipped.
379  *
380  * But if process A is currently running sync_filesytems and then process B
381  * calls sync_filesystems as well, process B will set all the s_need_sync_fs
382  * flags again, which will cause process A to resync everything.  Fix that with
383  * a local mutex.
384  *
385  * (Fabian) Avoid sync_fs with clean fs & wait mode 0
386  */
387 void sync_filesystems(int wait)
388 {
389 	struct super_block *sb;
390 	static DEFINE_MUTEX(mutex);
391 
392 	mutex_lock(&mutex);		/* Could be down_interruptible */
393 	spin_lock(&sb_lock);
394 	list_for_each_entry(sb, &super_blocks, s_list) {
395 		if (!sb->s_op->sync_fs)
396 			continue;
397 		if (sb->s_flags & MS_RDONLY)
398 			continue;
399 		sb->s_need_sync_fs = 1;
400 	}
401 
402 restart:
403 	list_for_each_entry(sb, &super_blocks, s_list) {
404 		if (!sb->s_need_sync_fs)
405 			continue;
406 		sb->s_need_sync_fs = 0;
407 		if (sb->s_flags & MS_RDONLY)
408 			continue;	/* hm.  Was remounted r/o meanwhile */
409 		sb->s_count++;
410 		spin_unlock(&sb_lock);
411 		down_read(&sb->s_umount);
412 		if (sb->s_root && (wait || sb->s_dirt))
413 			sb->s_op->sync_fs(sb, wait);
414 		up_read(&sb->s_umount);
415 		/* restart only when sb is no longer on the list */
416 		spin_lock(&sb_lock);
417 		if (__put_super_and_need_restart(sb))
418 			goto restart;
419 	}
420 	spin_unlock(&sb_lock);
421 	mutex_unlock(&mutex);
422 }
423 
424 /**
425  *	get_super - get the superblock of a device
426  *	@bdev: device to get the superblock for
427  *
428  *	Scans the superblock list and finds the superblock of the file system
429  *	mounted on the device given. %NULL is returned if no match is found.
430  */
431 
432 struct super_block * get_super(struct block_device *bdev)
433 {
434 	struct super_block *sb;
435 
436 	if (!bdev)
437 		return NULL;
438 
439 	spin_lock(&sb_lock);
440 rescan:
441 	list_for_each_entry(sb, &super_blocks, s_list) {
442 		if (sb->s_bdev == bdev) {
443 			sb->s_count++;
444 			spin_unlock(&sb_lock);
445 			down_read(&sb->s_umount);
446 			if (sb->s_root)
447 				return sb;
448 			up_read(&sb->s_umount);
449 			/* restart only when sb is no longer on the list */
450 			spin_lock(&sb_lock);
451 			if (__put_super_and_need_restart(sb))
452 				goto rescan;
453 		}
454 	}
455 	spin_unlock(&sb_lock);
456 	return NULL;
457 }
458 
459 EXPORT_SYMBOL(get_super);
460 
461 struct super_block * user_get_super(dev_t dev)
462 {
463 	struct super_block *sb;
464 
465 	spin_lock(&sb_lock);
466 rescan:
467 	list_for_each_entry(sb, &super_blocks, s_list) {
468 		if (sb->s_dev ==  dev) {
469 			sb->s_count++;
470 			spin_unlock(&sb_lock);
471 			down_read(&sb->s_umount);
472 			if (sb->s_root)
473 				return sb;
474 			up_read(&sb->s_umount);
475 			/* restart only when sb is no longer on the list */
476 			spin_lock(&sb_lock);
477 			if (__put_super_and_need_restart(sb))
478 				goto rescan;
479 		}
480 	}
481 	spin_unlock(&sb_lock);
482 	return NULL;
483 }
484 
485 asmlinkage long sys_ustat(unsigned dev, struct ustat __user * ubuf)
486 {
487         struct super_block *s;
488         struct ustat tmp;
489         struct kstatfs sbuf;
490 	int err = -EINVAL;
491 
492         s = user_get_super(new_decode_dev(dev));
493         if (s == NULL)
494                 goto out;
495 	err = vfs_statfs(s->s_root, &sbuf);
496 	drop_super(s);
497 	if (err)
498 		goto out;
499 
500         memset(&tmp,0,sizeof(struct ustat));
501         tmp.f_tfree = sbuf.f_bfree;
502         tmp.f_tinode = sbuf.f_ffree;
503 
504         err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
505 out:
506 	return err;
507 }
508 
509 /**
510  *	mark_files_ro
511  *	@sb: superblock in question
512  *
513  *	All files are marked read/only.  We don't care about pending
514  *	delete files so this should be used in 'force' mode only
515  */
516 
517 static void mark_files_ro(struct super_block *sb)
518 {
519 	struct file *f;
520 
521 	file_list_lock();
522 	list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
523 		if (S_ISREG(f->f_dentry->d_inode->i_mode) && file_count(f))
524 			f->f_mode &= ~FMODE_WRITE;
525 	}
526 	file_list_unlock();
527 }
528 
529 /**
530  *	do_remount_sb - asks filesystem to change mount options.
531  *	@sb:	superblock in question
532  *	@flags:	numeric part of options
533  *	@data:	the rest of options
534  *      @force: whether or not to force the change
535  *
536  *	Alters the mount options of a mounted file system.
537  */
538 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
539 {
540 	int retval;
541 
542 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
543 		return -EACCES;
544 	if (flags & MS_RDONLY)
545 		acct_auto_close(sb);
546 	shrink_dcache_sb(sb);
547 	fsync_super(sb);
548 
549 	/* If we are remounting RDONLY and current sb is read/write,
550 	   make sure there are no rw files opened */
551 	if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
552 		if (force)
553 			mark_files_ro(sb);
554 		else if (!fs_may_remount_ro(sb))
555 			return -EBUSY;
556 	}
557 
558 	if (sb->s_op->remount_fs) {
559 		lock_super(sb);
560 		retval = sb->s_op->remount_fs(sb, &flags, data);
561 		unlock_super(sb);
562 		if (retval)
563 			return retval;
564 	}
565 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
566 	return 0;
567 }
568 
569 static void do_emergency_remount(unsigned long foo)
570 {
571 	struct super_block *sb;
572 
573 	spin_lock(&sb_lock);
574 	list_for_each_entry(sb, &super_blocks, s_list) {
575 		sb->s_count++;
576 		spin_unlock(&sb_lock);
577 		down_read(&sb->s_umount);
578 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
579 			/*
580 			 * ->remount_fs needs lock_kernel().
581 			 *
582 			 * What lock protects sb->s_flags??
583 			 */
584 			lock_kernel();
585 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
586 			unlock_kernel();
587 		}
588 		drop_super(sb);
589 		spin_lock(&sb_lock);
590 	}
591 	spin_unlock(&sb_lock);
592 	printk("Emergency Remount complete\n");
593 }
594 
595 void emergency_remount(void)
596 {
597 	pdflush_operation(do_emergency_remount, 0);
598 }
599 
600 /*
601  * Unnamed block devices are dummy devices used by virtual
602  * filesystems which don't use real block-devices.  -- jrs
603  */
604 
605 static struct idr unnamed_dev_idr;
606 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
607 
608 int set_anon_super(struct super_block *s, void *data)
609 {
610 	int dev;
611 	int error;
612 
613  retry:
614 	if (idr_pre_get(&unnamed_dev_idr, GFP_ATOMIC) == 0)
615 		return -ENOMEM;
616 	spin_lock(&unnamed_dev_lock);
617 	error = idr_get_new(&unnamed_dev_idr, NULL, &dev);
618 	spin_unlock(&unnamed_dev_lock);
619 	if (error == -EAGAIN)
620 		/* We raced and lost with another CPU. */
621 		goto retry;
622 	else if (error)
623 		return -EAGAIN;
624 
625 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
626 		spin_lock(&unnamed_dev_lock);
627 		idr_remove(&unnamed_dev_idr, dev);
628 		spin_unlock(&unnamed_dev_lock);
629 		return -EMFILE;
630 	}
631 	s->s_dev = MKDEV(0, dev & MINORMASK);
632 	return 0;
633 }
634 
635 EXPORT_SYMBOL(set_anon_super);
636 
637 void kill_anon_super(struct super_block *sb)
638 {
639 	int slot = MINOR(sb->s_dev);
640 
641 	generic_shutdown_super(sb);
642 	spin_lock(&unnamed_dev_lock);
643 	idr_remove(&unnamed_dev_idr, slot);
644 	spin_unlock(&unnamed_dev_lock);
645 }
646 
647 EXPORT_SYMBOL(kill_anon_super);
648 
649 void __init unnamed_dev_init(void)
650 {
651 	idr_init(&unnamed_dev_idr);
652 }
653 
654 void kill_litter_super(struct super_block *sb)
655 {
656 	if (sb->s_root)
657 		d_genocide(sb->s_root);
658 	kill_anon_super(sb);
659 }
660 
661 EXPORT_SYMBOL(kill_litter_super);
662 
663 static int set_bdev_super(struct super_block *s, void *data)
664 {
665 	s->s_bdev = data;
666 	s->s_dev = s->s_bdev->bd_dev;
667 	return 0;
668 }
669 
670 static int test_bdev_super(struct super_block *s, void *data)
671 {
672 	return (void *)s->s_bdev == data;
673 }
674 
675 static void bdev_uevent(struct block_device *bdev, enum kobject_action action)
676 {
677 	if (bdev->bd_disk) {
678 		if (bdev->bd_part)
679 			kobject_uevent(&bdev->bd_part->kobj, action);
680 		else
681 			kobject_uevent(&bdev->bd_disk->kobj, action);
682 	}
683 }
684 
685 int get_sb_bdev(struct file_system_type *fs_type,
686 	int flags, const char *dev_name, void *data,
687 	int (*fill_super)(struct super_block *, void *, int),
688 	struct vfsmount *mnt)
689 {
690 	struct block_device *bdev;
691 	struct super_block *s;
692 	int error = 0;
693 
694 	bdev = open_bdev_excl(dev_name, flags, fs_type);
695 	if (IS_ERR(bdev))
696 		return PTR_ERR(bdev);
697 
698 	/*
699 	 * once the super is inserted into the list by sget, s_umount
700 	 * will protect the lockfs code from trying to start a snapshot
701 	 * while we are mounting
702 	 */
703 	mutex_lock(&bdev->bd_mount_mutex);
704 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
705 	mutex_unlock(&bdev->bd_mount_mutex);
706 	if (IS_ERR(s))
707 		goto error_s;
708 
709 	if (s->s_root) {
710 		if ((flags ^ s->s_flags) & MS_RDONLY) {
711 			up_write(&s->s_umount);
712 			deactivate_super(s);
713 			error = -EBUSY;
714 			goto error_bdev;
715 		}
716 
717 		close_bdev_excl(bdev);
718 	} else {
719 		char b[BDEVNAME_SIZE];
720 
721 		s->s_flags = flags;
722 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
723 		sb_set_blocksize(s, block_size(bdev));
724 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
725 		if (error) {
726 			up_write(&s->s_umount);
727 			deactivate_super(s);
728 			goto error;
729 		}
730 
731 		s->s_flags |= MS_ACTIVE;
732 		bdev_uevent(bdev, KOBJ_MOUNT);
733 	}
734 
735 	return simple_set_mnt(mnt, s);
736 
737 error_s:
738 	error = PTR_ERR(s);
739 error_bdev:
740 	close_bdev_excl(bdev);
741 error:
742 	return error;
743 }
744 
745 EXPORT_SYMBOL(get_sb_bdev);
746 
747 void kill_block_super(struct super_block *sb)
748 {
749 	struct block_device *bdev = sb->s_bdev;
750 
751 	bdev_uevent(bdev, KOBJ_UMOUNT);
752 	generic_shutdown_super(sb);
753 	sync_blockdev(bdev);
754 	close_bdev_excl(bdev);
755 }
756 
757 EXPORT_SYMBOL(kill_block_super);
758 
759 int get_sb_nodev(struct file_system_type *fs_type,
760 	int flags, void *data,
761 	int (*fill_super)(struct super_block *, void *, int),
762 	struct vfsmount *mnt)
763 {
764 	int error;
765 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
766 
767 	if (IS_ERR(s))
768 		return PTR_ERR(s);
769 
770 	s->s_flags = flags;
771 
772 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
773 	if (error) {
774 		up_write(&s->s_umount);
775 		deactivate_super(s);
776 		return error;
777 	}
778 	s->s_flags |= MS_ACTIVE;
779 	return simple_set_mnt(mnt, s);
780 }
781 
782 EXPORT_SYMBOL(get_sb_nodev);
783 
784 static int compare_single(struct super_block *s, void *p)
785 {
786 	return 1;
787 }
788 
789 int get_sb_single(struct file_system_type *fs_type,
790 	int flags, void *data,
791 	int (*fill_super)(struct super_block *, void *, int),
792 	struct vfsmount *mnt)
793 {
794 	struct super_block *s;
795 	int error;
796 
797 	s = sget(fs_type, compare_single, set_anon_super, NULL);
798 	if (IS_ERR(s))
799 		return PTR_ERR(s);
800 	if (!s->s_root) {
801 		s->s_flags = flags;
802 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
803 		if (error) {
804 			up_write(&s->s_umount);
805 			deactivate_super(s);
806 			return error;
807 		}
808 		s->s_flags |= MS_ACTIVE;
809 	}
810 	do_remount_sb(s, flags, data, 0);
811 	return simple_set_mnt(mnt, s);
812 }
813 
814 EXPORT_SYMBOL(get_sb_single);
815 
816 struct vfsmount *
817 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
818 {
819 	struct vfsmount *mnt;
820 	char *secdata = NULL;
821 	int error;
822 
823 	if (!type)
824 		return ERR_PTR(-ENODEV);
825 
826 	error = -ENOMEM;
827 	mnt = alloc_vfsmnt(name);
828 	if (!mnt)
829 		goto out;
830 
831 	if (data) {
832 		secdata = alloc_secdata();
833 		if (!secdata)
834 			goto out_mnt;
835 
836 		error = security_sb_copy_data(type, data, secdata);
837 		if (error)
838 			goto out_free_secdata;
839 	}
840 
841 	error = type->get_sb(type, flags, name, data, mnt);
842 	if (error < 0)
843 		goto out_free_secdata;
844 
845  	error = security_sb_kern_mount(mnt->mnt_sb, secdata);
846  	if (error)
847  		goto out_sb;
848 
849 	mnt->mnt_mountpoint = mnt->mnt_root;
850 	mnt->mnt_parent = mnt;
851 	up_write(&mnt->mnt_sb->s_umount);
852 	free_secdata(secdata);
853 	return mnt;
854 out_sb:
855 	dput(mnt->mnt_root);
856 	up_write(&mnt->mnt_sb->s_umount);
857 	deactivate_super(mnt->mnt_sb);
858 out_free_secdata:
859 	free_secdata(secdata);
860 out_mnt:
861 	free_vfsmnt(mnt);
862 out:
863 	return ERR_PTR(error);
864 }
865 
866 EXPORT_SYMBOL_GPL(vfs_kern_mount);
867 
868 struct vfsmount *
869 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
870 {
871 	struct file_system_type *type = get_fs_type(fstype);
872 	struct vfsmount *mnt;
873 	if (!type)
874 		return ERR_PTR(-ENODEV);
875 	mnt = vfs_kern_mount(type, flags, name, data);
876 	put_filesystem(type);
877 	return mnt;
878 }
879 
880 struct vfsmount *kern_mount(struct file_system_type *type)
881 {
882 	return vfs_kern_mount(type, 0, type->name, NULL);
883 }
884 
885 EXPORT_SYMBOL(kern_mount);
886