1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include "internal.h" 36 37 38 LIST_HEAD(super_blocks); 39 DEFINE_SPINLOCK(sb_lock); 40 41 /* 42 * One thing we have to be careful of with a per-sb shrinker is that we don't 43 * drop the last active reference to the superblock from within the shrinker. 44 * If that happens we could trigger unregistering the shrinker from within the 45 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 46 * take a passive reference to the superblock to avoid this from occurring. 47 */ 48 static int prune_super(struct shrinker *shrink, struct shrink_control *sc) 49 { 50 struct super_block *sb; 51 int fs_objects = 0; 52 int total_objects; 53 54 sb = container_of(shrink, struct super_block, s_shrink); 55 56 /* 57 * Deadlock avoidance. We may hold various FS locks, and we don't want 58 * to recurse into the FS that called us in clear_inode() and friends.. 59 */ 60 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS)) 61 return -1; 62 63 if (!grab_super_passive(sb)) 64 return !sc->nr_to_scan ? 0 : -1; 65 66 if (sb->s_op && sb->s_op->nr_cached_objects) 67 fs_objects = sb->s_op->nr_cached_objects(sb); 68 69 total_objects = sb->s_nr_dentry_unused + 70 sb->s_nr_inodes_unused + fs_objects + 1; 71 72 if (sc->nr_to_scan) { 73 int dentries; 74 int inodes; 75 76 /* proportion the scan between the caches */ 77 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) / 78 total_objects; 79 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) / 80 total_objects; 81 if (fs_objects) 82 fs_objects = (sc->nr_to_scan * fs_objects) / 83 total_objects; 84 /* 85 * prune the dcache first as the icache is pinned by it, then 86 * prune the icache, followed by the filesystem specific caches 87 */ 88 prune_dcache_sb(sb, dentries); 89 prune_icache_sb(sb, inodes); 90 91 if (fs_objects && sb->s_op->free_cached_objects) { 92 sb->s_op->free_cached_objects(sb, fs_objects); 93 fs_objects = sb->s_op->nr_cached_objects(sb); 94 } 95 total_objects = sb->s_nr_dentry_unused + 96 sb->s_nr_inodes_unused + fs_objects; 97 } 98 99 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure; 100 drop_super(sb); 101 return total_objects; 102 } 103 104 /** 105 * alloc_super - create new superblock 106 * @type: filesystem type superblock should belong to 107 * 108 * Allocates and initializes a new &struct super_block. alloc_super() 109 * returns a pointer new superblock or %NULL if allocation had failed. 110 */ 111 static struct super_block *alloc_super(struct file_system_type *type) 112 { 113 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 114 static const struct super_operations default_op; 115 116 if (s) { 117 if (security_sb_alloc(s)) { 118 kfree(s); 119 s = NULL; 120 goto out; 121 } 122 #ifdef CONFIG_SMP 123 s->s_files = alloc_percpu(struct list_head); 124 if (!s->s_files) { 125 security_sb_free(s); 126 kfree(s); 127 s = NULL; 128 goto out; 129 } else { 130 int i; 131 132 for_each_possible_cpu(i) 133 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i)); 134 } 135 #else 136 INIT_LIST_HEAD(&s->s_files); 137 #endif 138 s->s_bdi = &default_backing_dev_info; 139 INIT_HLIST_NODE(&s->s_instances); 140 INIT_HLIST_BL_HEAD(&s->s_anon); 141 INIT_LIST_HEAD(&s->s_inodes); 142 INIT_LIST_HEAD(&s->s_dentry_lru); 143 INIT_LIST_HEAD(&s->s_inode_lru); 144 spin_lock_init(&s->s_inode_lru_lock); 145 INIT_LIST_HEAD(&s->s_mounts); 146 init_rwsem(&s->s_umount); 147 mutex_init(&s->s_lock); 148 lockdep_set_class(&s->s_umount, &type->s_umount_key); 149 /* 150 * The locking rules for s_lock are up to the 151 * filesystem. For example ext3fs has different 152 * lock ordering than usbfs: 153 */ 154 lockdep_set_class(&s->s_lock, &type->s_lock_key); 155 /* 156 * sget() can have s_umount recursion. 157 * 158 * When it cannot find a suitable sb, it allocates a new 159 * one (this one), and tries again to find a suitable old 160 * one. 161 * 162 * In case that succeeds, it will acquire the s_umount 163 * lock of the old one. Since these are clearly distrinct 164 * locks, and this object isn't exposed yet, there's no 165 * risk of deadlocks. 166 * 167 * Annotate this by putting this lock in a different 168 * subclass. 169 */ 170 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 171 s->s_count = 1; 172 atomic_set(&s->s_active, 1); 173 mutex_init(&s->s_vfs_rename_mutex); 174 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 175 mutex_init(&s->s_dquot.dqio_mutex); 176 mutex_init(&s->s_dquot.dqonoff_mutex); 177 init_rwsem(&s->s_dquot.dqptr_sem); 178 init_waitqueue_head(&s->s_wait_unfrozen); 179 s->s_maxbytes = MAX_NON_LFS; 180 s->s_op = &default_op; 181 s->s_time_gran = 1000000000; 182 s->cleancache_poolid = -1; 183 184 s->s_shrink.seeks = DEFAULT_SEEKS; 185 s->s_shrink.shrink = prune_super; 186 s->s_shrink.batch = 1024; 187 } 188 out: 189 return s; 190 } 191 192 /** 193 * destroy_super - frees a superblock 194 * @s: superblock to free 195 * 196 * Frees a superblock. 197 */ 198 static inline void destroy_super(struct super_block *s) 199 { 200 #ifdef CONFIG_SMP 201 free_percpu(s->s_files); 202 #endif 203 security_sb_free(s); 204 WARN_ON(!list_empty(&s->s_mounts)); 205 kfree(s->s_subtype); 206 kfree(s->s_options); 207 kfree(s); 208 } 209 210 /* Superblock refcounting */ 211 212 /* 213 * Drop a superblock's refcount. The caller must hold sb_lock. 214 */ 215 static void __put_super(struct super_block *sb) 216 { 217 if (!--sb->s_count) { 218 list_del_init(&sb->s_list); 219 destroy_super(sb); 220 } 221 } 222 223 /** 224 * put_super - drop a temporary reference to superblock 225 * @sb: superblock in question 226 * 227 * Drops a temporary reference, frees superblock if there's no 228 * references left. 229 */ 230 static void put_super(struct super_block *sb) 231 { 232 spin_lock(&sb_lock); 233 __put_super(sb); 234 spin_unlock(&sb_lock); 235 } 236 237 238 /** 239 * deactivate_locked_super - drop an active reference to superblock 240 * @s: superblock to deactivate 241 * 242 * Drops an active reference to superblock, converting it into a temprory 243 * one if there is no other active references left. In that case we 244 * tell fs driver to shut it down and drop the temporary reference we 245 * had just acquired. 246 * 247 * Caller holds exclusive lock on superblock; that lock is released. 248 */ 249 void deactivate_locked_super(struct super_block *s) 250 { 251 struct file_system_type *fs = s->s_type; 252 if (atomic_dec_and_test(&s->s_active)) { 253 cleancache_flush_fs(s); 254 fs->kill_sb(s); 255 256 /* caches are now gone, we can safely kill the shrinker now */ 257 unregister_shrinker(&s->s_shrink); 258 259 /* 260 * We need to call rcu_barrier so all the delayed rcu free 261 * inodes are flushed before we release the fs module. 262 */ 263 rcu_barrier(); 264 put_filesystem(fs); 265 put_super(s); 266 } else { 267 up_write(&s->s_umount); 268 } 269 } 270 271 EXPORT_SYMBOL(deactivate_locked_super); 272 273 /** 274 * deactivate_super - drop an active reference to superblock 275 * @s: superblock to deactivate 276 * 277 * Variant of deactivate_locked_super(), except that superblock is *not* 278 * locked by caller. If we are going to drop the final active reference, 279 * lock will be acquired prior to that. 280 */ 281 void deactivate_super(struct super_block *s) 282 { 283 if (!atomic_add_unless(&s->s_active, -1, 1)) { 284 down_write(&s->s_umount); 285 deactivate_locked_super(s); 286 } 287 } 288 289 EXPORT_SYMBOL(deactivate_super); 290 291 /** 292 * grab_super - acquire an active reference 293 * @s: reference we are trying to make active 294 * 295 * Tries to acquire an active reference. grab_super() is used when we 296 * had just found a superblock in super_blocks or fs_type->fs_supers 297 * and want to turn it into a full-blown active reference. grab_super() 298 * is called with sb_lock held and drops it. Returns 1 in case of 299 * success, 0 if we had failed (superblock contents was already dead or 300 * dying when grab_super() had been called). 301 */ 302 static int grab_super(struct super_block *s) __releases(sb_lock) 303 { 304 if (atomic_inc_not_zero(&s->s_active)) { 305 spin_unlock(&sb_lock); 306 return 1; 307 } 308 /* it's going away */ 309 s->s_count++; 310 spin_unlock(&sb_lock); 311 /* wait for it to die */ 312 down_write(&s->s_umount); 313 up_write(&s->s_umount); 314 put_super(s); 315 return 0; 316 } 317 318 /* 319 * grab_super_passive - acquire a passive reference 320 * @s: reference we are trying to grab 321 * 322 * Tries to acquire a passive reference. This is used in places where we 323 * cannot take an active reference but we need to ensure that the 324 * superblock does not go away while we are working on it. It returns 325 * false if a reference was not gained, and returns true with the s_umount 326 * lock held in read mode if a reference is gained. On successful return, 327 * the caller must drop the s_umount lock and the passive reference when 328 * done. 329 */ 330 bool grab_super_passive(struct super_block *sb) 331 { 332 spin_lock(&sb_lock); 333 if (hlist_unhashed(&sb->s_instances)) { 334 spin_unlock(&sb_lock); 335 return false; 336 } 337 338 sb->s_count++; 339 spin_unlock(&sb_lock); 340 341 if (down_read_trylock(&sb->s_umount)) { 342 if (sb->s_root && (sb->s_flags & MS_BORN)) 343 return true; 344 up_read(&sb->s_umount); 345 } 346 347 put_super(sb); 348 return false; 349 } 350 351 /* 352 * Superblock locking. We really ought to get rid of these two. 353 */ 354 void lock_super(struct super_block * sb) 355 { 356 mutex_lock(&sb->s_lock); 357 } 358 359 void unlock_super(struct super_block * sb) 360 { 361 mutex_unlock(&sb->s_lock); 362 } 363 364 EXPORT_SYMBOL(lock_super); 365 EXPORT_SYMBOL(unlock_super); 366 367 /** 368 * generic_shutdown_super - common helper for ->kill_sb() 369 * @sb: superblock to kill 370 * 371 * generic_shutdown_super() does all fs-independent work on superblock 372 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 373 * that need destruction out of superblock, call generic_shutdown_super() 374 * and release aforementioned objects. Note: dentries and inodes _are_ 375 * taken care of and do not need specific handling. 376 * 377 * Upon calling this function, the filesystem may no longer alter or 378 * rearrange the set of dentries belonging to this super_block, nor may it 379 * change the attachments of dentries to inodes. 380 */ 381 void generic_shutdown_super(struct super_block *sb) 382 { 383 const struct super_operations *sop = sb->s_op; 384 385 if (sb->s_root) { 386 shrink_dcache_for_umount(sb); 387 sync_filesystem(sb); 388 sb->s_flags &= ~MS_ACTIVE; 389 390 fsnotify_unmount_inodes(&sb->s_inodes); 391 392 evict_inodes(sb); 393 394 if (sop->put_super) 395 sop->put_super(sb); 396 397 if (!list_empty(&sb->s_inodes)) { 398 printk("VFS: Busy inodes after unmount of %s. " 399 "Self-destruct in 5 seconds. Have a nice day...\n", 400 sb->s_id); 401 } 402 } 403 spin_lock(&sb_lock); 404 /* should be initialized for __put_super_and_need_restart() */ 405 hlist_del_init(&sb->s_instances); 406 spin_unlock(&sb_lock); 407 up_write(&sb->s_umount); 408 } 409 410 EXPORT_SYMBOL(generic_shutdown_super); 411 412 /** 413 * sget - find or create a superblock 414 * @type: filesystem type superblock should belong to 415 * @test: comparison callback 416 * @set: setup callback 417 * @data: argument to each of them 418 */ 419 struct super_block *sget(struct file_system_type *type, 420 int (*test)(struct super_block *,void *), 421 int (*set)(struct super_block *,void *), 422 void *data) 423 { 424 struct super_block *s = NULL; 425 struct hlist_node *node; 426 struct super_block *old; 427 int err; 428 429 retry: 430 spin_lock(&sb_lock); 431 if (test) { 432 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) { 433 if (!test(old, data)) 434 continue; 435 if (!grab_super(old)) 436 goto retry; 437 if (s) { 438 up_write(&s->s_umount); 439 destroy_super(s); 440 s = NULL; 441 } 442 down_write(&old->s_umount); 443 if (unlikely(!(old->s_flags & MS_BORN))) { 444 deactivate_locked_super(old); 445 goto retry; 446 } 447 return old; 448 } 449 } 450 if (!s) { 451 spin_unlock(&sb_lock); 452 s = alloc_super(type); 453 if (!s) 454 return ERR_PTR(-ENOMEM); 455 goto retry; 456 } 457 458 err = set(s, data); 459 if (err) { 460 spin_unlock(&sb_lock); 461 up_write(&s->s_umount); 462 destroy_super(s); 463 return ERR_PTR(err); 464 } 465 s->s_type = type; 466 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 467 list_add_tail(&s->s_list, &super_blocks); 468 hlist_add_head(&s->s_instances, &type->fs_supers); 469 spin_unlock(&sb_lock); 470 get_filesystem(type); 471 register_shrinker(&s->s_shrink); 472 return s; 473 } 474 475 EXPORT_SYMBOL(sget); 476 477 void drop_super(struct super_block *sb) 478 { 479 up_read(&sb->s_umount); 480 put_super(sb); 481 } 482 483 EXPORT_SYMBOL(drop_super); 484 485 /** 486 * sync_supers - helper for periodic superblock writeback 487 * 488 * Call the write_super method if present on all dirty superblocks in 489 * the system. This is for the periodic writeback used by most older 490 * filesystems. For data integrity superblock writeback use 491 * sync_filesystems() instead. 492 * 493 * Note: check the dirty flag before waiting, so we don't 494 * hold up the sync while mounting a device. (The newly 495 * mounted device won't need syncing.) 496 */ 497 void sync_supers(void) 498 { 499 struct super_block *sb, *p = NULL; 500 501 spin_lock(&sb_lock); 502 list_for_each_entry(sb, &super_blocks, s_list) { 503 if (hlist_unhashed(&sb->s_instances)) 504 continue; 505 if (sb->s_op->write_super && sb->s_dirt) { 506 sb->s_count++; 507 spin_unlock(&sb_lock); 508 509 down_read(&sb->s_umount); 510 if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN)) 511 sb->s_op->write_super(sb); 512 up_read(&sb->s_umount); 513 514 spin_lock(&sb_lock); 515 if (p) 516 __put_super(p); 517 p = sb; 518 } 519 } 520 if (p) 521 __put_super(p); 522 spin_unlock(&sb_lock); 523 } 524 525 /** 526 * iterate_supers - call function for all active superblocks 527 * @f: function to call 528 * @arg: argument to pass to it 529 * 530 * Scans the superblock list and calls given function, passing it 531 * locked superblock and given argument. 532 */ 533 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 534 { 535 struct super_block *sb, *p = NULL; 536 537 spin_lock(&sb_lock); 538 list_for_each_entry(sb, &super_blocks, s_list) { 539 if (hlist_unhashed(&sb->s_instances)) 540 continue; 541 sb->s_count++; 542 spin_unlock(&sb_lock); 543 544 down_read(&sb->s_umount); 545 if (sb->s_root && (sb->s_flags & MS_BORN)) 546 f(sb, arg); 547 up_read(&sb->s_umount); 548 549 spin_lock(&sb_lock); 550 if (p) 551 __put_super(p); 552 p = sb; 553 } 554 if (p) 555 __put_super(p); 556 spin_unlock(&sb_lock); 557 } 558 559 /** 560 * iterate_supers_type - call function for superblocks of given type 561 * @type: fs type 562 * @f: function to call 563 * @arg: argument to pass to it 564 * 565 * Scans the superblock list and calls given function, passing it 566 * locked superblock and given argument. 567 */ 568 void iterate_supers_type(struct file_system_type *type, 569 void (*f)(struct super_block *, void *), void *arg) 570 { 571 struct super_block *sb, *p = NULL; 572 struct hlist_node *node; 573 574 spin_lock(&sb_lock); 575 hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) { 576 sb->s_count++; 577 spin_unlock(&sb_lock); 578 579 down_read(&sb->s_umount); 580 if (sb->s_root && (sb->s_flags & MS_BORN)) 581 f(sb, arg); 582 up_read(&sb->s_umount); 583 584 spin_lock(&sb_lock); 585 if (p) 586 __put_super(p); 587 p = sb; 588 } 589 if (p) 590 __put_super(p); 591 spin_unlock(&sb_lock); 592 } 593 594 EXPORT_SYMBOL(iterate_supers_type); 595 596 /** 597 * get_super - get the superblock of a device 598 * @bdev: device to get the superblock for 599 * 600 * Scans the superblock list and finds the superblock of the file system 601 * mounted on the device given. %NULL is returned if no match is found. 602 */ 603 604 struct super_block *get_super(struct block_device *bdev) 605 { 606 struct super_block *sb; 607 608 if (!bdev) 609 return NULL; 610 611 spin_lock(&sb_lock); 612 rescan: 613 list_for_each_entry(sb, &super_blocks, s_list) { 614 if (hlist_unhashed(&sb->s_instances)) 615 continue; 616 if (sb->s_bdev == bdev) { 617 sb->s_count++; 618 spin_unlock(&sb_lock); 619 down_read(&sb->s_umount); 620 /* still alive? */ 621 if (sb->s_root && (sb->s_flags & MS_BORN)) 622 return sb; 623 up_read(&sb->s_umount); 624 /* nope, got unmounted */ 625 spin_lock(&sb_lock); 626 __put_super(sb); 627 goto rescan; 628 } 629 } 630 spin_unlock(&sb_lock); 631 return NULL; 632 } 633 634 EXPORT_SYMBOL(get_super); 635 636 /** 637 * get_active_super - get an active reference to the superblock of a device 638 * @bdev: device to get the superblock for 639 * 640 * Scans the superblock list and finds the superblock of the file system 641 * mounted on the device given. Returns the superblock with an active 642 * reference or %NULL if none was found. 643 */ 644 struct super_block *get_active_super(struct block_device *bdev) 645 { 646 struct super_block *sb; 647 648 if (!bdev) 649 return NULL; 650 651 restart: 652 spin_lock(&sb_lock); 653 list_for_each_entry(sb, &super_blocks, s_list) { 654 if (hlist_unhashed(&sb->s_instances)) 655 continue; 656 if (sb->s_bdev == bdev) { 657 if (grab_super(sb)) /* drops sb_lock */ 658 return sb; 659 else 660 goto restart; 661 } 662 } 663 spin_unlock(&sb_lock); 664 return NULL; 665 } 666 667 struct super_block *user_get_super(dev_t dev) 668 { 669 struct super_block *sb; 670 671 spin_lock(&sb_lock); 672 rescan: 673 list_for_each_entry(sb, &super_blocks, s_list) { 674 if (hlist_unhashed(&sb->s_instances)) 675 continue; 676 if (sb->s_dev == dev) { 677 sb->s_count++; 678 spin_unlock(&sb_lock); 679 down_read(&sb->s_umount); 680 /* still alive? */ 681 if (sb->s_root && (sb->s_flags & MS_BORN)) 682 return sb; 683 up_read(&sb->s_umount); 684 /* nope, got unmounted */ 685 spin_lock(&sb_lock); 686 __put_super(sb); 687 goto rescan; 688 } 689 } 690 spin_unlock(&sb_lock); 691 return NULL; 692 } 693 694 /** 695 * do_remount_sb - asks filesystem to change mount options. 696 * @sb: superblock in question 697 * @flags: numeric part of options 698 * @data: the rest of options 699 * @force: whether or not to force the change 700 * 701 * Alters the mount options of a mounted file system. 702 */ 703 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 704 { 705 int retval; 706 int remount_ro; 707 708 if (sb->s_frozen != SB_UNFROZEN) 709 return -EBUSY; 710 711 #ifdef CONFIG_BLOCK 712 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 713 return -EACCES; 714 #endif 715 716 if (flags & MS_RDONLY) 717 acct_auto_close(sb); 718 shrink_dcache_sb(sb); 719 sync_filesystem(sb); 720 721 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 722 723 /* If we are remounting RDONLY and current sb is read/write, 724 make sure there are no rw files opened */ 725 if (remount_ro) { 726 if (force) { 727 mark_files_ro(sb); 728 } else { 729 retval = sb_prepare_remount_readonly(sb); 730 if (retval) 731 return retval; 732 } 733 } 734 735 if (sb->s_op->remount_fs) { 736 retval = sb->s_op->remount_fs(sb, &flags, data); 737 if (retval) { 738 if (!force) 739 goto cancel_readonly; 740 /* If forced remount, go ahead despite any errors */ 741 WARN(1, "forced remount of a %s fs returned %i\n", 742 sb->s_type->name, retval); 743 } 744 } 745 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 746 /* Needs to be ordered wrt mnt_is_readonly() */ 747 smp_wmb(); 748 sb->s_readonly_remount = 0; 749 750 /* 751 * Some filesystems modify their metadata via some other path than the 752 * bdev buffer cache (eg. use a private mapping, or directories in 753 * pagecache, etc). Also file data modifications go via their own 754 * mappings. So If we try to mount readonly then copy the filesystem 755 * from bdev, we could get stale data, so invalidate it to give a best 756 * effort at coherency. 757 */ 758 if (remount_ro && sb->s_bdev) 759 invalidate_bdev(sb->s_bdev); 760 return 0; 761 762 cancel_readonly: 763 sb->s_readonly_remount = 0; 764 return retval; 765 } 766 767 static void do_emergency_remount(struct work_struct *work) 768 { 769 struct super_block *sb, *p = NULL; 770 771 spin_lock(&sb_lock); 772 list_for_each_entry(sb, &super_blocks, s_list) { 773 if (hlist_unhashed(&sb->s_instances)) 774 continue; 775 sb->s_count++; 776 spin_unlock(&sb_lock); 777 down_write(&sb->s_umount); 778 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 779 !(sb->s_flags & MS_RDONLY)) { 780 /* 781 * What lock protects sb->s_flags?? 782 */ 783 do_remount_sb(sb, MS_RDONLY, NULL, 1); 784 } 785 up_write(&sb->s_umount); 786 spin_lock(&sb_lock); 787 if (p) 788 __put_super(p); 789 p = sb; 790 } 791 if (p) 792 __put_super(p); 793 spin_unlock(&sb_lock); 794 kfree(work); 795 printk("Emergency Remount complete\n"); 796 } 797 798 void emergency_remount(void) 799 { 800 struct work_struct *work; 801 802 work = kmalloc(sizeof(*work), GFP_ATOMIC); 803 if (work) { 804 INIT_WORK(work, do_emergency_remount); 805 schedule_work(work); 806 } 807 } 808 809 /* 810 * Unnamed block devices are dummy devices used by virtual 811 * filesystems which don't use real block-devices. -- jrs 812 */ 813 814 static DEFINE_IDA(unnamed_dev_ida); 815 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 816 static int unnamed_dev_start = 0; /* don't bother trying below it */ 817 818 int get_anon_bdev(dev_t *p) 819 { 820 int dev; 821 int error; 822 823 retry: 824 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 825 return -ENOMEM; 826 spin_lock(&unnamed_dev_lock); 827 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 828 if (!error) 829 unnamed_dev_start = dev + 1; 830 spin_unlock(&unnamed_dev_lock); 831 if (error == -EAGAIN) 832 /* We raced and lost with another CPU. */ 833 goto retry; 834 else if (error) 835 return -EAGAIN; 836 837 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) { 838 spin_lock(&unnamed_dev_lock); 839 ida_remove(&unnamed_dev_ida, dev); 840 if (unnamed_dev_start > dev) 841 unnamed_dev_start = dev; 842 spin_unlock(&unnamed_dev_lock); 843 return -EMFILE; 844 } 845 *p = MKDEV(0, dev & MINORMASK); 846 return 0; 847 } 848 EXPORT_SYMBOL(get_anon_bdev); 849 850 void free_anon_bdev(dev_t dev) 851 { 852 int slot = MINOR(dev); 853 spin_lock(&unnamed_dev_lock); 854 ida_remove(&unnamed_dev_ida, slot); 855 if (slot < unnamed_dev_start) 856 unnamed_dev_start = slot; 857 spin_unlock(&unnamed_dev_lock); 858 } 859 EXPORT_SYMBOL(free_anon_bdev); 860 861 int set_anon_super(struct super_block *s, void *data) 862 { 863 int error = get_anon_bdev(&s->s_dev); 864 if (!error) 865 s->s_bdi = &noop_backing_dev_info; 866 return error; 867 } 868 869 EXPORT_SYMBOL(set_anon_super); 870 871 void kill_anon_super(struct super_block *sb) 872 { 873 dev_t dev = sb->s_dev; 874 generic_shutdown_super(sb); 875 free_anon_bdev(dev); 876 } 877 878 EXPORT_SYMBOL(kill_anon_super); 879 880 void kill_litter_super(struct super_block *sb) 881 { 882 if (sb->s_root) 883 d_genocide(sb->s_root); 884 kill_anon_super(sb); 885 } 886 887 EXPORT_SYMBOL(kill_litter_super); 888 889 static int ns_test_super(struct super_block *sb, void *data) 890 { 891 return sb->s_fs_info == data; 892 } 893 894 static int ns_set_super(struct super_block *sb, void *data) 895 { 896 sb->s_fs_info = data; 897 return set_anon_super(sb, NULL); 898 } 899 900 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 901 void *data, int (*fill_super)(struct super_block *, void *, int)) 902 { 903 struct super_block *sb; 904 905 sb = sget(fs_type, ns_test_super, ns_set_super, data); 906 if (IS_ERR(sb)) 907 return ERR_CAST(sb); 908 909 if (!sb->s_root) { 910 int err; 911 sb->s_flags = flags; 912 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 913 if (err) { 914 deactivate_locked_super(sb); 915 return ERR_PTR(err); 916 } 917 918 sb->s_flags |= MS_ACTIVE; 919 } 920 921 return dget(sb->s_root); 922 } 923 924 EXPORT_SYMBOL(mount_ns); 925 926 #ifdef CONFIG_BLOCK 927 static int set_bdev_super(struct super_block *s, void *data) 928 { 929 s->s_bdev = data; 930 s->s_dev = s->s_bdev->bd_dev; 931 932 /* 933 * We set the bdi here to the queue backing, file systems can 934 * overwrite this in ->fill_super() 935 */ 936 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 937 return 0; 938 } 939 940 static int test_bdev_super(struct super_block *s, void *data) 941 { 942 return (void *)s->s_bdev == data; 943 } 944 945 struct dentry *mount_bdev(struct file_system_type *fs_type, 946 int flags, const char *dev_name, void *data, 947 int (*fill_super)(struct super_block *, void *, int)) 948 { 949 struct block_device *bdev; 950 struct super_block *s; 951 fmode_t mode = FMODE_READ | FMODE_EXCL; 952 int error = 0; 953 954 if (!(flags & MS_RDONLY)) 955 mode |= FMODE_WRITE; 956 957 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 958 if (IS_ERR(bdev)) 959 return ERR_CAST(bdev); 960 961 /* 962 * once the super is inserted into the list by sget, s_umount 963 * will protect the lockfs code from trying to start a snapshot 964 * while we are mounting 965 */ 966 mutex_lock(&bdev->bd_fsfreeze_mutex); 967 if (bdev->bd_fsfreeze_count > 0) { 968 mutex_unlock(&bdev->bd_fsfreeze_mutex); 969 error = -EBUSY; 970 goto error_bdev; 971 } 972 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev); 973 mutex_unlock(&bdev->bd_fsfreeze_mutex); 974 if (IS_ERR(s)) 975 goto error_s; 976 977 if (s->s_root) { 978 if ((flags ^ s->s_flags) & MS_RDONLY) { 979 deactivate_locked_super(s); 980 error = -EBUSY; 981 goto error_bdev; 982 } 983 984 /* 985 * s_umount nests inside bd_mutex during 986 * __invalidate_device(). blkdev_put() acquires 987 * bd_mutex and can't be called under s_umount. Drop 988 * s_umount temporarily. This is safe as we're 989 * holding an active reference. 990 */ 991 up_write(&s->s_umount); 992 blkdev_put(bdev, mode); 993 down_write(&s->s_umount); 994 } else { 995 char b[BDEVNAME_SIZE]; 996 997 s->s_flags = flags | MS_NOSEC; 998 s->s_mode = mode; 999 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1000 sb_set_blocksize(s, block_size(bdev)); 1001 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1002 if (error) { 1003 deactivate_locked_super(s); 1004 goto error; 1005 } 1006 1007 s->s_flags |= MS_ACTIVE; 1008 bdev->bd_super = s; 1009 } 1010 1011 return dget(s->s_root); 1012 1013 error_s: 1014 error = PTR_ERR(s); 1015 error_bdev: 1016 blkdev_put(bdev, mode); 1017 error: 1018 return ERR_PTR(error); 1019 } 1020 EXPORT_SYMBOL(mount_bdev); 1021 1022 void kill_block_super(struct super_block *sb) 1023 { 1024 struct block_device *bdev = sb->s_bdev; 1025 fmode_t mode = sb->s_mode; 1026 1027 bdev->bd_super = NULL; 1028 generic_shutdown_super(sb); 1029 sync_blockdev(bdev); 1030 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1031 blkdev_put(bdev, mode | FMODE_EXCL); 1032 } 1033 1034 EXPORT_SYMBOL(kill_block_super); 1035 #endif 1036 1037 struct dentry *mount_nodev(struct file_system_type *fs_type, 1038 int flags, void *data, 1039 int (*fill_super)(struct super_block *, void *, int)) 1040 { 1041 int error; 1042 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 1043 1044 if (IS_ERR(s)) 1045 return ERR_CAST(s); 1046 1047 s->s_flags = flags; 1048 1049 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1050 if (error) { 1051 deactivate_locked_super(s); 1052 return ERR_PTR(error); 1053 } 1054 s->s_flags |= MS_ACTIVE; 1055 return dget(s->s_root); 1056 } 1057 EXPORT_SYMBOL(mount_nodev); 1058 1059 static int compare_single(struct super_block *s, void *p) 1060 { 1061 return 1; 1062 } 1063 1064 struct dentry *mount_single(struct file_system_type *fs_type, 1065 int flags, void *data, 1066 int (*fill_super)(struct super_block *, void *, int)) 1067 { 1068 struct super_block *s; 1069 int error; 1070 1071 s = sget(fs_type, compare_single, set_anon_super, NULL); 1072 if (IS_ERR(s)) 1073 return ERR_CAST(s); 1074 if (!s->s_root) { 1075 s->s_flags = flags; 1076 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1077 if (error) { 1078 deactivate_locked_super(s); 1079 return ERR_PTR(error); 1080 } 1081 s->s_flags |= MS_ACTIVE; 1082 } else { 1083 do_remount_sb(s, flags, data, 0); 1084 } 1085 return dget(s->s_root); 1086 } 1087 EXPORT_SYMBOL(mount_single); 1088 1089 struct dentry * 1090 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1091 { 1092 struct dentry *root; 1093 struct super_block *sb; 1094 char *secdata = NULL; 1095 int error = -ENOMEM; 1096 1097 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1098 secdata = alloc_secdata(); 1099 if (!secdata) 1100 goto out; 1101 1102 error = security_sb_copy_data(data, secdata); 1103 if (error) 1104 goto out_free_secdata; 1105 } 1106 1107 root = type->mount(type, flags, name, data); 1108 if (IS_ERR(root)) { 1109 error = PTR_ERR(root); 1110 goto out_free_secdata; 1111 } 1112 sb = root->d_sb; 1113 BUG_ON(!sb); 1114 WARN_ON(!sb->s_bdi); 1115 WARN_ON(sb->s_bdi == &default_backing_dev_info); 1116 sb->s_flags |= MS_BORN; 1117 1118 error = security_sb_kern_mount(sb, flags, secdata); 1119 if (error) 1120 goto out_sb; 1121 1122 /* 1123 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1124 * but s_maxbytes was an unsigned long long for many releases. Throw 1125 * this warning for a little while to try and catch filesystems that 1126 * violate this rule. 1127 */ 1128 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1129 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1130 1131 up_write(&sb->s_umount); 1132 free_secdata(secdata); 1133 return root; 1134 out_sb: 1135 dput(root); 1136 deactivate_locked_super(sb); 1137 out_free_secdata: 1138 free_secdata(secdata); 1139 out: 1140 return ERR_PTR(error); 1141 } 1142 1143 /** 1144 * freeze_super - lock the filesystem and force it into a consistent state 1145 * @sb: the super to lock 1146 * 1147 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1148 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1149 * -EBUSY. 1150 */ 1151 int freeze_super(struct super_block *sb) 1152 { 1153 int ret; 1154 1155 atomic_inc(&sb->s_active); 1156 down_write(&sb->s_umount); 1157 if (sb->s_frozen) { 1158 deactivate_locked_super(sb); 1159 return -EBUSY; 1160 } 1161 1162 if (!(sb->s_flags & MS_BORN)) { 1163 up_write(&sb->s_umount); 1164 return 0; /* sic - it's "nothing to do" */ 1165 } 1166 1167 if (sb->s_flags & MS_RDONLY) { 1168 sb->s_frozen = SB_FREEZE_TRANS; 1169 smp_wmb(); 1170 up_write(&sb->s_umount); 1171 return 0; 1172 } 1173 1174 sb->s_frozen = SB_FREEZE_WRITE; 1175 smp_wmb(); 1176 1177 sync_filesystem(sb); 1178 1179 sb->s_frozen = SB_FREEZE_TRANS; 1180 smp_wmb(); 1181 1182 sync_blockdev(sb->s_bdev); 1183 if (sb->s_op->freeze_fs) { 1184 ret = sb->s_op->freeze_fs(sb); 1185 if (ret) { 1186 printk(KERN_ERR 1187 "VFS:Filesystem freeze failed\n"); 1188 sb->s_frozen = SB_UNFROZEN; 1189 smp_wmb(); 1190 wake_up(&sb->s_wait_unfrozen); 1191 deactivate_locked_super(sb); 1192 return ret; 1193 } 1194 } 1195 up_write(&sb->s_umount); 1196 return 0; 1197 } 1198 EXPORT_SYMBOL(freeze_super); 1199 1200 /** 1201 * thaw_super -- unlock filesystem 1202 * @sb: the super to thaw 1203 * 1204 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1205 */ 1206 int thaw_super(struct super_block *sb) 1207 { 1208 int error; 1209 1210 down_write(&sb->s_umount); 1211 if (sb->s_frozen == SB_UNFROZEN) { 1212 up_write(&sb->s_umount); 1213 return -EINVAL; 1214 } 1215 1216 if (sb->s_flags & MS_RDONLY) 1217 goto out; 1218 1219 if (sb->s_op->unfreeze_fs) { 1220 error = sb->s_op->unfreeze_fs(sb); 1221 if (error) { 1222 printk(KERN_ERR 1223 "VFS:Filesystem thaw failed\n"); 1224 sb->s_frozen = SB_FREEZE_TRANS; 1225 up_write(&sb->s_umount); 1226 return error; 1227 } 1228 } 1229 1230 out: 1231 sb->s_frozen = SB_UNFROZEN; 1232 smp_wmb(); 1233 wake_up(&sb->s_wait_unfrozen); 1234 deactivate_locked_super(sb); 1235 1236 return 0; 1237 } 1238 EXPORT_SYMBOL(thaw_super); 1239