xref: /linux/fs/super.c (revision 079c9534a96da9a85a2a2f9715851050fbfbf749)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include "internal.h"
36 
37 
38 LIST_HEAD(super_blocks);
39 DEFINE_SPINLOCK(sb_lock);
40 
41 /*
42  * One thing we have to be careful of with a per-sb shrinker is that we don't
43  * drop the last active reference to the superblock from within the shrinker.
44  * If that happens we could trigger unregistering the shrinker from within the
45  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
46  * take a passive reference to the superblock to avoid this from occurring.
47  */
48 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
49 {
50 	struct super_block *sb;
51 	int	fs_objects = 0;
52 	int	total_objects;
53 
54 	sb = container_of(shrink, struct super_block, s_shrink);
55 
56 	/*
57 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
58 	 * to recurse into the FS that called us in clear_inode() and friends..
59 	 */
60 	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
61 		return -1;
62 
63 	if (!grab_super_passive(sb))
64 		return !sc->nr_to_scan ? 0 : -1;
65 
66 	if (sb->s_op && sb->s_op->nr_cached_objects)
67 		fs_objects = sb->s_op->nr_cached_objects(sb);
68 
69 	total_objects = sb->s_nr_dentry_unused +
70 			sb->s_nr_inodes_unused + fs_objects + 1;
71 
72 	if (sc->nr_to_scan) {
73 		int	dentries;
74 		int	inodes;
75 
76 		/* proportion the scan between the caches */
77 		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
78 							total_objects;
79 		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
80 							total_objects;
81 		if (fs_objects)
82 			fs_objects = (sc->nr_to_scan * fs_objects) /
83 							total_objects;
84 		/*
85 		 * prune the dcache first as the icache is pinned by it, then
86 		 * prune the icache, followed by the filesystem specific caches
87 		 */
88 		prune_dcache_sb(sb, dentries);
89 		prune_icache_sb(sb, inodes);
90 
91 		if (fs_objects && sb->s_op->free_cached_objects) {
92 			sb->s_op->free_cached_objects(sb, fs_objects);
93 			fs_objects = sb->s_op->nr_cached_objects(sb);
94 		}
95 		total_objects = sb->s_nr_dentry_unused +
96 				sb->s_nr_inodes_unused + fs_objects;
97 	}
98 
99 	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
100 	drop_super(sb);
101 	return total_objects;
102 }
103 
104 /**
105  *	alloc_super	-	create new superblock
106  *	@type:	filesystem type superblock should belong to
107  *
108  *	Allocates and initializes a new &struct super_block.  alloc_super()
109  *	returns a pointer new superblock or %NULL if allocation had failed.
110  */
111 static struct super_block *alloc_super(struct file_system_type *type)
112 {
113 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
114 	static const struct super_operations default_op;
115 
116 	if (s) {
117 		if (security_sb_alloc(s)) {
118 			kfree(s);
119 			s = NULL;
120 			goto out;
121 		}
122 #ifdef CONFIG_SMP
123 		s->s_files = alloc_percpu(struct list_head);
124 		if (!s->s_files) {
125 			security_sb_free(s);
126 			kfree(s);
127 			s = NULL;
128 			goto out;
129 		} else {
130 			int i;
131 
132 			for_each_possible_cpu(i)
133 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
134 		}
135 #else
136 		INIT_LIST_HEAD(&s->s_files);
137 #endif
138 		s->s_bdi = &default_backing_dev_info;
139 		INIT_HLIST_NODE(&s->s_instances);
140 		INIT_HLIST_BL_HEAD(&s->s_anon);
141 		INIT_LIST_HEAD(&s->s_inodes);
142 		INIT_LIST_HEAD(&s->s_dentry_lru);
143 		INIT_LIST_HEAD(&s->s_inode_lru);
144 		spin_lock_init(&s->s_inode_lru_lock);
145 		INIT_LIST_HEAD(&s->s_mounts);
146 		init_rwsem(&s->s_umount);
147 		mutex_init(&s->s_lock);
148 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
149 		/*
150 		 * The locking rules for s_lock are up to the
151 		 * filesystem. For example ext3fs has different
152 		 * lock ordering than usbfs:
153 		 */
154 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
155 		/*
156 		 * sget() can have s_umount recursion.
157 		 *
158 		 * When it cannot find a suitable sb, it allocates a new
159 		 * one (this one), and tries again to find a suitable old
160 		 * one.
161 		 *
162 		 * In case that succeeds, it will acquire the s_umount
163 		 * lock of the old one. Since these are clearly distrinct
164 		 * locks, and this object isn't exposed yet, there's no
165 		 * risk of deadlocks.
166 		 *
167 		 * Annotate this by putting this lock in a different
168 		 * subclass.
169 		 */
170 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
171 		s->s_count = 1;
172 		atomic_set(&s->s_active, 1);
173 		mutex_init(&s->s_vfs_rename_mutex);
174 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
175 		mutex_init(&s->s_dquot.dqio_mutex);
176 		mutex_init(&s->s_dquot.dqonoff_mutex);
177 		init_rwsem(&s->s_dquot.dqptr_sem);
178 		init_waitqueue_head(&s->s_wait_unfrozen);
179 		s->s_maxbytes = MAX_NON_LFS;
180 		s->s_op = &default_op;
181 		s->s_time_gran = 1000000000;
182 		s->cleancache_poolid = -1;
183 
184 		s->s_shrink.seeks = DEFAULT_SEEKS;
185 		s->s_shrink.shrink = prune_super;
186 		s->s_shrink.batch = 1024;
187 	}
188 out:
189 	return s;
190 }
191 
192 /**
193  *	destroy_super	-	frees a superblock
194  *	@s: superblock to free
195  *
196  *	Frees a superblock.
197  */
198 static inline void destroy_super(struct super_block *s)
199 {
200 #ifdef CONFIG_SMP
201 	free_percpu(s->s_files);
202 #endif
203 	security_sb_free(s);
204 	WARN_ON(!list_empty(&s->s_mounts));
205 	kfree(s->s_subtype);
206 	kfree(s->s_options);
207 	kfree(s);
208 }
209 
210 /* Superblock refcounting  */
211 
212 /*
213  * Drop a superblock's refcount.  The caller must hold sb_lock.
214  */
215 static void __put_super(struct super_block *sb)
216 {
217 	if (!--sb->s_count) {
218 		list_del_init(&sb->s_list);
219 		destroy_super(sb);
220 	}
221 }
222 
223 /**
224  *	put_super	-	drop a temporary reference to superblock
225  *	@sb: superblock in question
226  *
227  *	Drops a temporary reference, frees superblock if there's no
228  *	references left.
229  */
230 static void put_super(struct super_block *sb)
231 {
232 	spin_lock(&sb_lock);
233 	__put_super(sb);
234 	spin_unlock(&sb_lock);
235 }
236 
237 
238 /**
239  *	deactivate_locked_super	-	drop an active reference to superblock
240  *	@s: superblock to deactivate
241  *
242  *	Drops an active reference to superblock, converting it into a temprory
243  *	one if there is no other active references left.  In that case we
244  *	tell fs driver to shut it down and drop the temporary reference we
245  *	had just acquired.
246  *
247  *	Caller holds exclusive lock on superblock; that lock is released.
248  */
249 void deactivate_locked_super(struct super_block *s)
250 {
251 	struct file_system_type *fs = s->s_type;
252 	if (atomic_dec_and_test(&s->s_active)) {
253 		cleancache_flush_fs(s);
254 		fs->kill_sb(s);
255 
256 		/* caches are now gone, we can safely kill the shrinker now */
257 		unregister_shrinker(&s->s_shrink);
258 
259 		/*
260 		 * We need to call rcu_barrier so all the delayed rcu free
261 		 * inodes are flushed before we release the fs module.
262 		 */
263 		rcu_barrier();
264 		put_filesystem(fs);
265 		put_super(s);
266 	} else {
267 		up_write(&s->s_umount);
268 	}
269 }
270 
271 EXPORT_SYMBOL(deactivate_locked_super);
272 
273 /**
274  *	deactivate_super	-	drop an active reference to superblock
275  *	@s: superblock to deactivate
276  *
277  *	Variant of deactivate_locked_super(), except that superblock is *not*
278  *	locked by caller.  If we are going to drop the final active reference,
279  *	lock will be acquired prior to that.
280  */
281 void deactivate_super(struct super_block *s)
282 {
283         if (!atomic_add_unless(&s->s_active, -1, 1)) {
284 		down_write(&s->s_umount);
285 		deactivate_locked_super(s);
286 	}
287 }
288 
289 EXPORT_SYMBOL(deactivate_super);
290 
291 /**
292  *	grab_super - acquire an active reference
293  *	@s: reference we are trying to make active
294  *
295  *	Tries to acquire an active reference.  grab_super() is used when we
296  * 	had just found a superblock in super_blocks or fs_type->fs_supers
297  *	and want to turn it into a full-blown active reference.  grab_super()
298  *	is called with sb_lock held and drops it.  Returns 1 in case of
299  *	success, 0 if we had failed (superblock contents was already dead or
300  *	dying when grab_super() had been called).
301  */
302 static int grab_super(struct super_block *s) __releases(sb_lock)
303 {
304 	if (atomic_inc_not_zero(&s->s_active)) {
305 		spin_unlock(&sb_lock);
306 		return 1;
307 	}
308 	/* it's going away */
309 	s->s_count++;
310 	spin_unlock(&sb_lock);
311 	/* wait for it to die */
312 	down_write(&s->s_umount);
313 	up_write(&s->s_umount);
314 	put_super(s);
315 	return 0;
316 }
317 
318 /*
319  *	grab_super_passive - acquire a passive reference
320  *	@s: reference we are trying to grab
321  *
322  *	Tries to acquire a passive reference. This is used in places where we
323  *	cannot take an active reference but we need to ensure that the
324  *	superblock does not go away while we are working on it. It returns
325  *	false if a reference was not gained, and returns true with the s_umount
326  *	lock held in read mode if a reference is gained. On successful return,
327  *	the caller must drop the s_umount lock and the passive reference when
328  *	done.
329  */
330 bool grab_super_passive(struct super_block *sb)
331 {
332 	spin_lock(&sb_lock);
333 	if (hlist_unhashed(&sb->s_instances)) {
334 		spin_unlock(&sb_lock);
335 		return false;
336 	}
337 
338 	sb->s_count++;
339 	spin_unlock(&sb_lock);
340 
341 	if (down_read_trylock(&sb->s_umount)) {
342 		if (sb->s_root && (sb->s_flags & MS_BORN))
343 			return true;
344 		up_read(&sb->s_umount);
345 	}
346 
347 	put_super(sb);
348 	return false;
349 }
350 
351 /*
352  * Superblock locking.  We really ought to get rid of these two.
353  */
354 void lock_super(struct super_block * sb)
355 {
356 	mutex_lock(&sb->s_lock);
357 }
358 
359 void unlock_super(struct super_block * sb)
360 {
361 	mutex_unlock(&sb->s_lock);
362 }
363 
364 EXPORT_SYMBOL(lock_super);
365 EXPORT_SYMBOL(unlock_super);
366 
367 /**
368  *	generic_shutdown_super	-	common helper for ->kill_sb()
369  *	@sb: superblock to kill
370  *
371  *	generic_shutdown_super() does all fs-independent work on superblock
372  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
373  *	that need destruction out of superblock, call generic_shutdown_super()
374  *	and release aforementioned objects.  Note: dentries and inodes _are_
375  *	taken care of and do not need specific handling.
376  *
377  *	Upon calling this function, the filesystem may no longer alter or
378  *	rearrange the set of dentries belonging to this super_block, nor may it
379  *	change the attachments of dentries to inodes.
380  */
381 void generic_shutdown_super(struct super_block *sb)
382 {
383 	const struct super_operations *sop = sb->s_op;
384 
385 	if (sb->s_root) {
386 		shrink_dcache_for_umount(sb);
387 		sync_filesystem(sb);
388 		sb->s_flags &= ~MS_ACTIVE;
389 
390 		fsnotify_unmount_inodes(&sb->s_inodes);
391 
392 		evict_inodes(sb);
393 
394 		if (sop->put_super)
395 			sop->put_super(sb);
396 
397 		if (!list_empty(&sb->s_inodes)) {
398 			printk("VFS: Busy inodes after unmount of %s. "
399 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
400 			   sb->s_id);
401 		}
402 	}
403 	spin_lock(&sb_lock);
404 	/* should be initialized for __put_super_and_need_restart() */
405 	hlist_del_init(&sb->s_instances);
406 	spin_unlock(&sb_lock);
407 	up_write(&sb->s_umount);
408 }
409 
410 EXPORT_SYMBOL(generic_shutdown_super);
411 
412 /**
413  *	sget	-	find or create a superblock
414  *	@type:	filesystem type superblock should belong to
415  *	@test:	comparison callback
416  *	@set:	setup callback
417  *	@data:	argument to each of them
418  */
419 struct super_block *sget(struct file_system_type *type,
420 			int (*test)(struct super_block *,void *),
421 			int (*set)(struct super_block *,void *),
422 			void *data)
423 {
424 	struct super_block *s = NULL;
425 	struct hlist_node *node;
426 	struct super_block *old;
427 	int err;
428 
429 retry:
430 	spin_lock(&sb_lock);
431 	if (test) {
432 		hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
433 			if (!test(old, data))
434 				continue;
435 			if (!grab_super(old))
436 				goto retry;
437 			if (s) {
438 				up_write(&s->s_umount);
439 				destroy_super(s);
440 				s = NULL;
441 			}
442 			down_write(&old->s_umount);
443 			if (unlikely(!(old->s_flags & MS_BORN))) {
444 				deactivate_locked_super(old);
445 				goto retry;
446 			}
447 			return old;
448 		}
449 	}
450 	if (!s) {
451 		spin_unlock(&sb_lock);
452 		s = alloc_super(type);
453 		if (!s)
454 			return ERR_PTR(-ENOMEM);
455 		goto retry;
456 	}
457 
458 	err = set(s, data);
459 	if (err) {
460 		spin_unlock(&sb_lock);
461 		up_write(&s->s_umount);
462 		destroy_super(s);
463 		return ERR_PTR(err);
464 	}
465 	s->s_type = type;
466 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
467 	list_add_tail(&s->s_list, &super_blocks);
468 	hlist_add_head(&s->s_instances, &type->fs_supers);
469 	spin_unlock(&sb_lock);
470 	get_filesystem(type);
471 	register_shrinker(&s->s_shrink);
472 	return s;
473 }
474 
475 EXPORT_SYMBOL(sget);
476 
477 void drop_super(struct super_block *sb)
478 {
479 	up_read(&sb->s_umount);
480 	put_super(sb);
481 }
482 
483 EXPORT_SYMBOL(drop_super);
484 
485 /**
486  * sync_supers - helper for periodic superblock writeback
487  *
488  * Call the write_super method if present on all dirty superblocks in
489  * the system.  This is for the periodic writeback used by most older
490  * filesystems.  For data integrity superblock writeback use
491  * sync_filesystems() instead.
492  *
493  * Note: check the dirty flag before waiting, so we don't
494  * hold up the sync while mounting a device. (The newly
495  * mounted device won't need syncing.)
496  */
497 void sync_supers(void)
498 {
499 	struct super_block *sb, *p = NULL;
500 
501 	spin_lock(&sb_lock);
502 	list_for_each_entry(sb, &super_blocks, s_list) {
503 		if (hlist_unhashed(&sb->s_instances))
504 			continue;
505 		if (sb->s_op->write_super && sb->s_dirt) {
506 			sb->s_count++;
507 			spin_unlock(&sb_lock);
508 
509 			down_read(&sb->s_umount);
510 			if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN))
511 				sb->s_op->write_super(sb);
512 			up_read(&sb->s_umount);
513 
514 			spin_lock(&sb_lock);
515 			if (p)
516 				__put_super(p);
517 			p = sb;
518 		}
519 	}
520 	if (p)
521 		__put_super(p);
522 	spin_unlock(&sb_lock);
523 }
524 
525 /**
526  *	iterate_supers - call function for all active superblocks
527  *	@f: function to call
528  *	@arg: argument to pass to it
529  *
530  *	Scans the superblock list and calls given function, passing it
531  *	locked superblock and given argument.
532  */
533 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
534 {
535 	struct super_block *sb, *p = NULL;
536 
537 	spin_lock(&sb_lock);
538 	list_for_each_entry(sb, &super_blocks, s_list) {
539 		if (hlist_unhashed(&sb->s_instances))
540 			continue;
541 		sb->s_count++;
542 		spin_unlock(&sb_lock);
543 
544 		down_read(&sb->s_umount);
545 		if (sb->s_root && (sb->s_flags & MS_BORN))
546 			f(sb, arg);
547 		up_read(&sb->s_umount);
548 
549 		spin_lock(&sb_lock);
550 		if (p)
551 			__put_super(p);
552 		p = sb;
553 	}
554 	if (p)
555 		__put_super(p);
556 	spin_unlock(&sb_lock);
557 }
558 
559 /**
560  *	iterate_supers_type - call function for superblocks of given type
561  *	@type: fs type
562  *	@f: function to call
563  *	@arg: argument to pass to it
564  *
565  *	Scans the superblock list and calls given function, passing it
566  *	locked superblock and given argument.
567  */
568 void iterate_supers_type(struct file_system_type *type,
569 	void (*f)(struct super_block *, void *), void *arg)
570 {
571 	struct super_block *sb, *p = NULL;
572 	struct hlist_node *node;
573 
574 	spin_lock(&sb_lock);
575 	hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
576 		sb->s_count++;
577 		spin_unlock(&sb_lock);
578 
579 		down_read(&sb->s_umount);
580 		if (sb->s_root && (sb->s_flags & MS_BORN))
581 			f(sb, arg);
582 		up_read(&sb->s_umount);
583 
584 		spin_lock(&sb_lock);
585 		if (p)
586 			__put_super(p);
587 		p = sb;
588 	}
589 	if (p)
590 		__put_super(p);
591 	spin_unlock(&sb_lock);
592 }
593 
594 EXPORT_SYMBOL(iterate_supers_type);
595 
596 /**
597  *	get_super - get the superblock of a device
598  *	@bdev: device to get the superblock for
599  *
600  *	Scans the superblock list and finds the superblock of the file system
601  *	mounted on the device given. %NULL is returned if no match is found.
602  */
603 
604 struct super_block *get_super(struct block_device *bdev)
605 {
606 	struct super_block *sb;
607 
608 	if (!bdev)
609 		return NULL;
610 
611 	spin_lock(&sb_lock);
612 rescan:
613 	list_for_each_entry(sb, &super_blocks, s_list) {
614 		if (hlist_unhashed(&sb->s_instances))
615 			continue;
616 		if (sb->s_bdev == bdev) {
617 			sb->s_count++;
618 			spin_unlock(&sb_lock);
619 			down_read(&sb->s_umount);
620 			/* still alive? */
621 			if (sb->s_root && (sb->s_flags & MS_BORN))
622 				return sb;
623 			up_read(&sb->s_umount);
624 			/* nope, got unmounted */
625 			spin_lock(&sb_lock);
626 			__put_super(sb);
627 			goto rescan;
628 		}
629 	}
630 	spin_unlock(&sb_lock);
631 	return NULL;
632 }
633 
634 EXPORT_SYMBOL(get_super);
635 
636 /**
637  * get_active_super - get an active reference to the superblock of a device
638  * @bdev: device to get the superblock for
639  *
640  * Scans the superblock list and finds the superblock of the file system
641  * mounted on the device given.  Returns the superblock with an active
642  * reference or %NULL if none was found.
643  */
644 struct super_block *get_active_super(struct block_device *bdev)
645 {
646 	struct super_block *sb;
647 
648 	if (!bdev)
649 		return NULL;
650 
651 restart:
652 	spin_lock(&sb_lock);
653 	list_for_each_entry(sb, &super_blocks, s_list) {
654 		if (hlist_unhashed(&sb->s_instances))
655 			continue;
656 		if (sb->s_bdev == bdev) {
657 			if (grab_super(sb)) /* drops sb_lock */
658 				return sb;
659 			else
660 				goto restart;
661 		}
662 	}
663 	spin_unlock(&sb_lock);
664 	return NULL;
665 }
666 
667 struct super_block *user_get_super(dev_t dev)
668 {
669 	struct super_block *sb;
670 
671 	spin_lock(&sb_lock);
672 rescan:
673 	list_for_each_entry(sb, &super_blocks, s_list) {
674 		if (hlist_unhashed(&sb->s_instances))
675 			continue;
676 		if (sb->s_dev ==  dev) {
677 			sb->s_count++;
678 			spin_unlock(&sb_lock);
679 			down_read(&sb->s_umount);
680 			/* still alive? */
681 			if (sb->s_root && (sb->s_flags & MS_BORN))
682 				return sb;
683 			up_read(&sb->s_umount);
684 			/* nope, got unmounted */
685 			spin_lock(&sb_lock);
686 			__put_super(sb);
687 			goto rescan;
688 		}
689 	}
690 	spin_unlock(&sb_lock);
691 	return NULL;
692 }
693 
694 /**
695  *	do_remount_sb - asks filesystem to change mount options.
696  *	@sb:	superblock in question
697  *	@flags:	numeric part of options
698  *	@data:	the rest of options
699  *      @force: whether or not to force the change
700  *
701  *	Alters the mount options of a mounted file system.
702  */
703 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
704 {
705 	int retval;
706 	int remount_ro;
707 
708 	if (sb->s_frozen != SB_UNFROZEN)
709 		return -EBUSY;
710 
711 #ifdef CONFIG_BLOCK
712 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
713 		return -EACCES;
714 #endif
715 
716 	if (flags & MS_RDONLY)
717 		acct_auto_close(sb);
718 	shrink_dcache_sb(sb);
719 	sync_filesystem(sb);
720 
721 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
722 
723 	/* If we are remounting RDONLY and current sb is read/write,
724 	   make sure there are no rw files opened */
725 	if (remount_ro) {
726 		if (force) {
727 			mark_files_ro(sb);
728 		} else {
729 			retval = sb_prepare_remount_readonly(sb);
730 			if (retval)
731 				return retval;
732 		}
733 	}
734 
735 	if (sb->s_op->remount_fs) {
736 		retval = sb->s_op->remount_fs(sb, &flags, data);
737 		if (retval) {
738 			if (!force)
739 				goto cancel_readonly;
740 			/* If forced remount, go ahead despite any errors */
741 			WARN(1, "forced remount of a %s fs returned %i\n",
742 			     sb->s_type->name, retval);
743 		}
744 	}
745 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
746 	/* Needs to be ordered wrt mnt_is_readonly() */
747 	smp_wmb();
748 	sb->s_readonly_remount = 0;
749 
750 	/*
751 	 * Some filesystems modify their metadata via some other path than the
752 	 * bdev buffer cache (eg. use a private mapping, or directories in
753 	 * pagecache, etc). Also file data modifications go via their own
754 	 * mappings. So If we try to mount readonly then copy the filesystem
755 	 * from bdev, we could get stale data, so invalidate it to give a best
756 	 * effort at coherency.
757 	 */
758 	if (remount_ro && sb->s_bdev)
759 		invalidate_bdev(sb->s_bdev);
760 	return 0;
761 
762 cancel_readonly:
763 	sb->s_readonly_remount = 0;
764 	return retval;
765 }
766 
767 static void do_emergency_remount(struct work_struct *work)
768 {
769 	struct super_block *sb, *p = NULL;
770 
771 	spin_lock(&sb_lock);
772 	list_for_each_entry(sb, &super_blocks, s_list) {
773 		if (hlist_unhashed(&sb->s_instances))
774 			continue;
775 		sb->s_count++;
776 		spin_unlock(&sb_lock);
777 		down_write(&sb->s_umount);
778 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
779 		    !(sb->s_flags & MS_RDONLY)) {
780 			/*
781 			 * What lock protects sb->s_flags??
782 			 */
783 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
784 		}
785 		up_write(&sb->s_umount);
786 		spin_lock(&sb_lock);
787 		if (p)
788 			__put_super(p);
789 		p = sb;
790 	}
791 	if (p)
792 		__put_super(p);
793 	spin_unlock(&sb_lock);
794 	kfree(work);
795 	printk("Emergency Remount complete\n");
796 }
797 
798 void emergency_remount(void)
799 {
800 	struct work_struct *work;
801 
802 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
803 	if (work) {
804 		INIT_WORK(work, do_emergency_remount);
805 		schedule_work(work);
806 	}
807 }
808 
809 /*
810  * Unnamed block devices are dummy devices used by virtual
811  * filesystems which don't use real block-devices.  -- jrs
812  */
813 
814 static DEFINE_IDA(unnamed_dev_ida);
815 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
816 static int unnamed_dev_start = 0; /* don't bother trying below it */
817 
818 int get_anon_bdev(dev_t *p)
819 {
820 	int dev;
821 	int error;
822 
823  retry:
824 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
825 		return -ENOMEM;
826 	spin_lock(&unnamed_dev_lock);
827 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
828 	if (!error)
829 		unnamed_dev_start = dev + 1;
830 	spin_unlock(&unnamed_dev_lock);
831 	if (error == -EAGAIN)
832 		/* We raced and lost with another CPU. */
833 		goto retry;
834 	else if (error)
835 		return -EAGAIN;
836 
837 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
838 		spin_lock(&unnamed_dev_lock);
839 		ida_remove(&unnamed_dev_ida, dev);
840 		if (unnamed_dev_start > dev)
841 			unnamed_dev_start = dev;
842 		spin_unlock(&unnamed_dev_lock);
843 		return -EMFILE;
844 	}
845 	*p = MKDEV(0, dev & MINORMASK);
846 	return 0;
847 }
848 EXPORT_SYMBOL(get_anon_bdev);
849 
850 void free_anon_bdev(dev_t dev)
851 {
852 	int slot = MINOR(dev);
853 	spin_lock(&unnamed_dev_lock);
854 	ida_remove(&unnamed_dev_ida, slot);
855 	if (slot < unnamed_dev_start)
856 		unnamed_dev_start = slot;
857 	spin_unlock(&unnamed_dev_lock);
858 }
859 EXPORT_SYMBOL(free_anon_bdev);
860 
861 int set_anon_super(struct super_block *s, void *data)
862 {
863 	int error = get_anon_bdev(&s->s_dev);
864 	if (!error)
865 		s->s_bdi = &noop_backing_dev_info;
866 	return error;
867 }
868 
869 EXPORT_SYMBOL(set_anon_super);
870 
871 void kill_anon_super(struct super_block *sb)
872 {
873 	dev_t dev = sb->s_dev;
874 	generic_shutdown_super(sb);
875 	free_anon_bdev(dev);
876 }
877 
878 EXPORT_SYMBOL(kill_anon_super);
879 
880 void kill_litter_super(struct super_block *sb)
881 {
882 	if (sb->s_root)
883 		d_genocide(sb->s_root);
884 	kill_anon_super(sb);
885 }
886 
887 EXPORT_SYMBOL(kill_litter_super);
888 
889 static int ns_test_super(struct super_block *sb, void *data)
890 {
891 	return sb->s_fs_info == data;
892 }
893 
894 static int ns_set_super(struct super_block *sb, void *data)
895 {
896 	sb->s_fs_info = data;
897 	return set_anon_super(sb, NULL);
898 }
899 
900 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
901 	void *data, int (*fill_super)(struct super_block *, void *, int))
902 {
903 	struct super_block *sb;
904 
905 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
906 	if (IS_ERR(sb))
907 		return ERR_CAST(sb);
908 
909 	if (!sb->s_root) {
910 		int err;
911 		sb->s_flags = flags;
912 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
913 		if (err) {
914 			deactivate_locked_super(sb);
915 			return ERR_PTR(err);
916 		}
917 
918 		sb->s_flags |= MS_ACTIVE;
919 	}
920 
921 	return dget(sb->s_root);
922 }
923 
924 EXPORT_SYMBOL(mount_ns);
925 
926 #ifdef CONFIG_BLOCK
927 static int set_bdev_super(struct super_block *s, void *data)
928 {
929 	s->s_bdev = data;
930 	s->s_dev = s->s_bdev->bd_dev;
931 
932 	/*
933 	 * We set the bdi here to the queue backing, file systems can
934 	 * overwrite this in ->fill_super()
935 	 */
936 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
937 	return 0;
938 }
939 
940 static int test_bdev_super(struct super_block *s, void *data)
941 {
942 	return (void *)s->s_bdev == data;
943 }
944 
945 struct dentry *mount_bdev(struct file_system_type *fs_type,
946 	int flags, const char *dev_name, void *data,
947 	int (*fill_super)(struct super_block *, void *, int))
948 {
949 	struct block_device *bdev;
950 	struct super_block *s;
951 	fmode_t mode = FMODE_READ | FMODE_EXCL;
952 	int error = 0;
953 
954 	if (!(flags & MS_RDONLY))
955 		mode |= FMODE_WRITE;
956 
957 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
958 	if (IS_ERR(bdev))
959 		return ERR_CAST(bdev);
960 
961 	/*
962 	 * once the super is inserted into the list by sget, s_umount
963 	 * will protect the lockfs code from trying to start a snapshot
964 	 * while we are mounting
965 	 */
966 	mutex_lock(&bdev->bd_fsfreeze_mutex);
967 	if (bdev->bd_fsfreeze_count > 0) {
968 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
969 		error = -EBUSY;
970 		goto error_bdev;
971 	}
972 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
973 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
974 	if (IS_ERR(s))
975 		goto error_s;
976 
977 	if (s->s_root) {
978 		if ((flags ^ s->s_flags) & MS_RDONLY) {
979 			deactivate_locked_super(s);
980 			error = -EBUSY;
981 			goto error_bdev;
982 		}
983 
984 		/*
985 		 * s_umount nests inside bd_mutex during
986 		 * __invalidate_device().  blkdev_put() acquires
987 		 * bd_mutex and can't be called under s_umount.  Drop
988 		 * s_umount temporarily.  This is safe as we're
989 		 * holding an active reference.
990 		 */
991 		up_write(&s->s_umount);
992 		blkdev_put(bdev, mode);
993 		down_write(&s->s_umount);
994 	} else {
995 		char b[BDEVNAME_SIZE];
996 
997 		s->s_flags = flags | MS_NOSEC;
998 		s->s_mode = mode;
999 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1000 		sb_set_blocksize(s, block_size(bdev));
1001 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1002 		if (error) {
1003 			deactivate_locked_super(s);
1004 			goto error;
1005 		}
1006 
1007 		s->s_flags |= MS_ACTIVE;
1008 		bdev->bd_super = s;
1009 	}
1010 
1011 	return dget(s->s_root);
1012 
1013 error_s:
1014 	error = PTR_ERR(s);
1015 error_bdev:
1016 	blkdev_put(bdev, mode);
1017 error:
1018 	return ERR_PTR(error);
1019 }
1020 EXPORT_SYMBOL(mount_bdev);
1021 
1022 void kill_block_super(struct super_block *sb)
1023 {
1024 	struct block_device *bdev = sb->s_bdev;
1025 	fmode_t mode = sb->s_mode;
1026 
1027 	bdev->bd_super = NULL;
1028 	generic_shutdown_super(sb);
1029 	sync_blockdev(bdev);
1030 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1031 	blkdev_put(bdev, mode | FMODE_EXCL);
1032 }
1033 
1034 EXPORT_SYMBOL(kill_block_super);
1035 #endif
1036 
1037 struct dentry *mount_nodev(struct file_system_type *fs_type,
1038 	int flags, void *data,
1039 	int (*fill_super)(struct super_block *, void *, int))
1040 {
1041 	int error;
1042 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1043 
1044 	if (IS_ERR(s))
1045 		return ERR_CAST(s);
1046 
1047 	s->s_flags = flags;
1048 
1049 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1050 	if (error) {
1051 		deactivate_locked_super(s);
1052 		return ERR_PTR(error);
1053 	}
1054 	s->s_flags |= MS_ACTIVE;
1055 	return dget(s->s_root);
1056 }
1057 EXPORT_SYMBOL(mount_nodev);
1058 
1059 static int compare_single(struct super_block *s, void *p)
1060 {
1061 	return 1;
1062 }
1063 
1064 struct dentry *mount_single(struct file_system_type *fs_type,
1065 	int flags, void *data,
1066 	int (*fill_super)(struct super_block *, void *, int))
1067 {
1068 	struct super_block *s;
1069 	int error;
1070 
1071 	s = sget(fs_type, compare_single, set_anon_super, NULL);
1072 	if (IS_ERR(s))
1073 		return ERR_CAST(s);
1074 	if (!s->s_root) {
1075 		s->s_flags = flags;
1076 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1077 		if (error) {
1078 			deactivate_locked_super(s);
1079 			return ERR_PTR(error);
1080 		}
1081 		s->s_flags |= MS_ACTIVE;
1082 	} else {
1083 		do_remount_sb(s, flags, data, 0);
1084 	}
1085 	return dget(s->s_root);
1086 }
1087 EXPORT_SYMBOL(mount_single);
1088 
1089 struct dentry *
1090 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1091 {
1092 	struct dentry *root;
1093 	struct super_block *sb;
1094 	char *secdata = NULL;
1095 	int error = -ENOMEM;
1096 
1097 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1098 		secdata = alloc_secdata();
1099 		if (!secdata)
1100 			goto out;
1101 
1102 		error = security_sb_copy_data(data, secdata);
1103 		if (error)
1104 			goto out_free_secdata;
1105 	}
1106 
1107 	root = type->mount(type, flags, name, data);
1108 	if (IS_ERR(root)) {
1109 		error = PTR_ERR(root);
1110 		goto out_free_secdata;
1111 	}
1112 	sb = root->d_sb;
1113 	BUG_ON(!sb);
1114 	WARN_ON(!sb->s_bdi);
1115 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1116 	sb->s_flags |= MS_BORN;
1117 
1118 	error = security_sb_kern_mount(sb, flags, secdata);
1119 	if (error)
1120 		goto out_sb;
1121 
1122 	/*
1123 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1124 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1125 	 * this warning for a little while to try and catch filesystems that
1126 	 * violate this rule.
1127 	 */
1128 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1129 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1130 
1131 	up_write(&sb->s_umount);
1132 	free_secdata(secdata);
1133 	return root;
1134 out_sb:
1135 	dput(root);
1136 	deactivate_locked_super(sb);
1137 out_free_secdata:
1138 	free_secdata(secdata);
1139 out:
1140 	return ERR_PTR(error);
1141 }
1142 
1143 /**
1144  * freeze_super - lock the filesystem and force it into a consistent state
1145  * @sb: the super to lock
1146  *
1147  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1148  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1149  * -EBUSY.
1150  */
1151 int freeze_super(struct super_block *sb)
1152 {
1153 	int ret;
1154 
1155 	atomic_inc(&sb->s_active);
1156 	down_write(&sb->s_umount);
1157 	if (sb->s_frozen) {
1158 		deactivate_locked_super(sb);
1159 		return -EBUSY;
1160 	}
1161 
1162 	if (!(sb->s_flags & MS_BORN)) {
1163 		up_write(&sb->s_umount);
1164 		return 0;	/* sic - it's "nothing to do" */
1165 	}
1166 
1167 	if (sb->s_flags & MS_RDONLY) {
1168 		sb->s_frozen = SB_FREEZE_TRANS;
1169 		smp_wmb();
1170 		up_write(&sb->s_umount);
1171 		return 0;
1172 	}
1173 
1174 	sb->s_frozen = SB_FREEZE_WRITE;
1175 	smp_wmb();
1176 
1177 	sync_filesystem(sb);
1178 
1179 	sb->s_frozen = SB_FREEZE_TRANS;
1180 	smp_wmb();
1181 
1182 	sync_blockdev(sb->s_bdev);
1183 	if (sb->s_op->freeze_fs) {
1184 		ret = sb->s_op->freeze_fs(sb);
1185 		if (ret) {
1186 			printk(KERN_ERR
1187 				"VFS:Filesystem freeze failed\n");
1188 			sb->s_frozen = SB_UNFROZEN;
1189 			smp_wmb();
1190 			wake_up(&sb->s_wait_unfrozen);
1191 			deactivate_locked_super(sb);
1192 			return ret;
1193 		}
1194 	}
1195 	up_write(&sb->s_umount);
1196 	return 0;
1197 }
1198 EXPORT_SYMBOL(freeze_super);
1199 
1200 /**
1201  * thaw_super -- unlock filesystem
1202  * @sb: the super to thaw
1203  *
1204  * Unlocks the filesystem and marks it writeable again after freeze_super().
1205  */
1206 int thaw_super(struct super_block *sb)
1207 {
1208 	int error;
1209 
1210 	down_write(&sb->s_umount);
1211 	if (sb->s_frozen == SB_UNFROZEN) {
1212 		up_write(&sb->s_umount);
1213 		return -EINVAL;
1214 	}
1215 
1216 	if (sb->s_flags & MS_RDONLY)
1217 		goto out;
1218 
1219 	if (sb->s_op->unfreeze_fs) {
1220 		error = sb->s_op->unfreeze_fs(sb);
1221 		if (error) {
1222 			printk(KERN_ERR
1223 				"VFS:Filesystem thaw failed\n");
1224 			sb->s_frozen = SB_FREEZE_TRANS;
1225 			up_write(&sb->s_umount);
1226 			return error;
1227 		}
1228 	}
1229 
1230 out:
1231 	sb->s_frozen = SB_UNFROZEN;
1232 	smp_wmb();
1233 	wake_up(&sb->s_wait_unfrozen);
1234 	deactivate_locked_super(sb);
1235 
1236 	return 0;
1237 }
1238 EXPORT_SYMBOL(thaw_super);
1239