1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 static inline void __super_lock(struct super_block *sb, bool excl) 54 { 55 if (excl) 56 down_write(&sb->s_umount); 57 else 58 down_read(&sb->s_umount); 59 } 60 61 static inline void super_unlock(struct super_block *sb, bool excl) 62 { 63 if (excl) 64 up_write(&sb->s_umount); 65 else 66 up_read(&sb->s_umount); 67 } 68 69 static inline void __super_lock_excl(struct super_block *sb) 70 { 71 __super_lock(sb, true); 72 } 73 74 static inline void super_unlock_excl(struct super_block *sb) 75 { 76 super_unlock(sb, true); 77 } 78 79 static inline void super_unlock_shared(struct super_block *sb) 80 { 81 super_unlock(sb, false); 82 } 83 84 static inline bool wait_born(struct super_block *sb) 85 { 86 unsigned int flags; 87 88 /* 89 * Pairs with smp_store_release() in super_wake() and ensures 90 * that we see SB_BORN or SB_DYING after we're woken. 91 */ 92 flags = smp_load_acquire(&sb->s_flags); 93 return flags & (SB_BORN | SB_DYING); 94 } 95 96 /** 97 * super_lock - wait for superblock to become ready and lock it 98 * @sb: superblock to wait for 99 * @excl: whether exclusive access is required 100 * 101 * If the superblock has neither passed through vfs_get_tree() or 102 * generic_shutdown_super() yet wait for it to happen. Either superblock 103 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're 104 * woken and we'll see SB_DYING. 105 * 106 * The caller must have acquired a temporary reference on @sb->s_count. 107 * 108 * Return: This returns true if SB_BORN was set, false if SB_DYING was 109 * set. The function acquires s_umount and returns with it held. 110 */ 111 static __must_check bool super_lock(struct super_block *sb, bool excl) 112 { 113 114 lockdep_assert_not_held(&sb->s_umount); 115 116 relock: 117 __super_lock(sb, excl); 118 119 /* 120 * Has gone through generic_shutdown_super() in the meantime. 121 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to 122 * grab a reference to this. Tell them so. 123 */ 124 if (sb->s_flags & SB_DYING) 125 return false; 126 127 /* Has called ->get_tree() successfully. */ 128 if (sb->s_flags & SB_BORN) 129 return true; 130 131 super_unlock(sb, excl); 132 133 /* wait until the superblock is ready or dying */ 134 wait_var_event(&sb->s_flags, wait_born(sb)); 135 136 /* 137 * Neither SB_BORN nor SB_DYING are ever unset so we never loop. 138 * Just reacquire @sb->s_umount for the caller. 139 */ 140 goto relock; 141 } 142 143 /* wait and acquire read-side of @sb->s_umount */ 144 static inline bool super_lock_shared(struct super_block *sb) 145 { 146 return super_lock(sb, false); 147 } 148 149 /* wait and acquire write-side of @sb->s_umount */ 150 static inline bool super_lock_excl(struct super_block *sb) 151 { 152 return super_lock(sb, true); 153 } 154 155 /* wake waiters */ 156 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD) 157 static void super_wake(struct super_block *sb, unsigned int flag) 158 { 159 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS)); 160 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1); 161 162 /* 163 * Pairs with smp_load_acquire() in super_lock() to make sure 164 * all initializations in the superblock are seen by the user 165 * seeing SB_BORN sent. 166 */ 167 smp_store_release(&sb->s_flags, sb->s_flags | flag); 168 /* 169 * Pairs with the barrier in prepare_to_wait_event() to make sure 170 * ___wait_var_event() either sees SB_BORN set or 171 * waitqueue_active() check in wake_up_var() sees the waiter. 172 */ 173 smp_mb(); 174 wake_up_var(&sb->s_flags); 175 } 176 177 /* 178 * One thing we have to be careful of with a per-sb shrinker is that we don't 179 * drop the last active reference to the superblock from within the shrinker. 180 * If that happens we could trigger unregistering the shrinker from within the 181 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 182 * take a passive reference to the superblock to avoid this from occurring. 183 */ 184 static unsigned long super_cache_scan(struct shrinker *shrink, 185 struct shrink_control *sc) 186 { 187 struct super_block *sb; 188 long fs_objects = 0; 189 long total_objects; 190 long freed = 0; 191 long dentries; 192 long inodes; 193 194 sb = container_of(shrink, struct super_block, s_shrink); 195 196 /* 197 * Deadlock avoidance. We may hold various FS locks, and we don't want 198 * to recurse into the FS that called us in clear_inode() and friends.. 199 */ 200 if (!(sc->gfp_mask & __GFP_FS)) 201 return SHRINK_STOP; 202 203 if (!super_trylock_shared(sb)) 204 return SHRINK_STOP; 205 206 if (sb->s_op->nr_cached_objects) 207 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 208 209 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 210 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 211 total_objects = dentries + inodes + fs_objects + 1; 212 if (!total_objects) 213 total_objects = 1; 214 215 /* proportion the scan between the caches */ 216 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 217 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 218 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 219 220 /* 221 * prune the dcache first as the icache is pinned by it, then 222 * prune the icache, followed by the filesystem specific caches 223 * 224 * Ensure that we always scan at least one object - memcg kmem 225 * accounting uses this to fully empty the caches. 226 */ 227 sc->nr_to_scan = dentries + 1; 228 freed = prune_dcache_sb(sb, sc); 229 sc->nr_to_scan = inodes + 1; 230 freed += prune_icache_sb(sb, sc); 231 232 if (fs_objects) { 233 sc->nr_to_scan = fs_objects + 1; 234 freed += sb->s_op->free_cached_objects(sb, sc); 235 } 236 237 super_unlock_shared(sb); 238 return freed; 239 } 240 241 static unsigned long super_cache_count(struct shrinker *shrink, 242 struct shrink_control *sc) 243 { 244 struct super_block *sb; 245 long total_objects = 0; 246 247 sb = container_of(shrink, struct super_block, s_shrink); 248 249 /* 250 * We don't call super_trylock_shared() here as it is a scalability 251 * bottleneck, so we're exposed to partial setup state. The shrinker 252 * rwsem does not protect filesystem operations backing 253 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can 254 * change between super_cache_count and super_cache_scan, so we really 255 * don't need locks here. 256 * 257 * However, if we are currently mounting the superblock, the underlying 258 * filesystem might be in a state of partial construction and hence it 259 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check 260 * to avoid this situation, so do the same here. The memory barrier is 261 * matched with the one in mount_fs() as we don't hold locks here. 262 */ 263 if (!(sb->s_flags & SB_BORN)) 264 return 0; 265 smp_rmb(); 266 267 if (sb->s_op && sb->s_op->nr_cached_objects) 268 total_objects = sb->s_op->nr_cached_objects(sb, sc); 269 270 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 271 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 272 273 if (!total_objects) 274 return SHRINK_EMPTY; 275 276 total_objects = vfs_pressure_ratio(total_objects); 277 return total_objects; 278 } 279 280 static void destroy_super_work(struct work_struct *work) 281 { 282 struct super_block *s = container_of(work, struct super_block, 283 destroy_work); 284 int i; 285 286 for (i = 0; i < SB_FREEZE_LEVELS; i++) 287 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 288 kfree(s); 289 } 290 291 static void destroy_super_rcu(struct rcu_head *head) 292 { 293 struct super_block *s = container_of(head, struct super_block, rcu); 294 INIT_WORK(&s->destroy_work, destroy_super_work); 295 schedule_work(&s->destroy_work); 296 } 297 298 /* Free a superblock that has never been seen by anyone */ 299 static void destroy_unused_super(struct super_block *s) 300 { 301 if (!s) 302 return; 303 super_unlock_excl(s); 304 list_lru_destroy(&s->s_dentry_lru); 305 list_lru_destroy(&s->s_inode_lru); 306 security_sb_free(s); 307 put_user_ns(s->s_user_ns); 308 kfree(s->s_subtype); 309 free_prealloced_shrinker(&s->s_shrink); 310 /* no delays needed */ 311 destroy_super_work(&s->destroy_work); 312 } 313 314 /** 315 * alloc_super - create new superblock 316 * @type: filesystem type superblock should belong to 317 * @flags: the mount flags 318 * @user_ns: User namespace for the super_block 319 * 320 * Allocates and initializes a new &struct super_block. alloc_super() 321 * returns a pointer new superblock or %NULL if allocation had failed. 322 */ 323 static struct super_block *alloc_super(struct file_system_type *type, int flags, 324 struct user_namespace *user_ns) 325 { 326 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 327 static const struct super_operations default_op; 328 int i; 329 330 if (!s) 331 return NULL; 332 333 INIT_LIST_HEAD(&s->s_mounts); 334 s->s_user_ns = get_user_ns(user_ns); 335 init_rwsem(&s->s_umount); 336 lockdep_set_class(&s->s_umount, &type->s_umount_key); 337 /* 338 * sget() can have s_umount recursion. 339 * 340 * When it cannot find a suitable sb, it allocates a new 341 * one (this one), and tries again to find a suitable old 342 * one. 343 * 344 * In case that succeeds, it will acquire the s_umount 345 * lock of the old one. Since these are clearly distrinct 346 * locks, and this object isn't exposed yet, there's no 347 * risk of deadlocks. 348 * 349 * Annotate this by putting this lock in a different 350 * subclass. 351 */ 352 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 353 354 if (security_sb_alloc(s)) 355 goto fail; 356 357 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 358 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 359 sb_writers_name[i], 360 &type->s_writers_key[i])) 361 goto fail; 362 } 363 s->s_bdi = &noop_backing_dev_info; 364 s->s_flags = flags; 365 if (s->s_user_ns != &init_user_ns) 366 s->s_iflags |= SB_I_NODEV; 367 INIT_HLIST_NODE(&s->s_instances); 368 INIT_HLIST_BL_HEAD(&s->s_roots); 369 mutex_init(&s->s_sync_lock); 370 INIT_LIST_HEAD(&s->s_inodes); 371 spin_lock_init(&s->s_inode_list_lock); 372 INIT_LIST_HEAD(&s->s_inodes_wb); 373 spin_lock_init(&s->s_inode_wblist_lock); 374 375 s->s_count = 1; 376 atomic_set(&s->s_active, 1); 377 mutex_init(&s->s_vfs_rename_mutex); 378 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 379 init_rwsem(&s->s_dquot.dqio_sem); 380 s->s_maxbytes = MAX_NON_LFS; 381 s->s_op = &default_op; 382 s->s_time_gran = 1000000000; 383 s->s_time_min = TIME64_MIN; 384 s->s_time_max = TIME64_MAX; 385 386 s->s_shrink.seeks = DEFAULT_SEEKS; 387 s->s_shrink.scan_objects = super_cache_scan; 388 s->s_shrink.count_objects = super_cache_count; 389 s->s_shrink.batch = 1024; 390 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 391 if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name)) 392 goto fail; 393 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 394 goto fail; 395 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 396 goto fail; 397 return s; 398 399 fail: 400 destroy_unused_super(s); 401 return NULL; 402 } 403 404 /* Superblock refcounting */ 405 406 /* 407 * Drop a superblock's refcount. The caller must hold sb_lock. 408 */ 409 static void __put_super(struct super_block *s) 410 { 411 if (!--s->s_count) { 412 list_del_init(&s->s_list); 413 WARN_ON(s->s_dentry_lru.node); 414 WARN_ON(s->s_inode_lru.node); 415 WARN_ON(!list_empty(&s->s_mounts)); 416 security_sb_free(s); 417 put_user_ns(s->s_user_ns); 418 kfree(s->s_subtype); 419 call_rcu(&s->rcu, destroy_super_rcu); 420 } 421 } 422 423 /** 424 * put_super - drop a temporary reference to superblock 425 * @sb: superblock in question 426 * 427 * Drops a temporary reference, frees superblock if there's no 428 * references left. 429 */ 430 void put_super(struct super_block *sb) 431 { 432 spin_lock(&sb_lock); 433 __put_super(sb); 434 spin_unlock(&sb_lock); 435 } 436 437 static void kill_super_notify(struct super_block *sb) 438 { 439 lockdep_assert_not_held(&sb->s_umount); 440 441 /* already notified earlier */ 442 if (sb->s_flags & SB_DEAD) 443 return; 444 445 /* 446 * Remove it from @fs_supers so it isn't found by new 447 * sget{_fc}() walkers anymore. Any concurrent mounter still 448 * managing to grab a temporary reference is guaranteed to 449 * already see SB_DYING and will wait until we notify them about 450 * SB_DEAD. 451 */ 452 spin_lock(&sb_lock); 453 hlist_del_init(&sb->s_instances); 454 spin_unlock(&sb_lock); 455 456 /* 457 * Let concurrent mounts know that this thing is really dead. 458 * We don't need @sb->s_umount here as every concurrent caller 459 * will see SB_DYING and either discard the superblock or wait 460 * for SB_DEAD. 461 */ 462 super_wake(sb, SB_DEAD); 463 } 464 465 /** 466 * deactivate_locked_super - drop an active reference to superblock 467 * @s: superblock to deactivate 468 * 469 * Drops an active reference to superblock, converting it into a temporary 470 * one if there is no other active references left. In that case we 471 * tell fs driver to shut it down and drop the temporary reference we 472 * had just acquired. 473 * 474 * Caller holds exclusive lock on superblock; that lock is released. 475 */ 476 void deactivate_locked_super(struct super_block *s) 477 { 478 struct file_system_type *fs = s->s_type; 479 if (atomic_dec_and_test(&s->s_active)) { 480 unregister_shrinker(&s->s_shrink); 481 fs->kill_sb(s); 482 483 kill_super_notify(s); 484 485 /* 486 * Since list_lru_destroy() may sleep, we cannot call it from 487 * put_super(), where we hold the sb_lock. Therefore we destroy 488 * the lru lists right now. 489 */ 490 list_lru_destroy(&s->s_dentry_lru); 491 list_lru_destroy(&s->s_inode_lru); 492 493 put_filesystem(fs); 494 put_super(s); 495 } else { 496 super_unlock_excl(s); 497 } 498 } 499 500 EXPORT_SYMBOL(deactivate_locked_super); 501 502 /** 503 * deactivate_super - drop an active reference to superblock 504 * @s: superblock to deactivate 505 * 506 * Variant of deactivate_locked_super(), except that superblock is *not* 507 * locked by caller. If we are going to drop the final active reference, 508 * lock will be acquired prior to that. 509 */ 510 void deactivate_super(struct super_block *s) 511 { 512 if (!atomic_add_unless(&s->s_active, -1, 1)) { 513 __super_lock_excl(s); 514 deactivate_locked_super(s); 515 } 516 } 517 518 EXPORT_SYMBOL(deactivate_super); 519 520 /** 521 * grab_super - acquire an active reference 522 * @s: reference we are trying to make active 523 * 524 * Tries to acquire an active reference. grab_super() is used when we 525 * had just found a superblock in super_blocks or fs_type->fs_supers 526 * and want to turn it into a full-blown active reference. grab_super() 527 * is called with sb_lock held and drops it. Returns 1 in case of 528 * success, 0 if we had failed (superblock contents was already dead or 529 * dying when grab_super() had been called). Note that this is only 530 * called for superblocks not in rundown mode (== ones still on ->fs_supers 531 * of their type), so increment of ->s_count is OK here. 532 */ 533 static int grab_super(struct super_block *s) __releases(sb_lock) 534 { 535 bool born; 536 537 s->s_count++; 538 spin_unlock(&sb_lock); 539 born = super_lock_excl(s); 540 if (born && atomic_inc_not_zero(&s->s_active)) { 541 put_super(s); 542 return 1; 543 } 544 super_unlock_excl(s); 545 put_super(s); 546 return 0; 547 } 548 549 static inline bool wait_dead(struct super_block *sb) 550 { 551 unsigned int flags; 552 553 /* 554 * Pairs with memory barrier in super_wake() and ensures 555 * that we see SB_DEAD after we're woken. 556 */ 557 flags = smp_load_acquire(&sb->s_flags); 558 return flags & SB_DEAD; 559 } 560 561 /** 562 * grab_super_dead - acquire an active reference to a superblock 563 * @sb: superblock to acquire 564 * 565 * Acquire a temporary reference on a superblock and try to trade it for 566 * an active reference. This is used in sget{_fc}() to wait for a 567 * superblock to either become SB_BORN or for it to pass through 568 * sb->kill() and be marked as SB_DEAD. 569 * 570 * Return: This returns true if an active reference could be acquired, 571 * false if not. 572 */ 573 static bool grab_super_dead(struct super_block *sb) 574 { 575 576 sb->s_count++; 577 if (grab_super(sb)) { 578 put_super(sb); 579 lockdep_assert_held(&sb->s_umount); 580 return true; 581 } 582 wait_var_event(&sb->s_flags, wait_dead(sb)); 583 lockdep_assert_not_held(&sb->s_umount); 584 put_super(sb); 585 return false; 586 } 587 588 /* 589 * super_trylock_shared - try to grab ->s_umount shared 590 * @sb: reference we are trying to grab 591 * 592 * Try to prevent fs shutdown. This is used in places where we 593 * cannot take an active reference but we need to ensure that the 594 * filesystem is not shut down while we are working on it. It returns 595 * false if we cannot acquire s_umount or if we lose the race and 596 * filesystem already got into shutdown, and returns true with the s_umount 597 * lock held in read mode in case of success. On successful return, 598 * the caller must drop the s_umount lock when done. 599 * 600 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 601 * The reason why it's safe is that we are OK with doing trylock instead 602 * of down_read(). There's a couple of places that are OK with that, but 603 * it's very much not a general-purpose interface. 604 */ 605 bool super_trylock_shared(struct super_block *sb) 606 { 607 if (down_read_trylock(&sb->s_umount)) { 608 if (!(sb->s_flags & SB_DYING) && sb->s_root && 609 (sb->s_flags & SB_BORN)) 610 return true; 611 super_unlock_shared(sb); 612 } 613 614 return false; 615 } 616 617 /** 618 * retire_super - prevents superblock from being reused 619 * @sb: superblock to retire 620 * 621 * The function marks superblock to be ignored in superblock test, which 622 * prevents it from being reused for any new mounts. If the superblock has 623 * a private bdi, it also unregisters it, but doesn't reduce the refcount 624 * of the superblock to prevent potential races. The refcount is reduced 625 * by generic_shutdown_super(). The function can not be called 626 * concurrently with generic_shutdown_super(). It is safe to call the 627 * function multiple times, subsequent calls have no effect. 628 * 629 * The marker will affect the re-use only for block-device-based 630 * superblocks. Other superblocks will still get marked if this function 631 * is used, but that will not affect their reusability. 632 */ 633 void retire_super(struct super_block *sb) 634 { 635 WARN_ON(!sb->s_bdev); 636 __super_lock_excl(sb); 637 if (sb->s_iflags & SB_I_PERSB_BDI) { 638 bdi_unregister(sb->s_bdi); 639 sb->s_iflags &= ~SB_I_PERSB_BDI; 640 } 641 sb->s_iflags |= SB_I_RETIRED; 642 super_unlock_excl(sb); 643 } 644 EXPORT_SYMBOL(retire_super); 645 646 /** 647 * generic_shutdown_super - common helper for ->kill_sb() 648 * @sb: superblock to kill 649 * 650 * generic_shutdown_super() does all fs-independent work on superblock 651 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 652 * that need destruction out of superblock, call generic_shutdown_super() 653 * and release aforementioned objects. Note: dentries and inodes _are_ 654 * taken care of and do not need specific handling. 655 * 656 * Upon calling this function, the filesystem may no longer alter or 657 * rearrange the set of dentries belonging to this super_block, nor may it 658 * change the attachments of dentries to inodes. 659 */ 660 void generic_shutdown_super(struct super_block *sb) 661 { 662 const struct super_operations *sop = sb->s_op; 663 664 if (sb->s_root) { 665 shrink_dcache_for_umount(sb); 666 sync_filesystem(sb); 667 sb->s_flags &= ~SB_ACTIVE; 668 669 cgroup_writeback_umount(); 670 671 /* Evict all inodes with zero refcount. */ 672 evict_inodes(sb); 673 674 /* 675 * Clean up and evict any inodes that still have references due 676 * to fsnotify or the security policy. 677 */ 678 fsnotify_sb_delete(sb); 679 security_sb_delete(sb); 680 681 /* 682 * Now that all potentially-encrypted inodes have been evicted, 683 * the fscrypt keyring can be destroyed. 684 */ 685 fscrypt_destroy_keyring(sb); 686 687 if (sb->s_dio_done_wq) { 688 destroy_workqueue(sb->s_dio_done_wq); 689 sb->s_dio_done_wq = NULL; 690 } 691 692 if (sop->put_super) 693 sop->put_super(sb); 694 695 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), 696 "VFS: Busy inodes after unmount of %s (%s)", 697 sb->s_id, sb->s_type->name)) { 698 /* 699 * Adding a proper bailout path here would be hard, but 700 * we can at least make it more likely that a later 701 * iput_final() or such crashes cleanly. 702 */ 703 struct inode *inode; 704 705 spin_lock(&sb->s_inode_list_lock); 706 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 707 inode->i_op = VFS_PTR_POISON; 708 inode->i_sb = VFS_PTR_POISON; 709 inode->i_mapping = VFS_PTR_POISON; 710 } 711 spin_unlock(&sb->s_inode_list_lock); 712 } 713 } 714 /* 715 * Broadcast to everyone that grabbed a temporary reference to this 716 * superblock before we removed it from @fs_supers that the superblock 717 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now 718 * discard this superblock and treat it as dead. 719 * 720 * We leave the superblock on @fs_supers so it can be found by 721 * sget{_fc}() until we passed sb->kill_sb(). 722 */ 723 super_wake(sb, SB_DYING); 724 super_unlock_excl(sb); 725 if (sb->s_bdi != &noop_backing_dev_info) { 726 if (sb->s_iflags & SB_I_PERSB_BDI) 727 bdi_unregister(sb->s_bdi); 728 bdi_put(sb->s_bdi); 729 sb->s_bdi = &noop_backing_dev_info; 730 } 731 } 732 733 EXPORT_SYMBOL(generic_shutdown_super); 734 735 bool mount_capable(struct fs_context *fc) 736 { 737 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 738 return capable(CAP_SYS_ADMIN); 739 else 740 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 741 } 742 743 /** 744 * sget_fc - Find or create a superblock 745 * @fc: Filesystem context. 746 * @test: Comparison callback 747 * @set: Setup callback 748 * 749 * Create a new superblock or find an existing one. 750 * 751 * The @test callback is used to find a matching existing superblock. 752 * Whether or not the requested parameters in @fc are taken into account 753 * is specific to the @test callback that is used. They may even be 754 * completely ignored. 755 * 756 * If an extant superblock is matched, it will be returned unless: 757 * 758 * (1) the namespace the filesystem context @fc and the extant 759 * superblock's namespace differ 760 * 761 * (2) the filesystem context @fc has requested that reusing an extant 762 * superblock is not allowed 763 * 764 * In both cases EBUSY will be returned. 765 * 766 * If no match is made, a new superblock will be allocated and basic 767 * initialisation will be performed (s_type, s_fs_info and s_id will be 768 * set and the @set callback will be invoked), the superblock will be 769 * published and it will be returned in a partially constructed state 770 * with SB_BORN and SB_ACTIVE as yet unset. 771 * 772 * Return: On success, an extant or newly created superblock is 773 * returned. On failure an error pointer is returned. 774 */ 775 struct super_block *sget_fc(struct fs_context *fc, 776 int (*test)(struct super_block *, struct fs_context *), 777 int (*set)(struct super_block *, struct fs_context *)) 778 { 779 struct super_block *s = NULL; 780 struct super_block *old; 781 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 782 int err; 783 784 retry: 785 spin_lock(&sb_lock); 786 if (test) { 787 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 788 if (test(old, fc)) 789 goto share_extant_sb; 790 } 791 } 792 if (!s) { 793 spin_unlock(&sb_lock); 794 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 795 if (!s) 796 return ERR_PTR(-ENOMEM); 797 goto retry; 798 } 799 800 s->s_fs_info = fc->s_fs_info; 801 err = set(s, fc); 802 if (err) { 803 s->s_fs_info = NULL; 804 spin_unlock(&sb_lock); 805 destroy_unused_super(s); 806 return ERR_PTR(err); 807 } 808 fc->s_fs_info = NULL; 809 s->s_type = fc->fs_type; 810 s->s_iflags |= fc->s_iflags; 811 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 812 /* 813 * Make the superblock visible on @super_blocks and @fs_supers. 814 * It's in a nascent state and users should wait on SB_BORN or 815 * SB_DYING to be set. 816 */ 817 list_add_tail(&s->s_list, &super_blocks); 818 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 819 spin_unlock(&sb_lock); 820 get_filesystem(s->s_type); 821 register_shrinker_prepared(&s->s_shrink); 822 return s; 823 824 share_extant_sb: 825 if (user_ns != old->s_user_ns || fc->exclusive) { 826 spin_unlock(&sb_lock); 827 destroy_unused_super(s); 828 if (fc->exclusive) 829 warnfc(fc, "reusing existing filesystem not allowed"); 830 else 831 warnfc(fc, "reusing existing filesystem in another namespace not allowed"); 832 return ERR_PTR(-EBUSY); 833 } 834 if (!grab_super_dead(old)) 835 goto retry; 836 destroy_unused_super(s); 837 return old; 838 } 839 EXPORT_SYMBOL(sget_fc); 840 841 /** 842 * sget - find or create a superblock 843 * @type: filesystem type superblock should belong to 844 * @test: comparison callback 845 * @set: setup callback 846 * @flags: mount flags 847 * @data: argument to each of them 848 */ 849 struct super_block *sget(struct file_system_type *type, 850 int (*test)(struct super_block *,void *), 851 int (*set)(struct super_block *,void *), 852 int flags, 853 void *data) 854 { 855 struct user_namespace *user_ns = current_user_ns(); 856 struct super_block *s = NULL; 857 struct super_block *old; 858 int err; 859 860 /* We don't yet pass the user namespace of the parent 861 * mount through to here so always use &init_user_ns 862 * until that changes. 863 */ 864 if (flags & SB_SUBMOUNT) 865 user_ns = &init_user_ns; 866 867 retry: 868 spin_lock(&sb_lock); 869 if (test) { 870 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 871 if (!test(old, data)) 872 continue; 873 if (user_ns != old->s_user_ns) { 874 spin_unlock(&sb_lock); 875 destroy_unused_super(s); 876 return ERR_PTR(-EBUSY); 877 } 878 if (!grab_super_dead(old)) 879 goto retry; 880 destroy_unused_super(s); 881 return old; 882 } 883 } 884 if (!s) { 885 spin_unlock(&sb_lock); 886 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 887 if (!s) 888 return ERR_PTR(-ENOMEM); 889 goto retry; 890 } 891 892 err = set(s, data); 893 if (err) { 894 spin_unlock(&sb_lock); 895 destroy_unused_super(s); 896 return ERR_PTR(err); 897 } 898 s->s_type = type; 899 strscpy(s->s_id, type->name, sizeof(s->s_id)); 900 list_add_tail(&s->s_list, &super_blocks); 901 hlist_add_head(&s->s_instances, &type->fs_supers); 902 spin_unlock(&sb_lock); 903 get_filesystem(type); 904 register_shrinker_prepared(&s->s_shrink); 905 return s; 906 } 907 EXPORT_SYMBOL(sget); 908 909 void drop_super(struct super_block *sb) 910 { 911 super_unlock_shared(sb); 912 put_super(sb); 913 } 914 915 EXPORT_SYMBOL(drop_super); 916 917 void drop_super_exclusive(struct super_block *sb) 918 { 919 super_unlock_excl(sb); 920 put_super(sb); 921 } 922 EXPORT_SYMBOL(drop_super_exclusive); 923 924 static void __iterate_supers(void (*f)(struct super_block *)) 925 { 926 struct super_block *sb, *p = NULL; 927 928 spin_lock(&sb_lock); 929 list_for_each_entry(sb, &super_blocks, s_list) { 930 /* Pairs with memory marrier in super_wake(). */ 931 if (smp_load_acquire(&sb->s_flags) & SB_DYING) 932 continue; 933 sb->s_count++; 934 spin_unlock(&sb_lock); 935 936 f(sb); 937 938 spin_lock(&sb_lock); 939 if (p) 940 __put_super(p); 941 p = sb; 942 } 943 if (p) 944 __put_super(p); 945 spin_unlock(&sb_lock); 946 } 947 /** 948 * iterate_supers - call function for all active superblocks 949 * @f: function to call 950 * @arg: argument to pass to it 951 * 952 * Scans the superblock list and calls given function, passing it 953 * locked superblock and given argument. 954 */ 955 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 956 { 957 struct super_block *sb, *p = NULL; 958 959 spin_lock(&sb_lock); 960 list_for_each_entry(sb, &super_blocks, s_list) { 961 bool born; 962 963 sb->s_count++; 964 spin_unlock(&sb_lock); 965 966 born = super_lock_shared(sb); 967 if (born && sb->s_root) 968 f(sb, arg); 969 super_unlock_shared(sb); 970 971 spin_lock(&sb_lock); 972 if (p) 973 __put_super(p); 974 p = sb; 975 } 976 if (p) 977 __put_super(p); 978 spin_unlock(&sb_lock); 979 } 980 981 /** 982 * iterate_supers_type - call function for superblocks of given type 983 * @type: fs type 984 * @f: function to call 985 * @arg: argument to pass to it 986 * 987 * Scans the superblock list and calls given function, passing it 988 * locked superblock and given argument. 989 */ 990 void iterate_supers_type(struct file_system_type *type, 991 void (*f)(struct super_block *, void *), void *arg) 992 { 993 struct super_block *sb, *p = NULL; 994 995 spin_lock(&sb_lock); 996 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 997 bool born; 998 999 sb->s_count++; 1000 spin_unlock(&sb_lock); 1001 1002 born = super_lock_shared(sb); 1003 if (born && sb->s_root) 1004 f(sb, arg); 1005 super_unlock_shared(sb); 1006 1007 spin_lock(&sb_lock); 1008 if (p) 1009 __put_super(p); 1010 p = sb; 1011 } 1012 if (p) 1013 __put_super(p); 1014 spin_unlock(&sb_lock); 1015 } 1016 1017 EXPORT_SYMBOL(iterate_supers_type); 1018 1019 /** 1020 * get_active_super - get an active reference to the superblock of a device 1021 * @bdev: device to get the superblock for 1022 * 1023 * Scans the superblock list and finds the superblock of the file system 1024 * mounted on the device given. Returns the superblock with an active 1025 * reference or %NULL if none was found. 1026 */ 1027 struct super_block *get_active_super(struct block_device *bdev) 1028 { 1029 struct super_block *sb; 1030 1031 if (!bdev) 1032 return NULL; 1033 1034 spin_lock(&sb_lock); 1035 list_for_each_entry(sb, &super_blocks, s_list) { 1036 if (sb->s_bdev == bdev) { 1037 if (!grab_super(sb)) 1038 return NULL; 1039 super_unlock_excl(sb); 1040 return sb; 1041 } 1042 } 1043 spin_unlock(&sb_lock); 1044 return NULL; 1045 } 1046 1047 struct super_block *user_get_super(dev_t dev, bool excl) 1048 { 1049 struct super_block *sb; 1050 1051 spin_lock(&sb_lock); 1052 list_for_each_entry(sb, &super_blocks, s_list) { 1053 if (sb->s_dev == dev) { 1054 bool born; 1055 1056 sb->s_count++; 1057 spin_unlock(&sb_lock); 1058 /* still alive? */ 1059 born = super_lock(sb, excl); 1060 if (born && sb->s_root) 1061 return sb; 1062 super_unlock(sb, excl); 1063 /* nope, got unmounted */ 1064 spin_lock(&sb_lock); 1065 __put_super(sb); 1066 break; 1067 } 1068 } 1069 spin_unlock(&sb_lock); 1070 return NULL; 1071 } 1072 1073 /** 1074 * reconfigure_super - asks filesystem to change superblock parameters 1075 * @fc: The superblock and configuration 1076 * 1077 * Alters the configuration parameters of a live superblock. 1078 */ 1079 int reconfigure_super(struct fs_context *fc) 1080 { 1081 struct super_block *sb = fc->root->d_sb; 1082 int retval; 1083 bool remount_ro = false; 1084 bool remount_rw = false; 1085 bool force = fc->sb_flags & SB_FORCE; 1086 1087 if (fc->sb_flags_mask & ~MS_RMT_MASK) 1088 return -EINVAL; 1089 if (sb->s_writers.frozen != SB_UNFROZEN) 1090 return -EBUSY; 1091 1092 retval = security_sb_remount(sb, fc->security); 1093 if (retval) 1094 return retval; 1095 1096 if (fc->sb_flags_mask & SB_RDONLY) { 1097 #ifdef CONFIG_BLOCK 1098 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 1099 bdev_read_only(sb->s_bdev)) 1100 return -EACCES; 1101 #endif 1102 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb); 1103 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 1104 } 1105 1106 if (remount_ro) { 1107 if (!hlist_empty(&sb->s_pins)) { 1108 super_unlock_excl(sb); 1109 group_pin_kill(&sb->s_pins); 1110 __super_lock_excl(sb); 1111 if (!sb->s_root) 1112 return 0; 1113 if (sb->s_writers.frozen != SB_UNFROZEN) 1114 return -EBUSY; 1115 remount_ro = !sb_rdonly(sb); 1116 } 1117 } 1118 shrink_dcache_sb(sb); 1119 1120 /* If we are reconfiguring to RDONLY and current sb is read/write, 1121 * make sure there are no files open for writing. 1122 */ 1123 if (remount_ro) { 1124 if (force) { 1125 sb_start_ro_state_change(sb); 1126 } else { 1127 retval = sb_prepare_remount_readonly(sb); 1128 if (retval) 1129 return retval; 1130 } 1131 } else if (remount_rw) { 1132 /* 1133 * Protect filesystem's reconfigure code from writes from 1134 * userspace until reconfigure finishes. 1135 */ 1136 sb_start_ro_state_change(sb); 1137 } 1138 1139 if (fc->ops->reconfigure) { 1140 retval = fc->ops->reconfigure(fc); 1141 if (retval) { 1142 if (!force) 1143 goto cancel_readonly; 1144 /* If forced remount, go ahead despite any errors */ 1145 WARN(1, "forced remount of a %s fs returned %i\n", 1146 sb->s_type->name, retval); 1147 } 1148 } 1149 1150 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 1151 (fc->sb_flags & fc->sb_flags_mask))); 1152 sb_end_ro_state_change(sb); 1153 1154 /* 1155 * Some filesystems modify their metadata via some other path than the 1156 * bdev buffer cache (eg. use a private mapping, or directories in 1157 * pagecache, etc). Also file data modifications go via their own 1158 * mappings. So If we try to mount readonly then copy the filesystem 1159 * from bdev, we could get stale data, so invalidate it to give a best 1160 * effort at coherency. 1161 */ 1162 if (remount_ro && sb->s_bdev) 1163 invalidate_bdev(sb->s_bdev); 1164 return 0; 1165 1166 cancel_readonly: 1167 sb_end_ro_state_change(sb); 1168 return retval; 1169 } 1170 1171 static void do_emergency_remount_callback(struct super_block *sb) 1172 { 1173 bool born = super_lock_excl(sb); 1174 1175 if (born && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) { 1176 struct fs_context *fc; 1177 1178 fc = fs_context_for_reconfigure(sb->s_root, 1179 SB_RDONLY | SB_FORCE, SB_RDONLY); 1180 if (!IS_ERR(fc)) { 1181 if (parse_monolithic_mount_data(fc, NULL) == 0) 1182 (void)reconfigure_super(fc); 1183 put_fs_context(fc); 1184 } 1185 } 1186 super_unlock_excl(sb); 1187 } 1188 1189 static void do_emergency_remount(struct work_struct *work) 1190 { 1191 __iterate_supers(do_emergency_remount_callback); 1192 kfree(work); 1193 printk("Emergency Remount complete\n"); 1194 } 1195 1196 void emergency_remount(void) 1197 { 1198 struct work_struct *work; 1199 1200 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1201 if (work) { 1202 INIT_WORK(work, do_emergency_remount); 1203 schedule_work(work); 1204 } 1205 } 1206 1207 static void do_thaw_all_callback(struct super_block *sb) 1208 { 1209 bool born = super_lock_excl(sb); 1210 1211 if (born && sb->s_root) { 1212 if (IS_ENABLED(CONFIG_BLOCK)) 1213 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 1214 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev); 1215 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE); 1216 } else { 1217 super_unlock_excl(sb); 1218 } 1219 } 1220 1221 static void do_thaw_all(struct work_struct *work) 1222 { 1223 __iterate_supers(do_thaw_all_callback); 1224 kfree(work); 1225 printk(KERN_WARNING "Emergency Thaw complete\n"); 1226 } 1227 1228 /** 1229 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1230 * 1231 * Used for emergency unfreeze of all filesystems via SysRq 1232 */ 1233 void emergency_thaw_all(void) 1234 { 1235 struct work_struct *work; 1236 1237 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1238 if (work) { 1239 INIT_WORK(work, do_thaw_all); 1240 schedule_work(work); 1241 } 1242 } 1243 1244 static DEFINE_IDA(unnamed_dev_ida); 1245 1246 /** 1247 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1248 * @p: Pointer to a dev_t. 1249 * 1250 * Filesystems which don't use real block devices can call this function 1251 * to allocate a virtual block device. 1252 * 1253 * Context: Any context. Frequently called while holding sb_lock. 1254 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1255 * or -ENOMEM if memory allocation failed. 1256 */ 1257 int get_anon_bdev(dev_t *p) 1258 { 1259 int dev; 1260 1261 /* 1262 * Many userspace utilities consider an FSID of 0 invalid. 1263 * Always return at least 1 from get_anon_bdev. 1264 */ 1265 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1266 GFP_ATOMIC); 1267 if (dev == -ENOSPC) 1268 dev = -EMFILE; 1269 if (dev < 0) 1270 return dev; 1271 1272 *p = MKDEV(0, dev); 1273 return 0; 1274 } 1275 EXPORT_SYMBOL(get_anon_bdev); 1276 1277 void free_anon_bdev(dev_t dev) 1278 { 1279 ida_free(&unnamed_dev_ida, MINOR(dev)); 1280 } 1281 EXPORT_SYMBOL(free_anon_bdev); 1282 1283 int set_anon_super(struct super_block *s, void *data) 1284 { 1285 return get_anon_bdev(&s->s_dev); 1286 } 1287 EXPORT_SYMBOL(set_anon_super); 1288 1289 void kill_anon_super(struct super_block *sb) 1290 { 1291 dev_t dev = sb->s_dev; 1292 generic_shutdown_super(sb); 1293 kill_super_notify(sb); 1294 free_anon_bdev(dev); 1295 } 1296 EXPORT_SYMBOL(kill_anon_super); 1297 1298 void kill_litter_super(struct super_block *sb) 1299 { 1300 if (sb->s_root) 1301 d_genocide(sb->s_root); 1302 kill_anon_super(sb); 1303 } 1304 EXPORT_SYMBOL(kill_litter_super); 1305 1306 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1307 { 1308 return set_anon_super(sb, NULL); 1309 } 1310 EXPORT_SYMBOL(set_anon_super_fc); 1311 1312 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1313 { 1314 return sb->s_fs_info == fc->s_fs_info; 1315 } 1316 1317 static int test_single_super(struct super_block *s, struct fs_context *fc) 1318 { 1319 return 1; 1320 } 1321 1322 static int vfs_get_super(struct fs_context *fc, 1323 int (*test)(struct super_block *, struct fs_context *), 1324 int (*fill_super)(struct super_block *sb, 1325 struct fs_context *fc)) 1326 { 1327 struct super_block *sb; 1328 int err; 1329 1330 sb = sget_fc(fc, test, set_anon_super_fc); 1331 if (IS_ERR(sb)) 1332 return PTR_ERR(sb); 1333 1334 if (!sb->s_root) { 1335 err = fill_super(sb, fc); 1336 if (err) 1337 goto error; 1338 1339 sb->s_flags |= SB_ACTIVE; 1340 } 1341 1342 fc->root = dget(sb->s_root); 1343 return 0; 1344 1345 error: 1346 deactivate_locked_super(sb); 1347 return err; 1348 } 1349 1350 int get_tree_nodev(struct fs_context *fc, 1351 int (*fill_super)(struct super_block *sb, 1352 struct fs_context *fc)) 1353 { 1354 return vfs_get_super(fc, NULL, fill_super); 1355 } 1356 EXPORT_SYMBOL(get_tree_nodev); 1357 1358 int get_tree_single(struct fs_context *fc, 1359 int (*fill_super)(struct super_block *sb, 1360 struct fs_context *fc)) 1361 { 1362 return vfs_get_super(fc, test_single_super, fill_super); 1363 } 1364 EXPORT_SYMBOL(get_tree_single); 1365 1366 int get_tree_keyed(struct fs_context *fc, 1367 int (*fill_super)(struct super_block *sb, 1368 struct fs_context *fc), 1369 void *key) 1370 { 1371 fc->s_fs_info = key; 1372 return vfs_get_super(fc, test_keyed_super, fill_super); 1373 } 1374 EXPORT_SYMBOL(get_tree_keyed); 1375 1376 static int set_bdev_super(struct super_block *s, void *data) 1377 { 1378 s->s_dev = *(dev_t *)data; 1379 return 0; 1380 } 1381 1382 static int super_s_dev_set(struct super_block *s, struct fs_context *fc) 1383 { 1384 return set_bdev_super(s, fc->sget_key); 1385 } 1386 1387 static int super_s_dev_test(struct super_block *s, struct fs_context *fc) 1388 { 1389 return !(s->s_iflags & SB_I_RETIRED) && 1390 s->s_dev == *(dev_t *)fc->sget_key; 1391 } 1392 1393 /** 1394 * sget_dev - Find or create a superblock by device number 1395 * @fc: Filesystem context. 1396 * @dev: device number 1397 * 1398 * Find or create a superblock using the provided device number that 1399 * will be stored in fc->sget_key. 1400 * 1401 * If an extant superblock is matched, then that will be returned with 1402 * an elevated reference count that the caller must transfer or discard. 1403 * 1404 * If no match is made, a new superblock will be allocated and basic 1405 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will 1406 * be set). The superblock will be published and it will be returned in 1407 * a partially constructed state with SB_BORN and SB_ACTIVE as yet 1408 * unset. 1409 * 1410 * Return: an existing or newly created superblock on success, an error 1411 * pointer on failure. 1412 */ 1413 struct super_block *sget_dev(struct fs_context *fc, dev_t dev) 1414 { 1415 fc->sget_key = &dev; 1416 return sget_fc(fc, super_s_dev_test, super_s_dev_set); 1417 } 1418 EXPORT_SYMBOL(sget_dev); 1419 1420 #ifdef CONFIG_BLOCK 1421 /* 1422 * Lock the superblock that is holder of the bdev. Returns the superblock 1423 * pointer if we successfully locked the superblock and it is alive. Otherwise 1424 * we return NULL and just unlock bdev->bd_holder_lock. 1425 * 1426 * The function must be called with bdev->bd_holder_lock and releases it. 1427 */ 1428 static struct super_block *bdev_super_lock_shared(struct block_device *bdev) 1429 __releases(&bdev->bd_holder_lock) 1430 { 1431 struct super_block *sb = bdev->bd_holder; 1432 bool born; 1433 1434 lockdep_assert_held(&bdev->bd_holder_lock); 1435 lockdep_assert_not_held(&sb->s_umount); 1436 lockdep_assert_not_held(&bdev->bd_disk->open_mutex); 1437 1438 /* Make sure sb doesn't go away from under us */ 1439 spin_lock(&sb_lock); 1440 sb->s_count++; 1441 spin_unlock(&sb_lock); 1442 mutex_unlock(&bdev->bd_holder_lock); 1443 1444 born = super_lock_shared(sb); 1445 if (!born || !sb->s_root || !(sb->s_flags & SB_ACTIVE)) { 1446 super_unlock_shared(sb); 1447 put_super(sb); 1448 return NULL; 1449 } 1450 /* 1451 * The superblock is active and we hold s_umount, we can drop our 1452 * temporary reference now. 1453 */ 1454 put_super(sb); 1455 return sb; 1456 } 1457 1458 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise) 1459 { 1460 struct super_block *sb; 1461 1462 sb = bdev_super_lock_shared(bdev); 1463 if (!sb) 1464 return; 1465 1466 if (!surprise) 1467 sync_filesystem(sb); 1468 shrink_dcache_sb(sb); 1469 invalidate_inodes(sb); 1470 if (sb->s_op->shutdown) 1471 sb->s_op->shutdown(sb); 1472 1473 super_unlock_shared(sb); 1474 } 1475 1476 static void fs_bdev_sync(struct block_device *bdev) 1477 { 1478 struct super_block *sb; 1479 1480 sb = bdev_super_lock_shared(bdev); 1481 if (!sb) 1482 return; 1483 sync_filesystem(sb); 1484 super_unlock_shared(sb); 1485 } 1486 1487 const struct blk_holder_ops fs_holder_ops = { 1488 .mark_dead = fs_bdev_mark_dead, 1489 .sync = fs_bdev_sync, 1490 }; 1491 EXPORT_SYMBOL_GPL(fs_holder_ops); 1492 1493 int setup_bdev_super(struct super_block *sb, int sb_flags, 1494 struct fs_context *fc) 1495 { 1496 blk_mode_t mode = sb_open_mode(sb_flags); 1497 struct bdev_handle *bdev_handle; 1498 struct block_device *bdev; 1499 1500 bdev_handle = bdev_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops); 1501 if (IS_ERR(bdev_handle)) { 1502 if (fc) 1503 errorf(fc, "%s: Can't open blockdev", fc->source); 1504 return PTR_ERR(bdev_handle); 1505 } 1506 bdev = bdev_handle->bdev; 1507 1508 /* 1509 * This really should be in blkdev_get_by_dev, but right now can't due 1510 * to legacy issues that require us to allow opening a block device node 1511 * writable from userspace even for a read-only block device. 1512 */ 1513 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) { 1514 bdev_release(bdev_handle); 1515 return -EACCES; 1516 } 1517 1518 /* 1519 * Until SB_BORN flag is set, there can be no active superblock 1520 * references and thus no filesystem freezing. get_active_super() will 1521 * just loop waiting for SB_BORN so even freeze_bdev() cannot proceed. 1522 * 1523 * It is enough to check bdev was not frozen before we set s_bdev. 1524 */ 1525 mutex_lock(&bdev->bd_fsfreeze_mutex); 1526 if (bdev->bd_fsfreeze_count > 0) { 1527 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1528 if (fc) 1529 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1530 bdev_release(bdev_handle); 1531 return -EBUSY; 1532 } 1533 spin_lock(&sb_lock); 1534 sb->s_bdev_handle = bdev_handle; 1535 sb->s_bdev = bdev; 1536 sb->s_bdi = bdi_get(bdev->bd_disk->bdi); 1537 if (bdev_stable_writes(bdev)) 1538 sb->s_iflags |= SB_I_STABLE_WRITES; 1539 spin_unlock(&sb_lock); 1540 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1541 1542 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1543 shrinker_debugfs_rename(&sb->s_shrink, "sb-%s:%s", sb->s_type->name, 1544 sb->s_id); 1545 sb_set_blocksize(sb, block_size(bdev)); 1546 return 0; 1547 } 1548 EXPORT_SYMBOL_GPL(setup_bdev_super); 1549 1550 /** 1551 * get_tree_bdev - Get a superblock based on a single block device 1552 * @fc: The filesystem context holding the parameters 1553 * @fill_super: Helper to initialise a new superblock 1554 */ 1555 int get_tree_bdev(struct fs_context *fc, 1556 int (*fill_super)(struct super_block *, 1557 struct fs_context *)) 1558 { 1559 struct super_block *s; 1560 int error = 0; 1561 dev_t dev; 1562 1563 if (!fc->source) 1564 return invalf(fc, "No source specified"); 1565 1566 error = lookup_bdev(fc->source, &dev); 1567 if (error) { 1568 errorf(fc, "%s: Can't lookup blockdev", fc->source); 1569 return error; 1570 } 1571 1572 fc->sb_flags |= SB_NOSEC; 1573 s = sget_dev(fc, dev); 1574 if (IS_ERR(s)) 1575 return PTR_ERR(s); 1576 1577 if (s->s_root) { 1578 /* Don't summarily change the RO/RW state. */ 1579 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1580 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev); 1581 deactivate_locked_super(s); 1582 return -EBUSY; 1583 } 1584 } else { 1585 /* 1586 * We drop s_umount here because we need to open the bdev and 1587 * bdev->open_mutex ranks above s_umount (blkdev_put() -> 1588 * bdev_mark_dead()). It is safe because we have active sb 1589 * reference and SB_BORN is not set yet. 1590 */ 1591 super_unlock_excl(s); 1592 error = setup_bdev_super(s, fc->sb_flags, fc); 1593 __super_lock_excl(s); 1594 if (!error) 1595 error = fill_super(s, fc); 1596 if (error) { 1597 deactivate_locked_super(s); 1598 return error; 1599 } 1600 s->s_flags |= SB_ACTIVE; 1601 } 1602 1603 BUG_ON(fc->root); 1604 fc->root = dget(s->s_root); 1605 return 0; 1606 } 1607 EXPORT_SYMBOL(get_tree_bdev); 1608 1609 static int test_bdev_super(struct super_block *s, void *data) 1610 { 1611 return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data; 1612 } 1613 1614 struct dentry *mount_bdev(struct file_system_type *fs_type, 1615 int flags, const char *dev_name, void *data, 1616 int (*fill_super)(struct super_block *, void *, int)) 1617 { 1618 struct super_block *s; 1619 int error; 1620 dev_t dev; 1621 1622 error = lookup_bdev(dev_name, &dev); 1623 if (error) 1624 return ERR_PTR(error); 1625 1626 flags |= SB_NOSEC; 1627 s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev); 1628 if (IS_ERR(s)) 1629 return ERR_CAST(s); 1630 1631 if (s->s_root) { 1632 if ((flags ^ s->s_flags) & SB_RDONLY) { 1633 deactivate_locked_super(s); 1634 return ERR_PTR(-EBUSY); 1635 } 1636 } else { 1637 /* 1638 * We drop s_umount here because we need to open the bdev and 1639 * bdev->open_mutex ranks above s_umount (blkdev_put() -> 1640 * bdev_mark_dead()). It is safe because we have active sb 1641 * reference and SB_BORN is not set yet. 1642 */ 1643 super_unlock_excl(s); 1644 error = setup_bdev_super(s, flags, NULL); 1645 __super_lock_excl(s); 1646 if (!error) 1647 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1648 if (error) { 1649 deactivate_locked_super(s); 1650 return ERR_PTR(error); 1651 } 1652 1653 s->s_flags |= SB_ACTIVE; 1654 } 1655 1656 return dget(s->s_root); 1657 } 1658 EXPORT_SYMBOL(mount_bdev); 1659 1660 void kill_block_super(struct super_block *sb) 1661 { 1662 struct block_device *bdev = sb->s_bdev; 1663 1664 generic_shutdown_super(sb); 1665 if (bdev) { 1666 sync_blockdev(bdev); 1667 bdev_release(sb->s_bdev_handle); 1668 } 1669 } 1670 1671 EXPORT_SYMBOL(kill_block_super); 1672 #endif 1673 1674 struct dentry *mount_nodev(struct file_system_type *fs_type, 1675 int flags, void *data, 1676 int (*fill_super)(struct super_block *, void *, int)) 1677 { 1678 int error; 1679 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1680 1681 if (IS_ERR(s)) 1682 return ERR_CAST(s); 1683 1684 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1685 if (error) { 1686 deactivate_locked_super(s); 1687 return ERR_PTR(error); 1688 } 1689 s->s_flags |= SB_ACTIVE; 1690 return dget(s->s_root); 1691 } 1692 EXPORT_SYMBOL(mount_nodev); 1693 1694 int reconfigure_single(struct super_block *s, 1695 int flags, void *data) 1696 { 1697 struct fs_context *fc; 1698 int ret; 1699 1700 /* The caller really need to be passing fc down into mount_single(), 1701 * then a chunk of this can be removed. [Bollocks -- AV] 1702 * Better yet, reconfiguration shouldn't happen, but rather the second 1703 * mount should be rejected if the parameters are not compatible. 1704 */ 1705 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1706 if (IS_ERR(fc)) 1707 return PTR_ERR(fc); 1708 1709 ret = parse_monolithic_mount_data(fc, data); 1710 if (ret < 0) 1711 goto out; 1712 1713 ret = reconfigure_super(fc); 1714 out: 1715 put_fs_context(fc); 1716 return ret; 1717 } 1718 1719 static int compare_single(struct super_block *s, void *p) 1720 { 1721 return 1; 1722 } 1723 1724 struct dentry *mount_single(struct file_system_type *fs_type, 1725 int flags, void *data, 1726 int (*fill_super)(struct super_block *, void *, int)) 1727 { 1728 struct super_block *s; 1729 int error; 1730 1731 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1732 if (IS_ERR(s)) 1733 return ERR_CAST(s); 1734 if (!s->s_root) { 1735 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1736 if (!error) 1737 s->s_flags |= SB_ACTIVE; 1738 } else { 1739 error = reconfigure_single(s, flags, data); 1740 } 1741 if (unlikely(error)) { 1742 deactivate_locked_super(s); 1743 return ERR_PTR(error); 1744 } 1745 return dget(s->s_root); 1746 } 1747 EXPORT_SYMBOL(mount_single); 1748 1749 /** 1750 * vfs_get_tree - Get the mountable root 1751 * @fc: The superblock configuration context. 1752 * 1753 * The filesystem is invoked to get or create a superblock which can then later 1754 * be used for mounting. The filesystem places a pointer to the root to be 1755 * used for mounting in @fc->root. 1756 */ 1757 int vfs_get_tree(struct fs_context *fc) 1758 { 1759 struct super_block *sb; 1760 int error; 1761 1762 if (fc->root) 1763 return -EBUSY; 1764 1765 /* Get the mountable root in fc->root, with a ref on the root and a ref 1766 * on the superblock. 1767 */ 1768 error = fc->ops->get_tree(fc); 1769 if (error < 0) 1770 return error; 1771 1772 if (!fc->root) { 1773 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1774 fc->fs_type->name); 1775 /* We don't know what the locking state of the superblock is - 1776 * if there is a superblock. 1777 */ 1778 BUG(); 1779 } 1780 1781 sb = fc->root->d_sb; 1782 WARN_ON(!sb->s_bdi); 1783 1784 /* 1785 * super_wake() contains a memory barrier which also care of 1786 * ordering for super_cache_count(). We place it before setting 1787 * SB_BORN as the data dependency between the two functions is 1788 * the superblock structure contents that we just set up, not 1789 * the SB_BORN flag. 1790 */ 1791 super_wake(sb, SB_BORN); 1792 1793 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1794 if (unlikely(error)) { 1795 fc_drop_locked(fc); 1796 return error; 1797 } 1798 1799 /* 1800 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1801 * but s_maxbytes was an unsigned long long for many releases. Throw 1802 * this warning for a little while to try and catch filesystems that 1803 * violate this rule. 1804 */ 1805 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1806 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1807 1808 return 0; 1809 } 1810 EXPORT_SYMBOL(vfs_get_tree); 1811 1812 /* 1813 * Setup private BDI for given superblock. It gets automatically cleaned up 1814 * in generic_shutdown_super(). 1815 */ 1816 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1817 { 1818 struct backing_dev_info *bdi; 1819 int err; 1820 va_list args; 1821 1822 bdi = bdi_alloc(NUMA_NO_NODE); 1823 if (!bdi) 1824 return -ENOMEM; 1825 1826 va_start(args, fmt); 1827 err = bdi_register_va(bdi, fmt, args); 1828 va_end(args); 1829 if (err) { 1830 bdi_put(bdi); 1831 return err; 1832 } 1833 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1834 sb->s_bdi = bdi; 1835 sb->s_iflags |= SB_I_PERSB_BDI; 1836 1837 return 0; 1838 } 1839 EXPORT_SYMBOL(super_setup_bdi_name); 1840 1841 /* 1842 * Setup private BDI for given superblock. I gets automatically cleaned up 1843 * in generic_shutdown_super(). 1844 */ 1845 int super_setup_bdi(struct super_block *sb) 1846 { 1847 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1848 1849 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1850 atomic_long_inc_return(&bdi_seq)); 1851 } 1852 EXPORT_SYMBOL(super_setup_bdi); 1853 1854 /** 1855 * sb_wait_write - wait until all writers to given file system finish 1856 * @sb: the super for which we wait 1857 * @level: type of writers we wait for (normal vs page fault) 1858 * 1859 * This function waits until there are no writers of given type to given file 1860 * system. 1861 */ 1862 static void sb_wait_write(struct super_block *sb, int level) 1863 { 1864 percpu_down_write(sb->s_writers.rw_sem + level-1); 1865 } 1866 1867 /* 1868 * We are going to return to userspace and forget about these locks, the 1869 * ownership goes to the caller of thaw_super() which does unlock(). 1870 */ 1871 static void lockdep_sb_freeze_release(struct super_block *sb) 1872 { 1873 int level; 1874 1875 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1876 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1877 } 1878 1879 /* 1880 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1881 */ 1882 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1883 { 1884 int level; 1885 1886 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1887 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1888 } 1889 1890 static void sb_freeze_unlock(struct super_block *sb, int level) 1891 { 1892 for (level--; level >= 0; level--) 1893 percpu_up_write(sb->s_writers.rw_sem + level); 1894 } 1895 1896 static int wait_for_partially_frozen(struct super_block *sb) 1897 { 1898 int ret = 0; 1899 1900 do { 1901 unsigned short old = sb->s_writers.frozen; 1902 1903 up_write(&sb->s_umount); 1904 ret = wait_var_event_killable(&sb->s_writers.frozen, 1905 sb->s_writers.frozen != old); 1906 down_write(&sb->s_umount); 1907 } while (ret == 0 && 1908 sb->s_writers.frozen != SB_UNFROZEN && 1909 sb->s_writers.frozen != SB_FREEZE_COMPLETE); 1910 1911 return ret; 1912 } 1913 1914 /** 1915 * freeze_super - lock the filesystem and force it into a consistent state 1916 * @sb: the super to lock 1917 * @who: context that wants to freeze 1918 * 1919 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1920 * freeze_fs. Subsequent calls to this without first thawing the fs may return 1921 * -EBUSY. 1922 * 1923 * @who should be: 1924 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs; 1925 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs. 1926 * 1927 * The @who argument distinguishes between the kernel and userspace trying to 1928 * freeze the filesystem. Although there cannot be multiple kernel freezes or 1929 * multiple userspace freezes in effect at any given time, the kernel and 1930 * userspace can both hold a filesystem frozen. The filesystem remains frozen 1931 * until there are no kernel or userspace freezes in effect. 1932 * 1933 * During this function, sb->s_writers.frozen goes through these values: 1934 * 1935 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1936 * 1937 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1938 * writes should be blocked, though page faults are still allowed. We wait for 1939 * all writes to complete and then proceed to the next stage. 1940 * 1941 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1942 * but internal fs threads can still modify the filesystem (although they 1943 * should not dirty new pages or inodes), writeback can run etc. After waiting 1944 * for all running page faults we sync the filesystem which will clean all 1945 * dirty pages and inodes (no new dirty pages or inodes can be created when 1946 * sync is running). 1947 * 1948 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1949 * modification are blocked (e.g. XFS preallocation truncation on inode 1950 * reclaim). This is usually implemented by blocking new transactions for 1951 * filesystems that have them and need this additional guard. After all 1952 * internal writers are finished we call ->freeze_fs() to finish filesystem 1953 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1954 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1955 * 1956 * sb->s_writers.frozen is protected by sb->s_umount. 1957 */ 1958 int freeze_super(struct super_block *sb, enum freeze_holder who) 1959 { 1960 int ret; 1961 1962 atomic_inc(&sb->s_active); 1963 if (!super_lock_excl(sb)) 1964 WARN(1, "Dying superblock while freezing!"); 1965 1966 retry: 1967 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { 1968 if (sb->s_writers.freeze_holders & who) { 1969 deactivate_locked_super(sb); 1970 return -EBUSY; 1971 } 1972 1973 WARN_ON(sb->s_writers.freeze_holders == 0); 1974 1975 /* 1976 * Someone else already holds this type of freeze; share the 1977 * freeze and assign the active ref to the freeze. 1978 */ 1979 sb->s_writers.freeze_holders |= who; 1980 super_unlock_excl(sb); 1981 return 0; 1982 } 1983 1984 if (sb->s_writers.frozen != SB_UNFROZEN) { 1985 ret = wait_for_partially_frozen(sb); 1986 if (ret) { 1987 deactivate_locked_super(sb); 1988 return ret; 1989 } 1990 1991 goto retry; 1992 } 1993 1994 if (!(sb->s_flags & SB_BORN)) { 1995 super_unlock_excl(sb); 1996 return 0; /* sic - it's "nothing to do" */ 1997 } 1998 1999 if (sb_rdonly(sb)) { 2000 /* Nothing to do really... */ 2001 sb->s_writers.freeze_holders |= who; 2002 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2003 wake_up_var(&sb->s_writers.frozen); 2004 super_unlock_excl(sb); 2005 return 0; 2006 } 2007 2008 sb->s_writers.frozen = SB_FREEZE_WRITE; 2009 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 2010 super_unlock_excl(sb); 2011 sb_wait_write(sb, SB_FREEZE_WRITE); 2012 if (!super_lock_excl(sb)) 2013 WARN(1, "Dying superblock while freezing!"); 2014 2015 /* Now we go and block page faults... */ 2016 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 2017 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 2018 2019 /* All writers are done so after syncing there won't be dirty data */ 2020 ret = sync_filesystem(sb); 2021 if (ret) { 2022 sb->s_writers.frozen = SB_UNFROZEN; 2023 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 2024 wake_up_var(&sb->s_writers.frozen); 2025 deactivate_locked_super(sb); 2026 return ret; 2027 } 2028 2029 /* Now wait for internal filesystem counter */ 2030 sb->s_writers.frozen = SB_FREEZE_FS; 2031 sb_wait_write(sb, SB_FREEZE_FS); 2032 2033 if (sb->s_op->freeze_fs) { 2034 ret = sb->s_op->freeze_fs(sb); 2035 if (ret) { 2036 printk(KERN_ERR 2037 "VFS:Filesystem freeze failed\n"); 2038 sb->s_writers.frozen = SB_UNFROZEN; 2039 sb_freeze_unlock(sb, SB_FREEZE_FS); 2040 wake_up_var(&sb->s_writers.frozen); 2041 deactivate_locked_super(sb); 2042 return ret; 2043 } 2044 } 2045 /* 2046 * For debugging purposes so that fs can warn if it sees write activity 2047 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 2048 */ 2049 sb->s_writers.freeze_holders |= who; 2050 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2051 wake_up_var(&sb->s_writers.frozen); 2052 lockdep_sb_freeze_release(sb); 2053 super_unlock_excl(sb); 2054 return 0; 2055 } 2056 EXPORT_SYMBOL(freeze_super); 2057 2058 /* 2059 * Undoes the effect of a freeze_super_locked call. If the filesystem is 2060 * frozen both by userspace and the kernel, a thaw call from either source 2061 * removes that state without releasing the other state or unlocking the 2062 * filesystem. 2063 */ 2064 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who) 2065 { 2066 int error; 2067 2068 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { 2069 if (!(sb->s_writers.freeze_holders & who)) { 2070 super_unlock_excl(sb); 2071 return -EINVAL; 2072 } 2073 2074 /* 2075 * Freeze is shared with someone else. Release our hold and 2076 * drop the active ref that freeze_super assigned to the 2077 * freezer. 2078 */ 2079 if (sb->s_writers.freeze_holders & ~who) { 2080 sb->s_writers.freeze_holders &= ~who; 2081 deactivate_locked_super(sb); 2082 return 0; 2083 } 2084 } else { 2085 super_unlock_excl(sb); 2086 return -EINVAL; 2087 } 2088 2089 if (sb_rdonly(sb)) { 2090 sb->s_writers.freeze_holders &= ~who; 2091 sb->s_writers.frozen = SB_UNFROZEN; 2092 wake_up_var(&sb->s_writers.frozen); 2093 goto out; 2094 } 2095 2096 lockdep_sb_freeze_acquire(sb); 2097 2098 if (sb->s_op->unfreeze_fs) { 2099 error = sb->s_op->unfreeze_fs(sb); 2100 if (error) { 2101 printk(KERN_ERR "VFS:Filesystem thaw failed\n"); 2102 lockdep_sb_freeze_release(sb); 2103 super_unlock_excl(sb); 2104 return error; 2105 } 2106 } 2107 2108 sb->s_writers.freeze_holders &= ~who; 2109 sb->s_writers.frozen = SB_UNFROZEN; 2110 wake_up_var(&sb->s_writers.frozen); 2111 sb_freeze_unlock(sb, SB_FREEZE_FS); 2112 out: 2113 deactivate_locked_super(sb); 2114 return 0; 2115 } 2116 2117 /** 2118 * thaw_super -- unlock filesystem 2119 * @sb: the super to thaw 2120 * @who: context that wants to freeze 2121 * 2122 * Unlocks the filesystem and marks it writeable again after freeze_super() 2123 * if there are no remaining freezes on the filesystem. 2124 * 2125 * @who should be: 2126 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs; 2127 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs. 2128 */ 2129 int thaw_super(struct super_block *sb, enum freeze_holder who) 2130 { 2131 if (!super_lock_excl(sb)) 2132 WARN(1, "Dying superblock while thawing!"); 2133 return thaw_super_locked(sb, who); 2134 } 2135 EXPORT_SYMBOL(thaw_super); 2136 2137 /* 2138 * Create workqueue for deferred direct IO completions. We allocate the 2139 * workqueue when it's first needed. This avoids creating workqueue for 2140 * filesystems that don't need it and also allows us to create the workqueue 2141 * late enough so the we can include s_id in the name of the workqueue. 2142 */ 2143 int sb_init_dio_done_wq(struct super_block *sb) 2144 { 2145 struct workqueue_struct *old; 2146 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 2147 WQ_MEM_RECLAIM, 0, 2148 sb->s_id); 2149 if (!wq) 2150 return -ENOMEM; 2151 /* 2152 * This has to be atomic as more DIOs can race to create the workqueue 2153 */ 2154 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 2155 /* Someone created workqueue before us? Free ours... */ 2156 if (old) 2157 destroy_workqueue(wq); 2158 return 0; 2159 } 2160